1
|
Liu D, Wang L, Ha W, Li K, Shen R, Wang D. HIF-1α: A potential therapeutic opportunity in renal fibrosis. Chem Biol Interact 2024; 387:110808. [PMID: 37980973 DOI: 10.1016/j.cbi.2023.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Renal fibrosis is a common outcome of various renal injuries, leading to structural destruction and functional decline of the kidney, and is also a critical prognostic indicator and determinant in renal diseases therapy. Hypoxia is induced in different stress and injuries in kidney, and the hypoxia inducible factors (HIFs) are activated in the context of hypoxia in response and regulation the hypoxia in time. Under stress and hypoxia conditions, HIF-1α increases rapidly and regulates intracellular energy metabolism, cell proliferation, apoptosis, and inflammation. Through reprogramming cellular metabolism, HIF-1α can directly or indirectly induce abnormal accumulation of metabolites, changes in cellular epigenetic modifications, and activation of fibrotic signals. HIF-1α protein expression and activity are regulated by various posttranslational modifications. The drugs targeting HIF-1α can regulate the downstream cascade signals by inhibiting HIF-1α activity or promoting its degradation. As the renal fibrosis is affected by renal diseases, different diseases may trigger different mechanisms which will affect the therapy effect. Therefore, comprehensive analysis of the role and contribution of HIF-1α in occurrence and progression of renal fibrosis, and determination the appropriate intervention time of HIF-1α in the process of renal fibrosis are important ideas to explore effective treatment strategies. This study reviews the regulation of HIF-1α and its mediated complex cascade reactions in renal fibrosis, and lists some drugs targeting HIF-1α that used in preclinical studies, to provide new insight for the study of the renal fibrosis mechanism.
Collapse
Affiliation(s)
- Disheng Liu
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Lu Wang
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Wuhua Ha
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Kan Li
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|
2
|
Shah BN, Zhang X, Sergueeva AI, Miasnikova GY, Ganz T, Prchal JT, Gordeuk VR. Increased transferrin protects from thrombosis in Chuvash erythrocytosis. Am J Hematol 2023; 98:1532-1539. [PMID: 37435906 PMCID: PMC10529798 DOI: 10.1002/ajh.27021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023]
Abstract
Von Hippel-Lindau protein (VHL) is essential to hypoxic regulation of cellular processes. VHL promotes proteolytic clearance of hypoxia-inducible transcription factors (HIFs) that have been modified by oxygen-dependent HIF-prolyl hydroxylases. A homozygous loss-of-function VHLR200W mutation causes Chuvash erythrocytosis, a congenital disorder caused by augmented hypoxia-sensing. Homozygous VHLR200W results in accumulation of HIFs that increase transcription of the erythropoietin gene and raise hematocrit. Phlebotomies reduce hematocrit and hyperviscosity symptoms. However, the major cause of morbidity and mortality in Chuvash erythrocytosis is thrombosis. Phlebotomies cause iron deficiency, which may further elevate HIF activity and transferrin, the HIF-regulated plasma iron transporter recently implicated in thrombogenesis. We hypothesized that transferrin is elevated in Chuvash erythrocytosis, and that iron deficiency contributes to its elevation and to thrombosis. We studied 155 patients and 154 matched controls at steady state and followed them for development of thrombosis. Baseline transferrin was elevated, and ferritin reduced in patients. VHLR200W homozygosity and lower ferritin correlated with higher erythropoietin and transferrin. During 11 years of follow-up, risk of thrombosis increased 8.9-fold in patients versus controls. Erythropoietin elevation, but not hematocrit or ferritin, correlated with thrombosis risk. Unexpectedly, transferrin elevation associated with reduced rather than increased thrombosis risk. The A allele of the promoter EPO single nucleotide polymorphisms (SNP), rs1617640, associated with elevated erythropoietin and increased thrombosis risk, whereas the A allele of the intronic TF SNP, rs3811647, associated with higher transferrin and protection from thrombosis in patients. Our findings suggest an unexpected causal relationship between increased transferrin and protection from thrombosis in Chuvash erythrocytosis.
Collapse
Affiliation(s)
- Binal N Shah
- Division of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xu Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Adelina I Sergueeva
- Department of Pediatric Oncology and Hematology, N. Ulianov Chuvash State University, Cheboksary, Chuvashia, Russia
| | - Galina Y Miasnikova
- Department of Hematology and Chemotherapy, Chuvash Republic Clinical Hospital, Cheboksary, Chuvashia, Russia
| | - Tomas Ganz
- Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Josef T Prchal
- Department of Medicine, University of Utah, VAH, and Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Victor R Gordeuk
- Division of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Formica V, Riondino S, Morelli C, Guerriero S, D'Amore F, Di Grazia A, Del Vecchio Blanco G, Sica G, Arkenau HT, Monteleone G, Roselli M. HIF2α, Hepcidin and their crosstalk as tumour-promoting signalling. Br J Cancer 2023; 129:222-236. [PMID: 37081189 PMCID: PMC10338631 DOI: 10.1038/s41416-023-02266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
Not all aspects of the disruption of iron homeostasis in cancer have been fully elucidated. Iron accumulation in cancer cells is frequent for many solid tumours, and this is often accompanied by the contemporary rise of two key iron regulators, HIF2α and Hepcidin. This scenario is different from what happens under physiological conditions, where Hepcidin parallels systemic iron concentrations while HIF2α levels are inversely associated to Hepcidin. The present review highlights the increasing body of evidence for the pro-tumoral effect of HIF2α and Hepcidin, discusses the possible imbalance in HIF2α, Hepcidin and iron homeostasis during cancer, and explores therapeutic options relying on these pathways as anticancer strategies.
Collapse
Affiliation(s)
- Vincenzo Formica
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy.
| | - Silvia Riondino
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Cristina Morelli
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
- PhD Program in Systems and Experimental Medicine (XXXV cycle), University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Simona Guerriero
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Federica D'Amore
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Antonio Di Grazia
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | | | - Giuseppe Sica
- Department of Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | - Giovanni Monteleone
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Mario Roselli
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| |
Collapse
|
4
|
Abstract
Polycythemia vera is a Philadelphia chromosome-negative myeloproliferative neoplasm that results in increased myeloproliferation. It is a debilitating disease characterized by the overproduction of red blood cells, but it also can result in increased white blood cells and platelets. Patients experience a shortened overall survival due to an increased risk of thrombotic events, including stroke, myocardial infarction, pulmonary embolism, and deep vein thrombosis. Current treatment strategies in clinical practice are driven by mitigating the risk of these thrombotic events by reducing patients' hematocrit. In addition to thrombosis risk, polycythemia vera patients have constitutional symptoms such as fatigue, itching, bone pain, erythromelalgia, and splenomegaly. An increased risk of transformation of their disease to acute myeloid leukemia and/or myelofibrosis can also affect long-term survival in polycythemia vera. Additional research has identified other risk factors, such as increased white blood cells, increased platelet count, and cytokine levels, which can alter the prognosis of the disease. In this review, we will discuss the current treatment strategies in polycythemia vera and determine if incorporating additional biomarkers as endpoints is feasible in clinical practice.
Collapse
|
5
|
Semenza GL. Regulation of Erythropoiesis by the Hypoxia-Inducible Factor Pathway: Effects of Genetic and Pharmacological Perturbations. Annu Rev Med 2023; 74:307-319. [PMID: 35773226 DOI: 10.1146/annurev-med-042921-102602] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Red blood cells transport O2 from the lungs to body tissues. Hypoxia stimulates kidney cells to secrete erythropoietin (EPO), which increases red cell mass. Hypoxia-inducible factors (HIFs) mediate EPO gene transcriptional activation. HIF-α subunits are subject to O2-dependent prolyl hydroxylation and then bound by the von Hippel-Lindau protein (VHL), which triggers their ubiquitination and proteasomal degradation. Mutations in the genes encoding EPO, EPO receptor, HIF-2α, prolyl hydroxylase domain protein 2 (PHD2), or VHL cause familial erythrocytosis. In addition to O2, α-ketoglutarate is a substrate for PHD2, and analogs of α-ketoglutarate inhibit hydroxylase activity. In phase III clinical trials evaluating the treatment of anemia in chronic kidney disease, HIF prolyl hydroxylase inhibitors were as efficacious as darbepoetin alfa in stimulating erythropoiesis. However, safety concerns have arisen that are focused on thromboembolism, which is also a phenotypic manifestation of VHL or HIF-2α mutation, suggesting that these events are on-target effects of HIF prolyl hydroxylase inhibitors.
