1
|
Sakamoto K, Takeuchi K. Diagnostic approach to blastic plasmacytoid dendritic cell neoplasm: historical perspectives and current understanding. J Clin Exp Hematop 2025; 65:1-16. [PMID: 40159280 PMCID: PMC12051425 DOI: 10.3960/jslrt.24069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 04/02/2025] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy composed of immature cells that exhibit plasmacytoid dendritic cell (pDC) differentiation. The diagnosis of BPDCN is often challenging due to its rarity and morphologic and phenotypic overlap with other hematologic malignancies, such as acute myeloid leukemia (AML). The emergence of tagraxofusp, a CD123-directed cytotoxin, and other novel therapies has underscored the importance of accurately diagnosing BPDCN. This review initially outlined the clinical and histopathological features of BPDCN, including patients with immunoblastoid morphology. Various proposed diagnostic criteria based on flow cytometry and immunohistochemistry findings were presented, highlighting critical points of caution in the diagnostic process. Strategies for detecting minimal residual disease or microinvasion in BPDCN, a significant clinical issue, were also discussed. Additionally, we reviewed the recurrent 8q24 (MYC) and MYB rearrangements observed in BPDCN, which can aid in diagnosis. Furthermore, we explored mature plasmacytoid dendritic cell proliferation (MPDCP) associated with myeloid neoplasm, which is characterized by a clonal proliferation of pDCs in cases with a defined myeloid neoplasm and may also serve as a potential differential diagnosis for BPDCN. Lastly, we discussed pDC-AML, characterized by pDC proliferation in AML cases, which can also be part of MPDCP and is often associated with frequent RUNX1 mutations. Overall, this review provides insights into BPDCN diagnosis and highlights the current challenges in its detection and differential diagnosis.
Collapse
|
2
|
Hoffmeister LM, Suttorp J, Walter C, Antoniou E, Behrens YL, Göhring G, Awada A, von Neuhoff N, Reinhardt D, Schneider M. Panel-based RNA fusion sequencing improves diagnostics of pediatric acute myeloid leukemia. Leukemia 2024; 38:538-544. [PMID: 38086945 PMCID: PMC10912021 DOI: 10.1038/s41375-023-02102-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 03/06/2024]
Abstract
New methods like panel-based RNA fusion sequencing (RNA-FS) promise improved diagnostics in various malignancies. We here analyzed the impact of RNA-FS on the initial diagnostics of 241 cases with pediatric acute myeloid leukemia (AML). We show that, compared to classical cytogenetics (CCG), RNA-FS reliably detected risk-relevant fusion genes in pediatric AML. In addition, RNA-FS strongly improved the detection of cryptic fusion genes like NUP98::NSD1, KMT2A::MLLT10 and CBFA2T3::GLIS2 and thereby resulted in an improved risk stratification in 25 patients (10.4%). Validation of additionally detected non-risk-relevant high confidence fusion calls identified PIM3::BRD1, C22orf34::BRD1, PSPC1::ZMYM2 and ARHGAP26::NR3C1 as common genetic variants and MYB::GATA1 as recurrent aberration, which we here describe in AML subtypes M0 and M7 for the first time. However, it failed to detect rare cytogenetically confirmed fusion events like MNX1::ETV6 and other chromosome 12p-abnormalities. As add-on benefit, the proportion of patients for whom measurable residual disease (MRD) monitoring became possible was increased by RNA-FS from 44.4 to 75.5% as the information on the fusion transcripts' sequence allowed the design of new MRD assays.
Collapse
Affiliation(s)
- Lina Marie Hoffmeister
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Julia Suttorp
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Christiane Walter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Evangelia Antoniou
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Yvonne Lisa Behrens
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Amani Awada
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Nils von Neuhoff
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Markus Schneider
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
3
|
Papadakis S, Liapis I, Papadhimitriou SI, Spanoudakis E, Kotsianidis I, Liapis K. Approach to Acute Myeloid Leukemia with Increased Eosinophils and Basophils. J Clin Med 2024; 13:876. [PMID: 38337573 PMCID: PMC10856720 DOI: 10.3390/jcm13030876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
There is remarkable morphologic and genetic heterogeneity in acute myeloid leukemia (AML). In a small percentage of cases of AML, increased eosinophils and/or basophils are present in the bone marrow and sometimes in the peripheral blood. This is often a puzzling diagnostic situation but also an important finding that requires special investigation. Unique chromosomal rearrangements have been correlated with an increased number of eosinophils and basophils in AML. The identification of the underlying genetic lesion that promotes eosinophilia and basophilia can dramatically change both the prognosis and the treatment of the patient. Thus, clinicians must be vigilant in searching for the cause of eosinophilia and basophilia in patients with AML, since the different causes may lead to different treatments and survival outcomes. In this article, we examine the significance of increased eosinophils and/or basophils in the context of AML, provide guidance that simplifies the differential diagnosis, and give prognostic and therapeutic information about specific subtypes of AML associated with eosinophilia and/or basophilia. Evidence supporting personalized (molecularly targeted) therapy for these patients is also presented.
Collapse
Affiliation(s)
- Stavros Papadakis
- Department of Hematology, University Hospital of Heraklion, 711 10 Heraklion, Greece
| | - Ioannis Liapis
- Department of Hematology, Aghios Georgios Hospital, 733 00 Chania, Greece;
| | | | - Emmanouil Spanoudakis
- Department of Hematology, Democritus University of Thrace Medical School, 681 00 Alexandroupolis, Greece; (E.S.); (I.K.); (K.L.)
| | - Ioannis Kotsianidis
- Department of Hematology, Democritus University of Thrace Medical School, 681 00 Alexandroupolis, Greece; (E.S.); (I.K.); (K.L.)
| | - Konstantinos Liapis
- Department of Hematology, Democritus University of Thrace Medical School, 681 00 Alexandroupolis, Greece; (E.S.); (I.K.); (K.L.)
| |
Collapse
|
4
|
Negri A, Ward C, Bucci A, D'Angelo G, Cauchy P, Radesco A, Ventura AB, Walton DS, Clarke M, Mandriani B, Pappagallo SA, Mondelli P, Liao K, Gargano G, Zaccaria GM, Viggiano L, Lasorsa FM, Ahmed A, Di Molfetta D, Fiermonte G, Cives M, Guarini A, Vegliante MC, Ciavarella S, Frampton J, Volpe G. Reversal of MYB-dependent suppression of MAFB expression overrides leukaemia phenotype in MLL-rearranged AML. Cell Death Dis 2023; 14:763. [PMID: 37996430 PMCID: PMC10667525 DOI: 10.1038/s41419-023-06276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
The transcription factor MYB plays a pivotal role in haematopoietic homoeostasis and its aberrant expression is involved in the genesis and maintenance of acute myeloid leukaemia (AML). We have previously demonstrated that not all AML subtypes display the same dependency on MYB expression and that such variability is dictated by the nature of the driver mutation. However, whether this difference in MYB dependency is a general trend in AML remains to be further elucidated. Here, we investigate the role of MYB in human leukaemia by performing siRNA-mediated knock-down in cell line models of AML with different driver lesions. We show that the characteristic reduction in proliferation and the concomitant induction of myeloid differentiation that is observed in MLL-rearranged and t(8;21) leukaemias upon MYB suppression is not seen in AML cells with a complex karyotype. Transcriptome analyses revealed that MYB ablation produces consensual increase of MAFB expression in MYB-dependent cells and, interestingly, the ectopic expression of MAFB could phenocopy the effect of MYB suppression. Accordingly, in silico stratification analyses of molecular data from AML patients revealed a reciprocal relationship between MYB and MAFB expression, highlighting a novel biological interconnection between these two factors in AML and supporting new rationales of MAFB targeting in MLL-rearranged leukaemias.
