1
|
Ye S, Wu H, Liu J, Zhou J, He S, Li N. Circ_0044362 Facilitates the Progression of Epithelial Ovarian Cancer via Enhancing HOXB4 Transcription to Activate the RUNX1/IGFBP3 Axis. Mol Carcinog 2025; 64:1013-1024. [PMID: 40099691 DOI: 10.1002/mc.23905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/02/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Increasing numbers of studies have elucidated the emerging roles of circular RNA (circRNA) in cancer progression. However, the function of circRNAs in modulating their parental genes in ovarian cancer remains poorly understood. In this study, we identified that circ_0044362, a circRNA derived from homeobox B4 (HOXB4), significantly promotes the expression of its parental gene HOXB4 in ovarian cancer. Functionally, circ_0044362 promotes the malignant phenotypes of ovarian cancer cells. Further analysis revealed that circ_0044362 facilitates the transcriptional activation of its parental gene HOXB4 by directly guiding U1 small nuclear ribonucleoprotein (snRNP) to its promoter region, thereby enhancing the oncogenic behaviors of ovarian cancer cells. Furthermore, HOXB4 positively regulates runt-related transcription factor 1 (RUNX1) expression, with RUNX1 serving as a transcription factor to promote the transcription of insulin-like growth factor binding protein-3 (IGFBP3). Notably, inhibitors of either HOXB4, RUNX1, or IGFBP3 could reverse the oncogenic activity mediated by circ_0044362. Collectively, our findings reveal the involvement of the circ_0044362/HOXB4 pathway in ovarian cancer progression and provide potential therapeutic strategies for ovarian cancer treatment.
Collapse
Affiliation(s)
- Shengtou Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Han Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junjiang Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jianguo Zhou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sisi He
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Na Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Guo E, Li L, Yang J, Zhou Y, Bai L, Zhu W, Hu Q, Wang H, Liu H. HOXB4/METTL7B cascade mediates malignant phenotypes of hepatocellular carcinoma through TKT m6A modification. Biol Direct 2025; 20:26. [PMID: 40045399 PMCID: PMC11884015 DOI: 10.1186/s13062-025-00620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma is a fatal malignancy that lacking specific therapies. Homeobox B4 (HOXB4) was negatively correlated with poor prognosis in cancers, but its role in hepatocellular carcinoma has not been elucidated. RESULTS We confirmed that HOXB4 was downregulated in hepatocellular carcinoma tissues and lower HOXB4 expression associated with poor prognosis. Gain- and loss-of function experiments were performed to understand the functional consequences. We revealed that HOXB4 overexpression inhibited proliferation and metastasis of hepatocellular carcinoma cells, accompanied with the decrease in epithelial-mesenchymal transition and increase in cell apoptosis. Database analysis showed that HOXB4 was positively correlated with the immune infiltration. PD-L1 expression was decreased in HOXB4 overexpressed hepatocellular carcinoma cells. HOXB4 overexpression was confirmed to inhibit the progression of hepatocellular carcinoma and promote T cell infiltration in vivo. N6-methyladenosine (m6A) modification was implicated in the tumorigenesis. RNA-seq analysis showed that HOXB4 overexpression modulated METTL7B expression. With the performance of dual-luciferase reporter, ChIP, and DNA pulldown assays, we revealed that HOXB4 binding to METTL7B promoter and inhibited its mRNA expression. The increased aggressiveness of hepatocellular carcinoma cells and the enhanced immune escape, triggered by HOXB4 knockdown, were inhibited via METTL7B downregulation. Methylated RNA immunoprecipitation assay displayed that METTL7B controlled the mRNA decay of TKT in m6A methylation. METTL7B overexpression increase the expression of TKT, ultimately promoting hepatocellular carcinoma progression and immune evasion. CONCLUSIONS HOXB4 mediated the malignant phenotypes and modulated the immune evasion via METTL7B/TKT axis. The HOXB4/METTL7B cascade and its downstream changes might be novel targets for blocking hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Enshuang Guo
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Lei Li
- Department of Osteology, Yellow River Central Hospital of the Yellow River Conservancy Commission, Zhengzhou, 450003, China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongjian Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lu Bai
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Weiwei Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qiuyue Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Huifen Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongqiang Liu
- Department of Emergency, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, 450002, China
| |
Collapse
|
3
|
Crisafulli L, Brindisi M, Liturri MG, Sobacchi C, Ficara F. PBX1: a TALE of two seasons-key roles during development and in cancer. Front Cell Dev Biol 2024; 12:1372873. [PMID: 38404687 PMCID: PMC10884236 DOI: 10.3389/fcell.2024.1372873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Pre-B cell leukemia factor 1 (PBX1) is a Three Aminoacid Loop Extension (TALE) homeodomain-containing transcription factor playing crucial roles in organ pattering during embryogenesis, through the formation of nuclear complexes with other TALE class and/or homeobox proteins to regulate target genes. Its contribution to the development of several organs has been elucidated mainly through the study of murine knockout models. A crucial role for human development has been recently highlighted through the discovery of different de novo pathogenic PBX1 variants in children affected by developmental defects. In the adult, PBX1 is expressed in selected tissues such as in the brain, in the gastro-intestinal and urinary systems, or in hematopoietic stem and progenitor cells, while in other organs is barely detectable. When involved in the t(1;19) chromosomal translocation it acts as an oncogene, since the resulting fusion protein drives pre-B cell leukemia, due to the induction of target genes not normally targeted by the native protein. Its aberrant expression has been associated to tumor development, progression, or therapy-resistance as in breast cancer, ovarian cancer or myeloproliferative neoplasm (MPN). On the other hand, in colorectal cancer PBX1 functions as a tumor suppressor, highlighting its context-dependent role. We here discuss differences and analogies of PBX1 roles during embryonic development and in cancer, focusing mainly on the most recent discoveries.
Collapse
Affiliation(s)
- Laura Crisafulli
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council, Milan, Italy
| | - Matteo Brindisi
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council, Milan, Italy
| | | | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council, Milan, Italy
| | - Francesca Ficara
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council, Milan, Italy
| |
Collapse
|
4
|
OUP accepted manuscript. Stem Cells 2022; 40:175-189. [DOI: 10.1093/stmcls/sxab014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/28/2021] [Indexed: 11/14/2022]
|
5
|
Chetta M, Tarsitano M, Vicari L, Saracino A, Bukvic N. In Silico Analysis of Possible Interaction between Host Genomic Transcription Factors (TFs) and Zika Virus (ZikaSPH2015) Strain with Combinatorial Gene Regulation; Virus Versus Host-The Game Reloaded. Pathogens 2021; 10:pathogens10010069. [PMID: 33466592 PMCID: PMC7828653 DOI: 10.3390/pathogens10010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
In silico analysis is a promising approach for understanding biological events in complex diseases. Herein we report on the innovative computational workflow allowed to highlight new direct interactions between human transcription factors (TFs) and an entire genome of virus ZikaSPH2015 strain in order to identify the occurrence of specific motifs on a genomic Zika Virus sequence that is able to bind and, therefore, sequester host’s TFs. The analysis pipeline was performed using different bioinformatics tools available online (free of charge). According to obtained results of this in silico analysis, it is possible to hypothesize that these TFs binding motifs might be able to explain the complex and heterogeneous phenotype presentation in Zika-virus-affected fetuses/newborns, as well as the less severe condition in adults. Moreover, the proposed in silico protocol identified thirty-three different TFs identical to the distribution of TFBSs (Transcription Factor Binding Sites) on ZikaSPH2015 strain, potentially able to influence genes and pathways with biological functions confirming that this approach could find potential answers on disease pathogenesis.
Collapse
Affiliation(s)
- Massimiliano Chetta
- U.O.C. Genetica Medica e di Laboratorio, Ospedale Antonio Cardarelli, 80131 Napoli, Italy; (M.T.); (L.V.)
- Correspondence:
| | - Marina Tarsitano
- U.O.C. Genetica Medica e di Laboratorio, Ospedale Antonio Cardarelli, 80131 Napoli, Italy; (M.T.); (L.V.)
| | - Laura Vicari
- U.O.C. Genetica Medica e di Laboratorio, Ospedale Antonio Cardarelli, 80131 Napoli, Italy; (M.T.); (L.V.)
| | - Annalisa Saracino
- Clinica di Malattie Infettive, Dipartimento di Scienze Biomediche ed Oncologia Umana, Università degli Studi “Aldo Moro” di Bari, 70124 Bari, Italy;
| | - Nenad Bukvic
- Genetica Medica, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy;
| |
Collapse
|
6
|
Abstract
Embryonic definitive hematopoiesis generates hematopoietic stem and progenitor cells (HSPCs) essential for establishment and maintenance of the adult blood system. This process requires the specification of a subset of vascular endothelial cells to become blood-forming, or hemogenic, and the subsequent endothelial-to-hematopoietic transition to generate HSPCs therefrom. The mechanisms that regulate these processes are under intensive investigation, as their recapitulation in vitro from human pluripotent stem cells has the potential to generate autologous HSPCs for clinical applications. In this review, we provide an overview of hemogenic endothelial cell development and highlight the molecular events that govern hemogenic specification of vascular endothelial cells and the generation of multilineage HSPCs from hemogenic endothelium. We also discuss the impact of hemogenic endothelial cell development on adult hematopoiesis.
