1
|
Camacho MF, Peña M, Toloza MJ, Moiraghi B, Enrico A, Mariano R, Negri F, Pavlovsky C, Ventriglia V, Freitas MJ, Engelberger I, Bengió R, Larripa I. Evaluation of leukemic stem cell (CD26 +) in chronic myeloid leukemia patients with different molecular responses and in treatment-free remission. Clin Exp Med 2025; 25:93. [PMID: 40116978 PMCID: PMC11928407 DOI: 10.1007/s10238-025-01626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/05/2025] [Indexed: 03/23/2025]
Abstract
CD26 + leukemic stem cells (LSC) are a specific marker for chronic myeloid leukemia (CML), absent in healthy individuals and other myeloid neoplasms. These cells can contribute to disease resistance, as they are believed to sustain the leukemic clone despite effective tyrosine kinase inhibitor (TKI) therapy. This study analyzed CD26 + LSC and BCR::ABL1 transcript levels simultaneously using multiparametric flow cytometry and RT-qPCR in 210 chronic-phase patients undergoing TKI therapy and 31 patients in treatment-free remission (TFR). A significant decrease in LSC levels was observed as patients achieved deep molecular response (DMR, BCR::ABL1IS ≤ 0.01%) (χ2, p < 0.001). However, 19% (14/73) of DMR patients displayed persistent CD26 + LSC, suggesting a quiescent state without detectable BCR::ABL1 transcripts. A weak correlation (r = 0.187, p = 0.046) between LSC/µL absolute number and BCR::ABL1 transcript levels indicates a limited predictive value between these two variables. In TFR patients, LSC recurrence during follow-up did not correlate with molecular relapse, questioning their clinical relevance in this setting. In conclusion, while CD26 + LSC are frequently observed in patients with poor molecular response, their levels significantly decrease as patients achieve DMR. However, their persistence or recurrence in TFR lacks prognostic value for molecular relapse, indicating that CD26 + LSC are not reliable predictors of outcomes in CML.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/metabolism
- Dipeptidyl Peptidase 4/genetics
- Dipeptidyl Peptidase 4/metabolism
- Male
- Female
- Middle Aged
- Adult
- Aged
- Fusion Proteins, bcr-abl/genetics
- Young Adult
- Flow Cytometry
- Aged, 80 and over
- Protein Kinase Inhibitors/therapeutic use
- Adolescent
- Treatment Outcome
- Remission Induction
Collapse
Affiliation(s)
- María Fernanda Camacho
- Laboratorio de Genética Hematológica, IMEX-CONICET/Academia Nacional de Medicina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Margot Peña
- Departamento de Patología Diagnóstica, División Citometría de Flujo, Instituto de Investigaciones Hematológicas "Mariano R. Castex", Academia Nacional de Medicina, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Jazmín Toloza
- Laboratorio de Genética Hematológica, IMEX-CONICET/Academia Nacional de Medicina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Beatriz Moiraghi
- Departamento de Hematología, Hospital General de Agudos José María Ramos Mejía, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alicia Enrico
- Departamento de Hematología, Hospital Italiano de la Plata, La Plata, Buenos Aires, Argentina
| | - Romina Mariano
- Departamento de Hematología, Hospital San Martín, Paraná, Entre Ríos, Argentina
| | - Florencia Negri
- Departamento de Hematología, Instituto Privado de Hematología y Hemoterapia, Paraná, Entre Ríos, Argentina
| | - Carolina Pavlovsky
- Departamento de Hematología, Fundaleu, Ciudad Autónoma de Buenos Aires, Argentina
| | - Verónica Ventriglia
- Departamento de Hematología, Hospital Nacional Profesor Alejandro Posadas, El Palomar, Buenos Aires, Argentina
| | - María Josefina Freitas
- Departamento de Hematología, Hospital Nacional Profesor Alejandro Posadas, El Palomar, Buenos Aires, Argentina
| | - Inés Engelberger
- División de Clínica Hematológica, Instituto de Investigaciones Hematológicas "Mariano R. Castex"- Academia Nacional de Medicina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Raquel Bengió
- División de Clínica Hematológica, Instituto de Investigaciones Hematológicas "Mariano R. Castex"- Academia Nacional de Medicina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Irene Larripa
- Laboratorio de Genética Hematológica, IMEX-CONICET/Academia Nacional de Medicina, Ciudad Autónoma de Buenos Aires, Argentina.
- Laboratorio de Genética Hematológica, IMEX-CONICET/Academia Nacional de Medicina, Pacheco de Melo 3081 (C1425AUM), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Cortes JE, Kim DW, Saikia T, Khattry N, Rathnam K, Alvarado Y, Hannah G, Tantravahi SK, Apperley JF, Charbonnier A, García-Gutiérrez V, Lucchesi A, Dima D, Illés Á, Popov VM, Abruzzese E, Nag A, Apte S, Badar T, Yao SL, Saxena U, Sreenivasan J, Inamdar S, Chimote G, Nicolini FE. Vodobatinib for patients with Philadelphia chromosome-positive chronic myeloid leukaemia resistant or intolerant to multiple lines of previous therapy: an open-label, multicentre, phase 1/2 trial. Lancet Haematol 2025; 12:e201-e213. [PMID: 39929221 DOI: 10.1016/s2352-3026(24)00354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 03/08/2025]
Abstract
BACKGROUND Resistance or intolerance to the available tyrosine kinase inhibitors (TKIs) remains a treatment challenge for patients with chronic myeloid leukaemia. We aimed to report the safety, antileukaemic activity, and pharmacokinetics of oral vodobatinib, a novel selective BCR::ABL1 TKI, in patients with Philadelphia chromosome-positive (Ph-positive) chronic myeloid leukaemia who previously received at least three TKIs, including ponatinib and asciminib. METHODS This open-label, multicentre, phase 1/2 trial was conducted at 28 clinical sites across ten countries (Belgium, France, Hungary, India, Italy, Romania, South Korea, Spain, UK, and the USA). Patients aged 18 years or older with Ph-positive chronic myeloid leukaemia or acute lymphoblastic leukaemia (eligible only for the phase 1 study), and an Eastern Cooperative Oncology Group performance status of 2 or lower were eligible. Phase 1 included patients who previously received at least three TKIs or had no other available treatment options. Phase 2 required patients to have treatment resistance or intolerance (or both) with loss of response to at least three TKIs and previous ponatinib use. A key exclusion criterion for both phases was presence of the Thr315Ile mutation. Patients self-administered oral vodobatinib (12-240 mg) once per day for each 28-day treatment cycle and for up to 60 months (ie, 65 cycles) unless patient discontinuation due to adverse events, progressive disease, lost to follow-up, or death. The primary endpoints were to determine the maximum tolerated dose (based on dose-limiting toxicities in phase 1) and antileukaemic activity of vodobatinib (ie, major cytogenetic response for chronic-phase and major haematological response for accelerated-phase or blast-phase in phase 2). Assessment of vodobatinib safety, activity, and pharmacokinetics were determined based on the pooled analysis of data from the phase 1 and 2 studies. This trial is registered with ClinicalTrials.gov, NCT02629692 (active). At data cutoff (July 15, 2023), phase 2 enrolment was closed early on June 22, 2023, due to recruitment-related challenges. FINDINGS 78 patients were enrolled and received at least one vodobatinib dose (safety and efficacy analysis set). Between April 6, 2017, and June 20, 2023, phase 1 enrolled 58 patients and phase 2 enrolled 20 patients between March 3, 2020, and March 29, 2023. We included 66 (85%) patients with chronic-phase, eight (10%) with accelerated-phase, and four (5%) with blast-phase chronic myeloid leukaemia. 43 (55%) of 78 patients were male and 35 (45%) were female. The median age was 59·0 years (IQR 47·0-66·0). The median follow-up was 22·3 months (IQR 11·1-43·9). Two patients receiving vodobatinib 240 mg had dose-limiting toxicities (one had grade 3 dyspnoea and the other had grade 2 fluid overload), thus the 204 mg dose was considered to be the maximum tolerated dose. 73 (94%) patients had one or more treatment-emergent adverse events, with most events being haematological or gastrointestinal that were grade 2 or lower in severity. Grade 3 or higher treatment-emergent adverse events occurred in 47 (60%) patients and included thrombocytopenia (14 [18%]), neutropenia (10 [13%]), anaemia (nine [12%]), and increased lipase (eight [10%]). Seven (9%) patients died during the study; one death was considered related to treatment by the clinical investigator. At data cutoff, major cytogenetic response was observed in 44 (70%) of 63 patients with chronic-phase chronic myeloid leukaemia, of which 12 (75%) of 16 patients in the phase 2 study had major cytogenetic response. For patients with accelerated-phase chronic myeloid leukaemia, six (86%) of seven patients had a major haematological response (median duration 17·8 [IQR 10·2-24·3]) at data cutoff; major haematological response was observed in three (100%) evaluable patients in the phase 2 study. Major haematological response was reached by two (50%) of four patients with blast-phase chronic myeloid leukaemia and the median duration of response was 6·2 months (IQR 3·2-9·3); no blast-phase patients were enrolled in the phase 2 study. INTERPRETATION Pooled analysis of the phase 1 and 2 studies showed clinically meaningful antileukaemic activity of vodobatinib and a tolerable safety profile in patients with advanced chronic myeloid leukaemia who previously received multiple TKIs, including ponatinib and asciminib, addressing an otherwise unmet clinical need. The phase 2 study was statistically underpowered and warrants further investigation in a phase 3, randomised controlled trial and in an earlier treatment setting of the disease. FUNDING Sun Pharma Advanced Research Company.
Collapse
Affiliation(s)
- Jorge E Cortes
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.
| | - Dong-Wook Kim
- Uijeongbu Eulji Medical Center, Uijeongbu, South Korea
| | | | | | | | - Yesid Alvarado
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guy Hannah
- King's College Hospital NHS Foundation Trust, London, UK
| | | | | | | | | | - Alessandro Lucchesi
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Italy
| | - Delia Dima
- Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Árpád Illés
- Department of Internal Medicine, Division of Hematology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viola M Popov
- Department of Hematology, Colentina Clinical Hospital, Bucharest, Romania
| | | | - Arijit Nag
- Department of Clinical Hematology and Bone Marrow Transplantation, Tata Medical Center, Kolkata, India
| | - Shashikant Apte
- Department of Hematology and Bone Marrow Transplantation, Sahyadri Specialty Hospital, Pune, India
| | - Talha Badar
- Division of Hematology-Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Siu-Long Yao
- Sun Pharmaceutical Industries, Princeton, NJ, USA
| | | | | | | | | | - Franck E Nicolini
- Hematology Department, Cancer Research Center of Lyon, INSERM 1052, Centre Léon Bérard, Lyon, France
| |
Collapse
|
3
|
Laganà A, Scalzulli E, Bisegna ML, Ielo C, Martelli M, Breccia M. Understanding and overcoming resistance to tyrosine kinase inhibitors (TKIs) in Chronic myeloid leukemia (CML). Expert Rev Hematol 2025; 18:65-79. [PMID: 39647915 DOI: 10.1080/17474086.2024.2440776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/01/2024] [Accepted: 12/07/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION Chronic myeloid leukemia (CML) represents one of the first neoplasms whose molecular pathogenesis was successfully unraveled, with tyrosine kinase inhibitors (TKIs) representing one of the first-targeted therapies. TKIs have revolutionized long-term outcomes of CML patients and their life expectancy. Nonetheless, a minority of patients will develop TKI resistance due to a complex and multifactorial process that ultimately leads to the emergence of an unresponsive cancer clone. Overcoming TKI resistance is considered one of the major challenges in CML management. AREAS COVERED In this review, the main findings extrapolated from published research, guidelines, and clinical trials regarding TKI resistance (published before October 2024) are discussed. Data have been obtained through broad research on Medline, Embase, Pubmed, and archives from EHA and ASH congresses. EXPERT OPINION Nowadays, asciminib and ponatinib have expanded the therapeutic arsenal for resistant-CML management and allogenic transplant still represents an important alternative in the context of multiple TKI failures. Off-label use of TKIs combination therapies, although theoretically appealing, lacks robust clinical evidence and regulatory approval. Looking ahead, the introduction of novel technologies such as digital PCR (dPCR) and next generation sequencing (NGS) holds great potential to revolutionize the management of TKI-resistant CML cases.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Tyrosine Kinase Inhibitors
- Imidazoles
- Pyridazines
Collapse
Affiliation(s)
- Alessandro Laganà
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Emilia Scalzulli
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Laura Bisegna
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Ielo
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maurizio Martelli
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Tripathi S, K V VB, Nayak AR, Chauhan R, Kumar P, Dass J, Naranje P, Aggarwal M. Ischemic stroke as a presenting feature of promyelocytic blast phase in chronic myeloid leukemia - an uncommon presentation: a case report and literature review in the post imatinib era. Ann Hematol 2024; 103:6007-6013. [PMID: 39407035 DOI: 10.1007/s00277-024-06044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/11/2024] [Indexed: 01/24/2025]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm (MPN characterized by reciprocal translocation in the ABL1 and BCR region of chromosomes 9 and 22 respectively. Progression to the blast phase in chronic myeloid leukemia results in a poorer prognosis. It can be of either myeloid, lymphoid or a mixed lineage. Progression to the promyelocytic blast phase is very rare, and there are no evidence-based guidelines for its management. Thrombosis in CML is not well defined. Thrombosis can be seen in patients with acute promyelocytic leukemia (APL) with venous thrombosis (VTE) being more common than arterial thrombosis. Ischemic stroke as the presenting feature of blast phase progression in CML is extremely rare. We report a case of CML who presented to us with acute ischemic stroke and subsequently was diagnosed as CML transformed to the promyelocytic blast phase. She was successfully treated with dasatinib along with all-trans retinoic acid (ATRA) and arsenic trioxide (ATO).