Collapse
Affiliation(s)
- A Negri
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - C Ward
- Edge Impulse Inc., San Jose, CA, USA
| | - A Bucci
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - G D'Angelo
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - P Cauchy
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - A Radesco
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - A B Ventura
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - D S Walton
- Clent Life Sciences, DY84HD, Stourbridge, UK
| | - M Clarke
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - B Mandriani
- Department of Bioscience, Biotechnology and Environment, University of Bari "Aldo Moro", 70125, Bari, Italy
| | - S A Pappagallo
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - P Mondelli
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - K Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - G Gargano
- Department of Mathematics, University of Bari "Aldo Moro", Bari, Italy
| | - G M Zaccaria
- Department of Electrical and Information Engineering, Polytechnic University of Bari, Bari, Italy
| | - L Viggiano
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - F M Lasorsa
- Department of Bioscience, Biotechnology and Environment, University of Bari "Aldo Moro", 70125, Bari, Italy
| | - A Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari "Aldo Moro", 70125, Bari, Italy
| | - D Di Molfetta
- Department of Bioscience, Biotechnology and Environment, University of Bari "Aldo Moro", 70125, Bari, Italy
| | - G Fiermonte
- Department of Bioscience, Biotechnology and Environment, University of Bari "Aldo Moro", 70125, Bari, Italy
| | - M Cives
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - A Guarini
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - M C Vegliante
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - S Ciavarella
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - J Frampton
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B152TT, Birmingham, UK.
| | - G Volpe
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
5
|
Ueda K, Murase T, Kawakita D, Nagao T, Kusafuka K, Nakaguro M, Urano M, Yamamoto H, Taguchi KI, Kano S, Tada Y, Tsukahara K, Okami K, Onitsuka T, Fujimoto Y, Sakurai K, Hanai N, Nagao T, Kawata R, Hato N, Nibu KI, Inagaki H. The Landscape of MYB/MYBL1- and Peri-MYB/MYBL1-Associated Rearrangements in Adenoid Cystic Carcinoma. Mod Pathol 2023; 36:100274. [PMID: 37423587 DOI: 10.1016/j.modpat.2023.100274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/03/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Approximately 60% of adenoid cystic carcinoma (AdCC) cases are positive for MYB::NFIB or MYBL1::NFIB, whereas MYB/MYBL1 oncoprotein, a key driver of AdCC, is overexpressed in most cases. Juxtaposition of superenhancer regions in NFIB and other genes into the MYB/MYBL1 locus is an attractive oncogenic hypothesis for AdCC cases, either negative or positive for MYB/MYBL1::NFIB. However, evidence supporting this hypothesis is insufficient. We examined 160 salivary AdCC cases for rearrangements in MYB/MYBL1 loci and peri-MYB/MYBL1 areas (centromeric and telomeric areas of 10 Mb each) using formalin-fixed, paraffin-embedded tumor sections. For the detection of the rearrangements, we employed conventional fluorescence in situ hybridization split and fusion assays and a 5 Mb fluorescence in situ hybridization split assay. The latter is a novel assay that enabled us to detect any possible splits within a 5 Mb distance of a chromosome. We found MYB/MYBL1- and peri-MYB/MYBL1-associated rearrangements in 149/160 patients (93%). AdCC cases positive for rearrangements in MYB, MYBL1, the peri-MYB area, and the peri-MYBL1 area numbered 105 (66%), 20 (13%), 19 (12%), and 5 (3%), respectively. In 24 peri-MYB/MYBL1 rearrangement-positive cases, 14 (58%) were found to have a juxtaposition of the NFIB or RAD51B locus into the MYB/MYBL1 loci. On comparing with a tumor group positive for MYB::NFIB, a hallmark of AdCC, other genetically classified tumor groups had similar features of overexpression of the MYB transcript and MYB oncoprotein as detected by semiquantitative RT-qPCR and immunohistochemistry, respectively. In addition, clinicopathological and prognostic features were similar among these groups. Our study suggests that peri-MYB/MYBL1 rearrangements may be a frequent event in AdCC and may result in biological and clinicopathological consequences comparable to MYB/MYBL1 rearrangements. The landscape of MYB/MYBL1 and peri-MYB/MYBL1 rearrangements shown here strongly suggests that juxtaposition of superenhancers into MYB/MYBL1 or peri-MYB/MYBL1 loci is an alteration that acts as a key driver for AdCC oncogenesis and may unify MYB/MYBL1 rearrangement-positive and negative cases.
Collapse
Affiliation(s)
- Kaori Ueda
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Takayuki Murase
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Daisuke Kawakita
- Department of Otorhinolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | | | - Masato Nakaguro
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Makoto Urano
- Department of Diagnostic Pathology, Bantane Hospital, Fujita Health University School of Medicine, Nagoya, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate of School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Ken-Ichi Taguchi
- Department of Pathology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Satoshi Kano
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuichiro Tada
- Department of Head and Neck Oncology and Surgery, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Kiyoaki Tsukahara
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Kenji Okami
- Department of Otolaryngology-Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Tetsuro Onitsuka
- Division of Head and Neck Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yasushi Fujimoto
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Otolaryngology-Head and Neck Surgery, Aichi Medical University, Nagakute, Japan
| | - Kazuo Sakurai
- Department of Otorhinolaryngology, Fujita Health University, Okazaki Medical Center, Okazaki, Japan
| | - Nobuhiro Hanai
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Toru Nagao
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Ryo Kawata
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Naohito Hato
- Department of Otolaryngology, Ehime University School of Medicine, Toon, Japan
| | - Ken-Ichi Nibu
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Inagaki
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| |
Collapse
|
6
|
Renosi F, Callanan M, Lefebvre C. Genetics and Epigenetics in Neoplasms with Plasmacytoid Dendritic Cells. Cancers (Basel) 2022; 14:cancers14174132. [PMID: 36077669 PMCID: PMC9454802 DOI: 10.3390/cancers14174132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Differential diagnosis between Blastic pDC Neoplasm (BPDCN) and Acute Myeloid Leukemia with pDC expansion (pDC-AML) is particularly challenging, and genomic features can help in diagnosis. This review aims at clarifying recent data on genomics features because the past five years have generated a large amount of original data regarding pDC neoplasms. The genetic landscape of BPDCN is now well-defined, with important updates concerning MYC/MYC rearrangements, but also epigenetic defects and novel concepts in oncogenic and immune pathways. Concerning pDC-AML, they now appear to exhibit an original mutation landscape, especially with RUNX1 mutations, which is of interest for diagnostic criteria and for therapeutic purposes. We highlight here these two different profiles, which contribute to differential diagnosis between BPDCN and pDC-AML. This point is particularly important for the study of different therapeutic strategies between BPDCN and AML. Abstract Plasmacytoid Dendritic Cells (pDC) are type I interferon (IFN)-producing cells that play a key role in immune responses. Two major types of neoplastic counterparts for pDC are now discriminated: Blastic pDC Neoplasm (BPDCN) and Mature pDC Proliferation (MPDCP), associated with myeloid neoplasm. Two types of MPDCP are now better described: Chronic MyeloMonocytic Leukemia with pDC expansion (pDC-CMML) and Acute Myeloid Leukemia with pDC expansion (pDC-AML). Differential diagnosis between pDC-AML and BPDCN is particularly challenging, and genomic features can help for diagnosis. Here, we systematically review the cytogenetic, molecular, and transcriptional characteristics of BPDCN and pDC-AML. BPDCN are characterized by frequent complex karyotypes with recurrent MYB/MYC rearrangements as well as recurrent deletions involving ETV6, IKZF1, RB1, and TP53 loci. Epigenetic and splicing pathways are also particularly mutated, while original processes are dysregulated, such as NF-kB, TCF4, BCL2, and IFN pathways; neutrophil-specific receptors; and cholinergic signaling. In contrast, cytogenetic abnormalities are limited in pDC-AML and are quite similar to other AML. Interestingly, RUNX1 is the most frequently mutated gene (70% of cases). These typical genomic features are of potential interest for diagnosis, and also from a prognostic or therapeutic perspective.
Collapse
Affiliation(s)
- Florian Renosi
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, F-25000 Besancon, France
- Laboratoire d’Hématologie et d’Immunologie Régional, Etablissement Français du Sang Bourgogne Franche-Comté, F-25000 Besancon, France
- Correspondence:
| | - Mary Callanan
- INSERM 1231 and 1209, University of Bourgogne-Franche Comté, F-21000 Dijon, France
- Service d’Oncologie Génétique, CHU Dijon Bourgogne, F-21000 Dijon, France
| | - Christine Lefebvre
- INSERM 1209 and CNRS UMR 5309, Université Grenoble-Alpes, F-38000 Grenoble, France
- Laboratoire de Génétique des hémopathies, Institut de Biologie et de Pathologie, CHU Grenoble Alpes, F-38000 Grenoble, France
| |
Collapse
|
7
|
Wagner VP, Bingle CD, Bingle L. MYB-NFIB fusion transcript in Adenoid Cystic Carcinoma: current state of knowledge and future directions. Crit Rev Oncol Hematol 2022; 176:103745. [PMID: 35738530 DOI: 10.1016/j.critrevonc.2022.103745] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is the most common type of salivary gland cancer that can also arise in other primary sites. Regardless of the site, most ACC cases carry a recurrent chromosomal translocation - t(6;9)(q22-23;p23-24) - involving the MYB oncogene and the NFIB transcription factor. Generally, a long sequence of MYB is fused to the terminal exons of NFIB, yet the break can occur in different exons for both genes, resulting in multiple chimeric variants. The fusion status can be determined by a number of methods, each of them with particular advantages. In vitro and in vivo studies have been conducted to understand the biological consequences of MYB-NFIB translocation, and such findings could contribute to improving the current inefficient therapeutic options for disseminated ACC. This review provides a discussion on relevant evidence in the context of ACC MYB-NFIB translocations to determine the current state of knowledge and discuss future directions.