Collapse
Affiliation(s)
- Gregg L Semenza
- McKusick-Nathans Department of Genetic Medicine and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
6
|
Li H, Hu SM, Li YM, Ciancio G, Tadros NN, Tao Y, Bai YJ, Shi YY. Beneficial effect of roxadustat on early posttransplant anemia and iron utilization in kidney transplant recipients: a retrospective comparative cohort study. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1360. [PMID: 36660711 PMCID: PMC9843359 DOI: 10.21037/atm-22-5897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Background Although posttransplant anemia (PTA) is a common complication after kidney transplant, it has not been thoroughly evaluated for appropriate treatment. Roxadustat can stimulate erythropoiesis by increasing erythropoietin (EPO) production and improving the utilization of iron. However, there are currently a few case reports describing its effect on PTA in kidney transplant recipients (KTRs). Our purpose was to evaluate the efficacy and safety of roxadustat in KTRs with PTA. Methods In this retrospective study, KTRs with early PTA were divided into a roxadustat group, erythropoiesis-stimulating agent (ESA) group, and untreated group (neither roxadustat nor ESA) according to the treatment prescribed by their physicians. We compared the levels of hemoglobin (Hb), creatinine, lipids, hepcidin, intact fibroblast growth factor 23 (iFGF23) and iron-related indices, at baseline and different time points posttransplant. Outcome was assessed at both month 3 and month 12 posttransplant. Adverse events during the treatment course were also recorded. Results A total of 57 KTRs were included (n=22 roxadustat group, n=13 ESA group, n=22 untreated group). There was no difference in age, sex, body mass index, dialysis method and duration, donor type among three groups at baseline. The mean Hb levels at month 3 posttransplant (128.00±19.62 vs. 118.59±11.60 g/L, P=0.048) and the average change in Hb levels from week 2 to month 3 (48.05±22.53 vs. 31.45±12.96 g/L, P=0.005) in the roxadustat group were significantly higher than those in the untreated group. However, there was no significant difference in the above indices between the roxadustat and ESA groups. At month 3, the total iron binding capacity (TIBC) and levels of transferrin were significantly higher while levels of ferritin, hepcidin and iFGF23 were significantly lower in the roxadustat group than in other groups (P<0.05). No significant difference was found in creatinine or estimated glomerular filtration rate (eGFR) levels among the three groups at month 3. During the follow-up, no adverse events related to roxadustat were reported. Conclusions Administration of roxadustat in KTRs with early PTA could elevate Hb levels effectively and safely by enhancing endogenous EPO production and improving iron utilization. Further randomized studies with larger sample size are necessary to verify our results.
Collapse
Affiliation(s)
- Hui Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Shu-Meng Hu
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Ya-Mei Li
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Gaetano Ciancio
- Department of Surgery and Urology, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Ye Tao
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang-Juan Bai
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Ying Shi
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Kralova B, Sochorcova L, Song J, Jahoda O, Hlusickova Kapralova K, Prchal JT, Divoky V, Horvathova M. Developmental changes in iron metabolism and erythropoiesis in mice with human gain-of-function erythropoietin receptor. Am J Hematol 2022; 97:1286-1299. [PMID: 35815815 DOI: 10.1002/ajh.26658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 01/24/2023]
Abstract
Iron availability for erythropoiesis is controlled by the iron-regulatory hormone hepcidin. Increased erythropoiesis negatively regulates hepcidin synthesis by erythroferrone (ERFE), a hormone produced by erythroid precursors in response to erythropoietin (EPO). The mechanisms coordinating erythropoietic activity with iron homeostasis in erythrocytosis with low EPO are not well defined as exemplified by dominantly inherited (heterozygous) gain-of-function mutation of human EPO receptor (mtHEPOR) with low EPO characterized by postnatal erythrocytosis. We previously created a mouse model of this mtHEPOR that develops fetal erythrocytosis with a transient perinatal amelioration of erythrocytosis and its reappearance at 3-6 weeks of age. Prenatally and perinatally, mtHEPOR heterozygous and homozygous mice (differing in erythrocytosis severity) had increased Erfe transcripts, reduced hepcidin, and iron deficiency. Epo was transiently normal in the prenatal life; then decreased at postnatal day 7, and remained reduced in adulthood. Postnatally, hepcidin increased in mtHEPOR heterozygotes and homozygotes, accompanied by low Erfe induction and iron accumulation. With aging, the old, especially mtHEPOR homozygotes had a decline of erythropoiesis, myeloid expansion, and local bone marrow inflammatory stress. In addition, mtHEPOR erythrocytes had a reduced lifespan. This, together with reduced iron demand for erythropoiesis, due to its age-related attenuation, likely contributes to increased iron deposition in the aged mtHEPOR mice. In conclusion, the erythroid drive-mediated inhibition of hepcidin production in mtHEPOR mice in the prenatal/perinatal period is postnatally abrogated by increasing iron stores promoting hepcidin synthesis. The differences observed in studied characteristics between mtHEPOR heterozygotes and homozygotes suggest dose-dependent alterations of downstream EPOR stimulation.
Collapse
Affiliation(s)
- Barbora Kralova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lucie Sochorcova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jihyun Song
- Division of Hematology & Hematologic Malignancies, The University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Ondrej Jahoda
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | | | - Josef T Prchal
- Division of Hematology & Hematologic Malignancies, The University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Vladimir Divoky
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Monika Horvathova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
8
|
Crugliano G, Serra R, Ielapi N, Battaglia Y, Coppolino G, Bolignano D, Bracale UM, Pisani A, Faga T, Michael A, Provenzano M, Andreucci M. Hypoxia-Inducible Factor Stabilizers in End Stage Kidney Disease: "Can the Promise Be Kept?". Int J Mol Sci 2021; 22:12590. [PMID: 34830468 PMCID: PMC8618724 DOI: 10.3390/ijms222212590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Anemia is a common complication of chronic kidney disease (CKD). The prevalence of anemia in CKD strongly increases as the estimated Glomerular Filtration Rate (eGFR) decreases. The pathophysiology of anemia in CKD is complex. The main causes are erythropoietin (EPO) deficiency and functional iron deficiency (FID). The administration of injectable preparations of recombinant erythropoiesis-stimulating agents (ESAs), especially epoetin and darbepoetin, coupled with oral or intravenous(iv) iron supplementation, is the current treatment for anemia in CKD for both dialysis and non-dialysis patients. This approach reduces patients' dependence on transfusion, ensuring the achievement of optimal hemoglobin target levels. However, there is still no evidence that treating anemia with ESAs can significantly reduce the risk of cardiovascular events. Meanwhile, iv iron supplementation causes an increased risk of allergic reactions, gastrointestinal side effects, infection, and cardiovascular events. Currently, there are no studies defining the best strategy for using ESAs to minimize possible risks. One class of agents under evaluation, known as prolyl hydroxylase inhibitors (PHIs), acts to stabilize hypoxia-inducible factor (HIF) by inhibiting prolyl hydroxylase (PH) enzymes. Several randomized controlled trials showed that HIF-PHIs are almost comparable to ESAs. In the era of personalized medicine, it is possible to envisage and investigate specific contexts of the application of HIF stabilizers based on the individual risk profile and mechanism of action.
Collapse
Affiliation(s)
- Giuseppina Crugliano
- Department of Health Sciences, “Magna Graecia” University, I-88100 Catanzaro, Italy; (G.C.); (G.C.); (D.B.); (T.F.); (A.M.)
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, I-88100 Catanzaro, Italy;
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, I-88100 Catanzaro, Italy
| | - Nicola Ielapi
- Department of Public Health and Infectious Disease, “Sapienza” University of Rome, I-00185 Roma, Italy;
| | - Yuri Battaglia
- Division of Nephrology and Dialysis, St. Anna University-Hospital, I-44121 Ferrara, Italy;
| | - Giuseppe Coppolino
- Department of Health Sciences, “Magna Graecia” University, I-88100 Catanzaro, Italy; (G.C.); (G.C.); (D.B.); (T.F.); (A.M.)
| | - Davide Bolignano
- Department of Health Sciences, “Magna Graecia” University, I-88100 Catanzaro, Italy; (G.C.); (G.C.); (D.B.); (T.F.); (A.M.)
| | - Umberto Marcello Bracale
- Vascular Surgery Unit, Department of Public Health, University Federico II of Naples, I-80131 Naples, Italy;
| | - Antonio Pisani
- Department of Public Health, University Federico II of Naples, I-80131 Naples, Italy;
| | - Teresa Faga
- Department of Health Sciences, “Magna Graecia” University, I-88100 Catanzaro, Italy; (G.C.); (G.C.); (D.B.); (T.F.); (A.M.)
| | - Ashour Michael
- Department of Health Sciences, “Magna Graecia” University, I-88100 Catanzaro, Italy; (G.C.); (G.C.); (D.B.); (T.F.); (A.M.)
| | - Michele Provenzano
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, I-88100 Catanzaro, Italy;
| | - Michele Andreucci
- Department of Health Sciences, “Magna Graecia” University, I-88100 Catanzaro, Italy; (G.C.); (G.C.); (D.B.); (T.F.); (A.M.)