Collapse
Affiliation(s)
- Yinyu Wu
- Departments of Medicine and Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Karen K Hirschi
- Departments of Medicine and Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA;
| |
Collapse
|
7
|
Smoking-Related DNA Methylation is Associated with DNA Methylation Phenotypic Age Acceleration: The Veterans Affairs Normative Aging Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16132356. [PMID: 31277270 PMCID: PMC6651499 DOI: 10.3390/ijerph16132356] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022]
Abstract
DNA methylation may play a critical role in aging and age-related diseases. DNA methylation phenotypic age (DNAmPhenoAge) is a new aging biomarker and predictor of chronic disease risk. While smoking is a strong risk factor for chronic diseases and influences methylation, its influence on DNAmPhenoAge is unknown. We investigated associations of self-reported and epigenetic smoking indicators with DNAmPhenoAge acceleration in a longitudinal aging study in eastern Massachusetts. DNA methylation was measured in whole blood samples from multiple visits for 692 male participants in the Veterans Affairs Normative Aging Study during 1999–2013. Acceleration was defined using residuals from linear regression of the DNAmPhenoAge on the chronological age. Cumulative smoking (pack-years) was significantly associated with DNAmPhenoAge acceleration, whereas self-reported smoking status was not. We observed significant validated associations between smoking-related loci and DNAmPhenoAge acceleration for 52 CpG sites, where 18 were hypomethylated and 34 were hypermethylated, mapped to 16 genes. The AHRR gene had the most loci (N = 8) among the 16 genes. We generated a smoking aging index based on these 52 loci, which showed positive significant associations with DNAmPhenoAge acceleration. These epigenetic biomarkers may help to predict age-related risks driven by smoking.
Collapse
|
8
|
Alsayegh K, Cortés-Medina LV, Ramos-Mandujano G, Badraiq H, Li M. Hematopoietic Differentiation of Human Pluripotent Stem Cells: HOX and GATA Transcription Factors as Master Regulators. Curr Genomics 2019; 20:438-452. [PMID: 32194342 PMCID: PMC7062042 DOI: 10.2174/1389202920666191017163837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
Numerous human disorders of the blood system would directly or indirectly benefit from therapeutic approaches that reconstitute the hematopoietic system. Hematopoietic stem cells (HSCs), either from matched donors or ex vivo manipulated autologous tissues, are the most used cellular source of cell therapy for a wide range of disorders. Due to the scarcity of matched donors and the difficulty of ex vivo expansion of HSCs, there is a growing interest in harnessing the potential of pluripotent stem cells (PSCs) as a de novo source of HSCs. PSCs make an ideal source of cells for regenerative medicine in general and for treating blood disorders in particular because they could expand indefinitely in culture and differentiate to any cell type in the body. However, advancement in deriving functional HSCs from PSCs has been slow. This is partly due to an incomplete understanding of the molecular mechanisms underlying normal hematopoiesis. In this review, we discuss the latest efforts to generate human PSC (hPSC)-derived HSCs capable of long-term engraftment. We review the regulation of the key transcription factors (TFs) in hematopoiesis and hematopoietic differentiation, the Homeobox (HOX) and GATA genes, and the interplay between them and microRNAs. We also propose that precise control of these master regulators during the course of hematopoietic differentiation is key to achieving functional hPSC-derived HSCs.
Collapse
Affiliation(s)
- Khaled Alsayegh
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lorena V Cortés-Medina
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Gerardo Ramos-Mandujano
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heba Badraiq
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Mo Li
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
9
|
Teichweyde N, Kasperidus L, Carotta S, Kouskoff V, Lacaud G, Horn PA, Heinrichs S, Klump H. HOXB4 Promotes Hemogenic Endothelium Formation without Perturbing Endothelial Cell Development. Stem Cell Reports 2018; 10:875-889. [PMID: 29456178 PMCID: PMC5919293 DOI: 10.1016/j.stemcr.2018.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/25/2022] Open
Abstract
Generation of hematopoietic stem cells (HSCs) from pluripotent stem cells, in vitro, holds great promise for regenerative therapies. Primarily, this has been achieved in mouse cells by overexpression of the homeotic selector protein HOXB4. The exact cellular stage at which HOXB4 promotes hematopoietic development, in vitro, is not yet known. However, its identification is a prerequisite to unambiguously identify the molecular circuits controlling hematopoiesis, since the activity of HOX proteins is highly cell and context dependent. To identify that stage, we retrovirally expressed HOXB4 in differentiating mouse embryonic stem cells (ESCs). Through the use of Runx1(-/-) ESCs containing a doxycycline-inducible Runx1 coding sequence, we uncovered that HOXB4 promoted the formation of hemogenic endothelium cells without altering endothelial cell development. Whole-transcriptome analysis revealed that its expression mediated the upregulation of transcription of core transcription factors necessary for hematopoiesis, culminating in the formation of blood progenitors upon initiation of Runx1 expression.
Collapse
Affiliation(s)
- Nadine Teichweyde
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Lara Kasperidus
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany; Department of Bone Marrow Transplantation, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Sebastian Carotta
- Cancer Cell Signaling, Boehringer Ingelheim RCV, Dr Boehringer-Gasse, 1120 Vienna, Austria
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Hannes Klump
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany.
| |
Collapse
|
10
|
Chow PW, Rajab NF, Chua KH, Chan KM, Abd Hamid Z. Differential responses of lineages-committed hematopoietic progenitors and altered expression of self-renewal and differentiation-related genes in 1,4-benzoquinone (1,4-BQ) exposure. Toxicol In Vitro 2018; 46:122-128. [DOI: 10.1016/j.tiv.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 04/12/2017] [Accepted: 10/02/2017] [Indexed: 01/10/2023]
|
11
|
|
12
|
The IRX1/HOXA connection: insights into a novel t(4;11)- specific cancer mechanism. Oncotarget 2018; 7:35341-52. [PMID: 27175594 PMCID: PMC5085233 DOI: 10.18632/oncotarget.9241] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/16/2016] [Indexed: 01/01/2023] Open
Abstract
One hallmark of MLL-r leukemia is the highly specific gene expression signature indicative for commonly deregulated target genes. An usual read-out for this transcriptional deregulation is the HOXA gene cluster, where upregulated HOXA genes are detected in MLL-r AML and ALL patients. In case of t(4;11) leukemia, this simple picture becomes challenged, because these patients separate into HOXAhi- and HOXAlo-patients. HOXAlo-patients showed a reduced HOXA gene transcription, but instead overexpressed the homeobox gene IRX1. This transcriptional pattern was associated with a higher relapse rate and worse outcome. Here, we demonstrate that IRX1 binds to the MLL-AF4 complex at target gene promotors and counteract its promotor activating function. In addition, IRX1 induces transcription of HOXB4 and EGR family members. HOXB4 is usually a downstream target of c-KIT, WNT and TPO signaling pathways and necessary for maintaining and expanding in hematopoietic stem cells. EGR proteins control a p21-dependent quiescence program for hematopoietic stem cells. Both IRX1-dependend actions may help t(4;11) leukemia cells to establish a stem cell compartment. We also demonstrate that HDACi administration is functionally interfering with IRX1 and MLL-AF4, a finding which could help to improve new treatment options for t(4;11) patients.
Collapse
|
13
|
Zouaz A, Auradkar A, Delfini MC, Macchi M, Barthez M, Ela Akoa S, Bastianelli L, Xie G, Deng WM, Levine SS, Graba Y, Saurin AJ. The Hox proteins Ubx and AbdA collaborate with the transcription pausing factor M1BP to regulate gene transcription. EMBO J 2017; 36:2887-2906. [PMID: 28871058 DOI: 10.15252/embj.201695751] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 11/09/2022] Open
Abstract
In metazoans, the pausing of RNA polymerase II at the promoter (paused Pol II) has emerged as a widespread and conserved mechanism in the regulation of gene transcription. While critical in recruiting Pol II to the promoter, the role transcription factors play in transitioning paused Pol II into productive Pol II is, however, little known. By studying how Drosophila Hox transcription factors control transcription, we uncovered a molecular mechanism that increases productive transcription. We found that the Hox proteins AbdA and Ubx target gene promoters previously bound by the transcription pausing factor M1BP, containing paused Pol II and enriched with promoter-proximal Polycomb Group (PcG) proteins, yet lacking the classical H3K27me3 PcG signature. We found that AbdA binding to M1BP-regulated genes results in reduction in PcG binding, the release of paused Pol II, increases in promoter H3K4me3 histone marks and increased gene transcription. Linking transcription factors, PcG proteins and paused Pol II states, these data identify a two-step mechanism of Hox-driven transcription, with M1BP binding leading to Pol II recruitment followed by AbdA targeting, which results in a change in the chromatin landscape and enhanced transcription.