Collapse
Affiliation(s)
- Vivian P Wagner
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield, UK.
| | - Colin D Bingle
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Lynne Bingle
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Ozono S, Yano S, Oishi S, Mitsuo M, Nakagawa S, Toki T, Terui K, Ito E. A Case of Congenital Leukemia With MYB-GATA1 Fusion Gene in a Female Patient. J Pediatr Hematol Oncol 2022; 44:e250-e252. [PMID: 33661169 DOI: 10.1097/mph.0000000000002119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/11/2021] [Indexed: 11/26/2022]
Abstract
We report a female newborn with acute myelogenous leukemia (AML) associated with a MYB-GATA1 fusion gene. Morphologic findings of myeloid lineage were obtained using light microscopy. Cytogenetic analysis of peripheral blood showed a complex karyotype: 46,X,-X,add(3)(q21),der(6)add(6)(q21)del(6)(q?), +mar1[5]/46,XX[15]. Targeted RNA sequencing revealed a MYB-GATA1 fusion gene. Reduced-dose AML-type chemotherapy resulted in remission and survival for >3 years without relapse. The present case demonstrated the feasibility of carrying out targeted RNA sequencing for identifying MYB-GATA1 and supports the notion that neonatal AML with MYB-GATA1 with reduced chemotherapy may show better prognosis than other highly toxic therapies.
Collapse
MESH Headings
- Chromosome Aberrations
- Female
- GATA1 Transcription Factor/genetics
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/drug therapy
- Infant, Newborn, Diseases/genetics
- Leukemia, Myeloid, Acute/congenital
- Leukemia, Myeloid, Acute/drug therapy
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Proteins c-myb/genetics
Collapse
Affiliation(s)
- Shuichi Ozono
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka
| | - Shoichiro Yano
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka
| | - Saori Oishi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka
| | - Miho Mitsuo
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka
| | - Shinichiro Nakagawa
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Aomori, Japan
| |
Collapse
|
9
|
Kovach AE, Zerkalenkova E, Zemtsova L, Borkovskaya A, Gaskova M, Kazanov M, Popov A, Baidun L, Maschan M, Maschan A, Gaynon PS, Bhojwani D, Novichkova G, Olshanskaya Y, Raca G. Acute myeloid leukemia with t(X;6)9p11;q23);MYB-GATA1 and female sex: GATA1 insufficiency may be insufficient for pathogenesis. Cancer Genet 2021; 260-261:37-40. [PMID: 34915342 DOI: 10.1016/j.cancergen.2021.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/27/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022]
Abstract
Pediatric acute myeloid leukemia (AML) is genetically heterogenous (Olsson et al., 2016). t(X;6)(p11;q23) is a rare but recurrent chromosomal translocation in infant AML thought to be associated with male sex and basophilic differentiation (Dastugue et al., 1997). Here we report molecular characterization of AML with t(X;6)(p11;q23);MYB-GATA1 in two female infants and demonstrate preserved GATA1 expression in the sample tested. These findings further debunk a concept that this fusion was restricted to males, in whom it disrupts the only copy of the X-linked GATA1 gene, causing presumable complete loss of GATA1 function. Our data also demonstrate the power and efficiency of RNA sequencing for subclassification of leukemia on a clinically relevant timeline.
Collapse
Affiliation(s)
- Alexandra E Kovach
- Division of Laboratory Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, 4650 Sunset Blvd., Mailstop #32, Los Angeles, CA 90027, United States.
| | - Elena Zerkalenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Ludmila Zemtsova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Aleksandra Borkovskaya
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Marina Gaskova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Marat Kazanov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Alexander Popov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Liudmila Baidun
- Russian Children's Clinical Hospital, Moscow, Russian Federation
| | - Michael Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Alexey Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Paul S Gaynon
- Division of Hematology/Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Deepa Bhojwani
- Division of Hematology/Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Yulia Olshanskaya
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Gordana Raca
- Division of Laboratory Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, 4650 Sunset Blvd., Mailstop #32, Los Angeles, CA 90027, United States
| |
Collapse
|
10
|
Berger D, Bauer K, Kornauth C, Gamperl S, Stefanzl G, Smiljkovic D, Sillaber C, Bettelheim P, Knöbl P, Schiefer AI, Greiner G, Thalhammer R, Hoermann G, Schwarzinger I, Staber PB, Sperr WR, Valent P. Secondary basophilic leukemia in Ph-negative myeloid neoplasms: A distinct subset with poor prognosis. Neoplasia 2021; 23:1183-1191. [PMID: 34731787 PMCID: PMC8572856 DOI: 10.1016/j.neo.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022] Open
Abstract
During progression of myeloid neoplasms, the basophil compartment may expand substantially and in some of these patients, a basophilic leukemia is diagnosed. In patients with Ph-chromosome+ chronic myeloid leukemia, acceleration of disease is typically accompanied by marked basophilia. In other myeloid neoplasms, secondary leukemic expansion of basophils is rarely seen. We report on 5 patients who suffered from a myelodysplastic syndrome, myeloproliferative neoplasm, or acute leukemia and developed a massive expansion of basophils during disease progression. In 4 of 5 patients, peripheral blood basophil counts reached 40%, and the diagnosis “secondary basophilic leukemia” was established. As assessed by flow cytometry, neoplastic basophils expressed CD9, CD18, CD25, CD33, CD63, PD-L1, CD123, and CLL-1. In addition, basophils were found to display BB1 (basogranulin), 2D7, tryptase and KIT. In 4 of 5 patients the disease progressed quickly and treatment with azacitidine was started. However, azacitidine did not induce major clinical responses, and all patients died from progressive disease within 3 Y. In in vitro experiments, the patients´ cells and the basophilic leukemia cell line KU812 showed variable responses to targeted drugs, including azacitidine, venetoclax, hydroxyurea, and cytarabine. A combination of venetoclax and azacitidine induced cooperative antineoplastic effects in these cells. Together, secondary basophilic leukemia has a poor prognosis and monotherapy with azacitidine is not sufficient to keep the disease under control for longer time-periods. Whether drug combination, such as venetoclax+azacitidine, can induce better outcomes in these patients remains to be determined in future clinical studies.
Collapse
Affiliation(s)
- Daniela Berger
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Karin Bauer
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology (LBI HO), Medical University of Vienna, Vienna, Austria
| | - Christoph Kornauth
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology (LBI HO), Medical University of Vienna, Vienna, Austria; Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Susanne Gamperl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Stefanzl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Dubravka Smiljkovic
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Christian Sillaber
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Peter Bettelheim
- Division of Hematology and Oncology, Elisabethinen Hospital Linz and Europa-Platz Labor Linz, Linz, Austria
| | - Paul Knöbl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Ana-Iris Schiefer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Georg Greiner
- Ludwig Boltzmann Institute for Hematology and Oncology (LBI HO), Medical University of Vienna, Vienna, Austria; Ihr Labor, Medical Diagnostic Laboratories, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Renate Thalhammer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology (LBI HO), Medical University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Munich Leukemia Laboratory (MLL), Munich, Germany
| | - Ilse Schwarzinger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Philipp B Staber
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Shimizu T, Kondo T, Nannya Y, Watanabe M, Kitawaki T, Shindo T, Hishizawa M, Yamashita K, Ogawa S, Takaori-Kondo A. Next-generation sequencing in two cases of de novo acute basophilic leukaemia. J Cell Mol Med 2021; 25:7095-7099. [PMID: 34132463 PMCID: PMC8278069 DOI: 10.1111/jcmm.16591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/17/2021] [Indexed: 01/01/2023] Open
Abstract
Acute basophilic leukaemia (ABL) is a rare subtype of acute myeloid leukaemia (AML); therefore, few data are available about its biology. Herein, we analysed two ABL patients using flow cytometry and next‐generation sequencing (NGS). Two cell populations were detected by flow cytometry in both patients. In Case no. 1, blasts (CD34+, CD203c−, CD117+, CD123dim+) and basophils (CD34−, CD203c+, CD117±, CD123+) were identified, both of which were found by NGS to harbour the 17p deletion and have loss of heterozygosity of TP53. In Case no. 2, blasts (CD33+, CD34+, CD123−) and basophils (CD33+, CD34+, CD123+) were identified. NGS detected NPM1 mutations in either blasts or basophils, and TET2 in both. These data suggest an overlap of the mutational landscape of ABL and AML, including TP53 and TET2 mutations. Moreover, additional mutations or epigenetic factors may contribute for the differentiation into basophilic blasts.