| |
Collapse
|
9
|
Duarte TL, Talbot NP, Drakesmith H. NRF2 and Hypoxia-Inducible Factors: Key Players in the Redox Control of Systemic Iron Homeostasis. Antioxid Redox Signal 2021; 35:433-452. [PMID: 32791852 DOI: 10.1089/ars.2020.8148] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Oxygen metabolism and iron homeostasis are closely linked. Iron facilitates the oxygen-carrying capacity of blood, and its deficiency causes anemia. Conversely, excess free iron is detrimental for stimulating the formation of reactive oxygen species, causing tissue damage. The amount and distribution of iron thus need to be tightly regulated by the liver-expressed hormone hepcidin. This review analyzes the roles of key oxygen-sensing pathways in cellular and systemic regulation of iron homeostasis; specifically, the prolyl hydroxylase domain (PHD)/hypoxia-inducible factor (HIF) and the Kelch-like ECH-associated protein 1/NF-E2 p45-related factor 2 (KEAP1/NRF2) pathways, which mediate tissue adaptation to low and high oxygen, respectively. Recent Advances: In macrophages, NRF2 regulates genes involved in hemoglobin catabolism, iron storage, and iron export. NRF2 was recently identified as the molecular sensor of iron-induced oxidative stress and is responsible for BMP6 expression by liver sinusoidal endothelial cells, which in turn activates hepcidin synthesis by hepatocytes to restore systemic iron levels. Moreover, NRF2 orchestrates the activation of antioxidant defenses that are crucial to protect against iron toxicity. On the contrary, low iron/hypoxia stabilizes renal HIF2a via inactivation of iron-dependent PHD dioxygenases, causing an erythropoietic stimulus that represses hepcidin via an inhibitory effect of erythroferrone on bone morphogenetic proteins. Intestinal HIF2a is also stabilized, increasing the expression of genes involved in dietary iron absorption. Critical Issues: An intimate crosstalk between oxygen-sensing pathways and iron regulatory mechanisms ensures that fluctuations in systemic iron levels are promptly detected and restored. Future Directions: The realization that redox-sensitive transcription factors regulate systemic iron levels suggests novel therapeutic approaches. Antioxid. Redox Signal. 35, 433-452.
Collapse
Affiliation(s)
- Tiago L Duarte
- Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Nick P Talbot
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Haematology Theme, Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
10
|
Shinozaki Y, Fukui K, Kobayashi H, Yoshiuchi H, Matsuo A, Matsushita M. JTZ-951 (enarodustat), a hypoxia-inducible factor prolyl hydroxylase inhibitor, improves iron utilization and anemia of inflammation: Comparative study against recombinant erythropoietin in rat. Eur J Pharmacol 2021; 898:173990. [PMID: 33657422 DOI: 10.1016/j.ejphar.2021.173990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Anemia with inflammation-induced defective iron utilization is a pathological condition observed in patients suffering from chronic kidney disease (CKD) or chronic inflammatory disease. There is no reasonable treatment for these conditions, because the effects of erythropoiesis stimulating agents (ESAs) or iron supplementation in the treatment of anemia are insufficient. JTZ-951 (enarodustat) has been characterized as a novel, orally bioavailable inhibitor of hypoxia-inducible factor prolyl hydroxylase (HIF-PH), and has been developed as a novel therapeutic agent for anemia with CKD. In this study, the effects of JTZ-951 on iron utilization during erythropoiesis and on anemia of inflammation were compared with those of recombinant human erythropoietin (rHuEPO) using normal rat and rat model of anemia of inflammation. In normal rats, under conditions in which JTZ-951 and rHuEPO showed similar erythropoietic effect, repeated doses of JTZ-951 induced erythropoiesis while retaining the hemoglobin content in red blood cells, while administration of rHuEPO resulted in decrease in some erythrocyte-related parameters. As for iron-related parameters during erythropoiesis, JTZ-951 exhibited more efficient iron utilization compared to rHuEPO. A single dose of JTZ-951 resulted in decrease in hepcidin expression observed within 24 h after administration, but a single dose of rHuEPO did not. In a rat model of anemia of inflammation (also known as a model with functional iron-deficiency), JTZ-951 showed erythropoietic effect, in contrast with rHuEPO. These results suggest that, unlike rHuEPO, JTZ-951 stimulates erythropoiesis by increasing iron utilization, and improves anemia of inflammation.
Collapse
Affiliation(s)
- Yuichi Shinozaki
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan.
| | - Kenji Fukui
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | - Hatsue Kobayashi
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | - Hiromi Yoshiuchi
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | - Akira Matsuo
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | - Mutsuyoshi Matsushita
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| |
Collapse
|
11
|
Wang B, Yin Q, Han YC, Wu M, Li ZL, Tu Y, Zhou LT, Wei Q, Liu H, Tang RN, Cao JY, Lv LL, Liu BC. Effect of hypoxia-inducible factor-prolyl hydroxylase inhibitors on anemia in patients with CKD: a meta-analysis of randomized controlled trials including 2804 patients. Ren Fail 2020; 42:912-925. [PMID: 32869703 PMCID: PMC7946011 DOI: 10.1080/0886022x.2020.1811121] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs) are orally active first-in-class new generation drugs for renal anemia. This extensive meta-analysis of randomized controlled trials (RCTs) was designed to provide clear information on the efficacy and safety of HIF-PHIs on anemia in chronic kidney disease (CKD) patients. Searches included PubMed, Web of Science, Ovid MEDLINE, and Cochrane Library database up to October 2019. RCTs of patients with CKD comparing HIF-PHIs with erythropoiesis-stimulating agents (ESAs) or placebo in the treatment of anemia. The primary outcome was hemoglobin change from baseline (Hb CFB); the secondary outcomes included iron-related parameters and the occurrence of each adverse event. 26 trials in 17 articles were included, with a total of 2804 dialysis or patients with CKD. HIF-PHIs treatment produced a significant beneficial effect on Hb CFB compared with the placebo group (MD, 0.69; 95% CI, 0.36 to 1.02). However, this favored effect of HIF-PHIs treatment was not observed in subgroup analysis among trials compared with ESAs (MD, 0.06; 95% CI, -0.20 to 0.31). The significant reduction in hepcidin by HIF-PHIs was observed in all subgroups when compared with the placebo group, whereas this effect was observed only in NDD-CKD patients when compared with ESAs. HIF-PHIs increased the risk of nausea (RR, 2.20; 95% CI, 1.06 to 4.53) and diarrhea (RR, 1.75; 95% CI, 1.06 to 2.92). We conclude that orally given HIF-PHIs are at least as efficacious as ESAs treatment to correct anemia short term in patients with CKD. In addition, HIF-PHIs improved iron metabolism and utilization in patients with CKD.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Qing Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yu-Chen Han
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Min Wu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yan Tu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Le-ting Zhou
- Department of Nephrology, Wuxi People’s Hospital, Wuxi, China
| | - Qing Wei
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Ri-Ning Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Jing-Yuan Cao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
12
|
Yan Z, Xu G. A Novel Choice to Correct Inflammation-Induced Anemia in CKD: Oral Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitor Roxadustat. Front Med (Lausanne) 2020; 7:393. [PMID: 32850902 PMCID: PMC7423837 DOI: 10.3389/fmed.2020.00393] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Anemia is a complication of chronic kidney disease (CKD), primarily due to insufficient secretion of erythropoietin (EPO) by the kidney. Erythropoiesis-stimulating agents (ESAs) are used to treat anemia associated with chronic kidney disease. A poor response to ESAs has been associated with inflammation. Inflammation can affect erythrocytes and its production in many ways, but mainly through the inflammatory cytokine IL-6 to stimulate the synthesis of hepcidin in the liver. Hepcidin causes iron insufficiency, which causes erythrocytes to fail to mature normally. In addition, inhibition of bone marrow erythroid precursor cells by inflammatory cytokines such as IL-1 and TNF-α also affects bone marrow hematopoiesis. These cytokines are also important factors leading to EPO resistance. Roxadustat is a new drug for the treatment of renal anemia. In addition to promoting the production of EPO, clinical trials have shown that it can significantly reduce hepcidin and can potentially be used for the treatment of inflammation-induced anemia in CKD.
Collapse
Affiliation(s)
- Zhipeng Yan
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Nakayama K, Kataoka N. Regulation of Gene Expression under Hypoxic Conditions. Int J Mol Sci 2019; 20:ijms20133278. [PMID: 31277312 PMCID: PMC6651685 DOI: 10.3390/ijms20133278] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Eukaryotes are often subjected to different kinds of stress. In order to adjust to such circumstances, eukaryotes activate stress–response pathways and regulate gene expression. Eukaryotic gene expression consists of many different steps, including transcription, RNA processing, RNA transport, and translation. In this review article, we focus on both transcriptional and post-transcriptional regulations of gene expression under hypoxic conditions. In the first part of the review, transcriptional regulations mediated by various transcription factors including Hypoxia-Inducible Factors (HIFs) are described. In the second part, we present RNA splicing regulations under hypoxic conditions, which are mediated by splicing factors and their kinases. This work summarizes and discusses the emerging studies of those two gene expression machineries under hypoxic conditions.