Collapse
Affiliation(s)
- Amel Zouaz
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Ankush Auradkar
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | | | - Meiggie Macchi
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Marine Barthez
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Serge Ela Akoa
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Leila Bastianelli
- MGX-Montpellier GenomiX c/o Institut de Génomique Fonctionnelle, Montpellier, France
| | - Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Stuart S Levine
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yacine Graba
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Andrew J Saurin
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| |
Collapse
|
14
|
Controlled stem cell amplification by HOXB4 depends on its unique proline-rich region near the N terminus. Blood 2016; 129:319-323. [PMID: 27827825 DOI: 10.1182/blood-2016-04-706978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/29/2016] [Indexed: 01/09/2023] Open
Abstract
There is high interest in understanding the mechanisms that drive self-renewal of stem cells. HOXB4 is one of the few transcription factors that can amplify long-term repopulating hematopoietic stem cells in a controlled way. Here we show in mice that this characteristic of HOXB4 depends on a proline-rich sequence near the N terminus, which is unique among HOX genes and highly conserved in higher mammals. Deletion of this domain substantially enhanced the oncogenicity of HOXB4, inducing acute leukemia in mice. Conversely, insertion of the domain into Hoxa9 impaired leukemogenicity of this homeobox gene. These results indicate that proline-rich stretches attenuate the potential of stem cell active homeobox genes to acquire oncogenic properties.
Collapse
|
15
|
Jørgensen S, Coskun M, Homburg KM, Pedersen OBV, Troelsen JT. HOXB4 Gene Expression Is Regulated by CDX2 in Intestinal Epithelial Cells. PLoS One 2016; 11:e0164555. [PMID: 27755609 PMCID: PMC5068786 DOI: 10.1371/journal.pone.0164555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/06/2016] [Indexed: 01/07/2023] Open
Abstract
The mammalian Caudal-related homeobox transcription factor 2 (CDX2) plays a key role in the homeobox regulatory network and is essential in regulating the expression of several homeobox (HOX) genes during embryonic development, particularly in the gut. Genome-wide CDX2 chromatin immunoprecipitation analysis and expression data from Caco2 cells also suggests a role for CDX2 in the regulation of HOXB4 gene expression in the intestinal epithelium. Thus, the aim of this study was to investigate whether HOXB4 gene expression is regulated by CDX2 in the intestinal epithelium. We demonstrated binding of CDX2 to four different CDX2 binding sites in an enhancer region located upstream of the HOXB4 transcription start site. Mutations in the CDX2 binding sites reduced HOXB4 gene activity, and knock down of endogenous CDX2 expression by shRNA reduced HOXB4 gene expression. This is the first report demonstrating the CDX2 regulation of HOXB4 gene expression in the developed intestinal epithelium, indicating a possible role for HOXB4 in intestinal homeostasis.
Collapse
Affiliation(s)
- Steffen Jørgensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Department of Clinical Immunology, Naestved Hospital, Naestved, Region Zealand, Denmark
| | - Mehmet Coskun
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Ole B. V. Pedersen
- Department of Clinical Immunology, Naestved Hospital, Naestved, Region Zealand, Denmark
| | - Jesper T. Troelsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- * E-mail:
| |
Collapse
|
16
|
A portable platform for stepwise hematopoiesis from human pluripotent stem cells within PET-reinforced collagen sponges. Int J Hematol 2016; 104:647-660. [PMID: 27599982 DOI: 10.1007/s12185-016-2088-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 01/28/2023]
Abstract
Various systems for differentiating hematopoietic cells from human pluripotent stem cells (PSCs) have been developed, although none have been fully optimized. In this report, we describe the development of a novel three-dimensional system for differentiating hematopoietic cells from PSCs using collagen sponges (CSs) reinforced with poly(ethylene terephthalate) fibers as a scaffold. PSCs seeded onto CSs were differentiated in a stepwise manner with appropriate cytokines under serum-free and feeder-free conditions. This process yielded several lineages of floating hematopoietic cells repeatedly for more than 1 month. On immunohistochemical staining, we detected CD34+ cells and CD45+ cells in the surface and cavities of the CS. Taking advantage of the portability of this system, we were able to culture multiple CSs together floating in medium, making it possible to harvest large numbers of hematopoietic cells repeatedly. Given these findings, we suggest that this novel three-dimensional culture system may be useful in the large-scale culture of PSC-derived hematopoietic cells.
Collapse
|
17
|
Quek L, Otto GW, Garnett C, Lhermitte L, Karamitros D, Stoilova B, Lau IJ, Doondeea J, Usukhbayar B, Kennedy A, Metzner M, Goardon N, Ivey A, Allen C, Gale R, Davies B, Sternberg A, Killick S, Hunter H, Cahalin P, Price A, Carr A, Griffiths M, Virgo P, Mackinnon S, Grimwade D, Freeman S, Russell N, Craddock C, Mead A, Peniket A, Porcher C, Vyas P. Genetically distinct leukemic stem cells in human CD34- acute myeloid leukemia are arrested at a hemopoietic precursor-like stage. J Exp Med 2016; 213:1513-35. [PMID: 27377587 PMCID: PMC4986529 DOI: 10.1084/jem.20151775] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/19/2016] [Indexed: 12/16/2022] Open
Abstract
Quek and colleagues identify human leukemic stem cells (LSCs) present in CD34− AML. In-depth characterization of the functional and clonal aspects of CD34− LSCs indicates that most are similar to myeloid precursors. Our understanding of the perturbation of normal cellular differentiation hierarchies to create tumor-propagating stem cell populations is incomplete. In human acute myeloid leukemia (AML), current models suggest transformation creates leukemic stem cell (LSC) populations arrested at a progenitor-like stage expressing cell surface CD34. We show that in ∼25% of AML, with a distinct genetic mutation pattern where >98% of cells are CD34−, there are multiple, nonhierarchically arranged CD34+ and CD34− LSC populations. Within CD34− and CD34+ LSC–containing populations, LSC frequencies are similar; there are shared clonal structures and near-identical transcriptional signatures. CD34− LSCs have disordered global transcription profiles, but these profiles are enriched for transcriptional signatures of normal CD34− mature granulocyte–macrophage precursors, downstream of progenitors. But unlike mature precursors, LSCs express multiple normal stem cell transcriptional regulators previously implicated in LSC function. This suggests a new refined model of the relationship between LSCs and normal hemopoiesis in which the nature of genetic/epigenetic changes determines the disordered transcriptional program, resulting in LSC differentiation arrest at stages that are most like either progenitor or precursor stages of hemopoiesis.