Collapse
Affiliation(s)
- Takuya Shimizu
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadakazu Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mizuki Watanabe
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshio Kitawaki
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takero Shindo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Kouhei Yamashita
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Lemma RB, Ledsaak M, Fuglerud BM, Sandve GK, Eskeland R, Gabrielsen OS. Chromatin occupancy and target genes of the haematopoietic master transcription factor MYB. Sci Rep 2021; 11:9008. [PMID: 33903675 PMCID: PMC8076236 DOI: 10.1038/s41598-021-88516-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/13/2021] [Indexed: 02/02/2023] Open
Abstract
The transcription factor MYB is a master regulator in haematopoietic progenitor cells and a pioneer factor affecting differentiation and proliferation of these cells. Leukaemic transformation may be promoted by high MYB levels. Despite much accumulated molecular knowledge of MYB, we still lack a comprehensive understanding of its target genes and its chromatin action. In the present work, we performed a ChIP-seq analysis of MYB in K562 cells accompanied by detailed bioinformatics analyses. We found that MYB occupies both promoters and enhancers. Five clusters (C1-C5) were found when we classified MYB peaks according to epigenetic profiles. C1 was enriched for promoters and C2 dominated by enhancers. C2-linked genes were connected to hematopoietic specific functions and had GATA factor motifs as second in frequency. C1 had in addition to MYB-motifs a significant frequency of ETS-related motifs. Combining ChIP-seq data with RNA-seq data allowed us to identify direct MYB target genes. We also compared ChIP-seq data with digital genomic footprinting. MYB is occupying nearly a third of the super-enhancers in K562. Finally, we concluded that MYB cooperates with a subset of the other highly expressed TFs in this cell line, as expected for a master regulator.
Collapse
Affiliation(s)
- Roza B Lemma
- Department of Biosciences, University of Oslo, Blindern, PO Box 1066, 0316, Oslo, Norway
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318, Oslo, Norway
| | - Marit Ledsaak
- Department of Biosciences, University of Oslo, Blindern, PO Box 1066, 0316, Oslo, Norway
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway
| | - Bettina M Fuglerud
- Department of Biosciences, University of Oslo, Blindern, PO Box 1066, 0316, Oslo, Norway
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Geir Kjetil Sandve
- Department of Informatics, University of Oslo, Blindern, PO Box 1080, 0371, Oslo, Norway
| | - Ragnhild Eskeland
- Department of Biosciences, University of Oslo, Blindern, PO Box 1066, 0316, Oslo, Norway
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Blindern, PO Box 1112, 0317, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Odd S Gabrielsen
- Department of Biosciences, University of Oslo, Blindern, PO Box 1066, 0316, Oslo, Norway.
| |
Collapse
|
13
|
George TI, Bajel A. Diagnosis of rare subtypes of acute myeloid leukaemia and related neoplasms. Pathology 2021; 53:312-327. [PMID: 33676766 DOI: 10.1016/j.pathol.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
The diagnosis of acute myeloid leukaemia and related neoplasms in adults is challenging as this requires the integration of clinical findings, morphology, immunophenotype, cytogenetics, and molecular genetic findings. Lack of familiarity with rare subtypes of acute leukaemia hinders the diagnosis. In this review, we will describe diagnostic findings of several rare acute myeloid leukaemias and related neoplasms that primarily occur in adults including information on presentation, morphology, immunophenotype, genetics, differential diagnosis, and prognosis. Leukaemias discussed include blastic plasmacytoid dendritic cell neoplasm, acute myeloid leukaemia with t(6;9) (p23;q34.1); DEK-NUP214, acute myeloid leukaemia with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM, acute myeloid leukaemia with BCR-ABL1, acute leukaemias of ambiguous lineage, acute myeloid leukaemia with mutated RUNX1, pure erythroid leukaemia, acute panmyelosis with myelofibrosis, and acute basophilic leukaemia. Case studies with morphological features of the nine subtypes of acute myeloid leukaemia and related neoplasms have been included, and additional evidence available since publication of the 2016 World Health Organization Classification has been added to each subtype.
Collapse
Affiliation(s)
- Tracy I George
- University of Utah School of Medicine, Department of Pathology, Salt Lake City, UT, USA.
| | - Ashish Bajel
- Clinical Haematology, Peter MacCallum Cancer Centre, The Royal Melbourne Hospital, Melbourne, Vic, Australia
| |
Collapse
|
14
|
Bardelli V, Arniani S, Pierini V, Pierini T, Di Giacomo D, Gorello P, Moretti M, Pellanera F, Elia L, Vitale A, Storlazzi CT, Tolomeo D, Mastrodicasa E, Caniglia M, Chiaretti S, Ruggeri L, Roti G, Schwab C, Harrison CJ, Almeida A, Pieters T, Van Vlierberghe P, Mecucci C, La Starza R. MYB rearrangements and over-expression in T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 2021; 60:482-488. [PMID: 33611795 DOI: 10.1002/gcc.22943] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
We investigated MYB rearrangements (MYB-R) and the levels of MYB expression, in 331 pediatric and adult patients with T-cell acute lymphoblastic leukemia (T-ALL). MYB-R were detected in 17 cases and consisted of MYB tandem duplication (tdup) (= 14) or T cell receptor beta locus (TRB)-MYB (= 3). As previously reported, TRB-MYB was found only in children (1.6%) while MYB tdup occurred in both age groups, although it was slightly more frequent in children (5.2% vs 2.8%). Shared features of MYB-R T-ALL were a non-early T-cell precursor (ETP) phenotype, a high incidence of NOTCH1/FBXW7 mutations (81%) and CDKN2AB deletions (70.5%). Moreover, they mainly belonged to HOXA (=8), NKX2-1/2-2/TLX1 (=4), and TLX3 (=3) homeobox-related subgroups. Overall, MYB-R cases had significantly higher levels of MYB expression than MYB wild type (MYB-wt) cases, although high levels of MYB were detected in ~ 30% of MYB-wt T-ALL. Consistent with the transcriptional regulatory networks, cases with high MYB expression were significantly enriched within the TAL/LMO subgroup (P = .017). Interestingly, analysis of paired diagnosis/remission samples demonstrated that a high MYB expression was restricted to the leukemic clone. Our study has indicated that different mechanisms underlie MYB deregulation in 30%-40% of T-ALL and highlighted that, MYB has potential as predictive/prognostic marker and/or target for tailored therapy.
Collapse
Affiliation(s)
- Valentina Bardelli
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Silvia Arniani
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Valentina Pierini
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Tiziana Pierini
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Danika Di Giacomo
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Paolo Gorello
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Martina Moretti
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Fabrizia Pellanera
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Loredana Elia
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Antonella Vitale
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | | | - Doron Tolomeo
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Elena Mastrodicasa
- Department of pediatric and gynecology, Pediatric Onco-hematology, Perugia Regional hospital, Perugia, Italy
| | - Maurizio Caniglia
- Department of pediatric and gynecology, Pediatric Onco-hematology, Perugia Regional hospital, Perugia, Italy
| | - Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Loredana Ruggeri
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Giovanni Roti
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Claire Schwab
- Leukaemia Research Cytogenetic Group, Newcastle University Centre for Cancer, Newcastle-upon-Tyne, UK
| | - Christine J Harrison
- Leukaemia Research Cytogenetic Group, Newcastle University Centre for Cancer, Newcastle-upon-Tyne, UK
| | - André Almeida
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Cristina Mecucci
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Roberta La Starza
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| |
Collapse
|
15
|
MYB oncoproteins: emerging players and potential therapeutic targets in human cancer. Oncogenesis 2021; 10:19. [PMID: 33637673 PMCID: PMC7910556 DOI: 10.1038/s41389-021-00309-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
MYB transcription factors are highly conserved from plants to vertebrates, indicating that their functions embrace fundamental mechanisms in the biology of cells and organisms. In humans, the MYB gene family is composed of three members: MYB, MYBL1 and MYBL2, encoding the transcription factors MYB, MYBL1, and MYBL2 (also known as c-MYB, A-MYB, and B-MYB), respectively. A truncated version of MYB, the prototype member of the MYB family, was originally identified as the product of the retroviral oncogene v-myb, which causes leukaemia in birds. This led to the hypothesis that aberrant activation of vertebrate MYB could also cause cancer. Despite more than three decades have elapsed since the isolation of v-myb, only recently investigators were able to detect MYB genes rearrangements and mutations, smoking gun evidence of the involvement of MYB family members in human cancer. In this review, we will highlight studies linking the activity of MYB family members to human malignancies and experimental therapeutic interventions tailored for MYB-expressing cancers.