Collapse
Affiliation(s)
- Koh Nakayama
- Oxygen Biology Laboratory, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan.
| | - Naoyuki Kataoka
- Laboratory of Cell Regulation, Departments of Applied Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
14
|
Jain M, Joharapurkar A, Patel V, Kshirsagar S, Sutariya B, Patel M, Patel H, Patel PR. Pharmacological inhibition of prolyl hydroxylase protects against inflammation-induced anemia via efficient erythropoiesis and hepcidin downregulation. Eur J Pharmacol 2019; 843:113-120. [PMID: 30458168 DOI: 10.1016/j.ejphar.2018.11.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
Abstract
Chronic inflammatory diseases are often associated with anemia. In such conditions, anemia is generally treated with erythropoiesis stimulating agents (ESAs) which are associated with potentially hazardous side effects and poor outcomes. Suboptimal erythropoiesis in chronic inflammation is believed to be caused by elevated hepcidin levels, which causes blockade of iron in tissue stores. In the current work using rodent models of inflammation, an orally available small molecule prolyl hydroxylase inhibitor desidustat was assessed as an effective treatment of anemia of inflammation. In BALB/c mice, a single dose treatment of desidustat attenuated the effect of lipopolysaccharide (LPS) - or turpentine oil-induced inflammation and increased serum erythropoietin (EPO), iron, and reticulocyte count, and decreased serum hepcidin levels. In turpentine oil-induced anemia in BALB/c mice, repeated dose desidustat treatment increased hemoglobin, RBC and hematocrit in a dose related manner. In female Lewis rats, treatment with desidustat markedly reduced PGPS-induced anemia and increased hemoglobin, red blood cell (RBC) and white blood cell (WBC) count, hematocrit, serum iron and spleen iron. These effects of desidustat were associated with reduction in hepcidin (HAMP) expression as well as reduction in serum hepcidin, and increased EPO expression in liver and kidneys. Desidustat treatment caused a significant increase in expression of Duodenal cytochrome B (DcytB), ferroportin (FPN1) and divalent metal transporter 1 (DMT1) in duodenum, and FPN1 and monocyte chemoattractant protein-1 (MCP-1) in liver suggesting an overall influence on iron metabolism. Thus, pharmacological inhibition of prolyl hydroxylase enzymes can be useful in treatment of anemia of inflammation.
Collapse
Affiliation(s)
- Mukul Jain
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH 8 A, Moraiya, Ahmedabad 382210, India.
| | - Amit Joharapurkar
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH 8 A, Moraiya, Ahmedabad 382210, India
| | - Vishal Patel
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH 8 A, Moraiya, Ahmedabad 382210, India
| | - Samadhan Kshirsagar
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH 8 A, Moraiya, Ahmedabad 382210, India
| | - Brijesh Sutariya
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH 8 A, Moraiya, Ahmedabad 382210, India
| | - Maulik Patel
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH 8 A, Moraiya, Ahmedabad 382210, India
| | - Hiren Patel
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH 8 A, Moraiya, Ahmedabad 382210, India
| | - Pankaj R Patel
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH 8 A, Moraiya, Ahmedabad 382210, India
| |
Collapse
|
15
|
Kaplan JM, Sharma N, Dikdan S. Hypoxia-Inducible Factor and Its Role in the Management of Anemia in Chronic Kidney Disease. Int J Mol Sci 2018; 19:ijms19020389. [PMID: 29382128 PMCID: PMC5855611 DOI: 10.3390/ijms19020389] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 12/25/2022] Open
Abstract
Hypoxia-inducible factor (HIF) plays a crucial role in the response to hypoxia at the cellular, tissue, and organism level. New agents under development to pharmacologically manipulate HIF may provide new and exciting possibilities in the treatment of anemia of chronic kidney disease (CKD) as well as in multiple other disease states involving ischemia-reperfusion injury. This article provides an overview of recent studies describing current standards of care for patients with anemia in CKD and associated clinical issues, and those supporting the clinical potential for targeting HIF stabilization with HIF prolyl-hydroxylase inhibitors (HIF-PHI) in these patients. Additionally, articles reporting the clinical potential for HIF-PHIs in 'other' putative therapeutic areas, the tissue and intracellular distribution of HIF- and prolyl-hydroxylase domain (PHD) isoforms, and HIF isoforms targeted by the different PHDs, were identified. There is increasing uncertainty regarding the optimal treatment for anemia of CKD with poorer outcomes associated with treatment to higher hemoglobin targets, and the increasing use of iron and consequent risk of iron imbalance. Attainment and maintenance of more physiologic erythropoietin levels associated with HIF stabilization may improve the management of patients resistant to treatment with erythropoiesis-stimulating agents and improve outcomes at higher hemoglobin targets.
Collapse
Affiliation(s)
- Joshua M Kaplan
- Division of Nephrology and Hypertension, Rutgers-New Jersey Medical School, University Hospital, 185 South Orange Avenue, I512, Newark, NJ 07103, USA.
| | - Neeraj Sharma
- Division of Nephrology and Hypertension, Rutgers-New Jersey Medical School, University Hospital, 185 South Orange Avenue, I512, Newark, NJ 07103, USA.
| | - Sean Dikdan
- Division of Nephrology and Hypertension, Rutgers-New Jersey Medical School, University Hospital, 185 South Orange Avenue, I512, Newark, NJ 07103, USA.
| |
Collapse
|
16
|
Haase VH. HIF-prolyl hydroxylases as therapeutic targets in erythropoiesis and iron metabolism. Hemodial Int 2017; 21 Suppl 1:S110-S124. [PMID: 28449418 DOI: 10.1111/hdi.12567] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A classic response to systemic hypoxia is the increase in red blood cell production. This response is controlled by the prolyl hydroxylase domain/hypoxia-inducible factor (HIF) pathway, which regulates a broad spectrum of cellular functions. The discovery of this pathway as a key regulator of erythropoiesis has led to the development of small molecules that stimulate the production of endogenous erythropoietin and enhance iron metabolism. This review provides a concise overview of the cellular and molecular mechanisms that govern HIF-induced erythropoietic responses and provides an update on clinical experience with compounds that target HIF-prolyl hydroxylases for anemia therapy.
Collapse
Affiliation(s)
- Volker H Haase
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Departments of Cancer Biology and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Veterans Affairs Hospital, Medical and Research Services, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
17
|
Therapeutic targeting of the HIF oxygen-sensing pathway: Lessons learned from clinical studies. Exp Cell Res 2017; 356:160-165. [PMID: 28483447 DOI: 10.1016/j.yexcr.2017.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022]
Abstract
The oxygen-sensitive hypoxia-inducible factor (HIF) pathway plays a central role in the control of erythropoiesis and iron metabolism. The discovery of prolyl hydroxylase domain (PHD) proteins as key regulators of HIF activity has led to the development of inhibitory compounds that are now in phase 3 clinical development for the treatment of renal anemia, a condition that is commonly found in patients with advanced chronic kidney disease. This review provides a concise overview of clinical effects associated with pharmacologic PHD inhibition and was written in memory of Professor Lorenz Poellinger.
Collapse
|
18
|
Slingo M, Cole M, Carr C, Curtis MK, Dodd M, Giles L, Heather LC, Tyler D, Clarke K, Robbins PA. The von Hippel-Lindau Chuvash mutation in mice alters cardiac substrate and high-energy phosphate metabolism. Am J Physiol Heart Circ Physiol 2016; 311:H759-67. [PMID: 27422990 PMCID: PMC5142182 DOI: 10.1152/ajpheart.00912.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 07/12/2016] [Indexed: 02/07/2023]
Abstract
This is the first integrative metabolic and functional study of the effects of modest hypoxia-inducible factor manipulation within the heart. Of particular note, the combination (and correlation) of perfused heart metabolic flux measurements with the new technique of real-time in vivo magnetic resonance spectroscopy using hyperpolarized pyruvate is a novel development. Hypoxia-inducible factor (HIF) appears to function as a global master regulator of cellular and systemic responses to hypoxia. HIF pathway manipulation is of therapeutic interest; however, global systemic upregulation of HIF may have as yet unknown effects on multiple processes. We used a mouse model of Chuvash polycythemia (CP), a rare genetic disorder that modestly increases expression of HIF target genes in normoxia, to understand what these effects might be within the heart. An integrated in and ex vivo approach was employed. Compared with wild-type controls, CP mice had evidence (using in vivo magnetic resonance imaging) of pulmonary hypertension, right ventricular hypertrophy, and increased left ventricular ejection fraction. Glycolytic flux (measured using [3H]glucose) in the isolated contracting perfused CP heart was 1.8-fold higher. Net lactate efflux was 1.5-fold higher. Furthermore, in vivo 13C-magnetic resonance spectroscopy (MRS) of hyperpolarized [13C1]pyruvate revealed a twofold increase in real-time flux through lactate dehydrogenase in the CP hearts and a 1.6-fold increase through pyruvate dehydrogenase. 31P-MRS of perfused CP hearts under increased workload (isoproterenol infusion) demonstrated increased depletion of phosphocreatine relative to ATP. Intriguingly, no changes in cardiac gene expression were detected. In summary, a modest systemic dysregulation of the HIF pathway resulted in clear alterations in cardiac metabolism and energetics. However, in contrast to studies generating high HIF levels within the heart, the CP mice showed neither the predicted changes in gene expression nor any degree of LV impairment. We conclude that the effects of manipulating HIF on the heart are dose dependent.
