1
|
Fu H, Zhao Y, Fu H, Liu M, Zhang C, Yang L, Huang H, Shi J, Yu J. Blinatumomab added to conditioning regimen of allogeneic hematopoietic stem cell transplantation for adult MRD -positive acute lymphoblastic leukemia: a single-center case series. Hematology 2025; 30:2439605. [PMID: 39780551 DOI: 10.1080/16078454.2024.2439605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (Allo-HSCT) remains the mainstay of treatment for adults with high-risk acute lymphoblastic leukemia (ALL). Due to the crucial role of measurable residual disease (MRD) before Allo-HSCT in predicting relapse and the promising anti-leukemia effect of blinatumomab, we documented a short-course, low-dose conditioning regimen incorporating blinatumomab for Allo-HSCT in three ALL patients with positive MRD. Following the administration of the blinatumomab-containing conditioning regimen, all patients attained complete remission (CR) with negative MRD status, and no severe adverse events were observed. After a 2-year follow-up, 2/3 of patients remained disease-free and attained long-term survival following transplantation. These cases indicated a short-term blinatumomab conditioning regimen may effectively prolong patient survival, improve prognosis, and offer a safe and cost-effective treatment for high-risk ALL patients with positive MRD. The addition of blinatumomab to the conditioning regimen of Allo-HSCT is feasible for high-risk ALL patients with positive MRD.
Collapse
Affiliation(s)
- Hui Fu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Huarui Fu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Meng Liu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Congxiao Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Li Yang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Jimin Shi
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Jian Yu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Annesley C, Lamble A, Summers C, Pulsipher MA, Wayne AS, Rivers J, Huang W, Wilson A, Wu QV, Seidel K, Mgebroff S, Brown C, Lindgren C, Park JR, Jensen M, Gardner R. Feasibility and favorable responses after investigational CAR T-cell therapy for relapsed and refractory infant ALL. Blood Adv 2025; 9:2068-2078. [PMID: 39133891 PMCID: PMC12052675 DOI: 10.1182/bloodadvances.2024012638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/12/2024] [Indexed: 04/24/2025] Open
Abstract
ABSTRACT Infants with B-cell acute lymphoblastic leukemia (B-ALL) continue to have significantly worse outcomes compared with older children with B-ALL, and those with relapsed or refractory (R/R) infant ALL have especially dismal outcomes with conventional treatment. CD19-targeting chimeric antigen receptor (CAR) T-cell therapy has demonstrated remarkable success in the treatment of R/R childhood B-ALL, although the majority of reports have been in noninfant patients. Barriers to the successful implementation of CAR T-cell therapy in infant B-ALL include challenges related to apheresis, product manufacturing, and disease-specific considerations such as lineage switch. We describe our experience using 2 experimental CD19 CAR T-cell products, SCRI-CAR19 or SCRI-CAR19x22, for 19 patients with R/R infant B-ALL enrolled in 3 clinical trials. CAR T-cell products were successfully manufactured in 18 of 19 (94.7%) patients, with a median age of 22.5 months at enrollment (range, 14.5-40.1). Of 17 (94.1%) treated patients, 16 achieved a complete remission without detectable minimal residual disease. The 1-year leukemia-free survival was 75%, and 1-year overall survival was 76.5%, with a median follow-up time of 35.8 months (range, 1.7-83.6). Cytokine release syndrome (CRS) occurred in 14 of 17 (82.4%) patients, with only 1 patient experiencing grade 3 CRS. Neurotoxicity occurred in 2 of 17 (11.8%) patients with all events grade ≤2. With the successful early clinical experience of CAR T-cell therapy in this population, more systematic evaluation specific to infant ALL is warranted.