Collapse
|
16
|
Yanagisawa R, Kato M, Sakaguchi K, Nakagoshi R, Ogiso Y, Fukushima K, Sakashita K. A case of pure erythroid leukemia with MYB-GATA1 fusion that developed tumor lysis syndrome with dexamethasone. Pediatr Blood Cancer 2020; 67:e28285. [PMID: 32634254 DOI: 10.1002/pbc.28285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Ryu Yanagisawa
- Division of Blood Transfusion, Shinshu University Hospital, Matsumoto, Japan.,Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto, Japan.,Life Science Research Center, Nagano Children's Hospital, Azumino, Japan
| | - Motohiro Kato
- Department of Pediatric Hematology and Oncology Research, Research Institute, National Center for Child Health and Development, Tokyo, Japan.,Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kimiyoshi Sakaguchi
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ritsuko Nakagoshi
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Yoshifumi Ogiso
- Department of Laboratory Medicine, Nagano Children's Hospital, Azumino, Japan
| | - Keitaro Fukushima
- Department of Pediatrics, Dokkyo Medical University, Shimotsuga, Japan
| | - Kazuo Sakashita
- Department of Hematology/Oncology, Nagano Children's Hospital, Azumino, Japan
| |
Collapse
|
17
|
Transcriptome analysis offers a comprehensive illustration of the genetic background of pediatric acute myeloid leukemia. Blood Adv 2020; 3:3157-3169. [PMID: 31648321 DOI: 10.1182/bloodadvances.2019000404] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the genetic understanding of acute myeloid leukemia (AML) have improved clinical outcomes in pediatric patients. However, ∼40% of patients with pediatric AML relapse, resulting in a relatively low overall survival rate of ∼70%. The objective of this study was to reveal the comprehensive genetic background of pediatric AML. We performed transcriptome analysis (RNA sequencing [RNA-seq]) in 139 of the 369 patients with de novo pediatric AML who were enrolled in the Japanese Pediatric Leukemia/Lymphoma Study Group AML-05 trial and investigated correlations between genetic aberrations and clinical information. Using RNA-seq, we identified 54 in-frame gene fusions and 1 RUNX1 out-of-frame fusion in 53 of 139 patients. Moreover, we found at least 258 gene fusions in 369 patients (70%) through reverse transcription polymerase chain reaction and RNA-seq. Five gene rearrangements were newly identified, namely, NPM1-CCDC28A, TRIP12-NPM1, MLLT10-DNAJC1, TBL1XR1-RARB, and RUNX1-FNBP1. In addition, we found rare gene rearrangements, namely, MYB-GATA1, NPM1-MLF1, ETV6-NCOA2, ETV6-MECOM, ETV6-CTNNB1, RUNX1-PRDM16, RUNX1-CBFA2T2, and RUNX1-CBFA2T3. Among the remaining 111 patients, KMT2A-PTD, biallelic CEBPA, and NPM1 gene mutations were found in 11, 23, and 17 patients, respectively. These mutations were completely mutually exclusive with any gene fusions. RNA-seq unmasked the complexity of gene rearrangements and mutations in pediatric AML. We identified potentially disease-causing alterations in nearly all patients with AML, including novel gene fusions. Our results indicated that a subset of patients with pediatric AML represent a distinct entity that may be discriminated from their adult counterparts. Based on these results, risk stratification should be reconsidered.
Collapse
|
18
|
Li Y, Sun V, Sun W, Pawlowska A. Blastic Plasmacytoid Dendritic Cell Neoplasm in Children. Hematol Oncol Clin North Am 2020; 34:601-612. [PMID: 32336423 DOI: 10.1016/j.hoc.2020.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare, aggressive hematological malignancy, derived from plasmacytoid dendritic cells. It mainly occurs in older adults, but has been reported across all age groups. Most patients present with skin lesions with or without marrow involvement and leukemic dissemination. Treatment with high-risk acute lymphoblastic leukemia therapy regimens with central nervous system prophylaxis is recommended in pediatric patients. Stem cell transplant in children is recommended for relapsed/refractory disease or high-risk disease at presentation. New targeted therapies including the recently FDA-approved anti-CD123 cytotoxin show great promise in improving the response rate.
Collapse
Affiliation(s)
- Yixian Li
- Pediatric Hematology, Oncology, Marrow and Blood Cell Transplantation, Children's Hospital at Montefiore, 3411 Wayne Avenue, 9th Floor, Bronx, NY 10467, USA
| | - Victoria Sun
- Pediatric Hematology, Oncology and Hematopoietic Stem Cell Transplantation, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Weili Sun
- Pediatric Hematology, Oncology and Hematopoietic Stem Cell Transplantation, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA; Janssen Pharmaceuticals, 10990 Wilshire Boulevard, Suite 300, Los Angeles, CA 90024, USA
| | - Anna Pawlowska
- Pediatric Hematology, Oncology and Hematopoietic Stem Cell Transplantation, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
19
|
Wefers AK, Stichel D, Schrimpf D, Coras R, Pages M, Tauziède-Espariat A, Varlet P, Schwarz D, Söylemezoglu F, Pohl U, Pimentel J, Meyer J, Hewer E, Japp A, Joshi A, Reuss DE, Reinhardt A, Sievers P, Casalini MB, Ebrahimi A, Huang K, Koelsche C, Low HL, Rebelo O, Marnoto D, Becker AJ, Staszewski O, Mittelbronn M, Hasselblatt M, Schittenhelm J, Cheesman E, de Oliveira RS, Queiroz RGP, Valera ET, Hans VH, Korshunov A, Olar A, Ligon KL, Pfister SM, Jaunmuktane Z, Brandner S, Tatevossian RG, Ellison DW, Jacques TS, Honavar M, Aronica E, Thom M, Sahm F, von Deimling A, Jones DTW, Blumcke I, Capper D. Isomorphic diffuse glioma is a morphologically and molecularly distinct tumour entity with recurrent gene fusions of MYBL1 or MYB and a benign disease course. Acta Neuropathol 2020; 139:193-209. [PMID: 31563982 PMCID: PMC7477753 DOI: 10.1007/s00401-019-02078-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
The "isomorphic subtype of diffuse astrocytoma" was identified histologically in 2004 as a supratentorial, highly differentiated glioma with low cellularity, low proliferation and focal diffuse brain infiltration. Patients typically had seizures since childhood and all were operated on as adults. To define the position of these lesions among brain tumours, we histologically, molecularly and clinically analysed 26 histologically prototypical isomorphic diffuse gliomas. Immunohistochemically, they were GFAP-positive, MAP2-, OLIG2- and CD34-negative, nuclear ATRX-expression was retained and proliferation was low. All 24 cases sequenced were IDH-wildtype. In cluster analyses of DNA methylation data, isomorphic diffuse gliomas formed a group clearly distinct from other glial/glio-neuronal brain tumours and normal hemispheric tissue, most closely related to paediatric MYB/MYBL1-altered diffuse astrocytomas and angiocentric gliomas. Half of the isomorphic diffuse gliomas had copy number alterations of MYBL1 or MYB (13/25, 52%). Gene fusions of MYBL1 or MYB with various gene partners were identified in 11/22 (50%) and were associated with an increased RNA-expression of the respective MYB-family gene. Integrating copy number alterations and available RNA sequencing data, 20/26 (77%) of isomorphic diffuse gliomas demonstrated MYBL1 (54%) or MYB (23%) alterations. Clinically, 89% of patients were seizure-free after surgery and all had a good outcome. In summary, we here define a distinct benign tumour class belonging to the family of MYB/MYBL1-altered gliomas. Isomorphic diffuse glioma occurs both in children and adults, has a concise morphology, frequent MYBL1 and MYB alterations and a specific DNA methylation profile. As an exclusively histological diagnosis may be very challenging and as paediatric MYB/MYBL1-altered diffuse astrocytomas may have the same gene fusions, we consider DNA methylation profiling very helpful for their identification.