Collapse
Affiliation(s)
- Mary Slingo
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mark Cole
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Carolyn Carr
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mary K Curtis
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Michael Dodd
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Lucia Giles
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Lisa C Heather
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Damian Tyler
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Kieran Clarke
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter A Robbins
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Abstract
Hepcidin is the master regulator of systemic iron homeostasis, facilitating iron balance by controlling intestinal iron absorption and recycling. Hepcidin levels are suppressed when erythropoiesis is stimulated, for example following acute blood loss, appropriately enhancing cellular iron export to the plasma to support production of new red blood cells. However, persistent increased and ineffective erythropoiesis, for example in thalassemia, results in sustained elevations in iron absorption, which cause iron overload with associated organ toxicities. The ligands, receptors, and canonical pathways by which iron loading and inflammation upregulate hepcidin expression have been largely established. However, although several mechanisms have been proposed, the means by which erythropoiesis causes hepcidin suppression have been unclear. The erythroid-derived hormone erythroferrone appears to be a convincing candidate for the link between increased erythropoiesis and hepcidin suppression. If confirmed to be clinically and physiologically relevant in humans, potentiation or inhibition of erythroferrone activity could be a crucial pharmaceutical strategy.
Collapse
Affiliation(s)
- Sant-Rayn Pasricha
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute for Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom;
| | - Kirsty McHugh
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Hal Drakesmith
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute for Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom;
| |
Collapse
|
20
|
Ramakrishnan SK, Zhang H, Takahashi S, Centofanti B, Periyasamy S, Weisz K, Chen Z, Uhler MD, Rui L, Gonzalez FJ, Shah YM. HIF2α Is an Essential Molecular Brake for Postprandial Hepatic Glucagon Response Independent of Insulin Signaling. Cell Metab 2016; 23:505-16. [PMID: 26853750 PMCID: PMC4785079 DOI: 10.1016/j.cmet.2016.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/25/2015] [Accepted: 01/02/2016] [Indexed: 01/01/2023]
Abstract
Glucagon drives hepatic gluconeogenesis and maintains blood glucose levels during fasting. The mechanism that attenuates glucagon action following refeeding is not understood. The present study demonstrates an increase in perivenous liver hypoxia immediately after feeding, which stabilizes hypoxia-inducible factor 2α (HIF2α) in liver. The transient postprandial increase in hepatic HIF2α attenuates glucagon signaling. Hepatocyte-specific disruption of HIF2α increases postprandial blood glucose and potentiates the glucagon response. Independent of insulin/AKT signaling, activation of hepatic HIF2α resulted in lower blood glucose, improved glucose tolerance, and decreased gluconeogenesis due to blunted hepatic glucagon action. Mechanistically, HIF2α abrogated glucagon-PKA signaling by activating cAMP-phosphodiesterases in a MEK/ERK-dependent manner. Repression of glucagon signaling by HIF2α ameliorated hyperglycemia in streptozotocin-induced diabetes and acute insulin-resistant animal models. This study reveals that HIF2α is essential for the acute postprandial regulation of hepatic glucagon signaling and suggests HIF2α as a potential therapeutic target in the treatment of diabetes.
Collapse
Affiliation(s)
- Sadeesh K Ramakrishnan
- Departments of Molecular & Integrative Physiology, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Huabing Zhang
- Departments of Molecular & Integrative Physiology, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shogo Takahashi
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brook Centofanti
- Departments of Molecular & Integrative Physiology, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sarvesh Periyasamy
- Departments of Molecular & Integrative Physiology, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kevin Weisz
- Departments of Molecular & Integrative Physiology, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zheng Chen
- Departments of Molecular & Integrative Physiology, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael D Uhler
- Department of Biological Chemistry, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Liangyou Rui
- Departments of Molecular & Integrative Physiology, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yatrik M Shah
- Departments of Molecular & Integrative Physiology, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Talbot NP, Smith TG, Lakhal-Littleton S, Gülsever C, Rivera-Ch M, Dorrington KL, Mole DR, Robbins PA. Suppression of plasma hepcidin by venesection during steady-state hypoxia. Blood 2016; 127:1206-7. [PMID: 26773043 DOI: 10.1182/blood-2015-05-647404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Nick P Talbot
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Thomas G Smith
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Samira Lakhal-Littleton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Cafer Gülsever
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Maria Rivera-Ch
- Laboratory of High Altitude Adaptation, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru; and
| | - Keith L Dorrington
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - David R Mole
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, United Kingdom
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Abstract
Improved understanding of the oxygen-dependent regulation of erythropoiesis has provided new insights into the pathogenesis of anaemia associated with renal failure and has led to the development of novel therapeutic agents for its treatment. Hypoxia-inducible factor (HIF)-2 is a key regulator of erythropoiesis and iron metabolism. HIF-2 is activated by hypoxic conditions and controls the production of erythropoietin by renal peritubular interstitial fibroblast-like cells and hepatocytes. In anaemia associated with renal disease, erythropoiesis is suppressed due to inadequate erythropoietin production in the kidney, inflammation and iron deficiency; however, pharmacologic agents that activate the HIF axis could provide a physiologic approach to the treatment of renal anaemia by mimicking hypoxia responses that coordinate erythropoiesis with iron metabolism. This Review discusses the functional inter-relationships between erythropoietin, iron and inflammatory mediators under physiologic conditions and in relation to the pathogenesis of renal anaemia, as well as recent insights into the molecular and cellular basis of erythropoietin production in the kidney. It furthermore provides a detailed overview of current clinical experience with pharmacologic activators of HIF signalling as a novel comprehensive and physiologic approach to the treatment of anaemia.
Collapse
|
23
|
Ravasi G, Pelucchi S, Greni F, Mariani R, Giuliano A, Parati G, Silvestri L, Piperno A. Circulating factors are involved in hypoxia-induced hepcidin suppression. Blood Cells Mol Dis 2014; 53:204-10. [PMID: 25065484 DOI: 10.1016/j.bcmd.2014.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 12/21/2022]
Abstract
Hepcidin transcription is strongly down-regulated under hypoxic conditions, however whether hypoxia inhibits hepcidin directly or indirectly is still unknown. We investigated the time course of hypoxia-mediated hepcidin down-regulation in vivo in healthy volunteers exposed to hypobaric hypoxia at high altitude and, based on the hypothesis that circulating factors are implicated in hepcidin inhibition, we analyzed the effect of sera of these volunteers exposed to normoxia and hypoxia on hepcidin expression in Huh-7 cell lines. Hypoxia led to a significant hepcidin down-regulation in vivo that was almost complete within 72h of exposure and followed erythropoietin induction. This delay in hepcidin down-regulation suggests the existence of soluble factor/s regulating hepcidin production. We then stimulated HuH-7 cells with normoxic and hypoxic sera to analyze the effects of sera on hepcidin regulation. Hypoxic sera had a significant inhibitory effect on hepcidin promoter activity assessed by a luciferase assay, although the amount of such decrease was not as relevant as that observed in vivo. Cellular mRNA analysis showed that a number of volunteers' sera inhibited hepcidin expression, concurrently with ID1 inhibition, suggesting that inhibitory factor(s) may act through the SMAD-pathway.