Collapse
Affiliation(s)
- Swapnil Tripathi
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Vinu Balraam K V
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Amiya Ranjan Nayak
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Richa Chauhan
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Pradeep Kumar
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Jasmita Dass
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India.
| | - Priyanka Naranje
- Department of Radiodiagnosis and Intervention Radiology, All India Institute of Medical Sciences, New Delhi, India
| | - Mukul Aggarwal
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Innes AJ, Hayden C, Orovboni V, Claudiani S, Fernando F, Khan A, Rees D, Byrne J, Gallipoli P, Francis S, Copland M, Horne G, Raghavan M, Arnold C, Collins A, Cranfield T, Cunningham N, Danga A, Forsyth P, Frewin R, Garland P, Hannah G, Avenoso D, Hassan S, Huntly BJP, Husain J, Makkuni S, Rothwell K, Khorashad J, Apperley JF, Milojkovic D. Impact of BCR::ABL1 single nucleotide variants on asciminib efficacy. Leukemia 2024; 38:2443-2455. [PMID: 39300220 PMCID: PMC11518997 DOI: 10.1038/s41375-024-02411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Asciminib is a potent and selective inhibitor of BCR::ABL1, with potential to avoid toxicity resulting from off-target kinase inhibition. Forty-nine patients treated with asciminib under a managed access program in the UK were evaluated for toxicity and response. Intolerance, rather than resistance (65% vs. 35%), was the most common reason for cessation of the last-line of treatment but asciminib was well tolerated, with most patients (29, 59%) remaining on treatment at a median of 14 months follow-up, and only 6 (12%) stopping for intolerance. Of 44 patients assessable for response, 29 (66%) achieved a complete cytogenetic response (CCyR) or better, with poorer responses seen in those stopping their last-line of therapy for resistance. Fewer patients with a prior history of a non-T315I-BCR::ABL1 single nucleotide variant (BSNV), or a non-T315I-BSNV detectable at baseline achieved CCyR. Serial tracking of BSNV by next generation sequencing demonstrated clonal expansion of BSNV-harbouring populations, which in some settings was associated with resistance (E459K, F317L, F359I), while in others was seen in the context of ongoing response, often with intensified dosing (T315I, I502F). These data suggest that asciminib exerts selective pressure on some BSNV-harbouring populations in vivo, some of which may respond to intensified dosing.
Collapse
MESH Headings
- Humans
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Female
- Middle Aged
- Male
- Aged
- Adult
- Protein Kinase Inhibitors/therapeutic use
- Polymorphism, Single Nucleotide
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Aged, 80 and over
- Drug Resistance, Neoplasm/genetics
- Young Adult
- Niacinamide/analogs & derivatives
- Pyrazoles
Collapse
Affiliation(s)
- Andrew J Innes
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom.
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.
| | - Chloe Hayden
- North West London Pathology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Victoria Orovboni
- North West London Pathology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Simone Claudiani
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Fiona Fernando
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Afzal Khan
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - David Rees
- Medical School, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jennifer Byrne
- Centre for Clinical Haematology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Sebastian Francis
- Department of haematology, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gillian Horne
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Manoj Raghavan
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Claire Arnold
- Department of Haematology, Belfast City Hospital, Belfast, United Kingdom
| | - Angela Collins
- Department of Haematology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Tanya Cranfield
- Department of Haematology, Queen Alexandra Hospital, Portsmouth, United Kingdom
| | | | - Akila Danga
- Department of Haematology, The Hillingdon Hospital, London, United Kingdom
| | - Peter Forsyth
- Department of Haematology, Raigmore Hospital, NHS Highland, Inverness, United Kingdom
| | - Rebecca Frewin
- Department of Haematology, Gloucestershire Royal Hospital, Gloucester, United Kingdom
| | - Paula Garland
- Department of Haematology, Princess Royal University Hospital, London, United Kingdom
| | - Guy Hannah
- Department of Haematology, Kings College Hospital, London, United Kingdom
| | - Daniele Avenoso
- Department of Haematology, Kings College Hospital, London, United Kingdom
| | - Sandra Hassan
- Department of Haematology, Queen's Hospital, Romford, United Kingdom
| | - Brian J P Huntly
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jissan Husain
- Department of Haematology, Ashford and St Peter's Hospitals NHS Foundation Trust, Chertsey, United Kingdom
| | - Sudhakaran Makkuni
- Department of Haematology, Mid and South Essex NHS Foundation Trust, Basildon, United Kingdom
| | - Kate Rothwell
- Department of Haematology, Leeds Teaching Hospitals NHS Trust, Basildon, United Kingdom
| | - Jamshid Khorashad
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom
- Haemato-oncology Molecular Diagnostic Unit, The Royal Marsden Hospital NHS Foundation Trust, Sutton, United Kingdom
| | - Jane F Apperley
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Dragana Milojkovic
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
6
|
Zheng R, Wei W, Liu S, Zeng D, Yang Z, Tang J, Tan J, Huang Z, Gao M. The FABD domain is critical for the oncogenicity of BCR/ABL in chronic myeloid leukaemia. Cell Commun Signal 2024; 22:314. [PMID: 38849885 PMCID: PMC11157785 DOI: 10.1186/s12964-024-01694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Abnormally expressed BCR/ABL protein serves as the basis for the development of chronic myeloid leukaemia (CML). The F-actin binding domain (FABD), which is a crucial region of the BCR/ABL fusion protein, is also located at the carboxyl end of the c-ABL protein and regulates the kinase activity of c-ABL. However, the precise function of this domain in BCR/ABL remains uncertain. METHODS The FABD-deficient adenovirus vectors Ad-BCR/ABL△FABD, wild-type Ad-BCR/ABL and the control vector Adtrack were constructed, and 32D cells were infected with these adenoviruses separately. The effects of FABD deletion on the proliferation and apoptosis of 32D cells were evaluated by a CCK-8 assay, colony formation assay, flow cytometry and DAPI staining. The levels of phosphorylated BCR/ABL, p73, and their downstream signalling molecules were detected by western blot. The intracellular localization and interaction of BCR/ABL with the cytoskeleton-related protein F-actin were identified by immunofluorescence and co-IP. The effect of FABD deletion on BCR/ABL carcinogenesis in vivo was explored in CML-like mouse models. The degree of leukaemic cell infiltration was observed by Wright‒Giemsa staining and haematoxylin and eosin (HE) staining. RESULTS We report that the loss of FABD weakened the proliferation-promoting ability of BCR/ABL, accompanied by the downregulation of BCR/ABL downstream signals. Moreover, the deletion of FABD resulted in a change in the localization of BCR/ABL from the cytoplasm to the nucleus, accompanied by an increase in cell apoptosis due to the upregulation of p73 and its downstream proapoptotic factors. Furthermore, we discovered that the absence of FABD alleviated leukaemic cell infiltration induced by BCR/ABL in mice. CONCLUSIONS These findings reveal that the deletion of FABD diminished the carcinogenic potential of BCR/ABL both in vitro and in vivo. This study provides further insight into the function of the FABD domain in BCR/ABL.
Collapse
MESH Headings
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Animals
- Humans
- Mice
- Cell Proliferation
- Apoptosis/genetics
- Actins/metabolism
- Carcinogenesis/genetics
- Protein Domains
- Cell Line, Tumor
Collapse
Affiliation(s)
- Renren Zheng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wei Wei
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Suotian Liu
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Dachuan Zeng
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
| | - Zesong Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Tang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jinfeng Tan
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Zhenglan Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| | - Miao Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Kreipe HH, Schlegelberger B. Cytogenetics and genomics in CML and other myeloproliferative neoplasms. Best Pract Res Clin Haematol 2024; 37:101552. [PMID: 39098796 DOI: 10.1016/j.beha.2024.101552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 08/06/2024]
Abstract
Chronic myeloid leukemia is defined by the presence of the Philadelphia translocation t (9; 22) resulting in the BCR::ABL1 fusion. The other myeloproliferative neoplasms (MPN) subtypes also carry typical chromosomal abnormalities, which however are not pathognomonic for a specific entity of MPN. According to the WHO classification the distinction between these entities is still based on the integration of cytological, histopathological and molecular findings. Progression of CML into accelerated and blastic phase is usually driven by additional chromosome abnormalities and ABL1 kinase mutations. In the other MPN subtypes the additional mutations besides driver gene mutations in JAK2, MPL and CALR have a decisive impact on the propensity for progression. In addition, the sequence in which the driver mutations and risk conveying additional mutations have been acquired appears to play an important role. Here, we review cytogenetic and molecular changes in CML and MPN that should be evaluated during diagnosis and disease monitoring.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Myeloproliferative Disorders/genetics
- Myeloproliferative Disorders/diagnosis
- Myeloproliferative Disorders/pathology
- Janus Kinase 2/genetics
- Mutation
- Chromosome Aberrations
- Genomics/methods
- Fusion Proteins, bcr-abl/genetics
- Receptors, Thrombopoietin/genetics
- Calreticulin/genetics
- Translocation, Genetic
Collapse
|
8
|
Savani S, Pawa A, Salim N, Savani T, Master S. Asciminib Use Highlighting Underlying Moyamoya Disease: A Case Report. Cureus 2024; 16:e63364. [PMID: 39077244 PMCID: PMC11283928 DOI: 10.7759/cureus.63364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
We highlight here a case of Moyamoya disease (MMD) developed after treatment for chronic myeloid leukemia (CML). Moyamoya, a term meaning "a hazy puff of smoke" in Japanese, denotes a chronic occlusive cerebrovascular condition involving bilateral stenosis or closure of the terminal part of the internal carotid arteries (ICAs) and the proximal sections of the anterior cerebral arteries (ACAs) and middle cerebral arteries (MCAs) resulting in the development of abnormal vascular collaterals. A 40-year-old African-American female with a past medical history of CML presented to the oncology clinic with expressive aphasia. Of note, she was diagnosed with CML eight years ago and was previously treated with dasatinib and nilotinib with only partial remission. She tested positive for the T315I mutation and was initiated on asciminib therapy about a month before her symptoms surfaced. Asciminib, an allosteric inhibitor targeting breakpoint cluster region-abelson murine leukemia 1 (BCR-ABL1) kinase activity, has gained approval for treating patients diagnosed with chronic-phase CML who have not responded to two prior lines of therapy or for those carrying the T315I mutation. During admission, the patient underwent brain magnetic resonance imaging (MRI) and a computed tomography (CT) angiogram of the head showed moderate to severe narrowing at the origins of the bilateral MCA and ACA, concerning Moyamoya syndrome. Although not classically associated with asciminib therapy, we report here a patient with CML who developed expressive aphasia one month after starting the medication. Due to the high index of suspicion, asciminib was discontinued, and the patient was referred for bone marrow transplant evaluation and concurrently started on cytarabine + peginterferon. The patient had improvement in her symptoms of aphasia after the drug was discontinued and returned to her baseline functional status. No cardiovascular side effects associated with the use of asciminib are currently reported in the literature. However, we have described a case of such an occurrence. Therefore, extra caution should be taken in prescribing asciminib in patients with risk factors or a prior history of stroke.
Collapse
Affiliation(s)
- Saloni Savani
- Internal Medicine, Willis-Knighton Health System, Shreveport, USA
| | - Arpita Pawa
- Internal Medicine, Willis-Knighton Health System, Shreveport, USA
| | - Naved Salim
- College of Medicine, Edward Via College of Osteopathic Medicine, Shreveport, USA
| | - Tithi Savani
- Internal Medicine, Gujarat Medical Education and Research Society, Ahmedabad, IND
| | - Samip Master
- Hematology and Oncology, Willis-Knighton Health System, Shreveport, USA
| |
Collapse
|
9
|
Perusini MA, Žáčková D, Kim T, Pagnano K, Pavlovsky C, Ježíšková I, Kvetková A, Jurček T, Kim J, Yoo Y, Yi S, Lee H, Kim KH, Chang M, Capo-Chichi JM, Medeiros JJF, Arruda A, Minden M, Zhang Z, Abelson S, Mayer J, Hwan Kim DD. Mutations in myeloid transcription factors and activated signaling genes predict chronic myeloid leukemia outcomes. Blood Adv 2024; 8:2361-2372. [PMID: 38447114 PMCID: PMC11127220 DOI: 10.1182/bloodadvances.2023012127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
ABSTRACT Advancements in genomics are transforming the clinical management of chronic myeloid leukemia (CML) toward precision medicine. The impact of somatic mutations on treatment outcomes is still under debate. We studied the association of somatic mutations in epigenetic modifier genes and activated signaling/myeloid transcription factors (AS/MTFs) with disease progression and treatment failure in patients with CML after tyrosine kinase inhibitor (TKI) therapy. A total of 394 CML samples were sequenced, including 254 samples collected at initial diagnosis and 140 samples taken during follow-up. Single-molecule molecular inversion probe (smMIP)-based next-generation sequencing (NGS) was conducted targeting recurrently mutated loci in 40 genes, with a limit of detection of 0.2%. Seventy mutations were detected in 57 diagnostic samples (22.4%), whereas 64 mutations were detected in 39 of the follow-up samples (27.9%). Carrying any mutation at initial diagnosis was associated with worse outcomes after TKI therapy, particularly in AS/MTF genes. Patients having these mutations at initial diagnosis and treated with imatinib showed higher risks of treatment failure (hazard ratio, 2.53; 95% confidence interval, 1.13-5.66; P = .0239). The adverse prognostic impact of the mutations was not clear for patients treated with second-generation TKIs. The multivariate analysis affirmed that mutations in AS/MTF genes independently serve as adverse prognostic factors for molecular response, failure-free survival, and progression risk. Additionally, there was an observable nonsignificant trend indicating a heightened risk of progression to advanced disease and worse overall survival. In conclusion, mutations in the AS/MTF genes using smMIP-based NGS can help identify patients with a potential risk of both treatment failure and progression and may help upfront TKI selection.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Mutation
- Male
- Middle Aged
- Female
- Adult
- Aged
- Signal Transduction
- Protein Kinase Inhibitors/therapeutic use
- Prognosis
- Transcription Factors/genetics
- Treatment Outcome
- High-Throughput Nucleotide Sequencing
- Young Adult
- Aged, 80 and over
- Disease Progression
Collapse
Affiliation(s)
- Maria Agustina Perusini
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Daniela Žáčková
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Taehyung Kim
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, Donnelly Centre for Cellular & Biomolecular Research, Toronto, ON, Canada
| | - Katia Pagnano
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| | | | - Ivana Ježíšková
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Anežka Kvetková
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Tomáš Jurček
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Jaeyoon Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Youngseok Yoo
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Seongyoon Yi
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Internal Medicine, Inje University Ilsan-Paik Hospital, Goyang, Republic of Korea
| | - Hyewon Lee
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Internal Medicine, Center for Hematologic Malignancies, National Cancer Center, Goyang, Republic of Korea
| | - Kyoung Ha Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Division of Hematology and Oncology, Department of Internal Medicine, Soon Chun Hyang University Seoul Hospital, Seoul, Republic of Korea
| | - Myunghee Chang
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- National Health Insurance Service Ilsan Hospital, Ilsan, Republic of Korea
| | - Jose-Mario Capo-Chichi
- Genome Diagnostics & Cancer Cytogenetics Laboratories, Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jessie J. F. Medeiros
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Andrea Arruda
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Malignant Hematology Tissue Bank, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Mark Minden
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Malignant Hematology Tissue Bank, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhaolei Zhang
- The Donnelly Centre for Cellular and Biomolecular Research, Donnelly Centre for Cellular & Biomolecular Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Sagi Abelson
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Dennis Dong Hwan Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Seman ZA, Ahid F, Kamaluddin NR, Sahid ENM, Esa E, Said SSM, Azman N, Mat WKDW, Abdullah J, Ali NA, Khalid MKNM, Yusoff YM. Mutation analysis of BCR-ABL1 kinase domain in chronic myeloid leukemia patients with tyrosine kinase inhibitors resistance: a Malaysian cohort study. BMC Res Notes 2024; 17:111. [PMID: 38643202 PMCID: PMC11031984 DOI: 10.1186/s13104-024-06772-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/15/2024] [Indexed: 04/22/2024] Open
Abstract
OBJECTIVE Mutational analysis of BCR::ABL1 kinase domain (KD) is a crucial component of clinical decision algorithms for chronic myeloid leukemia (CML) patients with failure or warning responses to tyrosine kinase inhibitor (TKI) therapy. This study aimed to detect BCR::ABL1 KD mutations in CML patients with treatment resistance and assess the concordance between NGS (next generation sequencing) and Sanger sequencing (SS) in detecting these mutations. RESULTS In total, 12 different BCR::ABL1 KD mutations were identified by SS in 22.6% (19/84) of patients who were resistant to TKI treatment. Interestingly, NGS analysis of the same patient group revealed an additional four different BCR::ABL1 KD mutations in 27.4% (23/84) of patients. These mutations are M244V, A344V, E355A, and E459K with variant read frequency below 15%. No mutation was detected in 18 patients with optimal response to TKI therapy. Resistance to TKIs is associated with the acquisition of additional mutations in BCR::ABL1 KD after treatment with TKIs. Additionally, the use of NGS is advised for accurately determining the mutation status of BCR::ABL1 KD, particularly in cases where the allele frequency is low, and for identifying mutations across multiple exons simultaneously. Therefore, the utilization of NGS as a diagnostic platform for this test is very promising to guide therapeutic decision-making.