Collapse
Affiliation(s)
- Colleen Annesley
- Department of Pediatrics, University of Washington, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
- Seattle Children’s Therapeutics, Seattle, WA
| | - Adam Lamble
- Department of Pediatrics, University of Washington, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | - Corinne Summers
- Department of Pediatrics, University of Washington, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
- Seattle Children’s Therapeutics, Seattle, WA
| | - Michael A. Pulsipher
- Division of Hematology and Oncology, Intermountain Primary Children’s Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT
| | - Alan S. Wayne
- Division of Hematology-Oncology, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Julie Rivers
- Department of Pediatrics, University of Washington, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | | | | | - Qian Vicky Wu
- Divisions of Clinical Research and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | | | | | | - Julie R. Park
- Department of Pediatrics, University of Washington, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
- Seattle Children’s Therapeutics, Seattle, WA
| | | | - Rebecca Gardner
- Department of Pediatrics, University of Washington, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
- Seattle Children’s Therapeutics, Seattle, WA
| |
Collapse
|
3
|
Prockop S, Wachter F. The current landscape: Allogeneic hematopoietic stem cell transplant for acute lymphoblastic leukemia. Best Pract Res Clin Haematol 2023; 36:101485. [PMID: 37611999 DOI: 10.1016/j.beha.2023.101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 08/25/2023]
Abstract
One of the consistent features in development of hematopoietic stem cell transplant (HCT) for Acute Lymphoblastic Leukemia (ALL) is the rapidity with which discoveries in the laboratory are translated into innovations in clinical care. Just a few years after murine studies demonstrated that rescue from radiation induced marrow failure is mediated by cellular not humoral factors, E. Donnall Thomas reported on the transfer of bone marrow cells into irradiated leukemia patients. This was followed quickly by the first descriptions of Graft versus Leukemia (GvL) effect and Graft versus Host Disease (GvHD). Despite the pivotal nature of these findings, early human transplants were uniformly unsuccessful and identified the challenges that continue to thwart transplanters today - leukemic relapse, regimen related toxicity, and GvHD. While originally only an option for young, fit patients with a matched family donor, expansion of the donor pool to include unrelated donors, umbilical cord blood units, and more recently the growing use of haploidentical donors have all made transplant a more accessible therapy for patients with ALL. Novel agents for conditioning, prevention and treatment of GvHD have improved outcomes and investigators continue to develop novel treatment strategies that balance regimen related toxicity with disease control. Our evolving understanding of how to prevent and treat GvHD and how to prevent relapse are incorporated into novel clinical trials that are expected to further improve outcomes. Here we review current considerations and future directions for both adult and pediatric patients undergoing HCT for ALL, including indication for transplant, donor selection, cytoreductive regimens, and outcomes.
Collapse
Affiliation(s)
- Susan Prockop
- Pediatric Stem Cell Transplant Program, DFCI/BCH Center for Cancer and Blood Disorders, Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States.
| | - Franziska Wachter
- Pediatric Stem Cell Transplant Program, DFCI/BCH Center for Cancer and Blood Disorders, Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States.
| |
Collapse
|
4
|
Choi JK, Mead PE. Laboratory Aspects of Minimal / Measurable Residual Disease Testing in B-Lymphoblastic Leukemia. Clin Lab Med 2023; 43:115-125. [PMID: 36764804 DOI: 10.1016/j.cll.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Minimal residual disease detection provides critical prognostic predictor of treatment outcome and is the standard of care for B lymphoblastic leukemia. Flow cytometry-based minimal residual disease detection is the most common test modality and has high sensitivity (0.01%) and a rapid turnaround time (24 hours). This article details the leukemia associated immunophenotype analysis approach for flow cytometry-based minimal residual disease detection used at St. Jude Children's Research Hospital and importance of using guide gates and back-gating.