Collapse
Affiliation(s)
- Annika K Wefers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
| | - Damian Stichel
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Mélanie Pages
- Department of Neuropathology, Sainte-Anne Hospital, Descartes University, Paris, France
| | | | - Pascale Varlet
- Department of Neuropathology, Sainte-Anne Hospital, Descartes University, Paris, France
| | - Daniel Schwarz
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Figen Söylemezoglu
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ute Pohl
- Department of Cellular Pathology, Queen's Hospital BHRUT, Romford, UK
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham/University Hospitals Birmingham, Birmingham, UK
| | - José Pimentel
- Department of Neurosciences and Mental Health, Laboratory of Neuropathology, Hospital de Santa Maria (CHULN, EPE), Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Jochen Meyer
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ekkehard Hewer
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Anna Japp
- Department of Neuropathology, University of Bonn, Bonn, Germany
| | - Abhijit Joshi
- Department of Neuropathology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - David E Reuss
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annekathrin Reinhardt
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Sievers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Belén Casalini
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Azadeh Ebrahimi
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristin Huang
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Koelsche
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hu Liang Low
- Department of Neurosurgery, Queen's Hospital BHRUT, Romford, UK
| | - Olinda Rebelo
- Neuropathology Unit, Centro Hospitalar de Universidades de Coimbra, Coimbra, Portugal
| | - Dina Marnoto
- Neuropathology Unit, Centro Hospitalar de Universidades de Coimbra, Coimbra, Portugal
| | - Albert J Becker
- Department of Neuropathology, University of Bonn, Bonn, Germany
| | - Ori Staszewski
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Michel Mittelbronn
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt, Germany
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Laboratoire National de Santé (LNS), National Center of Pathology (NCP), Dudelange, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tübingen, Tübingen, Germany
- Center for CNS Tumours, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital of Tübingen, Tübingen, Germany
| | - Edmund Cheesman
- Department of Paediatric Histopathology, Royal Manchester Children's Hospital Manchester, Manchester, UK
| | - Ricardo Santos de Oliveira
- Division of Pediatric Neurosurgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rosane Gomes P Queiroz
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Volkmar H Hans
- Abteilung Neuropathologie, Institut für klinische Pathologie, Dietrich-Bonhoeffer-Klinikum, Neubrandenburg, Germany
- Institut für Neuropathologie, Evangelisches Klinikum Bethel gGmbH, Bielefeld, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adriana Olar
- Departments of Pathology and Laboratory Medicine and Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| | - Keith L Ligon
- Department of Oncologic Pathology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Zane Jaunmuktane
- Division of Neuropathology, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Sebastian Brandner
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Ruth G Tatevossian
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Thomas S Jacques
- Developmental Biology and Cancer Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mrinalini Honavar
- Department of Pathology, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Eleonora Aronica
- Amsterdam UMC, Department of (Neuro)Pathology, University of Amsterdam, Amsterdam and Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Maria Thom
- Division of Neuropathology, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingmar Blumcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
20
|
Iacobucci I, Wen J, Meggendorfer M, Choi JK, Shi L, Pounds SB, Carmichael CL, Masih KE, Morris SM, Lindsley RC, Janke LJ, Alexander TB, Song G, Qu C, Li Y, Payne-Turner D, Tomizawa D, Kiyokawa N, Valentine M, Valentine V, Basso G, Locatelli F, Enemark EJ, Kham SKY, Yeoh AEJ, Ma X, Zhou X, Sioson E, Rusch M, Ries RE, Stieglitz E, Hunger SP, Wei AH, To LB, Lewis ID, D'Andrea RJ, Kile BT, Brown AL, Scott HS, Hahn CN, Marlton P, Pei D, Cheng C, Loh ML, Ebert BL, Meshinchi S, Haferlach T, Mullighan CG. Genomic subtyping and therapeutic targeting of acute erythroleukemia. Nat Genet 2019; 51:694-704. [PMID: 30926971 PMCID: PMC6828160 DOI: 10.1038/s41588-019-0375-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/13/2019] [Indexed: 12/30/2022]
Abstract
Acute erythroid leukemia (AEL) is a high-risk leukemia of poorly understood genetic basis, with controversy regarding diagnosis in the spectrum of myelodysplasia and myeloid leukemia. We compared genomic features of 159 childhood and adult AEL cases with non-AEL myeloid disorders and defined five age-related subgroups with distinct transcriptional profiles: adult, TP53 mutated; NPM1 mutated; KMT2A mutated/rearranged; adult, DDX41 mutated; and pediatric, NUP98 rearranged. Genomic features influenced outcome, with NPM1 mutations and HOXB9 overexpression being associated with a favorable prognosis and TP53, FLT3 or RB1 alterations associated with poor survival. Targetable signaling mutations were present in 45% of cases and included recurrent mutations of ALK and NTRK1, the latter of which drives erythroid leukemogenesis sensitive to TRK inhibition. This genomic landscape of AEL provides the framework for accurate diagnosis and risk stratification of this disease, and the rationale for testing targeted therapies in this high-risk leukemia.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ji Wen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - John K Choi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley B Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Catherine L Carmichael
- The Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Katherine E Masih
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sarah M Morris
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - R Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Laura J Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Thomas B Alexander
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chunxu Qu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yongjin Li
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Debbie Payne-Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Marcus Valentine
- Cytogenetics Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Virginia Valentine
- Cytogenetics Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Giuseppe Basso
- Clinic of Paediatric Haematology and Oncology, Department for Children's and Women's Health, University of Padua, Padua, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Franco Locatelli
- Department of Gynecology/Obstetrics and Pediatrics, Sapienza University of Rome, Rome, Italy
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Eric J Enemark
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shirley K Y Kham
- Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Allen E J Yeoh
- Centre for Translational Research in Acute Leukaemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Edgar Sioson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rhonda E Ries
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen P Hunger
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew H Wei
- The Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Pathology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - L Bik To
- Departments of Haematology, SA Pathology and Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Ian D Lewis
- Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Richard J D'Andrea
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Benjamin T Kile
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Anna L Brown
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Hamish S Scott
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Christopher N Hahn
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Paula Marlton
- Princess Alexandra Hospital and University of Queensland School of Clinical Medicine, Brisbane, Queensland, Australia
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital, and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
21
|
Abstract
The c-Myb gene encodes a transcription factor that regulates cell proliferation, differentiation, and apoptosis through protein-protein interaction and transcriptional regulation of signaling pathways. The protein is frequently overexpressed in human leukemias, breast cancers, and other solid tumors suggesting that it is a bona fide oncogene. c-MYB is often overexpressed by translocation in human tumors with t(6;7)(q23;q34) resulting in c-MYB-TCRβ in T cell ALL, t(X;6)(p11;q23) with c-MYB-GATA1 in acute basophilic leukemia, and t(6;9)(q22-23;p23-24) with c-MYB-NF1B in adenoid cystic carcinoma. Antisense oligonucleotides to c-MYB were developed to purge bone marrow cells to eliminate tumor cells in leukemias. Recently, small molecules that inhibit c-MYB activity have been developed to disrupt its interaction with p300. The Dmp1 (cyclin D binding myb-like protein 1; Dmtf1) gene was isolated through its virtue for binding to cyclin D2. It is a transcription factor that has a Myb-like repeat for DNA binding. The Dmtf1 protein directly binds to the Arf promoter for transactivation and physically interacts with p53 to activate the p53 pathway. The gene is hemizygously deleted in 35-42% of human cancers and is associated with longer survival. The significances of aberrant expression of c-MYB and DMTF1 proteins in human cancers and their clinical significances are discussed.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- The Department of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Kazushi Inoue
- The Department of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
22
|
Wang X, Angelis N, Thein SL. MYB - A regulatory factor in hematopoiesis. Gene 2018; 665:6-17. [PMID: 29704633 PMCID: PMC10764194 DOI: 10.1016/j.gene.2018.04.065] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/06/2018] [Accepted: 04/23/2018] [Indexed: 01/07/2023]
Abstract
MYB is a transcription factor which was identified in birds as a viral oncogene (v-MYB). Its cellular counterpart was subsequently isolated as c-MYB which has three functional domains - DNA binding domain, transactivation domain and negative regulatory domain. c-MYB is essential for survival, and deletion of both alleles of the gene results in embryonic death. It is highly expressed in hematopoietic cells, thymus and neural tissue, and required for T and B lymphocyte development and erythroid maturation. Additionally, aberrant MYB expression has been found in numerous solid cancer cells and human leukemia. Recent studies have also implicated c-MYB in the regulation of expression of fetal hemoglobin which is highly beneficial to the β-hemoglobinopathies (beta thalassemia and sickle cell disease). These findings suggest that MYB could be a potential therapeutic target in leukemia, and possibly also a target for therapeutic increase of fetal hemoglobin in the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Xunde Wang
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA
| | - Nikolaos Angelis
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA
| | - Swee Lay Thein
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA.
| |
Collapse
|
23
|
Adenoid cystic carcinoma: emerging role of translocations and gene fusions. Oncotarget 2018; 7:66239-66254. [PMID: 27533466 PMCID: PMC5323230 DOI: 10.18632/oncotarget.11288] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/28/2016] [Indexed: 12/24/2022] Open
Abstract
Adenoid cystic carcinoma (ACC), the second most common salivary gland malignancy, is notorious for poor prognosis, which reflects the propensity of ACC to progress to clinically advanced metastatic disease. Due to high long-term mortality and lack of effective systemic treatment, the slow-growing but aggressive ACC poses a particular challenge in head and neck oncology. Despite the advancements in cancer genomics, up until recently relatively few genetic alterations critical to the ACC development have been recognized. Although the specific chromosomal translocations resulting in MYB-NFIB fusions provide insight into the ACC pathogenesis and represent attractive diagnostic and therapeutic targets, their clinical significance is unclear, and a substantial subset of ACCs do not harbor the MYB-NFIB translocation. Strategies based on detection of newly described genetic events (such as MYB activating super-enhancer translocations and alterations affecting another member of MYB transcription factor family-MYBL1) offer new hope for improved risk assessment, therapeutic intervention and tumor surveillance. However, the impact of these approaches is still limited by an incomplete understanding of the ACC biology, and the manner by which these alterations initiate and drive ACC remains to be delineated. This manuscript summarizes the current status of gene fusions and other driver genetic alterations in ACC pathogenesis and discusses new therapeutic strategies stemming from the current research.