Collapse
Affiliation(s)
- Zahidah Abu Seman
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia
- Centre for Medical Laboratory Technology Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia
| | - Fadly Ahid
- Centre for Medical Laboratory Technology Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia.
- Stem Cell and Regenerative Medicine Research Initiative Group, Universiti Teknologi MARA, Shah Alam, Selangor, 40450, Malaysia.
| | - Nor Rizan Kamaluddin
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia
| | - Ermi Neiza Mohd Sahid
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia
| | - Ezalia Esa
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia
| | - Siti Shahrum Muhamed Said
- Department of Pathology, Hospital Tunku Azizah, Ministry of Health Malaysia, Kuala Lumpur, Kuala Lumpur, WP, 50300, Malaysia
| | - Norazlina Azman
- Department of Pathology, Hospital Tunku Azizah, Ministry of Health Malaysia, Kuala Lumpur, Kuala Lumpur, WP, 50300, Malaysia
| | - Wan Khairull Dhalila Wan Mat
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia
| | - Julia Abdullah
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia
| | - Nurul Aqilah Ali
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia
| | - Mohd Khairul Nizam Mohd Khalid
- Inborn Error of Metabolism and Genetic Unit, Metabolic & Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Nutrition, Shah Alam, Selangor, 40170, Malaysia
| | - Yuslina Mat Yusoff
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, 40170, Malaysia.
| |
Collapse
|
11
|
Majumdar A, Katara R, Mishra A, Gupta A, Sharma DK, Srivastava AK, Sharma S, Jaiswal A, Dixit M, Kumar V, Kumar S, Kumar V, Sharma R, Mohanty SK. A Retrospective Analysis of BCR-ABL1 Kinase Domain Mutations in the Frontline Drug Intolerant or Resistant Chronic Myeloid Leukemia Patients: An Indian Experience from a High-End Referral Laboratory. South Asian J Cancer 2024; 13:132-141. [PMID: 38919665 PMCID: PMC11196143 DOI: 10.1055/s-0042-1757911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Atreye MajumdarSambit K. MohantyObjective This article identifies and evaluates the frequency of mutations in the BCR-ABL1 kinase domain (KD) of chronic myeloid leukemia (CML) patients who showed suboptimal response to their current tyrosine kinase inhibitor (TKI) regime and assesses their clinical value in further treatment decisions. Materials and Methods Peripheral and/or bone marrow were collected from 791 CML patients. Ribonucleic acid was extracted, reverse transcribed, and Sanger sequencing method was utilized to detect single-nucleotide variants (SNVs) in BCR-ABL1 KD. Results Thirty-eight different SNVs were identified in 29.8% ( n = 236/791) patients. T315I, E255K, and M244V were among the most frequent mutations detected. In addition, one patient harbored a novel L298P mutation. A subset of patients from the abovementioned harbored compound mutations (13.3%, n = 33/236). Follow-up data was available in 28 patients that demonstrated the efficacy of TKIs in correlation with mutation analysis and BCR-ABL1 quantitation. Molecular response was attained in 50% patients following an appropriate TKI shift. A dismal survival rate of 40% was observed in T315I-harboring patients on follow-up. Conclusion This study shows the incidence and pattern of mutations in one of the largest sets of Indian CML patients. In addition, our findings strengthen the prognostic value of KD mutation analysis among strategies to overcome TKI resistance.
Collapse
Affiliation(s)
- Atreye Majumdar
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Rahul Katara
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Avshesh Mishra
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Aastha Gupta
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Deepak K. Sharma
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Aman K. Srivastava
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Shivani Sharma
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Ankita Jaiswal
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Mallika Dixit
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Vipin Kumar
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Sachin Kumar
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Varun Kumar
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Rahul Sharma
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Sambit K. Mohanty
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute, Bhubaneswar, Odisha, India
| |
Collapse
|
12
|
Saluja S, Bansal I, Bhardwaj R, Beg MS, Palanichamy JK. Inflammation as a driver of hematological malignancies. Front Oncol 2024; 14:1347402. [PMID: 38571491 PMCID: PMC10987768 DOI: 10.3389/fonc.2024.1347402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Hematopoiesis is a tightly regulated process that produces all adult blood cells and immune cells from multipotent hematopoietic stem cells (HSCs). HSCs usually remain quiescent, and in the presence of external stimuli like infection or inflammation, they undergo division and differentiation as a compensatory mechanism. Normal hematopoiesis is impacted by systemic inflammation, which causes HSCs to transition from quiescence to emergency myelopoiesis. At the molecular level, inflammatory cytokine signaling molecules such as tumor necrosis factor (TNF), interferons, interleukins, and toll-like receptors can all cause HSCs to multiply directly. These cytokines actively encourage HSC activation, proliferation, and differentiation during inflammation, which results in the generation and activation of immune cells required to combat acute injury. The bone marrow niche provides numerous soluble and stromal cell signals, which are essential for maintaining normal homeostasis and output of the bone marrow cells. Inflammatory signals also impact this bone marrow microenvironment called the HSC niche to regulate the inflammatory-induced hematopoiesis. Continuous pro-inflammatory cytokine and chemokine activation can have detrimental effects on the hematopoietic system, which can lead to cancer development, HSC depletion, and bone marrow failure. Reactive oxygen species (ROS), which damage DNA and ultimately lead to the transformation of HSCs into cancerous cells, are produced due to chronic inflammation. The biological elements of the HSC niche produce pro-inflammatory cytokines that cause clonal growth and the development of leukemic stem cells (LSCs) in hematological malignancies. The processes underlying how inflammation affects hematological malignancies are still not fully understood. In this review, we emphasize the effects of inflammation on normal hematopoiesis, the part it plays in the development and progression of hematological malignancies, and potential therapeutic applications for targeting these pathways for therapy in hematological malignancies.
Collapse
|
13
|
Liu Y, Tu Y, Xiao J, Shen Y, Zhou B, Yang Q, Yu L, Qi L, Chen J, Liu T, Wu D, Xu Y. Clinical outcomes of patients with lymphoid blastic phase of chronic myeloid leukemia treated with CAR T-cell therapy. Blood Cancer J 2024; 14:39. [PMID: 38448401 PMCID: PMC10917735 DOI: 10.1038/s41408-024-01020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Affiliation(s)
- Yujie Liu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Yuqing Tu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Jinyan Xiao
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Yifan Shen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Biqi Zhou
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Qiannan Yang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Lei Yu
- Shanghai Unicar Therapy Bio-Medicine Technology Co. Ltd, Shanghai, China
| | - Lijuan Qi
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Jia Chen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Tianhui Liu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China.
| | - Depei Wu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China.
| | - Yang Xu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China.
| |
Collapse
|
14
|
Menger JM, Sathianathen RS, Sakamoto KM, Hijiya N. BCR/ABL-Positive Chronic Myeloid Leukemia in Children: Current Treatment Approach. Curr Oncol Rep 2024; 26:250-257. [PMID: 38340217 DOI: 10.1007/s11912-024-01502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the most updated treatment recommendations for pediatric CML, and to discuss current areas of investigation. RECENT FINDINGS There is new phase 1 data to support the safety of the non-ATP competitive tyrosine kinase inhibitor (TKI) asciminib in the pediatric cohort. Ongoing studies are investigating the role of treatment-free remission in children. Chronic phase CML in children is managed with lifelong TKI therapy; however, evidence of deeper remissions sustained with second-generation TKIs may permit shorter treatment courses. Use of more specific TKIs may mitigate some of the side effects specific to the pediatric cohort. Children with advanced phase CML should achieve a complete hematologic remission with use of a second-generation TKI prior to transplant to achieve the best outcome.
Collapse
Affiliation(s)
- Jenna M Menger
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, 10069, USA.
| | | | - Kathleen M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Nobuko Hijiya
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, 10069, USA
| |
Collapse
|
15
|
Oladipupo AR, Alaribe SCA, Ogunlaja AS, Beniddir MA, Gordon AT, Ogah CO, Okpuzor J, Coker HAB. Structure-based molecular networking, molecular docking, dynamics simulation and pharmacokinetic studies of Olax subscorpioidea for identification of potential inhibitors against selected cancer targets. J Biomol Struct Dyn 2024; 42:1110-1125. [PMID: 37029762 DOI: 10.1080/07391102.2023.2198032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/28/2023] [Indexed: 04/09/2023]
Abstract
The rationale at the basis of targeted approach in oncology is radically shifting-from development of highly specific agents aiming at a single target towards molecules interfering with multiple targets. This study was performed to isolate and characterize bioactive molecules from Olax subscorpioidea stem and investigate their potentials as multi-targeted inhibitors against selected non-small cell lung cancer, breast cancer and chronic myelogenous leukemia oncogenic targets. Three compounds: β-sitosterol (1), α-amyrin (2) and stigmasterol (3) were isolated. The structures of 1 - 3 were elucidated by analysis of their spectroscopic data (NMR, MS and IR). To the best of our knowledge, this is the first time these compounds were isolated from O. subscorpioidea stems. Furthermore, integrated analysis of MS/MS data using the Global Natural Products Social Molecular Networking (GNPS) workflow enabled dereplication and identification of 26 compounds, including alkaloids (remerine, boldine), terpenoids (3-hydroxy-11-ursen-28,13-olide, oleanolic acid), flavonoids (kaempferitrin, olax chalcone A) and saponins in O. subscorpioidea stem. Molecular docking studies revealed that some of the compounds, including olax chalcone A (-9.2 to -10.9 kcal/mol), 3-Hydroxy-11-ursen-28,13-olide (-6.6 to -10.2 kcal/mol), α-amyrin (-6.6 to -10.2 kcal/mol), stigmasterol (-7.7 to -10.1 kcal/mol), β-Sitosterol (-7 to -9.9 kcal/mol) and kaempferitrin (-7.7 to -9 kcal/mol) possessed good inhibitory potentials against selected cancer targets, when compared with reference inhibitors (-8.4 to -13.7 kcal/mol). A few of these compounds were shown to have considerable to favorable pharmacokinetic and drug-likeness properties. This study provides some rationale for the use of O. subscorpioidea in ethnomedicinal management of cancer and identifies some potential anticancer agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akolade R Oladipupo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, CMUL Campus, Lagos, Nigeria
| | - Stephenie C A Alaribe
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, CMUL Campus, Lagos, Nigeria
| | - Adeniyi S Ogunlaja
- Department of Chemistry, Nelson Mandela University, Port-Elizabeth, South Africa
| | - Mehdi A Beniddir
- Equipe Chimie des Substances Naturelles, BioCIS, Université Paris-Saclay, CNRS, Châtenay-Malabry, France
| | - Allen T Gordon
- Department of Chemistry, Nelson Mandela University, Port-Elizabeth, South Africa
| | - Celina O Ogah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, CMUL Campus, Lagos, Nigeria
| | - Joy Okpuzor
- Department of Cell Biology & Genetics, Faculty of Science, University of Lagos, Yaba, Lagos, Nigeria
| | - Herbert A B Coker
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, CMUL Campus, Lagos, Nigeria
| |
Collapse
|
16
|
Zhang Z, Zhou X, Zhou X, Cheng Z, Hu Y. Exploration of treatment-free remission in CML, based on molecular monitoring. Cancer Med 2024; 13:e6849. [PMID: 38133525 PMCID: PMC10807643 DOI: 10.1002/cam4.6849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Typical chronic myelogenous leukemia (CML) is a myeloproliferative neoplasm caused by t(9; 22)(q34; q11) translocation. This chromosomal translocation forms the BCR::ABL1 fusion gene. The tyrosine kinase encoded by the BCR::ABL1 is considered to be the main pathogenic diver. BCR::ABL1 is not only a therapeutic target, but also a monitoring target. Monitoring of BCR::ABL1 reveals the progression of the disease and guides the next treatment. Now for CML, the target of treatment has been focused on treatment-free remission (TFR). METHODS We conducted a literature review of current developments of treatment-free remission and molecular monitoring methods. RESULTS More effective and sensitive CML monitoring methods such as digital droplet PCR (ddPCR) and next generation sequencing (NGS) have further studied the measurable residual disease (MRD) and clonal heterogeneity, which provides strong support for the exploration of TFR. We discussed some of the factors that may be related to TFR outcomes at the molecular level, along with some monitoring strategies. CONCLUSION Currently, predictive indicators for treatment-free remission outcomes and recurrence are lacking in clinical practice. In future, treatment-free remission research should focus on combining the clinical indicators with molecular monitoring and biological markers to personalize patient conditions and guide clinicians to develop individualized treatment plans, so that more patients with CML can achieve safer and stabler treatment-free remission.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Remission Induction
- Fusion Proteins, bcr-abl/genetics
- Neoplasm, Residual/genetics
- High-Throughput Nucleotide Sequencing
- Biomarkers, Tumor/genetics
Collapse
Affiliation(s)
| | | | - Xin Zhou
- Wuhan Union HospitalWuhanHubeiChina
| | | | - Yu Hu
- Wuhan Union HospitalWuhanHubeiChina
| |
Collapse
|
17
|
S A, shah A, Ashish A, kumar Singh N, Kaur M, kumar Yadav A, singh R. BCR-ABL kinase domain mutations in CML patients, experience from a tertiary care center in North India. Leuk Res Rep 2023; 21:100403. [PMID: 39035746 PMCID: PMC11258388 DOI: 10.1016/j.lrr.2023.100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/01/2023] [Accepted: 11/23/2023] [Indexed: 07/23/2024] Open
Abstract
Background Chronic Myeloid Leukemia is characterized by the presence of the Philadelphia Chromosome (Ph) which contains the BCR::ABL1 fusion gene that occurs due to a reciprocal translocation between chromosomes 9 and 22. This accounts for up to 15 % of all adult leukemias [1]. Most patients treated with first line tyrosine kinase inhibitor (TKI) imatinib achieve durable response but may undergo relapse at some stage [2]. The most important mechanism that may confer imatinib resistance is point mutation within BCR::ABL kinase domain. Other generation ABL tyrosine kinase inhibitors such as dasatinib, nilotinib, bosutinib and ponatinib help to overcome imatinib resistance [3]. Sensitivity of the patient to each of the above TKIs depends upon the individual candidate mutation present. Thus, it is important to perform mutation analysis for effective therapeutic management of CML patients once they show imatinib resistance. We used direct sequencing to identify the different types of mutations responsible for resistance of imatinib treatment from north India. Methods In this study, the patient resistance for the imatinib were analyzed for BCR::ABL kinase domain mutation by direct sequencing and the detected mutations along with their percentage prevalence were reported. Results 329 patients with CML-CP were analyzed for BCR::ABL kinase domain mutation. Total 66 (20.06 %) patients out of 329 had mutation in at least one of the domains of BCR::ABL conferring resistance to different generations of TKI. Mutations in BCR::ABL kinase domain was observed in different domain of BCR::ABL. ATP binding P-Loop (42.42 %), Direct binding site (36.36 %), C-Loop (10.60 %), A-Loop (6.06 %), SH2 contact (3.03 %), SH3 contact (1.51 %). Conclusion Total 20.06 % patients (66/329) show mutation in at least one of the structural motifs of BCR-ABL kinase domain, which further confer the resistance to a particular generation of TKI.