Collapse
Affiliation(s)
- Lynn Quek
- Medical Research Council, Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX1 2JD, England, UK Department of Hematology, Oxford University Hospital National Health Service Trust, Oxford OX3 9DU, England, UK
| | - Georg W Otto
- Medical Research Council, Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX1 2JD, England, UK
| | - Catherine Garnett
- Medical Research Council, Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX1 2JD, England, UK
| | - Ludovic Lhermitte
- Medical Research Council, Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX1 2JD, England, UK
| | - Dimitris Karamitros
- Medical Research Council, Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX1 2JD, England, UK
| | - Bilyana Stoilova
- Medical Research Council, Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX1 2JD, England, UK
| | - I-Jun Lau
- Medical Research Council, Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX1 2JD, England, UK Department of Hematology, Oxford University Hospital National Health Service Trust, Oxford OX3 9DU, England, UK
| | - Jessica Doondeea
- Medical Research Council, Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX1 2JD, England, UK
| | - Batchimeg Usukhbayar
- Medical Research Council, Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX1 2JD, England, UK
| | - Alison Kennedy
- Medical Research Council, Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX1 2JD, England, UK
| | - Marlen Metzner
- Medical Research Council, Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX1 2JD, England, UK
| | - Nicolas Goardon
- Medical Research Council, Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX1 2JD, England, UK
| | - Adam Ivey
- Department of Genetics, King's College London, London WC2R 2LS, England, UK
| | - Christopher Allen
- Cancer Institute, University College London, London WC1E 6BT, England, UK
| | - Rosemary Gale
- Cancer Institute, University College London, London WC1E 6BT, England, UK
| | - Benjamin Davies
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University Hospital National Health Service Trust, Oxford OX3 9DU, England, UK
| | - Alexander Sternberg
- Department of Hematology, Great Western Hospital National Health Service Foundation Trust, Swindon SN3 6BB, England, UK
| | - Sally Killick
- Department of Hematology, Royal Bournemouth and Christchurch Hospital National Health Service Trust, Bournemouth BH7 7DW, England, UK
| | - Hannah Hunter
- Department of Hematology, Plymouth Hospitals National Health Service Trust, Plymouth PL6 8DH, England, UK
| | - Paul Cahalin
- Department of Hematology, Blackpool, Fylde and Wyre Hospitals National Health Service Trust, Blackpool FY3 8NR, England, UK
| | - Andrew Price
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University Hospital National Health Service Trust, Oxford OX3 9DU, England, UK
| | - Andrew Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University Hospital National Health Service Trust, Oxford OX3 9DU, England, UK
| | - Mike Griffiths
- West Midlands Regional Genetics Laboratory, Birmingham B15 2TG, England, UK
| | - Paul Virgo
- Department of Immunology, North Bristol National Health Service Trust, Bristol BS10 5NB, England, UK
| | - Stephen Mackinnon
- Cancer Institute, University College London, London WC1E 6BT, England, UK Department of Hematology, University College London Hospital National Health Service Foundation Trust, London NW1 2BU, England, UK
| | - David Grimwade
- Department of Genetics, King's College London, London WC2R 2LS, England, UK
| | - Sylvie Freeman
- School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, England, UK Department of Haematology, University Hospitals Birmingham National Health Service Foundation Trust, Birmingham B15 2TH, England, UK
| | - Nigel Russell
- Centre for Clinical Hematology, Nottingham University Hospitals National Health Service Trust, Nottingham NG5 1PB, England, UK
| | - Charles Craddock
- Department of Clinical Haematology, University of Birmingham, Birmingham B15 2TT, England, UK Department of Clinical Haematology, University Hospitals Birmingham National Health Service Foundation Trust, Birmingham B15 2TH, England, UK
| | - Adam Mead
- Medical Research Council, Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX1 2JD, England, UK Department of Hematology, Oxford University Hospital National Health Service Trust, Oxford OX3 9DU, England, UK
| | - Andrew Peniket
- Department of Hematology, Oxford University Hospital National Health Service Trust, Oxford OX3 9DU, England, UK
| | - Catherine Porcher
- Medical Research Council, Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX1 2JD, England, UK
| | - Paresh Vyas
- Medical Research Council, Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX1 2JD, England, UK Department of Hematology, Oxford University Hospital National Health Service Trust, Oxford OX3 9DU, England, UK
| |
Collapse
|
18
|
Gritz E, Hirschi KK. Specification and function of hemogenic endothelium during embryogenesis. Cell Mol Life Sci 2016; 73:1547-67. [PMID: 26849156 PMCID: PMC4805691 DOI: 10.1007/s00018-016-2134-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/16/2015] [Accepted: 01/07/2016] [Indexed: 01/15/2023]
Abstract
Hemogenic endothelium is a specialized subset of developing vascular endothelium that acquires hematopoietic potential and can give rise to multilineage hematopoietic stem and progenitor cells during a narrow developmental window in tissues such as the extraembryonic yolk sac and embryonic aorta-gonad-mesonephros. Herein, we review current knowledge about the historical and developmental origins of hemogenic endothelium, the molecular events that govern hemogenic specification of vascular endothelial cells, the generation of multilineage hematopoietic stem and progenitor cells from hemogenic endothelium, and the potential for translational applications of knowledge gained from further study of these processes.
Collapse
Affiliation(s)
- Emily Gritz
- Departments of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, 300 George St., New Haven, CT, 06511, USA
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06511, USA
| | - Karen K Hirschi
- Departments of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, 300 George St., New Haven, CT, 06511, USA.
| |
Collapse
|
19
|
Rezsohazy R, Saurin AJ, Maurel-Zaffran C, Graba Y. Cellular and molecular insights into Hox protein action. Development 2016; 142:1212-27. [PMID: 25804734 DOI: 10.1242/dev.109785] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hox genes encode homeodomain transcription factors that control morphogenesis and have established functions in development and evolution. Hox proteins have remained enigmatic with regard to the molecular mechanisms that endow them with specific and diverse functions, and to the cellular functions that they control. Here, we review recent examples of Hox-controlled cellular functions that highlight their versatile and highly context-dependent activity. This provides the setting to discuss how Hox proteins control morphogenesis and organogenesis. We then summarise the molecular modalities underlying Hox protein function, in particular in light of current models of transcription factor function. Finally, we discuss how functional divergence between Hox proteins might be achieved to give rise to the many facets of their action.
Collapse
Affiliation(s)
- René Rezsohazy
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Andrew J Saurin
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille 13288, Cedex 09, France
| | | | - Yacine Graba
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille 13288, Cedex 09, France
| |
Collapse
|
20
|
HoxBlinc RNA Recruits Set1/MLL Complexes to Activate Hox Gene Expression Patterns and Mesoderm Lineage Development. Cell Rep 2015; 14:103-114. [PMID: 26725110 DOI: 10.1016/j.celrep.2015.12.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 08/26/2015] [Accepted: 11/22/2015] [Indexed: 12/15/2022] Open
Abstract
Trithorax proteins and long-intergenic noncoding RNAs are critical regulators of embryonic stem cell pluripotency; however, how they cooperatively regulate germ layer mesoderm specification remains elusive. We report here that HoxBlinc RNA first specifies Flk1(+) mesoderm and then promotes hematopoietic differentiation through regulation of hoxb pathways. HoxBlinc binds to the hoxb genes, recruits Setd1a/MLL1 complexes, and mediates long-range chromatin interactions to activate transcription of the hoxb genes. Depletion of HoxBlinc by shRNA-mediated knockdown or CRISPR-Cas9-mediated genetic deletion inhibits expression of hoxb genes and other factors regulating cardiac/hematopoietic differentiation. Reduced hoxb expression is accompanied by decreased recruitment of Set1/MLL1 and H3K4me3 modification, as well as by reduced chromatin loop formation. Re-expression of hoxb2-b4 genes in HoxBlinc-depleted embryoid bodies rescues Flk1(+) precursors that undergo hematopoietic differentiation. Thus, HoxBlinc plays an important role in controlling hoxb transcription networks that mediate specification of mesoderm-derived Flk1(+) precursors and differentiation of Flk1(+) cells into hematopoietic lineages.
Collapse
|
21
|
Fournier M, Lebert-Ghali CÉ, Bijl JJ. HOXA4 provides stronger engraftment potential to short-term repopulating cells than HOXB4. Stem Cells Dev 2015; 24:2413-22. [PMID: 26166023 DOI: 10.1089/scd.2015.0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Genes of the HOX4 paralog group have been shown to expand hematopoietic stem cells (HSCs). Endogenous expression of HOXA4 is 10-fold higher than HOXB4 in embryonic primitive hematopoietic cells undergoing self-renewal suggesting a more potent capacity of HOXA4 to expand HSC. In this study, we provide evidence by direct competitive bone marrow cultures that HOXA4 and HOXB4 induce self-renewal of primitive hematopoietic cells with identical kinetics. Transplantation assays show that short-term repopulation by HOXA4-overexpressing multilineage progenitors was significantly greater than HOXB4-overexpressing progenitors in vivo, indicating differences in the sensitivity of the cells to external signals. Small array gene expression analysis showed an increase in multiple Notch and Wnt signaling -associated genes, including receptors and ligands, as well as pluripotency genes, for both HOXA4- and HOXB4-overexpressing cells, which was more pronounced for HOXA4, suggesting that both HOX proteins may assert their affects through intrinsic and extrinsic pathways to induce self-renewal of primitive hematopoietic cells. Thus, HOXA4 increases short-term repopulation to higher levels than HOXB4, which may involve Notch signaling.
Collapse
Affiliation(s)
- Marilaine Fournier
- 1 Centre de Recherche de l'Hôpital Maisonneuve-Rosemont , Montréal, Québec, Canada .,2 Départment de Microbiologie et Immunologie et, Université de Montréal , Montréal, Québec, Canada
| | - Charles-Étienne Lebert-Ghali
- 1 Centre de Recherche de l'Hôpital Maisonneuve-Rosemont , Montréal, Québec, Canada .,2 Départment de Microbiologie et Immunologie et, Université de Montréal , Montréal, Québec, Canada
| | - Janetta J Bijl
- 1 Centre de Recherche de l'Hôpital Maisonneuve-Rosemont , Montréal, Québec, Canada .,3 Départment de Médecine, Université de Montréal , Montréal, Québec, Canada
| |
Collapse
|
22
|
Kitajima K, Kawaguchi M, Miyashita K, Nakajima M, Kanokoda M, Hara T. Efficient production of T cells from mouse pluripotent stem cells by controlled expression of Lhx2. Genes Cells 2015; 20:720-38. [PMID: 26153538 DOI: 10.1111/gtc.12266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 06/03/2015] [Indexed: 01/01/2023]
Abstract
LIM-homeobox transcription factor Lhx2 induces ex vivo amplification of adult hematopoietic stem cells (HSCs) in mice. We previously showed that engraftable HSC-like cells are generated from mouse embryonic stem cells (ESCs) and induced pluripotent stem cells by enforced expression of Lhx2. However, when these HSC-like cells were transplanted into irradiated congenic mice, donor-derived T cells were barely detectable, whereas other lineages of hematopoietic cells were continuously produced. Here we investigated T-cell differentiation potential of the Lhx2-induced HSC-like cells using ESCs carrying doxycycline (dox)-inducible Lhx2 expression cassette. Dox-mediated over-expression of Lhx2 conferred a self-renewing activity to ESC-derived c-Kit(+) CD41(+) embryonic hematopoietic progenitor cells (HPCs), thereby converting them to HSC-like cells. When these HSC-like cells were transplanted into irradiated immunodeficient mice and they were supplied with a dox-containing water, CD4/8 double negative T cells were detected in their thymi. Once the Lhx2 expression was terminated, differentiation of CD4/8 double positive and single positive T cells was initiated in the thymi of transplanted mice and mature T cells were released in the peripheral blood. These results showed that engraftable HSC-like cells with full hematopoietic potential can be obtained from ESCs by the conditional expression of Lhx2.