Collapse
Affiliation(s)
- John Kim Choi
- Division of Laboratory Medicine, The University of Alabama at Birmingham, WP P230N, 619 19th Street South, Birmingham, AL 35249-7331, USA.
| | - Paul E Mead
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, D4026G, Mailstop 342, Memphis, TN 38105, USA
| |
Collapse
|
5
|
Ramos Elbal E, Fuster JL, Campillo JA, Galera AM, Cortés MB, Llinares ME, Jiménez I, Plaza M, Banaclocha HM, Galián JA, Blanquer Blanquer M, Martínez Sánchez MV, Muro M, Minguela A. Measurable residual disease study through three different methods can anticipate relapse and guide pre-emptive therapy in childhood acute myeloid leukemia. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1446-1454. [PMID: 36598635 DOI: 10.1007/s12094-022-03042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Although outcomes of children with acute myeloid leukemia (AML) have improved over the last decades, around one-third of patients relapse. Measurable (or minimal) residual disease (MRD) monitoring may guide therapy adjustments or pre-emptive treatments before overt hematological relapse. METHODS In this study, we review 297 bone marrow samples from 20 real-life pediatric AML patients using three MRD monitoring methods: multiparametric flow cytometry (MFC), fluorescent in situ hybridization (FISH) and polymerase chain reaction (PCR). RESULTS Patients showed a 3-year overall survival of 73% and a 3-year event-free survival of 68%. Global relapse rate was of 25%. All relapses were preceded by the reappearance of MRD detection by: (1) MFC (p = 0.001), (2) PCR and/or FISH in patients with an identifiable chromosomal translocation (p = 0.03) and/or (3) one log increase of Wilms tumor gene 1 (WT1) expression in two consecutive samples (p = 0.02). The median times from MRD detection to relapse were 26, 111, and 140 days for MFC, specific PCR and FISH, and a one log increment of WT1, respectively. CONCLUSIONS MFC, FISH and PCR are complementary methods that can anticipate relapse of childhood AML by weeks to several months. However, in our series, pre-emptive therapies were not able to prevent disease progression. Therefore, more sensitive MRD monitoring methods that further anticipate relapse and more effective pre-emptive therapies are needed.
Collapse
Affiliation(s)
- Eduardo Ramos Elbal
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - José Luis Fuster
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - José Antonio Campillo
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Ana María Galera
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Mar Bermúdez Cortés
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - María Esther Llinares
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Irene Jiménez
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Mercedes Plaza
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Helios Martínez Banaclocha
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - José Antonio Galián
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Miguel Blanquer Blanquer
- Haematology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - María Victoria Martínez Sánchez
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Manuel Muro
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Alfredo Minguela
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain.
| |
Collapse
|
6
|
Tecchio C, Russignan A, Krampera M. Immunophenotypic measurable residual disease monitoring in adult acute lymphoblastic leukemia patients undergoing allogeneic hematopoietic stem cell transplantation. Front Oncol 2023; 13:1047554. [PMID: 36910638 PMCID: PMC9992536 DOI: 10.3389/fonc.2023.1047554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/11/2023] [Indexed: 02/24/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) offers a survival benefit to adult patients affected by acute lymphoblastic leukemia (ALL). However, to avoid an overt disease relapse, patients with pre or post transplant persistence or occurrence of measurable residual disease (MRD) may require cellular or pharmacological interventions with eventual side effects. While the significance of multiparametric flow cytometry (MFC) in the guidance of ALL treatment in both adult and pediatric patients is undebated, fewer data are available regarding the impact of MRD monitoring, as assessed by MFC analysis, in the allo-HSCT settings. Aim of this article is to summarize and discuss currently available information on the role of MFC detection of MRD in adult ALL patients undergoing allo-HSCT. The significance of MFC-based MRD according to sensitivity level, timing, and in relation to molecular techniques of MRD and chimerism assessment will be also discussed.