Collapse
Affiliation(s)
- Akhilesh S
- MRU Lab-Dept. of Anatomy, IMS, BHU, Varanasi, India
| | | | | | | | | | | | - Royana singh
- MRU Lab-Dept. of Anatomy, IMS, BHU, Varanasi, India
| |
Collapse
|
18
|
Hasanova A, Asadov C, Karimova N, Shirinova A, Aliyeva G, Alimirzoyeva Z. Spectrum of BCR-ABL mutations in Azerbaijanian imatinib-resistant patients with chronic myeloid leukemia. Pathol Oncol Res 2023; 29:1611518. [PMID: 38188610 PMCID: PMC10766836 DOI: 10.3389/pore.2023.1611518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
Objective: BCR-ABL1 kinase domain (KD) mutations can lead to resistance to first- and second-generation tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML). Here, we present the first report of the spectrum of mutations in the BCR-ABL1 KD of CML patients from Azerbaijan. Materials and methods: Samples for mutation screening were obtained from patients experiencing resistance to first line TKIs or from patients in acceleration phase (AP) or blast crisis (BC) at the time of diagnosis. The cDNA region corresponding to BCR-ABL1 KD was sequenced by pyrosequencing method. The χ2 test was used to assess the association of categorical variables between mutation-positive and -negative groups. In addition, the Kaplan-Meier method was applied to generate survival curves. Results: Eight different point mutations were identified in 22 (13.4%) out of 163 CML patients experiencing resistance to TKIs. The types of mutations detected were as follows: Contact binding site mutations 50% (11), SH2 domain mutations 27.4% (six), P-loop mutations 18.1% (four), and SH3 domain mutations accounting for 4.5% (one). The most common mutation was T315I, accounting for 5% (n = 8) of all patients. Significant association was identified between BCR-ABL1 mutations and additional chromosomal aberrations as well as between the mutations and disease phases (p < 0.05). Twelve out of 22 patients with BCR-ABL1 mutations and seven out of eight with T315I were in BC. Overall survival (OS) of the patients with BCR-ABL1 mutations was significantly lower comparing to the patients with no mutation (p < 0.05) and 8 patients with T315I mutation presented OS of 0%. Conclusion: T315I was the most commonly identified BCR-ABL1 mutation in TKI-resistant CML patients of Azerbaijani origin, being associated with disease progression and poor OS.
Collapse
Affiliation(s)
- Aypara Hasanova
- Leukemogenesis Laboratory, Institute of Hematology and Transfusiology, Baku, Azerbaijan
| | - Chingiz Asadov
- Hematopoiesis Department, Institute of Hematology and Transfusiology, Baku, Azerbaijan
| | - Nigar Karimova
- Human Genetics Laboratory, Biotechnology Department, Institute of Genetic Resources, Baku, Azerbaijan
| | - Aytan Shirinova
- Hematology Department, Institute of Hematology and Transfusiology, Baku, Azerbaijan
| | - Gunay Aliyeva
- Hematopoiesis Department, Institute of Hematology and Transfusiology, Baku, Azerbaijan
| | - Zohra Alimirzoyeva
- Hematology Department, Institute of Hematology and Transfusiology, Baku, Azerbaijan
| |
Collapse
|
19
|
Silva W, Rego E. How to Manage Philadelphia-Positive Acute Lymphoblastic Leukemia in Resource-Constrained Settings. Cancers (Basel) 2023; 15:5783. [PMID: 38136329 PMCID: PMC10741425 DOI: 10.3390/cancers15245783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 12/24/2023] Open
Abstract
Recent studies have indicated that more than half of adult patients newly diagnosed with Ph+ ALL can now achieve a cure. However, determining the most suitable protocol for less-resourced settings can be challenging. In these situations, we must consider the potential for treatment toxicity and limited access to newer agents and alloSCT facilities. Currently, it is advisable to use less intensive induction regimens for Ph+ ALL. These regimens can achieve high rates of complete remission while causing fewer induction deaths. For consolidation therapy, chemotherapy should remain relatively intensive, with careful monitoring of the BCR-ABL1 molecular transcript and minimal residual disease. AlloSCT may be considered, especially for patients who do not achieve complete molecular remission or have high-risk genetic abnormalities, such as IKZF1-plus. If there is a loss of molecular response, it is essential to screen patients for ABL mutations and, ideally, change the TKI therapy. The T315I mutation is the most common mechanism for disease resistance, being targetable to ponatinib. Blinatumomab, a bispecific antibody, has shown significant synergy with TKIs in treating this disease. It serves as an excellent salvage therapy, aside from achieving outstanding results when incorporated into the frontline.
Collapse
Affiliation(s)
- Wellington Silva
- Discipline of Hematology, Hospital das Clínicas da Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-010, Brazil;
| | | |
Collapse
|
20
|
Soverini S. Resistance mutations in CML and how we approach them. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:469-475. [PMID: 38066920 PMCID: PMC10727040 DOI: 10.1182/hematology.2023000447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Among the variety of resistance mechanisms that may underlie a non-optimal response to tyrosine kinase inhibitor (TKI) therapy in chronic myeloid leukemia patients, secondary point mutations in the BCR::ABL1 kinase domain (KD) represent the only actionable one. Each of the 5 ATP-competitive inhibitors (imatinib, dasatinib, nilotinib, bosutinib, ponatinib) has a well-defined spectrum of resistance mutations. Growing clinical experience will soon allow to also elucidate the full spectrum of mutations conferring resistance to asciminib (that appear not to be confined to the myristate binding pocket). Regular molecular response (MR) monitoring is fundamental for evaluating treatment efficacy, catching early signs of relapse, and intervening promptly in case of confirmed failure. Whenever MR is not deemed satisfactory according to the European LeukemiaNet or the National Comprehensive Cancer Network definitions, BCR::ABL1 KD mutations testing should be performed. When needed, prompt and informed TKI switch can improve response and outcome and prevent the accumulation of mutations, including highly challenging compound mutations. Novel technologies like next-generation sequencing and digital polymerase chain reaction have recently been explored for BCR::ABL1 KD mutation testing; they have both advantages and disadvantages that are discussed in this article. This review also provides suggestions for interpretation and clinical translation of mutation testing results, which may not always be straightforward, particularly in cases of low-level or unknown mutations.
Collapse
Affiliation(s)
- Simona Soverini
- Department of Medical and Surgical Sciences (DIMEC), Institute of Hematology “Lorenzo e Ariosto Seràgnoli,” University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Kockerols C, Valk PJM, Blijlevens NMA, Cornelissen JJ, Dinmohamed AG, Geelen I, Hoogendoorn M, Janssen JJWM, Daenen LGM, Reijden BAVD, Westerweel PE. BCR::ABL1 kinase domain mutation testing and clinical outcome in a nationwide chronic myeloid leukemia patient population. Eur J Haematol 2023; 111:938-945. [PMID: 37731314 DOI: 10.1111/ejh.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVES Acquired missense mutations in the BCR::ABL1 kinase domain (KD) may cause tyrosine kinase inhibitor (TKI) treatment failure. Based on mutation-specific in vitro derived IC50-values, alternative TKI may be selected. We assessed clinical practice of BCR::ABL1 KD mutation testing, clinical response in relation to IC50-values, and clinical outcome of tested patients. METHODS Patients from six Dutch CML reference centers and a national registry were included once a mutational analysis was performed. Reasons for testing were categorized as suboptimal TKI response, and primary or secondary TKI resistance. RESULTS Four hundred twenty analyses were performed in 275 patients. Sixty-nine patients harbored at least one mutation. Most analyses were performed because of suboptimal TKI response but with low mutation incidence (4%), while most mutations were found in primary and secondary resistant patients (21% and 51%, respectively). Harboring a BCR::ABL1 mutation was associated with inferior overall survival (HR 3.2 [95% CI, 1.7-6.1; p < .001]). Clinically observed responses to TKI usually corresponded with the predicted TKI sensitivity based on the IC50-values, but a high IC50-value did not preclude a good clinical response per se. CONCLUSIONS We recommend BCR::ABL1 KD mutation testing in particular in the context of primary or secondary resistance. IC50-values can direct the TKI choice for CML patients, but clinical efficacy can be seen despite adverse in vitro resistance.
Collapse
MESH Headings
- Humans
- Fusion Proteins, bcr-abl/genetics
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Mutation
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Camille Kockerols
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Peter J M Valk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nicole M A Blijlevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan J Cornelissen
- Department of Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Avinash G Dinmohamed
- Department of Research & Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
- Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Inge Geelen
- Department of Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mels Hoogendoorn
- Department of Hematology, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Jeroen J W M Janssen
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Hematology, Amsterdam University Medical Center, location VUMC, Amsterdam, The Netherlands
| | - Laura G M Daenen
- Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Lab of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter E Westerweel
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| |
Collapse
|
22
|
Cardinali D, Beldinanzi M, Ansuinelli M, Elia L, Della Starza I, Bellomarino V, Matarazzo M, Di Trani M, Cola M, Salutari P, Cedrone M, Bassan R, De Gobbi M, Della Porta MG, De Simone M, Alati C, Fracchiolla NS, Lunghi M, Intermesoli T, Cardinali V, Mulè A, Guarini A, Foà R, Chiaretti S. Digital droplet PCR for T315I BCR::ABL1 KD mutation assessment in adult Ph-positive acute lymphoblastic leukemia with a minimal residual disease increase. Leuk Lymphoma 2023; 64:1884-1887. [PMID: 37452789 DOI: 10.1080/10428194.2023.2235450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Deborah Cardinali
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Marco Beldinanzi
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Michela Ansuinelli
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Loredana Elia
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Irene Della Starza
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
- Fondazione GIMEMA Onlus, Rome, Italy
| | - Vittorio Bellomarino
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Mabel Matarazzo
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Mariangela Di Trani
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Mattia Cola
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Michele Cedrone
- UOC Ematologia, Ospedale San Giovanni Addolorata, Rome, Italy
| | - Renato Bassan
- Hematology Unit, Ospedale dell'Angelo and Ospedale Ss Giovanni e Paolo, Mestre Venezia, Italy
| | - Marco De Gobbi
- Department of Clinical and Biological Sciences, Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | | | | | - Caterina Alati
- Division of Hematology, Azienda Ospedaliera ''Bianchi Melacrino Morelli', Reggio Calabria, Italy
| | - Nicola Stefano Fracchiolla
- UOC Oncoematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Università degli Studi di Milano, Milan, Italy
| | - Monia Lunghi
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Tamara Intermesoli
- Department of Oncology, Hematology University of Milan and Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Valeria Cardinali
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Antonino Mulè
- UOC, Ospedali Riuniti, Villa Sofia-Cervello, Palermo, Italy
| | - Anna Guarini
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
23
|
Cross NCP, Ernst T, Branford S, Cayuela JM, Deininger M, Fabarius A, Kim DDH, Machova Polakova K, Radich JP, Hehlmann R, Hochhaus A, Apperley JF, Soverini S. European LeukemiaNet laboratory recommendations for the diagnosis and management of chronic myeloid leukemia. Leukemia 2023; 37:2150-2167. [PMID: 37794101 PMCID: PMC10624636 DOI: 10.1038/s41375-023-02048-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
From the laboratory perspective, effective management of patients with chronic myeloid leukemia (CML) requires accurate diagnosis, assessment of prognostic markers, sequential assessment of levels of residual disease and investigation of possible reasons for resistance, relapse or progression. Our scientific and clinical knowledge underpinning these requirements continues to evolve, as do laboratory methods and technologies. The European LeukemiaNet convened an expert panel to critically consider the current status of genetic laboratory approaches to help diagnose and manage CML patients. Our recommendations focus on current best practice and highlight the strengths and pitfalls of commonly used laboratory tests.