Collapse
Affiliation(s)
- Kenji Kitajima
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Manami Kawaguchi
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kazuya Miyashita
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Marino Nakajima
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mai Kanokoda
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
23
|
Abstract
The study of hematopoiesis has been a focus for developmental biologists for over 100 years. What started as a series of microscopic observations in different animal model systems has since evolved into studies of gene expression and regulation, and subsequent protein–protein interactions, cell surface protein expression profiling, and functional mapping of cell fates. In this review, we will discuss the milestone discoveries that have been achieved in the field of hematopoietic development, as well as the techniques that have been employed. Finally, we look toward the future and consider unresolved questions. We also reflect on one of the earliest realizations made in this area of study: that hematopoiesis is evolutionarily conserved, and as a consequence we reflect on the impacts of early and current discoveries and their clinical implications. The future direction of the study of hematopoietic stem cells will probably make use of pluripotent stem cells to yield specific immune cell lineages and eventual clinical applications.
Collapse
Affiliation(s)
- Haydn C-Y Liang
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
24
|
Hong SH, Yang SJ, Kim TM, Shim JS, Lee HS, Lee GY, Park BB, Nam SW, Ryoo ZY, Oh IH. Molecular integration of HoxB4 and STAT3 for self-renewal of hematopoietic stem cells: a model of molecular convergence for stemness. Stem Cells 2014; 32:1313-22. [PMID: 24446131 DOI: 10.1002/stem.1631] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/30/2013] [Accepted: 12/15/2013] [Indexed: 01/10/2023]
Abstract
The upregulation of HoxB4 promotes self-renewal of hematopoietic stem cells (HSCs) without overriding the normal stem cell pool size. A similar enhancement of HSC self-renewal occurs when signal transducer and activator of transcription 3 (STAT3) is activated in HSCs. In this study, to gain insight into the functional organization of individual transcription factors (TFs) that have similar effects on HSCs, we investigated the molecular interplay between HoxB4 and STAT3 in the regulation of HSC self-renewal. We found that while STAT3-C or HoxB4 similarly enhanced the in vitro self-renewal and in vivo repopulating activities of HSCs, simultaneous transduction of both TFs did not have additive effects, indicating their functional redundancy in HSCs. In addition, activation of STAT3 did not cause changes in the expression levels of HoxB4. In contrast, the inhibition of STAT3 activity in HoxB4-overexpressing hematopoietic cells significantly abrogated the enhancing effects of HoxB4, and the upregulation of HoxB4 caused a ligand-independent Tyr-phosphorylation of STAT3. Microarray analysis revealed a significant overlap of the transcriptomes regulated by STAT3 and HoxB4 in undifferentiated hematopoietic cells. Moreover, a gene set enrichment analysis showed significant overlap in the candidate TFs that can recapitulate the transcriptional changes induced by HoxB4 or STAT3. Interestingly, among these common TFs were the pluripotency-related genes Oct-4 and Nanog. These results indicate that tissue-specific TFs regulating HSC self-renewal are functionally organized to play an equivalent role in transcription and provide insights into the functional convergence of multiple entries of TFs toward a conserved transcription program for the stem cell state.
Collapse
Affiliation(s)
- Sung-Hyun Hong
- Catholic High-Performance Cell Therapy Center and Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Downregulation of Prdm16 mRNA is a specific antileukemic mechanism during HOXB4-mediated HSC expansion in vivo. Blood 2014; 124:1737-47. [PMID: 25082879 DOI: 10.1182/blood-2013-10-534735] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression of HOXB4 in hematopoietic stem cells (HSCs) leads to increased self-renewal without causing hematopoietic malignancies in transplanted mice. The molecular basis of HOXB4-mediated benign HSC expansion in vivo is not well understood. To gain further insight into the molecular events underlying HOXB4-mediated HSC expansion, we analyzed gene expression changes at multiple time points in Lin(-)Sca1(+)c-kit(+) cells from mice transplanted with bone marrow cells transduced with a MSCV-HOXB4-ires-YFP vector. A distinct HOXB4 transcriptional program was reproducibly induced and stabilized by 12 weeks after transplant. Dynamic expression changes were observed in genes critical for HSC self-renewal as well as in genes involved in myeloid and B-cell differentiation. Prdm16, a transcription factor associated with human acute myeloid leukemia, was markedly repressed by HOXB4 but upregulated by HOXA9 and HOXA10, suggesting that Prdm16 downregulation was involved in preventing leukemia in HOXB4 transplanted mice. Functional evidence to support this mechanism was obtained by enforcing coexpression of sPrdm16 and HOXB4, which led to enhanced self-renewal, myeloid expansion, and leukemia. Altogether, these studies define the transcriptional pathways involved in HOXB4 HSC expansion in vivo and identify repression of Prdm16 transcription as a mechanism by which expanding HSCs avoid leukemic transformation.
Collapse
|
26
|
Deng C, Li Y, Liang S, Cui K, Salz T, Yang H, Tang Z, Gallagher PG, Qiu Y, Roeder R, Zhao K, Bungert J, Huang S. USF1 and hSET1A mediated epigenetic modifications regulate lineage differentiation and HoxB4 transcription. PLoS Genet 2013; 9:e1003524. [PMID: 23754954 PMCID: PMC3675019 DOI: 10.1371/journal.pgen.1003524] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 04/09/2013] [Indexed: 01/25/2023] Open
Abstract
The interplay between polycomb and trithorax complexes has been implicated in embryonic stem cell (ESC) self-renewal and differentiation. It has been shown recently that WRD5 and Dpy-30, specific components of the SET1/MLL protein complexes, play important roles during ESC self-renewal and differentiation of neural lineages. However, not much is known about how and where specific trithorax complexes are targeted to genes involved in self-renewal or lineage-specification. Here, we report that the recruitment of the hSET1A histone H3K4 methyltransferase (HMT) complex by transcription factor USF1 is required for mesoderm specification and lineage differentiation. In undifferentiated ESCs, USF1 maintains hematopoietic stem/progenitor cell (HS/PC) associated bivalent chromatin domains and differentiation potential. Furthermore, USF1 directed recruitment of the hSET1A complex to the HoxB4 promoter governs the transcriptional activation of HoxB4 gene and regulates the formation of early hematopoietic cell populations. Disruption of USF or hSET1A function by overexpression of a dominant-negative AUSF1 mutant or by RNA-interference-mediated knockdown, respectively, led to reduced expression of mesoderm markers and inhibition of lineage differentiation. We show that USF1 and hSET1A together regulate H3K4me3 modifications and transcription preinitiation complex assembly at the hematopoietic-associated HoxB4 gene during differentiation. Finally, ectopic expression of USF1 in ESCs promotes mesoderm differentiation and enforces the endothelial-to-hematopoietic transition by inducing hematopoietic-associated transcription factors, HoxB4 and TAL1. Taken together, our findings reveal that the guided-recruitment of the hSET1A histone methyltransferase complex and its H3K4 methyltransferase activity by transcription regulator USF1 safeguards hematopoietic transcription programs and enhances mesoderm/hematopoietic differentiation. Embryonic stem cells (ESCs) are capable of differentiating into any type of cell or tissue of the body. It is important to understand how developmental genes are controlled during differentiation of ESCs into specific cell types. The hSET1/MLL histone modifying protein complexes add methyl groups to lysine 4 on the N-terminal tails of the DNA associated protein histone H3 and activate gene expression. Although the hSET1/MLL enzymatic complexes play a role in activating genes involved in ESC growth and differentiation, how and where these activities are targeted to remains unclear. In this report, we demonstrate that DNA binding factor USF1 interacts with and brings the hSET1A enzymatic complex to its target gene, HoxB4, during blood cell specification and differentiation. Consistent with the function of HoxB4 in early blood cell formation, we found that the inactivation of USF1 or hSET1A activities leads to a block in the differentiation of blood cells and causes reductions in methylation levels of H3K4 and expression of HoxB4, without impairing the self-renewal capability of ESCs. Taken together, our findings reveal that the collaboration between the hSET1A enzymatic complex and DNA binding regulator USF1 activates developmental genes that control cellular differentiation programs during development.