Collapse
|
24
|
|
25
|
Toda Y, Nagai Y, Shimomura D, Kishimori C, Tsuda K, Fukutsuka K, Hayashida M, Ohno H. Acute basophilic leukemia associated with the t(16;21)(p11;q22)/ FUS- ERG fusion gene. Clin Case Rep 2017; 5:1938-1944. [PMID: 29225830 PMCID: PMC5715573 DOI: 10.1002/ccr3.1219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/18/2017] [Accepted: 09/20/2017] [Indexed: 01/17/2023] Open
Abstract
We herein report a rare case of acute basophilic leukemia with t(16;21)(p11;q22) generating the FUS‐ERG fusion gene. The basophilic nature of leukemia blasts was demonstrated by cytomorphology, toluidine blue metachromasia, mature basophil‐associated antigen expression, and characteristic granules under electron microscopy. The molecular link between t(16;21)/FUS‐ERG and basophilic differentiation remains unclear.
Collapse
Affiliation(s)
- Yusuke Toda
- Department of Hematology Tenri Hospital Tenri Nara Japan
| | - Yuya Nagai
- Department of Hematology Tenri Hospital Tenri Nara Japan
| | - Daiki Shimomura
- Department of Laboratory Medicine Tenri Hospital Tenri Nara Japan
| | | | - Katsuyo Tsuda
- Department of Laboratory Medicine Tenri Hospital Tenri Nara Japan
| | | | | | - Hitoshi Ohno
- Department of Hematology Tenri Hospital Tenri Nara Japan.,Tenri Institute of Medical Research Tenri Nara Japan
| |
Collapse
|
26
|
Ducassou S, Prouzet-Mauléon V, Deau MC, Brunet de la Grange P, Cardinaud B, Soueidan H, Quelen C, Brousset P, Pasquet JM, Moreau-Gaudry F, Arock M, Mahon FX, Lippert E. MYB-GATA1 fusion promotes basophilic leukaemia: involvement of interleukin-33 and nerve growth factor receptors. J Pathol 2017; 242:347-357. [PMID: 28418072 DOI: 10.1002/path.4908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/02/2017] [Accepted: 03/31/2017] [Indexed: 12/29/2022]
Abstract
Acute basophilic leukaemia (ABL) is a rare subtype of acute myeloblastic leukaemia. We previously described a recurrent t(X;6)(p11;q23) translocation generating an MYB-GATA1 fusion gene in male infants with ABL. To better understand its role, the chimeric MYB-GATA1 transcription factor was expressed in CD34-positive haematopoietic progenitors, which were transplanted into immunodeficient mice. Cells expressing MYB-GATA1 showed increased expression of markers of immaturity (CD34), of granulocytic lineage (CD33 and CD117), and of basophilic differentiation (CD203c and FcϵRI). UT-7 cells also showed basophilic differentiation after MYB-GATA1 transfection. A transcriptomic study identified nine genes deregulated by both MYB-GATA1 and basophilic differentiation. Induction of three of these genes (CCL23, IL1RL1, and NTRK1) was confirmed in MYB-GATA1-expressing CD34-positive cells by reverse transcription quantitative polymerase chain reaction. Interleukin (IL)-33 and nerve growth factor (NGF), the ligands of IL-1 receptor-like 1 (IL1RL1) and neurotrophic receptor tyrosine kinase 1 (NTRK1), respectively, enhanced the basophilic differentiation of MYB-GATA1-expressing UT-7 cells, thus demonstrating the importance of this pathway in the basophilic differentiation of leukaemic cells and CD34-positive primary cells. Finally, gene reporter assays confirmed that MYB and MYB-GATA1 directly activated NTRK1 and IL1RL1 transcription, leading to basophilic skewing of the blasts. MYB-GATA1 is more efficient than MYB, because of better stability. Our results highlight the role of IL-33 and NGF receptors in the basophilic differentiation of normal and leukaemic cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stéphane Ducassou
- ACTION Laboratory, INSERM Unit 1218, University of Bordeaux, Bordeaux, France.,Unité d'hématologie oncologie pédiatrique, CHU de Bordeaux, Bordeaux, France
| | | | - Marie-Céline Deau
- ACTION Laboratory, INSERM Unit 1218, University of Bordeaux, Bordeaux, France
| | - Philippe Brunet de la Grange
- Laboratoire R&D d'Ingénierie Cellulaire, Etablissement Français du Sang - Aquitaine Limousin, CIRID UMR5164, University of Bordeaux, Bordeaux, France
| | - Bruno Cardinaud
- ACTION Laboratory, INSERM Unit 1218, University of Bordeaux, Bordeaux, France.,Bordeaux INP, Bordeaux, France
| | - Hayssam Soueidan
- ACTION Laboratory, INSERM Unit 1218, University of Bordeaux, Bordeaux, France
| | - Cathy Quelen
- Centre de Recherches en Cancérologie de Toulouse, INSERM U1037, Toulouse, France
| | - Pierre Brousset
- Centre de Recherches en Cancérologie de Toulouse, INSERM U1037, Toulouse, France
| | - Jean-Max Pasquet
- Equipe thérapie génique, INSERM U 1035 Biothérapie des maladies génétiques et cancers, University of Bordeaux, Bordeaux, France
| | - François Moreau-Gaudry
- Equipe thérapie génique, INSERM U 1035 Biothérapie des maladies génétiques et cancers, University of Bordeaux, Bordeaux, France
| | - Michel Arock
- Laboratoire d'Hématologie, CHU Pitié-Salpêtrière, Paris, France
| | - François-Xavier Mahon
- ACTION Laboratory, INSERM Unit 1218, University of Bordeaux, Bordeaux, France.,Bergonié Cancer Institute, INSERM Unit 916, University of Bordeaux, Bordeaux, France
| | - Eric Lippert
- Equipe thérapie génique, INSERM U 1035 Biothérapie des maladies génétiques et cancers, University of Bordeaux, Bordeaux, France.,CHU de Brest and INSERM U1078, Université de Bretagne Occidentale, Brest, France
| |
Collapse
|
27
|
Acute basophilic leukemia with add(3)(q12) accompanied by histamine excess symptoms. Ann Hematol 2017; 96:1197-1199. [PMID: 28424883 DOI: 10.1007/s00277-017-2987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
|
28
|
Valent P, Sotlar K, Blatt K, Hartmann K, Reiter A, Sadovnik I, Sperr WR, Bettelheim P, Akin C, Bauer K, George TI, Hadzijusufovic E, Wolf D, Gotlib J, Mahon FX, Metcalfe DD, Horny HP, Arock M. Proposed diagnostic criteria and classification of basophilic leukemias and related disorders. Leukemia 2017; 31:788-797. [PMID: 28090091 DOI: 10.1038/leu.2017.15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 01/09/2023]
Abstract
Basophils form a distinct cell lineage within the hematopoietic cell family. In various myeloid neoplasms, including chronic myeloid leukemia, basophilia is frequently seen. Acute and chronic basophilic leukemias, albeit rare, have also been described. However, no generally accepted criteria and classification of basophilic leukemias have been presented to date. To address this unmet need, a series of Working Conferences and other meetings were organized between March 2015 and March 2016. The current article provides a summary of consensus statements from these meetings, together with proposed criteria to delineate acute basophilic leukemia (ABL) from chronic basophilic leukemia (CBL) and primary forms of the disease where no preceding myeloid malignancy is detected, from the more common 'secondary' variants. Moreover, the term hyperbasophilia (HB) is proposed for cases with a persistent peripheral basophil count ⩾1000 per μl of blood. This condition, HB, is highly indicative of the presence of an underlying myeloid neoplasm. Therefore, HB is an important checkpoint in the diagnostic algorithm and requires a detailed hematologic investigation. In these patients, an underlying myeloid malignancy is often found and is then labeled with the appendix -baso, whereas primary cases of ABL or CBL are very rare. The criteria and classification proposed in this article should facilitate the diagnosis and management of patients with unexplained basophilia and basophil neoplasms in routine practice, and in clinical studies.