Collapse
Affiliation(s)
| | - Thomas Ernst
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Susan Branford
- Centre for Cancer Biology and SA Pathology, Adelaide, SA, Australia
| | - Jean-Michel Cayuela
- Laboratory of Hematology, University Hospital Saint-Louis, AP-HP and EA3518, Université Paris Cité, Paris, France
| | | | - Alice Fabarius
- III. Medizinische Klinik, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Dennis Dong Hwan Kim
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | | | | | - Rüdiger Hehlmann
- III. Medizinische Klinik, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
- ELN Foundation, Weinheim, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Jane F Apperley
- Centre for Haematology, Imperial College London, London, UK
- Department of Clinical Haematology, Imperial College Healthcare NHS Trust, London, UK
| | - Simona Soverini
- Department of Medical and Surgical Sciences, Institute of Hematology "Lorenzo e Ariosto Seràgnoli", University of Bologna, Bologna, Italy
| |
Collapse
|
24
|
Zhang XS, Liu BC, Du X, Zhang YL, Xu N, Liu XL, Li WM, Lin H, Liang R, Chen CY, Huang J, Yang YF, Zhu HL, Pan L, Wang XD, Li GH, Liu ZG, Zhang YQ, Liu ZF, Hu JD, Liu CS, Li F, Yang W, Meng L, Han YQ, Lin LE, Zhao ZY, Tu CQ, Zheng CF, Bai YL, Zhou ZP, Chen SN, Qiu HY, Yang LJ, Sun XL, Sun H, Zhou L, Liu ZL, Wang DY, Guo JX, Pang LP, Zeng QS, Suo XH, Zhang WH, Zheng YJ, Jiang Q. [To compare the efficacy and incidence of severe hematological adverse events of flumatinib and imatinib in patients newly diagnosed with chronic phase chronic myeloid leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:728-736. [PMID: 38049316 PMCID: PMC10630575 DOI: 10.3760/cma.j.issn.0253-2727.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Indexed: 12/06/2023]
Abstract
Objective: To analyze and compare therapy responses, outcomes, and incidence of severe hematologic adverse events of flumatinib and imatinib in patients newly diagnosed with chronic phase chronic myeloid leukemia (CML) . Methods: Data of patients with chronic phase CML diagnosed between January 2006 and November 2022 from 76 centers, aged ≥18 years, and received initial flumatinib or imatinib therapy within 6 months after diagnosis in China were retrospectively interrogated. Propensity score matching (PSM) analysis was performed to reduce the bias of the initial TKI selection, and the therapy responses and outcomes of patients receiving initial flumatinib or imatinib therapy were compared. Results: A total of 4 833 adult patients with CML receiving initial imatinib (n=4 380) or flumatinib (n=453) therapy were included in the study. In the imatinib cohort, the median follow-up time was 54 [interquartile range (IQR), 31-85] months, and the 7-year cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) were 95.2%, 88.4%, 78.3%, and 63.0%, respectively. The 7-year FFS, PFS, and OS rates were 71.8%, 93.0%, and 96.9%, respectively. With the median follow-up of 18 (IQR, 13-25) months in the flumatinib cohort, the 2-year cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) were 95.4%, 86.5%, 58.4%, and 46.6%, respectively. The 2-year FFS, PFS, and OS rates were 80.1%, 95.0%, and 99.5%, respectively. The PSM analysis indicated that patients receiving initial flumatinib therapy had significantly higher cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) and higher probabilities of FFS than those receiving the initial imatinib therapy (all P<0.001), whereas the PFS (P=0.230) and OS (P=0.268) were comparable between the two cohorts. The incidence of severe hematologic adverse events (grade≥Ⅲ) was comparable in the two cohorts. Conclusion: Patients receiving initial flumatinib therapy had higher cumulative incidences of therapy responses and higher probability of FFS than those receiving initial imatinib therapy, whereas the incidence of severe hematologic adverse events was comparable between the two cohorts.
Collapse
Affiliation(s)
- X S Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - B C Liu
- National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - X Du
- The Second People's Hospital of Shenzhen, Shenzhen 518035, China
| | - Y L Zhang
- Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - N Xu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - X L Liu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - W M Li
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - H Lin
- First Hospital of Jilin University, Changchun 130021, China
| | - R Liang
- Xijing Hospital, Airforce Military Medical University, Xi'an 710032, China
| | - C Y Chen
- Qilu Hospital of Shandong University, Jinan 250012, China
| | - J Huang
- The Fourth Affiliated Hospital of Zhejiang University, Hangzhou 322000, China
| | - Y F Yang
- Institute of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - H L Zhu
- Institute of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - L Pan
- Institute of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - X D Wang
- Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - G H Li
- Xi'an International Medical Center Hospital, Xi'an 710038, China
| | - Z G Liu
- Shengjing Hospital of China Medical University, Shenyang 110020, China
| | - Y Q Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Z F Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - J D Hu
- Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - C S Liu
- First Hospital of Jilin University, Changchun 130021, China
| | - F Li
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - W Yang
- Shengjing Hospital of China Medical University, Shenyang 110020, China
| | - L Meng
- Tongji Hospital of Tongji Medical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Y Q Han
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - L E Lin
- Hainan General Hospital, Haikou 570311, China
| | - Z Y Zhao
- Hainan General Hospital, Haikou 570311, China
| | - C Q Tu
- Shenzhen Baoan Hospital, Shenzhen University Second Affiliated Hospital, Shenzhen 518101, China
| | - C F Zheng
- Shenzhen Baoan Hospital, Shenzhen University Second Affiliated Hospital, Shenzhen 518101, China
| | - Y L Bai
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, China
| | - Z P Zhou
- The Second Hospital Affiliated to Kunming Medical University, Kunming 650106, China
| | - S N Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation of Soochow University, Suzhou 215006, China
| | - H Y Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation of Soochow University, Suzhou 215006, China
| | - L J Yang
- Xi'an International Medical Center Hospital, Xi'an 710117, China
| | - X L Sun
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - H Sun
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - L Zhou
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Z L Liu
- Huazhong University of Science and Technology Union Shenzhen Hospital, Nanshan Hospital, Shenzhen 518000, China
| | - D Y Wang
- Huazhong University of Science and Technology Union Shenzhen Hospital, Nanshan Hospital, Shenzhen 518000, China
| | - J X Guo
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - L P Pang
- Peking University Shenzhen Hospital, Shenzhen 516473, China
| | - Q S Zeng
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - X H Suo
- Handan Central Hospital, Handan 057150, China
| | - W H Zhang
- First Hospital of Shangxi Medical University, Taiyuan 300012, China
| | - Y J Zheng
- First Hospital of Shangxi Medical University, Taiyuan 300012, China
| | - Q Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
25
|
Benjamin C, Murugan S, Hoosen S, Rapiti N. Chronic myeloid leukemia kinase domain mutations: A retrospective descriptive study on the therapeutic and prognostic significance in patients at King Edward VIII Hospital, KwaZulu-Natal, South Africa. Health Sci Rep 2023; 6:e1376. [PMID: 37396560 PMCID: PMC10313909 DOI: 10.1002/hsr2.1376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023] Open
Abstract
Background Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm that harbors the Philadelphia chromosome. Tyrosine kinase inhibitor (TKI) therapy has dramatically improved the survival of patients with CML. Nevertheless, 20%-40% of CML patients require changes in TKI therapy due to intolerance or drug resistance. A total of 30%-60% of resistant cases result from kinase domain (KD) mutations. There is currently no published data on CML KD mutations in South Africa. Methods This retrospective, descriptive study collected data from 206 CML patients attending the King Edward Hospital Hematology clinic. Patient-based and mutation-based factors were analyzed using descriptive statistical analysis and Kaplan-Meier curves for survival analysis. Results KD mutations were detected in 29.1% (n = 60 of 206). A total of 40 different KD mutations were detected, with unknown responses to TKI therapy in 65% (n = 26 of 40). A total of 57.7% (n = 15 of 26) of mutations with an unknown response, showed a response to specific TKIs in our study. Four patients had A399T mutations, of which two showed good responses to Nilotinib. Patients with I293N and V280M mutations showed good responses to Imatinib. G250E was most frequently detected. Despite M351T being one of six most commonly reported KD mutations globally, this mutation was not detected in our patient cohort. A total of 20.9% (n = 43 of 206) human immunodeficiency virus (HIV) positive patients were identified, of which 25.6% (n = 11 of 43) had KD mutations. HIV status showed no significant effect on mutational status or overall survival. Conclusion The predicted response to TKI therapy was unknown in more than half of the KD mutations detected in our patient population. Additionally, eight patients with mutations with known responses to TKIs showed responses discordant to that expected. HIV status and KD mutations had no statistically significant effect on overall survival. Although some data were comparable to international publications, few notable differences warrant further investigation.
Collapse
Affiliation(s)
- Caryn Benjamin
- National Health Laboratory ServiceDurbanKwaZulu NatalSouth Africa
- University of KwaZulu NatalDurbanKwaZulu NatalSouth Africa
| | - Stephanie Murugan
- National Health Laboratory ServiceDurbanKwaZulu NatalSouth Africa
- University of KwaZulu NatalDurbanKwaZulu NatalSouth Africa
| | - Siddeeq Hoosen
- National Health Laboratory ServiceDurbanKwaZulu NatalSouth Africa
- University of KwaZulu NatalDurbanKwaZulu NatalSouth Africa
| | - Nadine Rapiti
- National Health Laboratory ServiceDurbanKwaZulu NatalSouth Africa
- University of KwaZulu NatalDurbanKwaZulu NatalSouth Africa
| |
Collapse
|
26
|
Schwab RD, Luger SM. Which Second-Line Tyrosine Kinase Inhibitor(s) for Chronic Myeloid Leukemia? Curr Treat Options Oncol 2023; 24:757-769. [PMID: 37119409 DOI: 10.1007/s11864-023-01088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2023] [Indexed: 05/01/2023]
Abstract
OPINION STATEMENT In patients with chronic myeloid leukemia who require second-line tyrosine kinase inhibitor therapy, many options exist. These treatments include alternate generation tyrosine kinase inhibitors and in some cases consideration of allogeneic transplant. Although efficacious, each tyrosine kinase inhibitor possesses distinct side effects and pharmacological profiles that prevent a generalizable treatment approach. Furthermore, there is limited head-to-head trial data that would suggest the superiority of one tyrosine kinase inhibitor over another to help guide treatment decisions in specific clinical settings. Therefore, we treat each patient independently. A patient's treatment plan must be personalized by a variety of clinical factors to optimize response and tolerability. Our general approach is to first examine the reason for treatment failure, which may be due to either intolerance or relapse. Second, we consider the age and patient's comorbidities such as lung disease, diabetes, or cardiovascular disease. In patients who have inadequate responses, we analyze the patient's BCR-ABL1 mutational profile, which is beneficial if that patient harbors a specific tyrosine kinase inhibitor responsive mutation, such as T315I. Using these steps, we can provide a generalizable approach to choosing the appropriate second-line tyrosine inhibitor for chronic myeloid leukemia.
Collapse
MESH Headings
- Humans
- Tyrosine Kinase Inhibitors
- Fusion Proteins, bcr-abl/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Protein Kinase Inhibitors/adverse effects
- Mutation
- Drug Resistance, Neoplasm
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Robert D Schwab
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Selina M Luger
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, Perelman Center for Advanced Medicine, 12th Floor South Extension, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
27
|
Iezza M, Cortesi S, Ottaviani E, Mancini M, Venturi C, Monaldi C, De Santis S, Testoni N, Soverini S, Rosti G, Cavo M, Castagnetti F. Prognosis in Chronic Myeloid Leukemia: Baseline Factors, Dynamic Risk Assessment and Novel Insights. Cells 2023; 12:1703. [PMID: 37443737 PMCID: PMC10341256 DOI: 10.3390/cells12131703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The introduction of tyrosine kinase inhibitors (TKIs) has changed the treatment paradigm of chronic myeloid leukemia (CML), leading to a dramatic improvement of the outcome of CML patients, who now have a nearly normal life expectancy and, in some selected cases, the possibility of aiming for the more ambitious goal of treatment-free remission (TFR). However, the minority of patients who fail treatment and progress from chronic phase (CP) to accelerated phase (AP) and blast phase (BP) still have a relatively poor prognosis. The identification of predictive elements enabling a prompt recognition of patients at higher risk of progression still remains among the priorities in the field of CML management. Currently, the baseline risk is assessed using simple clinical and hematologic parameters, other than evaluating the presence of additional chromosomal abnormalities (ACAs), especially those at "high-risk". Beyond the onset, a re-evaluation of the risk status is mandatory, monitoring the response to TKI treatment. Moreover, novel critical insights are emerging into the role of genomic factors, present at diagnosis or evolving on therapy. This review presents the current knowledge regarding prognostic factors in CML and their potential role for an improved risk classification and a subsequent enhancement of therapeutic decisions and disease management.