Collapse
Affiliation(s)
- Changwang Deng
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Ying Li
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Shermi Liang
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Kairong Cui
- Systems Biology Center, NHLBI, NIH, Bethesda, Maryland, United States of America
| | - Tal Salz
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Hui Yang
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Zhanyun Tang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York, United States of America
| | - Patrick G. Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yi Qiu
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Robert Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York, United States of America
| | - Keji Zhao
- Systems Biology Center, NHLBI, NIH, Bethesda, Maryland, United States of America
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Genetics Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Genetics Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
27
|
Ohno Y, Yasunaga S, Janmohamed S, Ohtsubo M, Saeki K, Kurogi T, Mihara K, Iscove NN, Takihara Y. Hoxa9 transduction induces hematopoietic stem and progenitor cell activity through direct down-regulation of geminin protein. PLoS One 2013; 8:e53161. [PMID: 23326393 PMCID: PMC3543444 DOI: 10.1371/journal.pone.0053161] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 11/26/2012] [Indexed: 12/11/2022] Open
Abstract
Hoxb4, a 3′-located Hox gene, enhances hematopoietic stem cell (HSC) activity, while a subset of 5′-located Hox genes is involved in hematopoiesis and leukemogenesis, and some of them are common translocation partners for Nucleoporin 98 (Nup98) in patients with leukemia. Although these Hox gene derivatives are believed to act as transcription regulators, the molecular involvement of the Hox gene derivatives in hematopoiesis and leukemogenesis remains largely elusive. Since we previously showed that Hoxb4 forms a complex with a Roc1-Ddb1-Cul4a ubiquitin ligase core component and functions as an E3 ubiquitin ligase activator for Geminin, we here examined the E3 ubiquitin ligase activities of the 5′-located Hox genes, Hoxa9 and Hoxc13, and Nup98-Hoxa9. Hoxa9 formed a similar complex with the Roc1-Ddb1-Cul4a component to induce ubiquitination of Geminin, but the others did not. Retroviral transduction-mediated overexpression or siRNA-mediated knock-down of Hoxa9 respectively down-regulated or up-regulated Geminin in hematopoietic cells. And Hoxa9 transduction-induced repopulating and clonogenic activities were suppressed by Geminin supertransduction. These findings suggest that Hoxa9 and Hoxb4 differ from Hoxc13 and Nup98-Hoxa9 in their molecular role in hematopoiesis, and that Hoxa9 induces the activity of HSCs and hematopoietic progenitors at least in part through direct down-regulation of Geminin.
Collapse
Affiliation(s)
- Yoshinori Ohno
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Shin'ichiro Yasunaga
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Salima Janmohamed
- Ontario Cancer Institute, McEwen Centre for Regenerative Medicine, Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Motoaki Ohtsubo
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Department of Food and Fermentation Science, Faculty of Food Science and Nutrition, Beppu University, Beppu, Oita, Japan
| | - Keita Saeki
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Toshiaki Kurogi
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Keichiro Mihara
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Norman N. Iscove
- Ontario Cancer Institute, McEwen Centre for Regenerative Medicine, Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yoshihiro Takihara
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
28
|
Abstract
The homeobox (HOX) genes are a highly conserved family of homeodomain-containing transcription factors that specify cell identity in early development and, subsequently, in a number of adult processes including hematopoiesis. The dysregulation of HOX genes is associated with a number of malignancies including acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL), where they have been shown to support the immortalization of leukemic cells both as chimeric partners in fusion genes and when overexpressed in their wild-type form. This review covers our current understanding of the role of HOX genes in normal hematopoiesis, AML and ALL, with particular emphasis on the similarities and differences of HOX function in these contexts, their hematopoietic downstream gene targets and implications for therapy.
Collapse
|
29
|
Abstract
To search for genes that promote hematopoietic development from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), we overexpressed several known hematopoietic regulator genes in hESC/iPSC-derived CD34(+)CD43(-) endothelial cells (ECs) enriched in hemogenic endothelium (HE). Among the genes tested, only Sox17, a gene encoding a transcription factor of the SOX family, promoted cell growth and supported expansion of CD34(+)CD43(+)CD45(-/low) cells expressing the HE marker VE-cadherin. SOX17 was expressed at high levels in CD34(+)CD43(-) ECs compared with low levels in CD34(+)CD43(+)CD45(-) pre-hematopoietic progenitor cells (pre-HPCs) and CD34(+)CD43(+)CD45(+) HPCs. Sox17-overexpressing cells formed semiadherent cell aggregates and generated few hematopoietic progenies. However, they retained hemogenic potential and gave rise to hematopoietic progenies on inactivation of Sox17. Global gene-expression analyses revealed that the CD34(+)CD43(+)CD45(-/low) cells expanded on overexpression of Sox17 are HE-like cells developmentally placed between ECs and pre-HPCs. Sox17 overexpression also reprogrammed both pre-HPCs and HPCs into HE-like cells. Genome-wide mapping of Sox17-binding sites revealed that Sox17 activates the transcription of key regulator genes for vasculogenesis, hematopoiesis, and erythrocyte differentiation directly. Depletion of SOX17 in CD34(+)CD43(-) ECs severely compromised their hemogenic activity. These findings suggest that SOX17 plays a key role in priming hemogenic potential in ECs, thereby regulating hematopoietic development from hESCs/iPSCs.
Collapse
|
30
|
Joubert BR, Håberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, Huang Z, Hoyo C, Midttun Ø, Cupul-Uicab LA, Ueland PM, Wu MC, Nystad W, Bell DA, Peddada SD, London SJ. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1425-31. [PMID: 22851337 PMCID: PMC3491949 DOI: 10.1289/ehp.1205412] [Citation(s) in RCA: 553] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/25/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Epigenetic modifications, such as DNA methylation, due to in utero exposures may play a critical role in early programming for childhood and adult illness. Maternal smoking is a major risk factor for multiple adverse health outcomes in children, but the underlying mechanisms are unclear. OBJECTIVE We investigated epigenome-wide methylation in cord blood of newborns in relation to maternal smoking during pregnancy. METHODS We examined maternal plasma cotinine (an objective biomarker of smoking) measured during pregnancy in relation to DNA methylation at 473,844 CpG sites (CpGs) in 1,062 newborn cord blood samples from the Norwegian Mother and Child Cohort Study (MoBa) using the Infinium HumanMethylation450 BeadChip (450K). RESULTS We found differential DNA methylation at epigenome-wide statistical significance (p-value < 1.06 × 10-7) for 26 CpGs mapped to 10 genes. We replicated findings for CpGs in AHRR, CYP1A1, and GFI1 at strict Bonferroni-corrected statistical significance in a U.S. birth cohort. AHRR and CYP1A1 play a key role in the aryl hydrocarbon receptor signaling pathway, which mediates the detoxification of the components of tobacco smoke. GFI1 is involved in diverse developmental processes but has not previously been implicated in responses to tobacco smoke. CONCLUSIONS We identified a set of genes with methylation changes present at birth in children whose mothers smoked during pregnancy. This is the first study of differential methylation across the genome in relation to maternal smoking during pregnancy using the 450K platform. Our findings implicate epigenetic mechanisms in the pathogenesis of the adverse health outcomes associated with this important in utero exposure.
Collapse
Affiliation(s)
- Bonnie R Joubert
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fujiwara T, Yokoyama H, Okitsu Y, Kamata M, Fukuhara N, Onishi Y, Fujimaki S, Takahashi S, Ishizawa K, Bresnick EH, Harigae H. Gene expression profiling identifies HOXB4 as a direct downstream target of GATA-2 in human CD34+ hematopoietic cells. PLoS One 2012; 7:e40959. [PMID: 23028422 PMCID: PMC3454409 DOI: 10.1371/journal.pone.0040959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/15/2012] [Indexed: 12/31/2022] Open
Abstract
Aplastic anemia is characterized by a reduced hematopoietic stem cell number. Although GATA-2 expression was reported to be decreased in CD34-positive cells in aplastic anemia, many questions remain regarding the intrinsic characteristics of hematopoietic stem cells in this disease. In this study, we identified HOXB4 as a downstream target of GATA-2 based on expression profiling with human cord blood-derived CD34-positive cells infected with control or GATA-2 lentiviral shRNA. To confirm the functional link between GATA-2 and HOXB4, we conducted GATA-2 gain-of-function and loss-of-function experiments, and HOXB4 promoter analysis, including luciferase assay, in vitro DNA binding analysis and quantitative ChIP analysis, using K562 and CD34-positive cells. The analyses suggested that GATA-2 directly regulates HOXB4 expression through the GATA sequence in the promoter region. Furthermore, we assessed GATA-2 and HOXB4 expression in CD34-positive cells from patients with aplastic anemia (n = 10) and idiopathic thrombocytopenic purpura (n = 13), and demonstrated that the expression levels of HOXB4 and GATA-2 were correlated in these populations (r = 0.6573, p<0.01). Our results suggested that GATA-2 directly regulates HOXB4 expression in hematopoietic stem cells, which may play an important role in the development and/or progression of aplastic anemia.