Collapse
Affiliation(s)
- Cristina Tecchio
- Department of Medicine, Section of Hematology and Bone Marrow Transplant Unit, University of Verona, Verona, Italy
| | - Anna Russignan
- Department of Medicine, Section of Hematology and Bone Marrow Transplant Unit, University of Verona, Verona, Italy
| | - Mauro Krampera
- Department of Medicine, Section of Hematology and Bone Marrow Transplant Unit, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Yang G, Wang X, Huang S, Huang R, Wei J, Wang X, Zhang X. Generalist in allogeneic hematopoietic stem cell transplantation for MDS or AML: Epigenetic therapy. Front Immunol 2022; 13:1034438. [PMID: 36268012 PMCID: PMC9577610 DOI: 10.3389/fimmu.2022.1034438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains the only curative treatment for patients with myeloid malignancies such as myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). However, relapse and graft-versus-host disease (GvHD) still affect the survival of patients who receive allo-HSCT, and more appropriate therapeutic strategies should be applied at all stages of transplantation to prevent these adverse events. The use of epigenetics agents, such as hypomethylating agents (HMAs), has been explored to decrease the risk of relapse by epigenetic modulation, which is especially effective among AML patients with poor mutations in epigenetic regulators. Furthermore, epigenetic agents have also been regarded as prophylactic methods for GvHD management without abrogating graft versus leukemia (GvL) effects. Therefore, the combination of epigenetic therapy and HSCT may optimize the transplantation process and prevent treatment failure. Existing studies have investigated the feasibility and effectiveness of using HMAs in the pretransplant, transplant and posttransplant stages among MDS and AML patients. This review examines the application of HMAs as a bridge treatment to reduce the tumor burden and the determine appropriate dose during allo-HSCT. Within this review, we also examine the efficacy and safety of HMAs alone or HMA-based strategies in posttransplant settings for MDS and AML. Finally, we provide an overview of other epigenetic candidates, which have been discussed in the nontransplant setting.
Collapse
Affiliation(s)
- Guancui Yang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiang Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shiqin Huang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jin Wei
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Xi Zhang, ; Xiaoqi Wang,
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- *Correspondence: Xi Zhang, ; Xiaoqi Wang,
| |
Collapse
|
8
|
Hematopoietic Cell Transplantation in the Treatment of Pediatric Acute Myelogenous Leukemia and Myelodysplastic Syndromes: Guidelines from the American Society of Transplantation and Cellular Therapy. Transplant Cell Ther 2022; 28:530-545. [DOI: 10.1016/j.jtct.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/20/2022]
|
9
|
Locatelli F, Eckert C, Hrusak O, Buldini B, Sartor M, Zugmaier G, Zeng Y, Pilankar D, Morris J, von Stackelberg A. Blinatumomab overcomes poor prognostic impact of measurable residual disease in pediatric high-risk first relapse B-cell precursor acute lymphoblastic leukemia. Pediatr Blood Cancer 2022; 69:e29715. [PMID: 35482538 DOI: 10.1002/pbc.29715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Blinatumomab, a CD3/CD19 BiTE® (bispecific T cell engager) molecule, was superior to high-risk third course consolidation chemotherapy (HC3) in prolonging event-free survival (EFS) in children with high-risk first relapse B-cell precursor acute lymphoblastic leukemia (B-ALL). Here, we report results from a post hoc measurable residual disease (MRD) analysis of this phase 3 study (NCT02393859). PROCEDURE Children >28 days and <18 years with high-risk first-relapse B-ALL in cytomorphological complete remission (M1 marrow, <5% blasts) or with M2 marrow (≥5% and <25% blasts) after induction and two cycles of high-risk consolidation chemotherapy (baseline) were enrolled in this trial. Patients received one cycle of blinatumomab (15 μg/m2 /day, 4 weeks, continuous intravenous infusion) or HC3. The primary endpoint was EFS. In this post hoc analysis, patients with MRD <10-4 by PCR were grouped as having positive but not quantifiable (pbnq) or undetectable disease. RESULTS A higher proportion of patients with MRD <10-4 had undetectable versus pbnq disease after blinatumomab (day 29) than after HC3 (p = 0.0367). Of the 22 patients with MRD ≥10-4 at baseline who achieved MRD remission after blinatumomab, 20 (91%) achieved MRD <10-4 remission by day 15. Patients treated with blinatumomab had improved EFS and overall survival compared with those treated with HC3 independent of end-of-induction or baseline (end-of-second consolidation) MRD levels. CONCLUSIONS Blinatumomab was more efficacious than HC3 regardless of MRD status before treatment. These data support the role of blinatumomab in inducing deep MRD remission, negating the poor prognostic value of MRD.