Collapse
Affiliation(s)
- Giulia Ravasi
- Department of Health Science, University Milano-Bicocca, Monza, Italy
| | - Sara Pelucchi
- Department of Health Science, University Milano-Bicocca, Monza, Italy
| | - Federico Greni
- Department of Health Science, University Milano-Bicocca, Monza, Italy
| | | | - Andrea Giuliano
- Department of Health Science, University Milano-Bicocca, Monza, Italy; Department of Cardiology, Italian Institute for Auxology, Milan, Italy
| | - Gianfranco Parati
- Department of Health Science, University Milano-Bicocca, Monza, Italy; San Gerardo Hospital, Monza, Italy; Department of Cardiology, Italian Institute for Auxology, Milan, Italy
| | - Laura Silvestri
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute and Vita Salute University, Milan, Italy
| | - Alberto Piperno
- Department of Health Science, University Milano-Bicocca, Monza, Italy; San Gerardo Hospital, Monza, Italy; Consortium of Human Molecular Genetics, Monza, Italy.
| |
Collapse
|
24
|
Selvaraju V, Parinandi NL, Adluri RS, Goldman JW, Hussain N, Sanchez JA, Maulik N. Molecular mechanisms of action and therapeutic uses of pharmacological inhibitors of HIF-prolyl 4-hydroxylases for treatment of ischemic diseases. Antioxid Redox Signal 2014; 20:2631-65. [PMID: 23992027 PMCID: PMC4026215 DOI: 10.1089/ars.2013.5186] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 08/06/2013] [Accepted: 09/01/2013] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE In this review, we have discussed the efficacy and effect of small molecules that act as prolyl hydroxylase domain inhibitors (PHDIs). The use of these compounds causes upregulation of the pro-angiogenic factors and hypoxia inducible factor-1α and -2α (HIF-1α and HIF-2α) to enhance angiogenic, glycolytic, erythropoietic, and anti-apoptotic pathways in the treatment of various ischemic diseases responsible for significant morbidity and mortality in humans. RECENT ADVANCES Sprouting of new blood vessels from the existing vasculature and surgical intervention, such as coronary bypass and stent insertion, have been shown to be effective in attenuating ischemia. However, the initial reentry of oxygen leads to the formation of reactive oxygen species that cause oxidative stress and result in ischemia/reperfusion (IR) injury. This apparent "oxygen paradox" must be resolved to combat IR injury. During hypoxia, decreased activity of PHDs initiates the accumulation and activation of HIF-1α, wherein the modulation of both PHD and HIF-1α appears as promising therapeutic targets for the pharmacological treatment of ischemic diseases. CRITICAL ISSUES Research on PHDs and HIFs has shown that these molecules can serve as therapeutic targets for ischemic diseases by modulating glycolysis, erythropoiesis, apoptosis, and angiogenesis. Efforts are underway to identify and synthesize safer small-molecule inhibitors of PHDs that can be administered in vivo as therapy against ischemic diseases. FUTURE DIRECTIONS This review presents a comprehensive and current account of the existing small-molecule PHDIs and their use in the treatment of ischemic diseases with a focus on the molecular mechanisms of therapeutic action in animal models.
Collapse
Affiliation(s)
- Vaithinathan Selvaraju
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Narasimham L. Parinandi
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio
| | - Ram Sudheer Adluri
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Joshua W. Goldman
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Naveed Hussain
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, Connecticut
- Division of Neonatal Medicine, Connecticut Children's Medical Center, Hartford, Connecticut
| | - Juan A. Sanchez
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
25
|
Shah YM, Xie L. Hypoxia-inducible factors link iron homeostasis and erythropoiesis. Gastroenterology 2014; 146:630-42. [PMID: 24389303 PMCID: PMC3943938 DOI: 10.1053/j.gastro.2013.12.031] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 12/15/2022]
Abstract
Iron is required for efficient oxygen transport, and hypoxia signaling links erythropoiesis with iron homeostasis. Hypoxia induces a highly conserved signaling pathway in cells under conditions of low levels of O2. One component of this pathway, hypoxia-inducible factor (HIF), is a transcription factor that is highly active in hypoxic cells. The first HIF target gene characterized was EPO, which encodes erythropoietin-a glycoprotein hormone that controls erythropoiesis. In the past decade, there have been fundamental advances in our understanding of how hypoxia regulates iron levels to support erythropoiesis and maintain systemic iron homeostasis. We review the cell type-specific effects of hypoxia and HIFs in adaptive response to changes in oxygen and iron availability as well as potential uses of HIF modulators for patients with iron-related disorders.
Collapse
Affiliation(s)
- Yatrik M. Shah
- Department of Molecular & Integrative Physiology, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, To whom correspondence should be addressed. Tel: +1 734 6150567; Fax: +1 734 9368813;
| | - Liwei Xie
- Department of Molecular & Integrative Physiology, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
26
|
Mojzikova R, Koralkova P, Holub D, Zidova Z, Pospisilova D, Cermak J, Striezencova Laluhova Z, Indrak K, Sukova M, Partschova M, Kucerova J, Horvathova M, Divoky V. Iron status in patients with pyruvate kinase deficiency: neonatal hyperferritinaemia associated with a novel frameshift deletion in the PKLR gene (p.Arg518fs), and low hepcidin to ferritin ratios. Br J Haematol 2014; 165:556-63. [PMID: 24533562 DOI: 10.1111/bjh.12779] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/18/2013] [Indexed: 01/19/2023]
Abstract
Pyruvate kinase (PK) deficiency is an iron-loading anaemia characterized by chronic haemolysis, ineffective erythropoiesis and a requirement for blood transfusion in most cases. We studied 11 patients from 10 unrelated families and found nine different disease-causing PKLR mutations. Two of these mutations - the point mutation c.878A>T (p.Asp293Val) and the frameshift deletion c.1553delG (p.(Arg518Leufs*12)) - have not been previously described in the literature. This frameshift deletion was associated with an unusually severe phenotype involving neonatal hyperferritinaemia that is not typical of PK deficiency. No disease-causing mutations in genes associated with haemochromatosis could be found. Inappropriately low levels of hepcidin with respect to iron loading were detected in all PK-deficient patients with increased ferritin, confirming the predominant effect of accelerated erythropoiesis on hepcidin production. Although the levels of a putative hepcidin suppressor, growth differentiation factor-15, were increased in PK-deficient patients, no negative correlation with hepcidin was found. This result indicates the existence of another as-yet unidentified erythroid regulator of hepcidin synthesis in PK deficiency.
Collapse
Affiliation(s)
- Renata Mojzikova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Iron is an essential nutrient that is tightly regulated. A principal function of the liver is the regulation of iron homeostasis. The liver senses changes in systemic iron requirements and can regulate iron concentrations in a robust and rapid manner. The last 10 years have led to the discovery of several regulatory mechanisms in the liver that control the production of iron regulatory genes, storage capacity, and iron mobilization. Dysregulation of these functions leads to an imbalance of iron, which is the primary cause of iron-related disorders. Anemia and iron overload are two of the most prevalent disorders worldwide and affect over a billion people. Several mutations in liver-derived genes have been identified, demonstrating the central role of the liver in iron homeostasis. During conditions of excess iron, the liver increases iron storage and protects other tissues, namely, the heart and pancreas from iron-induced cellular damage. However, a chronic increase in liver iron stores results in excess reactive oxygen species production and liver injury. Excess liver iron is one of the major mechanisms leading to increased steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Erik R Anderson
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The circulating peptide hepcidin modulates systemic iron balance by limiting the absorption of dietary iron and the release of iron from macrophage stores. Recent studies conducted in humans, animal models, and tissue culture systems have enhanced our understanding of the molecular mechanisms by which hepcidin levels are altered in response to iron stores, inflammation, and erythropoietic activity. RECENT FINDINGS The bone morphogenetic protein (BMP) type I receptors ALK2 and ALK3 play key, nonredundant roles in mediating hepcidin synthesis through the BMP signaling pathway. Actions of the hereditary hemochromatosis proteins HFE and transferrin receptor 2 may intersect with the BMP pathway. Hepcidin induction in response to inflammation requires cooperative BMP signaling. A variety of innate immune and infectious stimuli induce hepcidin expression. The hypoxia inducible factor pathway appears to suppress hepcidin indirectly through the capacity of erythropoietin to stimulate erythropoiesis. SUMMARY Study of the molecular mechanisms underlying the regulation of hepcidin synthesis has revealed complex biology. Improved understanding of the signaling pathways involved in hepcidin regulation may contribute to improved therapeutic outcomes for patients with genetic and acquired disorders that impact systemic iron balance.
Collapse
|
29
|
IRP1 regulates erythropoiesis and systemic iron homeostasis by controlling HIF2α mRNA translation. Blood 2013; 122:1658-68. [PMID: 23777768 DOI: 10.1182/blood-2013-03-492454] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hypoxia inducible factor 2α (HIF2α) transcriptionally activates several genes in response to hypoxia. Under normoxic conditions, it undergoes oxygen-dependent degradation by the prolyl hydroxylase (PHD)/von Hippel-Lindau (VHL) system. The presence of an iron-responsive element (IRE) within the 5' untranslated region of HIF2α mRNA suggests a further iron- and oxygen-dependent mechanism for translational regulation of its expression via iron regulatory proteins 1 and 2 (IRP1 and IRP2, respectively). We show here that the disruption of mouse IRP1, but not IRP2, leads to profound HIF2α-dependent abnormalities in erythropoiesis and systemic iron metabolism. Thus, 4- to 6-week-old IRP1(-/-) mice exhibit splenomegaly and extramedullary hematopoiesis, which is corrected in older animals. These erythropoietic abnormalities are caused by translational de-repression of HIF2α mRNA and subsequent accumulation of HIF2α, which induces expression of erythropoietin (Epo). Increased levels of circulating Epo lead to reticulocytosis, polycythemia, and suppression of hepatic hepcidin mRNA. This in turn promotes hyperferremia and iron depletion in splenic macrophages due to unrestricted expression of ferroportin. Our data demonstrate that IRP1 is the principal regulator of HIF2α mRNA translation in vivo and provide evidence that translational control of HIF2α expression dominates over PHD/VHL-mediated regulation of HIF2α stability in juvenile IRP1(-/-) mice.