Collapse
Affiliation(s)
- Tohru Fujiwara
- Molecular Hematology/Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisayuki Yokoyama
- Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Hematology, Sendai Medical Center, Sendai, Japan
| | - Yoko Okitsu
- Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mayumi Kamata
- Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Fukuhara
- Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasushi Onishi
- Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinichi Fujimaki
- Infection Control and Laboratory Diagnosis, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinichiro Takahashi
- Division of Hematology, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
| | - Kenichi Ishizawa
- Molecular Hematology/Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Emery H. Bresnick
- Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Hideo Harigae
- Molecular Hematology/Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
32
|
Auvray C, Delahaye A, Pflumio F, Haddad R, Amsellem S, Miri-Nezhad A, Broix L, Yacia A, Bulle F, Fichelson S, Vigon I. HOXC4 homeoprotein efficiently expands human hematopoietic stem cells and triggers similar molecular alterations as HOXB4. Haematologica 2012; 97:168-78. [PMID: 22298821 DOI: 10.3324/haematol.2011.051235] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Expansion of hematopoietic stem cells represents an important objective for improving cell and gene therapy protocols. Retroviral transduction of the HoxB4 homeogene in mouse and human hematopoietic stem cells and hematopoietic progenitors is known to promote the cells' expansion. A safer approach consists in transferring homeobox proteins into hematopoietic stem cells taking advantage of the natural ability of homeoproteins to cross cell membranes. Thus, HOXB4 protein transfer is operative for expanding human hematopoietic cells, but such expansion needs to be improved. DESIGN AND METHODS To that aim, we evaluated the effects of HOXC4, a protein encoded by a HOXB4 paralog gene, by co-culturing HOXC4-producing stromal cells with human CD34(+) hematopoietic cells. Numbers of progenitors and stem cells were assessed by in vitro cloning assays and injection into immuno-deficient mice, respectively. We also looked for activation or inhibition of target downstream gene expression. RESULTS We show that the HOXC4 homeoprotein expands human hematopoietic immature cells by 3 to 6 times ex vivo and significantly improves the level of in vivo engraftment. Comparative transcriptome analysis of CD34(+) cells subjected or not to HOXB4 or HOXC4 demonstrated that both homeoproteins regulate the same set of genes, some of which encode key hematopoietic factors and signaling molecules. Certain molecules identified herein are factors reported to be involved in stem cell fate or expansion in other models, such as MEF2C, EZH2, DBF4, DHX9, YPEL5 and Pumilio. CONCLUSIONS The present study may help to identify new HOX downstream key factors potentially involved in hematopoietic stem cell expansion or in leukemogenesis.
Collapse
|
33
|
Wen-jun L, qu-lian G, Hong-ying C, Yan Z, Mei-Xian H. Studies on HOXB4 expression during differentiation of human cytomegalovirus-infected hematopoietic stem cells into lymphocyte and erythrocyte progenitor cells. Cell Biochem Biophys 2012; 63:133-41. [PMID: 22402911 DOI: 10.1007/s12013-012-9349-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We investigated the role of homeobox B4 (HOXB4) mRNA/protein expression induced by human cytomegalovirus (HCMV) and/or all-trans retinoic acid (ATRA) in proliferation and committed differentiation of human cord blood hematopoietic stem cells (HSCs) into colony-forming-units of T-lymphocyte (CFU-TL) and erythroid (CFU-E) progenitors in vitro. Twelve cord blood samples were collected from the fetal placenta umbilical vein and cultured in vitro. The proliferation and differentiation of cord blood HSCs into CFU-TL and CFU-E were continuously disrupted with HCMV-AD169 and/or 6 × 10(-8) mol/l of ATRA. HOXB4 mRNA/protein expression in CFU-TL and CFU-E was detected in control, ATRA, HCMV and ATRA + HCMV groups on days 3, 7, and 12 of culture by fluorescent qRT-PCR/western blot. We found that HOXB4 mRNA/protein expression was detectable on day 3, increased on day 7 and was highest on day 12. HOXB4 mRNA/protein expression in HCMV group was downregulated compared with control group (P < 0.05). However, the levels were significantly upregulated in HCMV + ATRA group compared with HCMV group (P < 0.05). We concluded that the abnormal HOXB4 mRNA/protein expression induced by HCMV could play a role in hematopoietic damage. ATRA, at the concentration used, significantly up-regulated HOXB4 mRNA/protein expression in normal lymphocyte and erythrocyte progenitor cells as well as in HCMV-infected cells.
Collapse
Affiliation(s)
- Liu Wen-jun
- Department of Pediatrics, Affiliated Hospital of Luzhou Medical College, Luzhou 646000, Sichuan Province, China.
| | | | | | | | | |
Collapse
|
34
|
Lesinski DA, Heinz N, Pilat-Carotta S, Rudolph C, Jacobs R, Schlegelberger B, Klump H, Schiedlmeier B. Serum- and stromal cell-free hypoxic generation of embryonic stem cell-derived hematopoietic cells in vitro, capable of multilineage repopulation of immunocompetent mice. Stem Cells Transl Med 2012. [PMID: 23197864 DOI: 10.5966/sctm.2012-0020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) may become a promising source for the generation of patient-specific hematopoietic stem cells (HSCs) in vitro. A crucial prerequisite will be the availability of reliable protocols for the directed and efficient differentiation toward HSCs. So far, the most robust strategy for generating HSCs from pluripotent cells in vitro has been established in the mouse model involving ectopic expression of the human transcription factor HOXB4. However, most differentiation protocols include coculture on a xenogenic stroma cell line and the use of animal serum. Involvement of any of both would pose a major barrier to the translation of those protocols to human autologous iPSCs intended for clinical use. Therefore, we asked whether long-term repopulating HSCs can, in principle, be generated from embryonic stem cells without stroma cells or serum. Here, we showed that long-term multilineage engraftment could be accomplished in immunocompetent mice when HSCs were generated in serum-free medium without stroma cell support and when hypoxic conditions were used. Under those conditions, HOXB4(+) embryonic stem cell-derived hematopoietic stem and progenitor cells were immunophenotypically similar to definitive bone marrow resident E-SLAM(+) (CD150(+)CD48(-)CD45(+)CD201(+)) HSCs. Thus, our findings may ease the development of definitive, adult-type HSCs from pluripotent stem cells, entirely in vitro.
Collapse
Affiliation(s)
- Dietrich Armin Lesinski
- Institute of Experimental Hematology, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Larbi A, Gombert JM, Auvray C, l’Homme B, Magniez A, Féraud O, Coulombel L, Chapel A, Mitjavila-Garcia MT, Turhan AG, Haddad R, Bennaceur-Griscelli A. The HOXB4 homeoprotein promotes the ex vivo enrichment of functional human embryonic stem cell-derived NK cells. PLoS One 2012; 7:e39514. [PMID: 22761810 PMCID: PMC3384663 DOI: 10.1371/journal.pone.0039514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/22/2012] [Indexed: 12/15/2022] Open
Abstract
Human embryonic stem cells (hESCs) can be induced to differentiate into blood cells using either co-culture with stromal cells or following human embryoid bodies (hEBs) formation. It is now well established that the HOXB4 homeoprotein promotes the expansion of human adult hematopoietic stem cells (HSCs) but also myeloid and lymphoid progenitors. However, the role of HOXB4 in the development of hematopoietic cells from hESCs and particularly in the generation of hESC-derived NK-progenitor cells remains elusive. Based on the ability of HOXB4 to passively enter hematopoietic cells in a system that comprises a co-culture with the MS-5/SP-HOXB4 stromal cells, we provide evidence that HOXB4 delivery promotes the enrichment of hEB-derived precursors that could differentiate into fully mature and functional NK. These hEB-derived NK cells enriched by HOXB4 were characterized according to their CMH class I receptor expression, their cytotoxic arsenal, their expression of IFNγ and CD107a after stimulation and their lytic activity. Furthermore our study provides new insights into the gene expression profile of hEB-derived cells exposed to HOXB4 and shows the emergence of CD34+CD45RA+ precursors from hEBs indicating the lymphoid specification of hESC-derived hematopoietic precursors. Altogether, our results outline the effects of HOXB4 in combination with stromal cells in the development of NK cells from hESCs and suggest the potential use of HOXB4 protein for NK-cell enrichment from pluripotent stem cells.