Collapse
Affiliation(s)
- Miriam Iezza
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
| | - Sofia Cortesi
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
| | - Emanuela Ottaviani
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.O.); (M.M.); (C.V.)
| | - Manuela Mancini
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.O.); (M.M.); (C.V.)
| | - Claudia Venturi
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.O.); (M.M.); (C.V.)
| | - Cecilia Monaldi
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
| | - Sara De Santis
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
| | - Nicoletta Testoni
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.O.); (M.M.); (C.V.)
| | - Simona Soverini
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
| | - Gianantonio Rosti
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS “Dino Amadori”, 47014 Meldola, Italy;
| | - Michele Cavo
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.O.); (M.M.); (C.V.)
| | - Fausto Castagnetti
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.O.); (M.M.); (C.V.)
| |
Collapse
|
28
|
Marin AM, Wosniaki DK, Sanchuki HBS, Munhoz EC, Nardin JM, Soares GS, Espinace DC, de Holanda Farias JS, Veroneze B, Becker LF, Costa GL, Beltrame OC, de Oliveira JC, Cambri G, Zanette DL, Aoki MN. Molecular BCR::ABL1 Quantification and ABL1 Mutation Detection as Essential Tools for the Clinical Management of Chronic Myeloid Leukemia Patients: Results from a Brazilian Single-Center Study. Int J Mol Sci 2023; 24:10118. [PMID: 37373266 DOI: 10.3390/ijms241210118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a well-characterized oncological disease in which virtually all patients possess a translocation (9;22) that generates the tyrosine kinase BCR::ABL1 protein. This translocation represents one of the milestones in molecular oncology in terms of both diagnostic and prognostic evaluations. The molecular detection of the BCR::ABL1 transcription is a required factor for CML diagnosis, and its molecular quantification is essential for assessing treatment options and clinical approaches. In the CML molecular context, point mutations on the ABL1 gene are also a challenge for clinical guidelines because several mutations are responsible for tyrosine kinase inhibitor resistance, indicating that a change may be necessary in the treatment protocol. So far, the European LeukemiaNet and the National Comprehensive Cancer Network (NCCN) have presented international guidelines on CML molecular approaches, especially those related to BCR::ABL1 expression. In this study, we show almost three years' worth of data regarding the clinical treatment of CML patients at the Erasto Gaertner Hospital, Curitiba, Brazil. These data primarily comprise 155 patients and 532 clinical samples. BCR::ABL1 quantification by a duplex-one-step RT-qPCR and ABL1 mutations detection were conducted. Furthermore, digital PCR for both BCR::ABL1 expression and ABL1 mutations were conducted in a sub-cohort. This manuscript describes and discusses the clinical importance and relevance of molecular biology testing in Brazilian CML patients, demonstrating its cost-effectiveness.
Collapse
Affiliation(s)
- Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil
| | - Denise Kusma Wosniaki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil
| | - Heloisa Bruna Soligo Sanchuki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil
| | | | | | - Gabriela Silva Soares
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil
| | - Dhienifer Caroline Espinace
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil
| | | | | | | | | | | | | | - Geison Cambri
- Instituto de Biologia Molecular do Paraná (IBMP), Curitiba 81350-010, Brazil
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil
| |
Collapse
|
29
|
Li Q, Zhou L, Qin S, Huang Z, Li B, Liu R, Yang M, Nice EC, Zhu H, Huang C. Proteolysis-targeting chimeras in biotherapeutics: Current trends and future applications. Eur J Med Chem 2023; 257:115447. [PMID: 37229829 DOI: 10.1016/j.ejmech.2023.115447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
The success of inhibitor-based therapeutics is largely constrained by the acquisition of therapeutic resistance, which is partially driven by the undruggable proteome. The emergence of proteolysis targeting chimera (PROTAC) technology, designed for degrading proteins involved in specific biological processes, might provide a novel framework for solving the above constraint. A heterobifunctional PROTAC molecule could structurally connect an E3 ubiquitin ligase ligand with a protein of interest (POI)-binding ligand by chemical linkers. Such technology would result in the degradation of the targeted protein via the ubiquitin-proteasome system (UPS), opening up a novel way of selectively inhibiting undruggable proteins. Herein, we will highlight the advantages of PROTAC technology and summarize the current understanding of the potential mechanisms involved in biotherapeutics, with a particular focus on its application and development where therapeutic benefits over classical small-molecule inhibitors have been achieved. Finally, we discuss how this technology can contribute to developing biotherapeutic drugs, such as antivirals against infectious diseases, for use in clinical practices.
Collapse
Affiliation(s)
- Qiong Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zhao Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Mei Yang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, 610041, PR China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
30
|
Limsuwanachot N, Rerkamnuaychoke B, Niparuck P, Singdong R, Kongruang A, Hirunpatrawong P, Siriyakorn T, Yenchitsomanus PT, Siriboonpiputtana T. A customized mass array panel for BCR:: ABL1 tyrosine kinase domain mutation screening in chronic myeloid leukemia. J Mass Spectrom Adv Clin Lab 2023; 28:122-132. [PMID: 37128502 PMCID: PMC10148036 DOI: 10.1016/j.jmsacl.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/25/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
Introduction The therapeutic strategy and management of chronic myeloid leukemia (CML) have rapidly improved with the discovery of effective tyrosine kinase inhibitors (TKIs) to target BCR::ABL1 oncoprotein. However, nearly 30% of patients develop TKI resistance due to acquired mutations on the tyrosine kinase domain (TKD) of BCR::ABL1. Methods We customized a mass array panel initially intended to detect and monitor the mutational burden of hotspot BCR::ABL1 TKD mutations accumulated in our database, including key mutations recently recommended by European LeukemiaNet. Additionally, we extended the feasibility of using the assay panel for the molecular classification of myeloproliferative neoplasms (MPNs) by incorporating primer sets specific for analyzing JAK2 V617F, MPL 515 K/L, and CALR types 1 and 2. Results We found that the developed mass array panel was superior for detecting and monitoring clinically significant BCR::ABL1 TKD mutations, especially in cases with low mutational burden and harboring compound/polyclonal mutations, compared with direct sequencing. Moreover, our customized mass array panel detected common genetic alterations in MPNs, and the findings were consistent with those of other comparable assays available in our laboratory. Conclusions Our customized mass array panel was practicably used as a routine robust assay for screening and monitoring BCR::ABL1 TKD mutations in patients with CML undergoing TKI treatment and feasible for analyzing common genetic mutations in MPNs.
Collapse
Affiliation(s)
- Nittaya Limsuwanachot
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Budsaba Rerkamnuaychoke
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pimjai Niparuck
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Roongrudee Singdong
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Adcharee Kongruang
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | - Pa-thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Teerapong Siriboonpiputtana
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Corresponding author at: Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
| |
Collapse
|
31
|
Wan L, Ma J, Gong X, Li Q, Wang Y, Wei H, Wang J, Xiao Z, Mi Y. Droplet digital polymerase chain reaction improves the detection of BCR-ABL1 kinase domain mutation in Philadelphia chromosome-positive acute lymphoblastic leukemia. Int J Lab Hematol 2023. [PMID: 36990968 DOI: 10.1111/ijlh.14069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Sanger sequencing (SS) is the most frequently used method for detecting ABL1 kinase domain (KD) mutations in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL). However, it cannot detect low levels of mutation. Recently, droplet digital polymerase chain reaction (ddPCR) has been developed as a sensitive technique for detecting mutations in hematological neoplasms. The aim of our study was to explore the value of ddPCR in detecting ABL1 KD mutations. METHODS We compared the results of SS and ddPCR in detecting ABL1 KD mutations in a consecutive cohort of 65 adolescent and adult patients with Ph+ ALL treated with intensive multiagent chemotherapy plus TKIs. RESULTS At diagnosis, SS and ddPCR identified 1 (1.5%) and 26 (40%) out of 65 patients with positive ABL1 KD mutations, respectively. Patients with T315I mutations detected by ddPCR at diagnosis all developed SS-detectable T315I mutations during treatment with first- or second-generation TKIs, and non-T315I mutations detected by ddPCR at diagnosis displayed a limited prognostic impact. CONCLUSION Our study demonstrates that ddPCR is a highly sensitive and accurate mutation detection method and the presence of T315I mutations before treatment shows prognostic significance in the context of first- or second-generation TKIs.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jiao Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiaoyuan Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Qinghua Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Ying Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yingchang Mi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| |
Collapse
|
32
|
BH3 mimetics and TKI combined therapy for Chronic Myeloid Leukemia. Biochem J 2023; 480:161-176. [PMID: 36719792 DOI: 10.1042/bcj20210608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 02/01/2023]
Abstract
Chronic myeloid leukemia (CML) was considered for a long time one of the most hostile leukemia that was incurable for most of the patients, predominantly due to the extreme resistance to chemotherapy. Part of the resistance to cell death (apoptosis) is the result of increased levels of anti-apoptotic and decreased levels of pro-apoptotic member of the BCL-2 family induced by the BCR-ABL1 oncoprotein. BCR-ABL1 is a constitutively active tyrosine kinase responsible for initiating multiple and oncogenic signaling pathways. With the development of specific BCR-ABL1 tyrosine kinase inhibitors (TKIs) CML became a much more tractable disease. Nevertheless, TKIs do not cure CML patients and a substantial number of them develop intolerance or become resistant to the treatment. Therefore, novel anti-cancer strategies must be developed to treat CML patients independently or in combination with TKIs. Here, we will discuss the mechanisms of BCR-ABL1-dependent and -independent resistance to TKIs and the use of BH3-mimetics as a potential tool to fight CML.
Collapse
|
33
|
Li X, Xiao Y, Wang X, Huang R, Wang R, Deng Y, Rao J, Gao Q, Yang S, Zhang X. Connexin 43-modified bone marrow stromal cells reverse the imatinib resistance of K562 cells via Ca 2+ -dependent gap junction intercellular communication. Chin Med J (Engl) 2023; 136:194-206. [PMID: 36801891 PMCID: PMC10106204 DOI: 10.1097/cm9.0000000000002554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Imatinib mesylate (IM) resistance is an emerging problem for chronic myeloid leukemia (CML). Previous studies found that connexin 43 (Cx43) deficiency in the hematopoietic microenvironment (HM) protects minimal residual disease (MRD), but the mechanism remains unknown. METHODS Immunohistochemistry assays were employed to compare the expression of Cx43 and hypoxia-inducible factor 1α (HIF-1α) in bone marrow (BM) biopsies of CML patients and healthy donors. A coculture system of K562 cells and several Cx43-modified bone marrow stromal cells (BMSCs) was established under IM treatment. Proliferation, cell cycle, apoptosis, and other indicators of K562 cells in different groups were detected to investigate the function and possible mechanism of Cx43. We assessed the Ca 2+ -related pathway by Western blotting. Tumor-bearing models were also established to validate the causal role of Cx43 in reversing IM resistance. RESULTS Low levels of Cx43 in BMs were observed in CML patients, and Cx43 expression was negatively correlated with HIF-1α. We also observed that K562 cells cocultured with BMSCs transfected with adenovirus-short hairpin RNA of Cx43 (BMSCs-shCx43) had a lower apoptosis rate and that their cell cycle was blocked in G0/G1 phase, while the result was the opposite in the Cx43-overexpression setting. Cx43 mediates gap junction intercellular communication (GJIC) through direct contact, and Ca 2+ is the key factor mediating the downstream apoptotic pathway. In animal experiments, mice bearing K562, and BMSCs-Cx43 had the smallest tumor volume and spleen, which was consistent with the in vitro experiments. CONCLUSIONS Cx43 deficiency exists in CML patients, promoting the generation of MRD and inducing drug resistance. Enhancing Cx43 expression and GJIC function in the HM may be a novel strategy to reverse drug resistance and promote IM efficacy.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Hematology, 920th Hospital of Joint Logistic Support Force of People's Liberation, Kunming, Yunnan 650000, China
| | - Yunshuo Xiao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Rui Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Yi Deng
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Jun Rao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Qiangguo Gao
- Department of Cell Biology College of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
34
|
Langabeer SE, Macleod S, Bhreathnach Ú, Fadalla K. Imatinib Resistance in Chronic Myeloid Leukemia Associated with a D363G BCR::ABL1 Kinase Domain Mutation. Case Rep Hematol 2023; 2023:6673144. [PMID: 37123466 PMCID: PMC10139808 DOI: 10.1155/2023/6673144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/02/2023] Open
Abstract
Acquired resistance to tyrosine kinase inhibitors (TKIs) remains a therapeutic challenge in the treatment of chronic myeloid leukemia (CML). The most studied reason for TKI resistance is the acquisition of mutations within the BCR::ABL1 tyrosine kinase domain (KDM) and of which the majority of which occur at seven codons within this region. A case of CML is described in which presence of a rare D363G BCR::ABL1 KDM resulted in a suboptimal response to frontline imatinib. Switching to dasatinib resulted in achieving a sustained major molecular response that was maintained after a subsequent switch to bosutinib due to the side effects. Reporting of such cases is important for the future management of any CML patients with this rare mutation.
Collapse
Affiliation(s)
| | - Stuart Macleod
- Department of Haematology, St. Vincent's University Hospital, Dublin D04T6F4, Ireland
| | - Úna Bhreathnach
- Cancer Molecular Diagnostics, St. James's Hospital, Dublin D08W9RT, Ireland
| | - Kamal Fadalla
- Department of Haematology, St. Vincent's University Hospital, Dublin D04T6F4, Ireland
| |
Collapse
|
35
|
Qian H, Gang D, He X, Jiang S. A review of the therapeutic role of the new third-generation TKI olverembatinib in chronic myeloid leukemia. Front Oncol 2022; 12:1036437. [PMID: 36568202 PMCID: PMC9772831 DOI: 10.3389/fonc.2022.1036437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Several tyrosine kinase inhibitors (TKIs) have been developed as targeted therapies to inhibit the oncogenic activity of several tyrosine kinases in chronic myeloid leukemia (CML), acute lymphoid leukemia (ALL), gastrointestinal stromal tumor (GIST), and other diseases. TKIs have significantly improved the overall survival of these patients and changed the treatment strategy in the clinic. However, approximately 50% of patients develop resistance or intolerance to imatinib. For second-generation TKIs, approximately 30%-40% of patients need to change therapy by 5 years when they are used as first-line treatment. Clinical study analysis showed that the T315I mutation is highly associated with TKI resistance. Developing new drugs that target the T315I mutation will address the dilemma of treatment failure. Olverembatinib, as a third-generation TKI designed for the T315I mutation, is being researched in China. Preliminary clinical data show the safety and efficacy in treating CML patients harboring the T315I mutation or who are resistant to first- or second-line TKI treatment. Herein, we review the characteristics and clinical trials of olverembatinib. We also discuss its role in the management of CML patients.