Collapse
Affiliation(s)
- P Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - K Sotlar
- Institute of Pathology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - K Blatt
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - K Hartmann
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - A Reiter
- Department of Hematology and Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - I Sadovnik
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - W R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - P Bettelheim
- Division of Laboratory Medicine, Elisabethinen Hospital Linz, Linz, Austria
| | - C Akin
- Division of Rheumatology, Immunology and Allergy, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - K Bauer
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - T I George
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - E Hadzijusufovic
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - D Wolf
- Medical Clinic III for Oncology, Haematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - J Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - F-X Mahon
- Laboratoire d'Hématologie, CHU de Bordeaux, France
| | - D D Metcalfe
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - H-P Horny
- Institute of Pathology, Ludwig-Maximilians University, Munich, Germany
| | - M Arock
- LBPA CNRS UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| |
Collapse
|
29
|
Uttarkar S, Frampton J, Klempnauer KH. Targeting the transcription factor Myb by small-molecule inhibitors. Exp Hematol 2016; 47:31-35. [PMID: 28017646 DOI: 10.1016/j.exphem.2016.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/10/2016] [Indexed: 11/18/2022]
Abstract
The transcription factor Myb is a key regulator of hematopoietic cell proliferation, differentiation, and survival and has been implicated in the development of leukemia and several other human cancers. Pharmacological inhibition of Myb is therefore emerging as a potential therapeutic strategy. Recently, the first low-molecular-weight compounds that show Myb inhibitory activity have been identified. Characterization of these compounds suggests disruption of the protein-protein-interaction of Myb and the coactivator p300 as a suitable strategy to inhibit Myb.
Collapse
Affiliation(s)
| | - Jon Frampton
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | |
Collapse
|
30
|
Abstract
This protocol describes the ex vivo characterization of zebrafish hematopoietic progenitors. We show how to isolate zebrafish hematopoietic cells for cultivation and differentiation in colony assays in semi-solid media. We also describe procedures for the generation of recombinant zebrafish cytokines and for the isolation of carp serum, which are essential components of the medium required to grow zebrafish hematopoietic cells ex vivo. The outcome of these clonal assays can easily be evaluated using standard microscopy techniques after 3-10 d in culture. In addition, we describe how to isolate individual colonies for further imaging and gene expression profiling. In other vertebrate model organisms, ex vivo assays have been crucial for elucidating the relationships among hematopoietic stem cells (HSCs), progenitor cells and their mature progeny. The present protocol should facilitate such studies on cells derived from zebrafish.
Collapse
|
31
|
Targeting acute myeloid leukemia with a small molecule inhibitor of the Myb/p300 interaction. Blood 2015; 127:1173-82. [PMID: 26631113 DOI: 10.1182/blood-2015-09-668632] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/19/2015] [Indexed: 12/17/2022] Open
Abstract
The transcription factor Myb plays a key role in the hematopoietic system and has been implicated in the development of leukemia and other human cancers. Inhibition of Myb is therefore emerging as a potential therapeutic strategy for these diseases. However, because of a lack of suitable inhibitors, the feasibility of therapeutic approaches based on Myb inhibition has not been explored. We have identified the triterpenoid Celastrol as a potent low-molecular-weight inhibitor of the interaction of Myb with its cooperation partner p300. We demonstrate that Celastrol suppresses the proliferative potential of acute myeloid leukemia (AML) cells while not affecting normal hematopoietic progenitor cells. Furthermore, Celastrol prolongs the survival of mice in a model of an aggressive AML. Overall, our work demonstrates the therapeutic potential of a small molecule inhibitor of the Myb/p300 interaction for the treatment of AML and provides a starting point for the further development of Myb-inhibitory compounds for the treatment of leukemia and, possibly, other tumors driven by deregulated Myb.
Collapse
|
32
|
Karasuyama H, Yamanishi Y. Basophils have emerged as a key player in immunity. Curr Opin Immunol 2014; 31:1-7. [PMID: 25086241 DOI: 10.1016/j.coi.2014.07.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 01/18/2023]
Abstract
Basophils had long been neglected in immunological studies, because of their paucity and phenotypic similarity with tissue-resident mast cells. However, recent development of analytical tools has cast new light on this neglected minority, and revealed previously unappreciated roles of basophils, distinct from those of mast cells, in various immune responses. Primary function of basophils appears to be the protection against infections with parasites, including ticks and helminths. This is why basophils are evolutionally conserved well in many animal species, albeit a small number. Nevertheless, basophils sometimes exert host-deleterious functions in immunological disorders such as allergy. Here we summarize recent advance in our understanding of basophil ontogeny and their in vivo roles under physiological and pathological conditions.
Collapse
Affiliation(s)
- Hajime Karasuyama
- Department of Immune Regulation, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo 113-8519, Japan; JST, CREST, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo 113-8519, Japan.
| | - Yoshinori Yamanishi
- Department of Immune Regulation, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo 113-8519, Japan
| |
Collapse
|
33
|
Interaction of c-Myb with p300 is required for the induction of acute myeloid leukemia (AML) by human AML oncogenes. Blood 2014; 123:2682-90. [DOI: 10.1182/blood-2012-02-413187] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Key Points
A mutation preventing interaction between c-Myb and p300 prevents transformation and leukemia induction by MLL-AF9 and AML1-ETO9a oncogenes. Identifying agents that block the c-Myb-p300 interaction may be a valuable approach to developing a therapy for acute myeloid leukemia.
Collapse
|
34
|
Zhao L, Ye P, Gonda TJ. The MYB proto-oncogene suppresses monocytic differentiation of acute myeloid leukemia cells via transcriptional activation of its target gene GFI1. Oncogene 2013; 33:4442-9. [PMID: 24121275 DOI: 10.1038/onc.2013.419] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/14/2013] [Accepted: 09/02/2013] [Indexed: 12/20/2022]
Abstract
The MYB gene is a master regulator of hematopoiesis and contributes to leukemogenesis in several species including humans. Although it is clear that MYB can promote proliferation, suppress apoptosis and block differentiation, the identities of the MYB target genes that mediate these effects have only been partially elucidated. Several studies, including our own, have collectively identified substantial numbers of MYB target genes, including candidates for each of these activities; however, functional validation, particularly in the case of differentiation suppression, has lagged well behind. Here we show that GFI1, which encodes an important regulator of hematopoietic stem cell (HSC) function and granulocytic differentiation, is a direct target of MYB in myeloid leukemia cells. Chromatin immunoprecipitation and reporter studies identified a functional MYB-binding site in the promoter region of GFI, whereas ectopic expression and small hairpin RNA-mediated knockdown of MYB resulted in concomitant increases and decreases, respectively, in GFI1 expression. We also demonstrate that GFI1, like MYB, can block the induced monocytic differentiation of a human acute myeloid leukemia cell line, and most importantly, that GFI1 is essential for MYB's ability to block monocytic differentiation. Thus, we have identified a target of MYB that is a likely mediator of its myeloid differentiation-blocking activity, and which may also be involved in MYB's activities in regulating normal HSC function and myeloid differentiation.
Collapse
Affiliation(s)
- L Zhao
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - P Ye
- 1] The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia [2] School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Brisbane, Queensland, Australia
| | - T J Gonda
- 1] The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia [2] School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Brisbane, Queensland, Australia
| |
Collapse
|
35
|
|
36
|
RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation. Leukemia 2012; 26:2384-9. [PMID: 22513837 DOI: 10.1038/leu.2012.109] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myeloproliferative neoplasms are frequently associated with aberrant constitutive tyrosine kinase (TK) activity resulting from chimaeric fusion genes or point mutations such as BCR-ABL1 or JAK2 V617F. We report here the cloning and functional characterization of two novel fusion genes BCR-RET and FGFR1OP-RET in chronic myelomonocytic leukemia (CMML) cases generated by two balanced translocations t(10;22)(q11;q11) and t(6;10)(q27;q11), respectively. The two RET fusion genes leading to the aberrant activation of RET, are able to transform hematopoietic cells and skew the hematopoietic differentiation program towards the monocytic/macrophage lineage. The RET fusion genes seem to constitutively mimic the same signaling pathway as RAS mutations frequently involved in CMML. One patient was treated with Sorafenib, a specific inhibitor of the RET TK function, and demonstrated cytological and clinical remissions.
Collapse
|