Collapse
Affiliation(s)
- Aniya Larbi
- Inserm UMR 935, « ESTeam Paris Sud », Stem Cell Core Facility Institut André Lwoff, University Paris Sud 11, Paul Brousse Hospital, Villejuif, France
| | - Jean-Marc Gombert
- Inserm UMR 935, University of Poitiers, CHU Poitiers, Poitiers, France
| | - Céline Auvray
- Inserm U1016, Institut Cochin, Paris, France
- Cnrs UMR 8104, Paris, France
- University Paris Descartes, Sorbonne Paris Cité, France
| | - Bruno l’Homme
- IRSN, PRP-HOM, SRBE, Laboratory of Radiopathology and experimental therapies, Fontenay aux Roses, France
| | - Aurélie Magniez
- Inserm UMR 935, « ESTeam Paris Sud », Stem Cell Core Facility Institut André Lwoff, University Paris Sud 11, Paul Brousse Hospital, Villejuif, France
| | - Olivier Féraud
- Inserm UMR 935, « ESTeam Paris Sud », Stem Cell Core Facility Institut André Lwoff, University Paris Sud 11, Paul Brousse Hospital, Villejuif, France
| | - Laure Coulombel
- Inserm UMR 935, « ESTeam Paris Sud », Stem Cell Core Facility Institut André Lwoff, University Paris Sud 11, Paul Brousse Hospital, Villejuif, France
| | - Alain Chapel
- IRSN, PRP-HOM, SRBE, Laboratory of Radiopathology and experimental therapies, Fontenay aux Roses, France
| | - Maria Teresa Mitjavila-Garcia
- Inserm UMR 935, « ESTeam Paris Sud », Stem Cell Core Facility Institut André Lwoff, University Paris Sud 11, Paul Brousse Hospital, Villejuif, France
| | - Ali G. Turhan
- Inserm UMR 935, « ESTeam Paris Sud », Stem Cell Core Facility Institut André Lwoff, University Paris Sud 11, Paul Brousse Hospital, Villejuif, France
- Inserm UMR 935, University of Poitiers, CHU Poitiers, Poitiers, France
| | - Rima Haddad
- Inserm UMR 935, « ESTeam Paris Sud », Stem Cell Core Facility Institut André Lwoff, University Paris Sud 11, Paul Brousse Hospital, Villejuif, France
- University Paris Sud 11, Faculty of Medicine, Kremlin-Bicêtre, France
- * E-mail:
| | - Annelise Bennaceur-Griscelli
- Inserm UMR 935, « ESTeam Paris Sud », Stem Cell Core Facility Institut André Lwoff, University Paris Sud 11, Paul Brousse Hospital, Villejuif, France
- University Paris Sud 11, Faculty of Medicine, Kremlin-Bicêtre, France
- AP-HP, Laboratory of Hematology, University Hospitals Paris Sud, Paul Brousse Hospital, Villejuif, France
| |
Collapse
|
36
|
Forrester LM, Jackson M. Mechanism of action of HOXB4 on the hematopoietic differentiation of embryonic stem cells. Stem Cells 2012; 30:379-85. [PMID: 22267295 DOI: 10.1002/stem.1036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pluripotent stem cells can be differentiated into hematopoietic lineages in vitro and hold promise for the future treatment of hematological disease. Differentiation strategies involving defined factors in serum-free conditions have been successful in producing hematopoietic progenitors and some mature cell types from mouse and human embryonic stem cells and induced pluripotent cells. However, these precisely defined protocols are relatively inefficient and have not been used successfully to produce hematopoietic stem cells capable of multilineage long-term reconstitution of the hematopoietic system. More complex differentiation induction strategies including coculture with stromal cells derived from sites of hematopoietic activity in vivo and enforced expression of reprogramming transcription factors, such as HOXB4, have been required to increase the efficiency of the differentiation procedure and to produce these most potent hematopoietic stem cells. We review the studies that have used HOXB4 to improve hematopoietic differentiation from pluripotent cells focusing on studies that have provided some insight into its mechanism of action. A better understanding of the molecular pathways involved in the action of HOXB4 might lead to more defined culture systems and safer protocols for clinical translation.
Collapse
Affiliation(s)
- Lesley M Forrester
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine Building, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
37
|
Dynamic HoxB4-regulatory network during embryonic stem cell differentiation to hematopoietic cells. Blood 2012; 119:e139-47. [PMID: 22438249 DOI: 10.1182/blood-2011-12-396754] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient in vitro generation of hematopoietic stem cells (HSCs) from embryonic stem cells (ESCs) holds great promise for cell-based therapies to treat hematologic diseases. To date, HoxB4 remains the most effective transcription factor (TF) the overexpression of which in ESCs confers long-term repopulating ability to ESC-derived HSCs. Despite its importance, the components and dynamics of the HoxB4 transcriptional regulatory network is poorly understood, hindering efforts to develop more efficient protocols for in vitro derivation of HSCs. In the present study, we performed global gene-expression profiling and ChIP coupled with deep sequencing at 4 stages of the HoxB4-mediated ESC differentiation toward HSCs. Joint analyses of ChIP/deep sequencing and gene-expression profiling unveiled several global features of the HoxB4 regulatory network. First, it is highly dynamic and gradually expands during the differentiation process. Second, HoxB4 functions as a master regulator of hematopoiesis by regulating multiple hematopoietic TFs and chromatin-modification enzymes. Third, HoxB4 acts in different combinations with 4 other hematopoietic TFs (Fli1, Meis1, Runx1, and Scl) to regulate distinct sets of pathways. Finally, the results of our study suggest that down-regulation of mitochondria and lysosomal genes by HoxB4 plays a role in the impaired lymphoid lineage development from ESC-derived HSCs.
Collapse
|
38
|
Kerley-Hamilton JS, Trask HW, Ridley CJA, Dufour E, Lesseur C, Ringelberg CS, Moodie KL, Shipman SL, Korc M, Gui J, Shworak NW, Tomlinson CR. Inherent and benzo[a]pyrene-induced differential aryl hydrocarbon receptor signaling greatly affects life span, atherosclerosis, cardiac gene expression, and body and heart growth in mice. Toxicol Sci 2012; 126:391-404. [PMID: 22228805 DOI: 10.1093/toxsci/kfs002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Little is known of the environmental factors that initiate and promote disease. The aryl hydrocarbon receptor (AHR) is a key regulator of xenobiotic metabolism and plays a major role in gene/environment interactions. The AHR has also been demonstrated to carry out critical functions in development and disease. A qualitative investigation into the contribution by the AHR when stimulated to different levels of activity was undertaken to determine whether AHR-regulated gene/environment interactions are an underlying cause of cardiovascular disease. We used two congenic mouse models differing at the Ahr gene, which encodes AHRs with a 10-fold difference in signaling potencies. Benzo[a]pyrene (BaP), a pervasive environmental toxicant, atherogen, and potent agonist for the AHR, was used as the environmental agent for AHR activation. We tested the hypothesis that activation of the AHR of different signaling potencies by BaP would have differential effects on the physiology and pathology of the mouse cardiovascular system. We found that differential AHR signaling from an exposure to BaP caused lethality in mice with the low-affinity AHR, altered the growth rates of the body and several organs, induced atherosclerosis to a greater extent in mice with the high-affinity AHR, and had a huge impact on gene expression of the aorta. Our studies also demonstrated an endogenous role for AHR signaling in regulating heart size. We report a gene/environment interaction linking differential AHR signaling in the mouse to altered aorta gene expression profiles, changes in body and organ growth rates, and atherosclerosis.
Collapse
Affiliation(s)
- Joanna S Kerley-Hamilton
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03756, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The clustered homeobox proteins play crucial roles in development, hematopoiesis, and leukemia, yet the targets they regulate and their mechanisms of action are poorly understood. Here, we identified the binding sites for Hoxa9 and the Hox cofactor Meis1 on a genome-wide level and profiled their associated epigenetic modifications and transcriptional targets. Hoxa9 and the Hox cofactor Meis1 cobind at hundreds of highly evolutionarily conserved sites, most of which are distant from transcription start sites. These sites show high levels of histone H3K4 monomethylation and CBP/P300 binding characteristic of enhancers. Furthermore, a subset of these sites shows enhancer activity in transient transfection assays. Many Hoxa9 and Meis1 binding sites are also bound by PU.1 and other lineage-restricted transcription factors previously implicated in establishment of myeloid enhancers. Conditional Hoxa9 activation is associated with CBP/P300 recruitment, histone acetylation, and transcriptional activation of a network of proto-oncogenes, including Erg, Flt3, Lmo2, Myb, and Sox4. Collectively, this work suggests that Hoxa9 regulates transcription by interacting with enhancers of genes important for hematopoiesis and leukemia.
Collapse
|