Collapse
|
36
|
Yohanan B, George B. Current Management of Chronic Myeloid Leukemia Myeloid Blast Phase. Clin Med Insights Oncol 2022; 16:11795549221139357. [PMID: 36507316 PMCID: PMC9726842 DOI: 10.1177/11795549221139357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the major advancements in the management of chronic phase (CP) chronic myeloid leukemia (CML), blast crisis (BC) remains a major therapeutic challenge. BC can be myeloid, lymphoid, or mixed lineage with myeloid BC being the most common type. BC in CML is mediated by aberrant tyrosine kinase activity of the BCR::ABL fusion protein. The introduction of BCR::ABL tyrosine kinase inhibitor (TKI) has been a gamechanger in the treatment of CML and there has been a significant reduction in the incidence of BC. The main treatment goal in BC is to achieve a second CP and consolidate that with an allogeneic stem cell transplantation (SCT) in eligible patients. The outcomes in BC remain dismal even in the current era. In this review, we provide an overview of the biology and current therapeutic approach in myeloid BC.
Collapse
Affiliation(s)
- Binoy Yohanan
- Department of Hematology/Oncology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Binsah George
- Department of Hematology/Oncology, The University of Texas Health Science Center at Houston, Houston, TX, USA,Binsah George, Department of Hematology/Oncology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 5.216, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Tan Y, Zhang L, Zhu G, Yang Y, Guo W, Chen L, Chang J, Xu Y, Muyey DM, Wang H. BCR/ABL1ΔE7-8-9 isoform contributes to tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Hematol Oncol 2022; 40:1067-1075. [PMID: 35686657 DOI: 10.1002/hon.3040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/10/2022] [Accepted: 06/04/2022] [Indexed: 12/13/2022]
Abstract
In chronic myeloid leukemia (CML) patients, the involvement of the BCR/ABL1 isoform in tyrosine kinase inhibitors (TKIs) resistance has attracted lots of attention. In this work, a novel isoform that encoded truncated protein due to the deletion of ABL1 exon7, 8, and 9 was reported and named BCR/ABL1ΔE7-8-9 here. This isoform was detected only in 10.2% of CML patients with inadequate responses to TKIs. BCR/ABL1Δexon7-8-9 isoform promoted S phase cell proliferation and reduced the expression of fusion gene and ABL1 phosphorylation level more slowly than that of control cells after TKIs treatment. The novel isoform has the qualities of a functional tyrosine kinase, localized in the cytoplasm, and could not be imported into the nucleus by TKIs. These results indicated that BCR/ABL1Δexon7-8-9 showed poorer sensitivity to imatinib and nilotinib than wild-type BCR/ABL1. According to molecular docking studies, nilotinib and imatinib present different binding sites and have a lower binding capacity with BCR/ABL1ΔE7-8-9 protein than the wild type. Our findings suggested that the novel isoform BCR/ABL1ΔE7-8-9 may contribute to TKIs resistance in CML due to its weakened TKIs binding ability. It enriched the mechanism of spliceosome involved in TKIs resistance. Monitoring the expression of BCR/ABL1ΔE7-8-9 helps guide the treatment of CML patients in the clinic.
Collapse
Affiliation(s)
- Yanhong Tan
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lingli Zhang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Guiyang Zhu
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuchao Yang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenzheng Guo
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lanhui Chen
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianmei Chang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yang Xu
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Daniel Muteb Muyey
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Wang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
38
|
Freeman-Mills L, Copland M. EXABS-156-CML Beyond TKI Therapy in CML. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22 Suppl 2:S61-S63. [PMID: 36164233 DOI: 10.1016/s2152-2650(22)00663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G12 0ZD, UK
| |
Collapse
|
39
|
Wang B, He BS, Ruan XL, Zhu J, Hu R, Wang J, Li Y, Yang YH, Liu ML. An integrated microfluidics platform with high-throughput single-cell cloning array and concentration gradient generator for efficient cancer drug effect screening. Mil Med Res 2022; 9:51. [PMID: 36131323 PMCID: PMC9494811 DOI: 10.1186/s40779-022-00409-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Tumor cell heterogeneity mediated drug resistance has been recognized as the stumbling block of cancer treatment. Elucidating the cytotoxicity of anticancer drugs at single-cell level in a high-throughput way is thus of great value for developing precision therapy. However, current techniques suffer from limitations in dynamically characterizing the responses of thousands of single cells or cell clones presented to multiple drug conditions. METHODS We developed a new microfluidics-based "SMART" platform that is Simple to operate, able to generate a Massive single-cell array and Multiplex drug concentrations, capable of keeping cells Alive, Retainable and Trackable in the microchambers. These features are achieved by integrating a Microfluidic chamber Array (4320 units) and a six-Concentration gradient generator (MAC), which enables highly efficient analysis of leukemia drug effects on single cells and cell clones in a high-throughput way. RESULTS A simple procedure produces 6 on-chip drug gradients to treat more than 3000 single cells or single-cell derived clones and thus allows an efficient and precise analysis of cell heterogeneity. The statistic results reveal that Imatinib (Ima) and Resveratrol (Res) combination treatment on single cells or clones is much more efficient than Ima or Res single drug treatment, indicated by the markedly reduced half maximal inhibitory concentration (IC50). Additionally, single-cell derived clones demonstrate a higher IC50 in each drug treatment compared to single cells. Moreover, primary cells isolated from two leukemia patients are also found with apparent heterogeneity upon drug treatment on MAC. CONCLUSION This microfluidics-based "SMART" platform allows high-throughput single-cell capture and culture, dynamic drug-gradient treatment and cell response monitoring, which represents a new approach to efficiently investigate anticancer drug effects and should benefit drug discovery for leukemia and other cancers.
Collapse
Affiliation(s)
- Biao Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bang-Shun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Xiao-Lan Ruan
- Department of Hematology, Renmin Hospital, Wuhan University, Wuhan, 430060, China
| | - Jiang Zhu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Rui Hu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Jie Wang
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Ying Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of Chinese Academy of Sciences, Beijing, 10049, China.
| | - Yun-Huang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Mai-Li Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| |
Collapse
|
40
|
Dey S, Basu S, Shah S, Bhattacharyya D, Gupta PP, Acharjee M, Roychoudhury S, Nath S. Deep sequencing reveals the spectrum of BCR-ABL1 mutations upon front-line therapy resistance in chronic myeloid leukemia: An Eastern-Indian cohort study. Cancer Treat Res Commun 2022; 33:100635. [PMID: 36155130 DOI: 10.1016/j.ctarc.2022.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
The course of clinical management in chronic myeloid leukemia (CML) often faces a road-block in the form of front-line (imatinib) therapy resistance. Subsequently, several hotspot mutations were clinically validated in the kinase domain (KD) of BCR-ABL1, in deterring imatinib sensitivity and further, made targeted by next-generation tyrosine-kinase-inhibitor (TKI) drugs. Identifying KD mutations, occurring even at low frequencies, became pertinent here. Globally, cohorts from different origins were tested and the mutational spectra were mapped to categorize clinical management as well as related pathological features of CML. Moreover, targeted deep sequencing could reveal the mutational landscape more efficiently than the less sensitive Sanger sequencing method. However, no such efforts were reported from Eastern Indian cohorts of imatinib-resistant CML-sufferers. This study assessed a prospective study cohort of imatinib-resistant CML cases from Eastern India. Following dissecting the molecular and clinical parameters, the mutational spectrum was comparatively examined using conventional Sanger and next-generation deep sequencing method. This cohort showed a prevalence of e14a2-p210 variant of BCR-ABL1 and acquired resistance against imatinib, while the disease was mostly confined in its chronic phase. Together with a few common hotspot mutations identified in this cohort, deep sequencing revealed cases with a candidate mutation, otherwise undetermined by Sanger method. Also, cases with a second low frequency mutation were identified upon applying deep sequencing. Along with highlighting a few aspects of CML biology employing an Eastern-Indian cohort, this data could mark the immense importance of deep sequencing to contribute in the clinical management of CML upon front-line therapy resistance.
Collapse
MESH Headings
- Humans
- Cohort Studies
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/genetics
- High-Throughput Nucleotide Sequencing/methods
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mutation
- Prospective Studies
- India
Collapse
Affiliation(s)
- Samya Dey
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, 700063, India
| | - Soumi Basu
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, 700063, India; Department of Molecular Genetics and Cell Biology, University of Nebraska Medical Center, Omaha, USA
| | - Shahena Shah
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, 700063, India
| | - Debmalya Bhattacharyya
- Department of Hemato-oncology, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, 700063, India
| | - Partha Pratim Gupta
- Department of Hemato-oncology, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, 700063, India
| | - Mahasweta Acharjee
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, 700063, India
| | - Susanta Roychoudhury
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, 700063, India; CSIR-Indian Institute of Chemical Biology, CN-06, CN Block, Sector V, Kolkata 700091, India
| | - Somsubhra Nath
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, 700063, India; Institute of Health Sciences, Presidency University, Plot No. DG/02/02, Premises No. 14-0358, Action Area-ID, New Town, Kolkata, 700156, India.
| |
Collapse
|
41
|
Hergott CB, Kim AS. Molecular Diagnostic Testing for Hematopoietic Neoplasms: Linking Pathogenic Drivers to Personalized Diagnosis. Clin Lab Med 2022; 42:325-347. [PMID: 36150815 DOI: 10.1016/j.cll.2022.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular diagnostics inhabit an increasingly central role in characterizing hematopoietic malignancies. This brief review summarizes the genomic targets important for many major categories of hematopoietic neoplasia by focusing on disease pathogenesis. In myeloid disease, recurrent mutations in key functional classes drive clonal hematopoiesis, on which additional variants can specify clinical presentation and accelerate progression. Lymphoblastic leukemias are frequently initiated by oncogenic fusions that block lymphoid maturation while, in concert with additional mutations, driving proliferation. The links between genetic aberrations and lymphoma patient outcomes have been clarified substantially through the clustering of genomic profiles. Finally, the addition of next-generation sequencing strategies to cytogenetics is refining risk stratification for plasma cell myeloma. In all categories, molecular diagnostics shed light on the unique mechanistic underpinnings of each individual malignancy, thereby empowering more rational, personalized care for these patients.
Collapse
Affiliation(s)
- Christopher B Hergott
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Annette S Kim
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Yurttaş NÖ, Eşkazan AE. Clinical Application of Biomarkers for Hematologic Malignancies. Biomark Med 2022. [DOI: 10.2174/9789815040463122010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Over the last decade, significant advancements have been made in the
molecular mechanisms, diagnostic methods, prognostication, and treatment options in
hematologic malignancies. As the treatment landscape continues to expand,
personalized treatment is much more important.
With the development of new technologies, more sensitive evaluation of residual
disease using flow cytometry and next generation sequencing is possible nowadays.
Although some conventional biomarkers preserve their significance, novel potential
biomarkers accurately detect the mutational landscape of different cancers, and also,
serve as prognostic and predictive biomarkers, which can be used in evaluating therapy
responses and relapses. It is likely that we will be able to offer a more targeted and
risk-adapted therapeutic approach to patients with hematologic malignancies guided by
these potential biomarkers. This chapter summarizes the biomarkers used (or proposed
to be used) in the diagnosis and/or monitoring of hematologic neoplasms.;
Collapse
Affiliation(s)
- Nurgül Özgür Yurttaş
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine,
Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine,
Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
43
|
Soverini S, De Santis S, Martelli M, Monaldi C, Castagnetti F, Gugliotta G, Papayannidis C, Mancini M, Bruno S, Venturi C, Machova Polakova K, Ernst T, Maar D, Corner A, Cavo M. Droplet digital PCR for the detection of second-generation tyrosine kinase inhibitor-resistant BCR::ABL1 kinase domain mutations in chronic myeloid leukemia. Leukemia 2022; 36:2250-2260. [PMID: 35908105 DOI: 10.1038/s41375-022-01660-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
One of the indications for BCR::ABL1 mutation testing in chronic myeloid leukemia (CML) is when tyrosine kinase inhibitor therapy (TKI) needs to be changed for unsatisfactory response. In this study, we evaluated a droplet digital PCR (ddPCR)-based multiplex strategy for the detection and quantitation of transcripts harbouring mutations conferring resistance to second-generation TKIs (2GTKIs). Parallel quantitation of e13a2, e14a2 and e1a2 BCR::ABL1 fusion transcripts enables to express results as percentage of mutation positive- over total BCR::ABL1 transcripts. We determined the limit of blank in 60 mutation-negative samples. Accuracy was demonstrated by further analysis of 48 samples already studied by next generation sequencing (NGS). Mutations could be called down to 0.5% and across 3-logs of BCR::ABL1 levels. Retrospective review of BCR::ABL1 NGS results in 513 consecutive CML patients with non-optimal response to first- or second-line TKI therapy suggested that a ddPCR-based approach targeted against 2GTKI-resistant mutations would score samples as mutation-negative in 22% of patients with warning response to imatinib but only in 6% of patients with warning response to 2GTKIs. We conclude ddPCR represents an attractive method for easy, accurate and rapid screening for 2GTKI-resistant mutations impacting on TKI selection, although ddPCR cannot identify compound mutations.
Collapse
Affiliation(s)
- Simona Soverini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Istituto di Ematologia "Seràgnoli", Università di Bologna, Bologna, Italy.
| | - Sara De Santis
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Istituto di Ematologia "Seràgnoli", Università di Bologna, Bologna, Italy
| | - Margherita Martelli
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Istituto di Ematologia "Seràgnoli", Università di Bologna, Bologna, Italy
| | - Cecilia Monaldi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Istituto di Ematologia "Seràgnoli", Università di Bologna, Bologna, Italy
| | - Fausto Castagnetti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Gabriele Gugliotta
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Manuela Mancini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Samantha Bruno
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Istituto di Ematologia "Seràgnoli", Università di Bologna, Bologna, Italy
| | - Claudia Venturi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | | | - Thomas Ernst
- Abteilung Hämatologie/Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Dianna Maar
- Bio-Rad Laboratories, Digital Biology Group, Pleasanton, CA, USA
| | - Adam Corner
- Bio-Rad Laboratories, Digital Biology Group, Peterborough, UK
| | - Michele Cavo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| |
Collapse
|
44
|
Schaal W, Ameur A, Olsson-Strömberg U, Hermanson M, Cavelier L, Spjuth O. Migrating to Long-Read Sequencing for Clinical Routine BCR-ABL1 TKI Resistance Mutation Screening. Cancer Inform 2022; 21:11769351221110872. [PMID: 35860345 PMCID: PMC9290162 DOI: 10.1177/11769351221110872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/22/2022] [Indexed: 11/15/2022] Open
Abstract
Objective The aim of this project was to implement long-read sequencing for BCR-ABL1 TKI resistance mutation screening in a clinical setting for patients undergoing treatment for chronic myeloid leukemia. Materials and Methods Processes were established for registering and transferring samples from the clinic to an academic sequencing facility for long-read sequencing. An automated analysis pipeline for detecting mutations was established, and an information system was implemented comprising features for data management, analysis and visualization. Clinical validation was performed by identifying BCR-ABL1 TKI resistance mutations by Sanger and long-read sequencing in parallel. The developed software is available as open source via GitHub at https://github.com/pharmbio/clamp. Results The information system enabled traceable transfer of samples from the clinic to the sequencing facility, robust and automated analysis of the long-read sequence data, and communication of results from sequence analysis in a reporting format that could be easily interpreted and acted upon by clinical experts. In a validation study, all 17 resistance mutations found by Sanger sequencing were also detected by long-read sequencing. An additional 16 mutations were found only by long-read sequencing, all of them with frequencies below the limit of detection for Sanger sequencing. The clonal distributions of co-existing mutations were automatically resolved through the long-read data analysis. After the implementation and validation, the clinical laboratory switched their routine protocol from using Sanger to long-read sequencing for this application. Conclusions Long-read sequencing delivers results with higher sensitivity compared to Sanger sequencing and enables earlier detection of emerging TKI resistance mutations. The developed processes, analysis workflow, and software components lower barriers for adoption and could be extended to other applications.