Collapse
|
30
|
Guo W, Bachman E, Li M, Roy CN, Blusztajn J, Wong S, Chan SY, Serra C, Jasuja R, Travison TG, Muckenthaler MU, Nemeth E, Bhasin S. Testosterone administration inhibits hepcidin transcription and is associated with increased iron incorporation into red blood cells. Aging Cell 2013; 12:280-91. [PMID: 23399021 PMCID: PMC3602280 DOI: 10.1111/acel.12052] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2013] [Indexed: 01/01/2023] Open
Abstract
Testosterone administration increases hemoglobin levels and has been used to treat anemia of chronic disease. Erythrocytosis is the most frequent adverse event associated with testosterone therapy of hypogonadal men, especially older men. However, the mechanisms by which testosterone increases hemoglobin remain unknown. Testosterone administration in male and female mice was associated with a greater increase in hemoglobin and hematocrit, reticulocyte count, reticulocyte hemoglobin concentration, and serum iron and transferrin saturation than placebo. Testosterone downregulated hepatic hepcidin mRNA expression, upregulated renal erythropoietin mRNA expression, and increased erythropoietin levels. Testosterone-induced suppression of hepcidin expression was independent of its effects on erythropoietin or hypoxia-sensing mechanisms. Transgenic mice with liver-specific constitutive hepcidin over-expression failed to exhibit the expected increase in hemoglobin in response to testosterone administration. Testosterone upregulated splenic ferroportin expression and reduced iron retention in spleen. After intravenous administration of transferrin-bound (58) Fe, the amount of (58) Fe incorporated into red blood cells was significantly greater in testosterone-treated mice than in placebo-treated mice. Serum from testosterone-treated mice stimulated hemoglobin synthesis in K562 erythroleukemia cells more than that from vehicle-treated mice. Testosterone administration promoted the association of androgen receptor (AR) with Smad1 and Smad4 to reduce their binding to bone morphogenetic protein (BMP)-response elements in hepcidin promoter in the liver. Ectopic expression of AR in hepatocytes suppressed hepcidin transcription; this effect was blocked dose-dependently by AR antagonist flutamide. Testosterone did not affect hepcidin mRNA stability. In conclusion, testosterone inhibits hepcidin transcription through its interaction with BMP/Smad signaling. Testosterone administration is associated with increased iron incorporation into red blood cells.
Collapse
Affiliation(s)
- Wen Guo
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston Claude D. Pepper Older Americans Independence Center Boston Medical Center, Boston, MA 02118, USA
| | - Eric Bachman
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston Claude D. Pepper Older Americans Independence Center Boston Medical Center, Boston, MA 02118, USA
| | - Michelle Li
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston Claude D. Pepper Older Americans Independence Center Boston Medical Center, Boston, MA 02118, USA
| | - Cindy N. Roy
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Room 2A.44, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA,
| | - Jerzy Blusztajn
- Woods Hole Oceanographic Institution, 266 Woods Hole Rd. MS# 25, Woods Hole, MA 02543-1050, USA,
| | - Siu Wong
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston Claude D. Pepper Older Americans Independence Center Boston Medical Center, Boston, MA 02118, USA
| | - Stephen Y. Chan
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Carlo Serra
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston Claude D. Pepper Older Americans Independence Center Boston Medical Center, Boston, MA 02118, USA
| | - Ravi Jasuja
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston Claude D. Pepper Older Americans Independence Center Boston Medical Center, Boston, MA 02118, USA
| | - Thomas G. Travison
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston Claude D. Pepper Older Americans Independence Center Boston Medical Center, Boston, MA 02118, USA
| | - Martina U. Muckenthaler
- University of Heidelberg, Department of Molecular Medicine, Otto-Meyerhof-Zentrum, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany,
| | - Elizabeta Nemeth
- Center for Iron Disorders, Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, CHS 52-239, 10833 Le Conte Ave, Los Angeles, CA 90095-1690, USA,
| | - Shalender Bhasin
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston Claude D. Pepper Older Americans Independence Center Boston Medical Center, Boston, MA 02118, USA
| |
Collapse
|
31
|
Yuki KE, Eva MM, Richer E, Chung D, Paquet M, Cellier M, Canonne-Hergaux F, Vaulont S, Vidal SM, Malo D. Suppression of hepcidin expression and iron overload mediate Salmonella susceptibility in ankyrin 1 ENU-induced mutant. PLoS One 2013; 8:e55331. [PMID: 23390527 PMCID: PMC3563626 DOI: 10.1371/journal.pone.0055331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/20/2012] [Indexed: 01/25/2023] Open
Abstract
Salmonella, a ubiquitous Gram-negative intracellular bacterium, is a food borne pathogen that infects a broad range of hosts. Infection with Salmonella Typhimurium in mice is a broadly recognized experimental model resembling typhoid fever in humans. Using a N-ethyl-N-nitrosurea (ENU) mutagenesis recessive screen, we report the identification of Ity16 (Immunity to Typhimurium locus 16), a locus responsible for increased susceptibility to infection. The position of Ity16 was refined on chromosome 8 and a nonsense mutation was identified in the ankyrin 1 (Ank1) gene. ANK1 plays an important role in the formation and stabilization of the red cell cytoskeleton. The Ank1Ity16/Ity16 mutation causes severe hemolytic anemia in uninfected mice resulting in splenomegaly, hyperbilirubinemia, jaundice, extramedullary erythropoiesis and iron overload in liver and kidneys. Ank1Ity16/Ity16 mutant mice demonstrated low levels of hepcidin (Hamp) expression and significant increases in the expression of the growth differentiation factor 15 (Gdf15), erythropoietin (Epo) and heme oxygenase 1 (Hmox1) exacerbating extramedullary erythropoiesis, tissue iron deposition and splenomegaly. As the infection progresses in Ank1Ity16/Ity16, the anemia worsens and bacterial load were high in liver and kidneys compared to wild type mice. Heterozygous Ank1+/Ity16 mice were also more susceptible to Salmonella infection although to a lesser extent than Ank1Ity16/Ity16 and they did not inherently present anemia and splenomegaly. During infection, iron accumulated in the kidneys of Ank1+/Ity16 mice where bacterial loads were high compared to littermate controls. The critical role of HAMP in the host response to Salmonella infection was validated by showing increased susceptibility to infection in Hamp-deficient mice and significant survival benefits in Ank1+/Ity16 heterozygous mice treated with HAMP peptide. This study illustrates that the regulation of Hamp and iron balance are crucial in the host response to Salmonella infection in Ank1 mutants.
Collapse
Affiliation(s)
- Kyoko E. Yuki
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
- Complex Traits Group of the McGill Life Sciences Complex, McGill University, Montréal, Quebec, Canada
| | - Megan M. Eva
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
- Complex Traits Group of the McGill Life Sciences Complex, McGill University, Montréal, Quebec, Canada
| | - Etienne Richer
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
- Complex Traits Group of the McGill Life Sciences Complex, McGill University, Montréal, Quebec, Canada
| | - Dudley Chung
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Marilène Paquet
- Comparative Medicine and Animal Resources Centre, McGill University, Montréal, Quebec, Canada
| | | | - François Canonne-Hergaux
- INSERM U1043-CPTP, Toulouse, France
- CNRS, U5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | | | - Silvia M. Vidal
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
- Complex Traits Group of the McGill Life Sciences Complex, McGill University, Montréal, Quebec, Canada
| | - Danielle Malo
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
- Department of Medicine, McGill University, Montréal, Quebec, Canada
- Complex Traits Group of the McGill Life Sciences Complex, McGill University, Montréal, Quebec, Canada
- * E-mail:
| |
Collapse
|
32
|
Abstract
A classic physiologic response to systemic hypoxia is the increase in red blood cell production. Hypoxia-inducible factors (HIFs) orchestrate this response by inducing cell-type specific gene expression changes that result in increased erythropoietin (EPO) production in kidney and liver, in enhanced iron uptake and utilization and in adjustments of the bone marrow microenvironment that facilitate erythroid progenitor maturation and proliferation. In particular HIF-2 has emerged as the transcription factor that regulates EPO synthesis in the kidney and liver and plays a critical role in the regulation of intestinal iron uptake. Its key function in the hypoxic regulation of erythropoiesis is underscored by genetic studies in human populations that live at high-altitude and by mutational analysis of patients with familial erythrocytosis. This review provides a perspective on recent insights into HIF-controlled erythropoiesis and iron metabolism, and examines cell types that have EPO-producing capability. Furthermore, the review summarizes clinical syndromes associated with mutations in the O(2)-sensing pathway and the genetic changes that occur in high altitude natives. The therapeutic potential of pharmacologic HIF activation for the treatment of anemia is discussed.