Collapse
Affiliation(s)
- Wesley Schaal
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.,Pincer Bio AB, Uppsala, Sweden
| | - Adam Ameur
- Pincer Bio AB, Uppsala, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Monica Hermanson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.,Pincer Bio AB, Uppsala, Sweden
| |
Collapse
|
45
|
Teng M, Luskin MR, Cowan-Jacob SW, Ding Q, Fabbro D, Gray NS. The Dawn of Allosteric BCR-ABL1 Drugs: From a Phenotypic Screening Hit to an Approved Drug. J Med Chem 2022; 65:7581-7594. [PMID: 35609336 DOI: 10.1021/acs.jmedchem.2c00373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic myeloid leukemia (CML) is driven by the constitutive activity of the BCR-ABL1 fusion oncoprotein. Despite the great success of drugs that target the BCR-ABL1 ATP-binding site in transforming CML into a manageable disease, emerging resistance point mutations impair inhibitor binding, thereby limiting the effectiveness of these drugs. Recently, allosteric inhibitors that interact with the ABL1 myristate-binding site have been shown to awaken an endogenous regulatory mechanism and reset full-length BCR-ABL1 into an inactive assembled state. The discovery and development of these allosteric inhibitors demonstrates an in-depth understanding of the fundamental regulatory mechanisms of kinases. In this review, we illustrate the structural basis of c-ABL1's dynamic regulation of autoinhibition and activation, discuss the discovery of allosteric inhibitors and the characterization of their mechanism of action, present the therapeutic potential of dual binding to delay the development of mutation-driven acquired resistance, and suggest key lessons learned from this program.
Collapse
Affiliation(s)
- Mingxing Teng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Marlise R Luskin
- Division of Hematologic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Sandra W Cowan-Jacob
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel CH-4056, Switzerland
| | - Qiang Ding
- Allorion Therapeutics, Guangzhou, Guangdong 511300, China
| | | | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
46
|
Li X, Pu W, Zheng Q, Ai M, Chen S, Peng Y. Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Mol Cancer 2022; 21:99. [PMID: 35410300 PMCID: PMC8996410 DOI: 10.1186/s12943-021-01434-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
AbstractProteolysis-targeting chimeras (PROTACs) are engineered techniques for targeted protein degradation. A bifunctional PROTAC molecule with two covalently-linked ligands recruits target protein and E3 ubiquitin ligase together to trigger proteasomal degradation of target protein by the ubiquitin-proteasome system. PROTAC has emerged as a promising approach for targeted therapy in various diseases, particularly in cancers. In this review, we introduce the principle and development of PROTAC technology, as well as the advantages of PROTACs over traditional anti-cancer therapies. Moreover, we summarize the application of PROTACs in targeting critical oncoproteins, provide the guidelines for the molecular design of PROTACs and discuss the challenges in the targeted degradation by PROTACs.
Collapse
|
47
|
Tachibana T, Kondo T, Uchida N, Doki N, Takada S, Takahashi S, Yano S, Mori T, Kohno A, Kimura T, Fukuda T, Atsuta Y, Nagamura-Inoue T. The Clinical Significance of BCR-ABL1 Mutations in Patients With Philadelphia Chromosome-Positive Chronic Myeloid Leukemia Who Underwent Allogeneic Hematopoietic Cell Transplantation. Transplant Cell Ther 2022; 28:321.e1-321.e8. [PMID: 35296447 DOI: 10.1016/j.jtct.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022]
Abstract
The global standard therapy for chronic myeloid leukemia (CML) is tyrosine kinase inhibitors (TKIs). One of the causes of therapeutic resistance to some TKIs corresponds to point mutations in the BCR-ABL1 fusion gene. Allogeneic hematopoietic cell transplantation (HCT) is a treatment option for high-risk CML, including TKI resistance. Although BCR-ABL1 point mutations comprise a major factor in the assessment of the indications for HCT, there is limited evidence for their significance in relation to transplant outcomes. This study aimed to evaluate the profiles and transplant outcomes of BCR-ABL1 mutations in allografted patients with CML. The retrospective study used a nationwide registry data including adult patients with CML who underwent their first HCT between 2006 and 2016. The inclusion criterion was the evaluation of the status of the BCR-ABL1 mutation before HCT. The cohort included 315 patients with a median age of 44 years (range 16-70 years). Point mutations were detected in 152 patients, of which 101 (66%) harbored T315I mutations and 51 harbored mutations other than T315I (non-T315I). With a median follow-up period of 38 months (range 2-114 months), overall survival (OS) at 3 years was worse in the mutation group than in the no-mutation group (53% versus 71%; P = .002), which was validated by multivariate analysis (hazard ratio [HR] = 1.50; 95% confidence interval [CI], 1.0-2.2; P = .038); this difference was remarkable in the chronic phase of CML. OS in the non-T315I group was significantly worse than that in the no-mutation group (HR = 1.69; 95% CI, 1.0-2.8; P = .035). The nationwide study has successfully evaluated the BCR-ABL1 mutational profile and its outcomes in patients with CML who received HCT. The mortality risk was significantly higher in patients with the BCR-ABL1 mutation than in patients without the mutation. These findings would be useful to understand the clinical significance of various BCR-ABL1 mutations in CML and provide insight into the on mid need for treatment strategies for cases of CML with BCR-ABL1 mutations.
Collapse
Affiliation(s)
| | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Naoyuki Uchida
- Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations, Toranomon Hospital, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Satoru Takada
- Leukemia Research Center, Saiseikai Maebashi Hospital, Maebashi, Japan
| | - Satoshi Takahashi
- Division of Clinical Precision Research Platform, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Singo Yano
- Clinical Oncology and Hematology, the Jikei University School of Medicine, Tokyo, Japan
| | - Takehiko Mori
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akio Kohno
- Department of Hematology and Oncology, Konan Kosei Hospital, Konan, Japan
| | - Takafumi Kimura
- Preparation Department, Japanese Red Cross Kinki Block Blood Center, Osaka, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
48
|
Yang T, Sim KY, Ko GH, Ahn JS, Kim HJ, Park SG. FAM167A is a key molecule to induce BCR-ABL-independent TKI resistance in CML via noncanonical NF-κB signaling activation. J Exp Clin Cancer Res 2022; 41:82. [PMID: 35241148 PMCID: PMC8892744 DOI: 10.1186/s13046-022-02298-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/21/2022] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND BCR-ABL-independent drug resistance is a barrier to curative treatment of chronic myeloid leukemia (CML). However, the molecular pathways underlying BCR-ABL-independent tyrosine kinase inhibitor (TKI) resistance remain unclear. METHODS In silico bioinformatic analysis was performed to identify the most active transcription factor and its inducer that contribute to BCR-ABL-independent TKI resistance. Tandem mass spectrometry analysis was performed to identify the receptor for the noncanonical NF-κB activator FAM167A. In vitro and in vivo mouse experiments revealed detailed molecular insights into the functional role of the FAM167A-desmoglein-1 (DSG1) axis in BCL-ABL-independent TKI resistance. CML cells derived from CML patients were analyzed using quantitative reverse transcription PCR and flow cytometry. RESULTS We found that NF-κB had the greatest effect on differential gene expression of BCR-ABL-independent TKI-resistant CML cells. Moreover, we found that the previously uncharacterized protein FAM167A activates the noncanonical NF-κB pathway and induces BCR-ABL-independent TKI resistance. Molecular analyses revealed that FAM167A activates the noncanonical NF-κB pathway by binding to the cell adhesion protein DSG1 to upregulate NF-κB-inducing kinase (NIK) by blocking its ubiquitination. Neutralization of FAM167A in a mouse tumor model reduced noncanonical NF-κB activity and restored sensitivity of cells to TKIs. Furthermore, FAM167A and surface DSG1 levels were highly upregulated in CD34+ CML cells from patients with BCR-ABL-independent TKI-resistant disease. CONCLUSIONS These results reveal that FAM167A acts as an essential factor for BCR-ABL-independent TKI resistance in CML by activating the noncanonical NF-κB pathway. In addition, FAM167A may serve as an important target and biomarker for BCR-ABL-independent TKI resistance.
Collapse
MESH Headings
- Animals
- Apoptosis
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl
- Humans
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- NF-kappa B/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Proteins/metabolism
Collapse
Affiliation(s)
- Taewoo Yang
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Kyu-Young Sim
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Gwang-Hoon Ko
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Jae-Sook Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 58128 Hwasun, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 58128 Hwasun, Republic of Korea
| | - Sung-Gyoo Park
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Republic of Korea
| |
Collapse
|
49
|
Kaumeyer B, Fidai S, Sukhanova M, Yap KL, Segal J, Raca G, Stock W, McNeer J, Lager AM, Gurbuxani S. MUC4 expression by immunohistochemistry is a specific marker for BCR-ABL1+ and BCR-ABL1-like B-lymphoblastic leukemia. Leuk Lymphoma 2022; 63:1436-1444. [PMID: 35171727 DOI: 10.1080/10428194.2022.2025797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BCR-ABL1-like B-acute lymphoblastic leukemia (B-ALL) is a genetically heterogeneous group of high-risk B-ALL that benefits from targeted tyrosine kinase inhibitor (TKI) therapy. The incidence of this high-risk B-ALL is relatively low and screening with surrogate markers will be useful to identify patients for further genetic testing. Here we demonstrate that widely available MUC4 protein immunohistochemistry (IHC) is predictive of a BCR-ABL1-like genotype for a subset of patients. Overall, MUC4 expression was observed in 36% (9/25) BCR-ABL1-like, 43% (3/7) BCR-ABL1+ and 9% (2/22) B-ALL other cases (p=.019 for BCR-ABL1 like and BCR-ABL1+ versus B-ALL others). Furthermore, 83% (5/6) of patients with ABL class fusions showed MUC4 expression when compared to 25% (4/16, p=.006) patients with JAK class fusions. Overall, the study demonstrates that MUC4 expression is highly specific (90.9%) for BCR-ABL1+ and BCR-ABL1-like B-ALL with high sensitivity for cases with ABL class fusions.
Collapse
Affiliation(s)
| | - Shiraz Fidai
- Department of Pathology, University of Chicago, Chicago, IL, USA.,Department of Pathology and Laboratory Medicine, John H. Stroger Hospital of Cook County, Chicago, IL, USA
| | - Madina Sukhanova
- Department of Medicine. University of Chicago, Chicago, IL, USA.,Department of Pathology & Laboratory Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kai Lee Yap
- Department of Medicine. University of Chicago, Chicago, IL, USA.,Department of Pathology & Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jeremy Segal
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Gordana Raca
- Department of Medicine. University of Chicago, Chicago, IL, USA.,Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, California, LA, USA
| | - Wendy Stock
- Department of Medicine. University of Chicago, Chicago, IL, USA
| | - Jennifer McNeer
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Angela M Lager
- Department of Medicine. University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
50
|
Fernandes A, Shanmuganathan N, Branford S. Genomic Mechanisms Influencing Outcome in Chronic Myeloid Leukemia. Cancers (Basel) 2022; 14:620. [PMID: 35158889 PMCID: PMC8833554 DOI: 10.3390/cancers14030620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic myeloid leukemia (CML) represents the disease prototype of genetically based diagnosis and management. Tyrosine kinase inhibitors (TKIs), that target the causal BCR::ABL1 fusion protein, exemplify the success of molecularly based therapy. Most patients now have long-term survival; however, TKI resistance is a persistent clinical problem. TKIs are effective in the BCR::ABL1-driven chronic phase of CML but are relatively ineffective for clinically defined advanced phases. Genomic investigation of drug resistance using next-generation sequencing for CML has lagged behind other hematological malignancies. However, emerging data show that genomic abnormalities are likely associated with suboptimal response and drug resistance. This has already been supported by the presence of BCR::ABL1 kinase domain mutations in drug resistance, which led to the development of more potent TKIs. Next-generation sequencing studies are revealing additional mutations associated with resistance. In this review, we discuss the initiating chromosomal translocation that may not always be a straightforward reciprocal event between chromosomes 9 and 22 but can sometimes be accompanied by sequence deletion, inversion, and rearrangement. These events may biologically reflect a more genomically unstable disease prone to acquire mutations. We also discuss the future role of cancer-related gene mutation analysis for risk stratification in CML.
Collapse
Affiliation(s)
- Adelina Fernandes
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide 5000, Australia; (A.F.); (N.S.)
- School of Medicine, University of Adelaide, Adelaide 5000, Australia
- Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide 5000, Australia
| | - Naranie Shanmuganathan
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide 5000, Australia; (A.F.); (N.S.)
- School of Medicine, University of Adelaide, Adelaide 5000, Australia
- Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide 5000, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide 5000, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide 5000, Australia
| | - Susan Branford
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide 5000, Australia; (A.F.); (N.S.)
- School of Medicine, University of Adelaide, Adelaide 5000, Australia
- Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide 5000, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide 5000, Australia
| |
Collapse
|