Collapse
Affiliation(s)
- Volker H Haase
- Department of Medicine, Vanderbilt School of Medicine, Nashville, TN, USA.
| |
Collapse
|
33
|
Liu Q, Davidoff O, Niss K, Haase VH. Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis. J Clin Invest 2012; 122:4635-44. [PMID: 23114598 DOI: 10.1172/jci63924] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 09/06/2012] [Indexed: 02/06/2023] Open
Abstract
Iron demand in bone marrow increases when erythropoiesis is stimulated by hypoxia via increased erythropoietin (EPO) synthesis in kidney and liver. Hepcidin, a small polypeptide produced by hepatocytes, plays a central role in regulating iron uptake by promoting internalization and degradation of ferroportin, the only known cellular iron exporter. Hypoxia suppresses hepcidin, thereby enhancing intestinal iron uptake and release from internal stores. While HIF, a central mediator of cellular adaptation to hypoxia, directly regulates renal and hepatic EPO synthesis under hypoxia, the molecular basis of hypoxia/HIF-mediated hepcidin suppression in the liver remains unclear. Here, we used a genetic approach to disengage HIF activation from EPO synthesis and found that HIF-mediated suppression of the hepcidin gene (Hamp1) required EPO induction. EPO induction was associated with increased erythropoietic activity and elevated serum levels of growth differentiation factor 15. When erythropoiesis was inhibited pharmacologically, Hamp1 was no longer suppressed despite profound elevations in serum EPO, indicating that EPO by itself is not directly involved in Hamp1 regulation. Taken together, we provide in vivo evidence that Hamp1 suppression by the HIF pathway occurs indirectly through stimulation of EPO-induced erythropoiesis.
Collapse
Affiliation(s)
- Qingdu Liu
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
34
|
The hypoxia-inducible factor-C/EBPα axis controls ethanol-mediated hepcidin repression. Mol Cell Biol 2012; 32:4068-77. [PMID: 22869521 DOI: 10.1128/mcb.00723-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepcidin is a liver-derived peptide hormone and the master regulator of systemic iron homeostasis. Decreased hepcidin expression is a common feature in alcoholic liver disease (ALD) and in mouse models of ethanol loading. Dysregulation of hepcidin signaling in ALD leads to liver iron deposition, which is a major contributing factor to liver injury. The mechanism by which hepcidin is regulated following ethanol treatment is unclear. An increase in liver hypoxia was observed in an acute ethanol-induced liver injury model. The hypoxic response is controlled by a family of hypoxia-inducible transcription factors (HIFs), which are composed of an oxygen-regulated alpha subunit (HIFα) and a constitutively present beta subunit, aryl hydrocarbon receptor nuclear translocator (HIFβ/Arnt). Disruption of liver HIF function reversed the repression of hepcidin following ethanol loading. Mouse models of liver HIF overexpression demonstrated that both HIF-1α and HIF-2α contribute to hepcidin repression in vivo. Ethanol treatment led to a decrease in CCAAT-enhancer-binding protein alpha (C/EBPα) protein expression in a HIF-dependent manner. Importantly, adenoviral rescue of C/EBPα in vivo ablated the hepcidin repression in response to ethanol treatment or HIF overexpression. These data provide novel insight into the regulation of hepcidin by hypoxia and indicate that targeting HIFs in the liver could be therapeutic in ALD.
Collapse
|
35
|
Abstract
Anemia linked to a relative deficiency of renal erythropoietin production is a significant cause of morbidity and medical expenditures in the developed world. Recombinant erythropoietin is expensive and has been linked to excess cardiovascular events. Moreover, some patients become refractory to erythropoietin because of increased production of factors such as hepcidin. During fetal life, the liver, rather than the kidney, is the major source of erythropoietin. In the present study, we show that it is feasible to reactivate hepatic erythropoietin production and suppress hepcidin levels using systemically delivered siRNAs targeting the EglN prolyl hydroxylases specifically in the liver, leading to improved RBC production in models of anemia caused by either renal insufficiency or chronic inflammation with enhanced hepcidin production.
Collapse
|
36
|
Horvathova M, Kapralova K, Zidova Z, Dolezal D, Pospisilova D, Divoky V. Erythropoietin-driven signaling ameliorates the survival defect of DMT1-mutant erythroid progenitors and erythroblasts. Haematologica 2012; 97:1480-8. [PMID: 22580996 DOI: 10.3324/haematol.2011.059550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hypochromic microcytic anemia associated with ineffective erythropoiesis caused by recessive mutations in divalent metal transporter 1 (DMT1) can be improved with high-dose erythropoietin supplementation. The aim of this study was to characterize and compare erythropoiesis in samples from a DMT1-mutant patient before and after treatment with erythropoietin, as well as in a mouse model with a DMT1 mutation, the mk/mk mice. DESIGN AND METHODS Colony assays were used to compare the in vitro growth of pre-treatment and post-treatment erythroid progenitors in a DMT1-mutant patient. To enable a comparison with human data, high doses of erythropoietin were administered to mk/mk mice. The apoptotic status of erythroblasts, the expression of anti-apoptotic proteins, and the key components of the bone marrow-hepcidin axis were evaluated. RESULTS Erythropoietin therapy in vivo or the addition of a broad-spectrum caspase inhibitor in vitro significantly improved the growth of human DMT1-mutant erythroid progenitors. A decreased number of apoptotic erythroblasts was detected in the patient's bone marrow after erythropoietin treatment. In mk/mk mice, erythropoietin administration increased activation of signal transducer and activator of transcription 5 (STAT5) and reduced apoptosis in bone marrow and spleen erythroblasts. mk/mk mice propagated on the 129S6/SvEvTac background resembled DMT1-mutant patients in having increased plasma iron but differed by having functional iron deficiency after erythropoietin administration. Co-regulation of hepcidin and growth differentiation factor 15 (GDF15) levels was observed in mk/mk mice but not in the patient. CONCLUSIONS Erythropoietin inhibits apoptosis of DMT1-mutant erythroid progenitors and differentiating erythroblasts. Ineffective erythropoiesis associated with defective erythroid iron utilization due to DMT1 mutations has specific biological and clinical features.
Collapse
Affiliation(s)
- Monika Horvathova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
37
|
Mastrogiannaki M, Matak P, Mathieu JRR, Delga S, Mayeux P, Vaulont S, Peyssonnaux C. Hepatic hypoxia-inducible factor-2 down-regulates hepcidin expression in mice through an erythropoietin-mediated increase in erythropoiesis. Haematologica 2011; 97:827-34. [PMID: 22207682 DOI: 10.3324/haematol.2011.056119] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Iron metabolism, regulated by the iron hormone hepcidin, and oxygen homeostasis, dependent on hypoxia-inducible factors, are strongly interconnected. We previously reported that in mice in which both liver hypoxia-inducible factors-1 and -2 are stabilized (the hepatocyte von Hippel-Lindau knockout mouse model), hepcidin expression was strongly repressed and we hypothesized that hypoxia-inducible factor-2 could be the major regulatory component contributing to the hepcidin down-regulation. DESIGN AND METHODS We generated and analyzed hepatocyte-specific knockout mice harboring either hypoxia-inducible factor-2α deficiency (Hif2a knockout) or constitutive hypoxia-inducible factor-2α stabilization (Vhlh/Hif1a knockout) and ex vivo systems (primary hepatocyte cultures). Hif2a knockout mice were fed an iron-deficient diet for 2 months and Vhlh/Hif1a knockout mice were treated with neutralizing erythropoietin antibody. RESULTS We demonstrated that hypoxia-inducible factor-2 is dispensable in hepcidin gene regulation in the context of an adaptive response to iron-deficiency anemia. However, its overexpression in the double Vhlh/Hif1a hepatocyte-specific knockout mice indirectly down-regulates hepcidin expression through increased erythropoiesis and erythropoietin production. Experiments in primary hepatocytes confirmed the non-autonomous role of hypoxia-inducible factor-2 in hepcidin regulation. CONCLUSIONS While our results indicate that hypoxia-inducible factor-2 is not directly involved in hepcidin repression, they highlight the contribution of hepatic hypoxia-inducible factor-2 to the repression of hepcidin through erythropoietin-mediated increased erythropoiesis, a result of potential clinical interest.
Collapse
|