Collapse
Affiliation(s)
- Franco Locatelli
- IRCCS Ospedale Pediatrico Bambino Gesù and Sapienza University of Rome, Rome, Italy
| | | | - Ondrej Hrusak
- Charles University, Motol University Hospital, Prague, Czech Republic
| | - Barbara Buldini
- Maternal and Child Health Department, University of Padua, Padua, Italy
| | - Mary Sartor
- Westmead Hospital, Sydney, New South Wales, Australia
| | | | - Yi Zeng
- Amgen Inc., Thousand Oaks, California, USA
| | | | | | | |
Collapse
|
10
|
Measurable residual disease (MRD) status before allogeneic hematopoietic cell transplantation impact on secondary acute myeloid leukemia outcome. A Study from the Acute Leukemia Working Party (ALWP) of the European society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 2022; 57:1556-1563. [PMID: 35835997 DOI: 10.1038/s41409-022-01748-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 12/21/2022]
Abstract
Measurable residual disease (MRD) assessment before allogeneic hematopoietic cell transplantation (HCT) may help physicians to identify a subgroup of patients at high risk of relapse for de novo acute myeloid leukemia (AML) but its relevance among patients affected by secondary AML (sAML) is still unknown. We assessed the impact of MRD among 318 adult patients with sAML who received an allogeneic HCT in first complete remission. At the time of HCT, a total of 208 (65%) patients achieved MRD negativity, while 110 (35%) had positive MRD. 2-year overall survival (OS) was 58.8 % (95% CI 52.2-64.9) with leukemia-free survival (LFS) of 50.0 % (95% CI 43.7-56.1), relapse incidence of 34.2% (95% CI 28.4-40.1) and non-relapse mortality (NRM) of 23.3 % (95% CI 19-27.7) for the entire cohort. In multivariate analysis, HCT recipients with KPS ≥ 90 experienced less disease recurrence (HR 0.61, 95% CI 0.4-0.94) with better LFS (HR 0.63, 95% CI 0.44-0.89) and OS (HR 0.58, 95% CI 0.39-0.86). There were no differences in major clinical endpoints between patients with MRD-positive and MRD-negative status at the time of HCT. Pre-transplantation assessment of MRD was not informative on post-HCT outcomes in this retrospective registry-based analysis among patients affected by sAML.
Collapse
|
11
|
Molecular Measurable Residual Disease Assessment before Hematopoietic Stem Cell Transplantation in Pediatric Acute Myeloid Leukemia Patients: A Retrospective Study by the I-BFM Study Group. Biomedicines 2022; 10:biomedicines10071530. [PMID: 35884834 PMCID: PMC9313005 DOI: 10.3390/biomedicines10071530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a curative post-remission treatment in patients with acute myeloid leukemia (AML), but relapse after transplant is still a challenging event. In recent year, several studies have investigated the molecular minimal residual disease (qPCR-MRD) as a predictor of relapse, but the lack of standardized protocols, cut-offs, and timepoints, especially in the pediatric setting, has prevented its use in several settings, including before HSCT. Here, we propose the first collaborative retrospective I-BFM-AML study assessing qPCR-MRD values in pretransplant bone marrow samples of 112 patients with a diagnosis of AML harboring t(8;21)(q22; q22)RUNX1::RUNX1T1, or inv(16)(p13q22)CBFB::MYH11, or t(9;11)(p21;q23)KMT2A::MLLT3, or FLT3-ITD genetic markers. We calculated an ROC cut-off of 2.1 × 10−4 that revealed significantly increased OS (83.7% versus 57.1%) and EFS (80.2% versus 52.9%) for those patients with lower qPCR-MRD values. Then, we partitioned patients into three qPCR-MRD groups by combining two different thresholds, 2.1 × 10−4 and one lower cut-off of 1 × 10−2, and stratified patients into low-, intermediate-, and high-risk groups. We found that the 5-year OS (83.7%, 68.6%, and 39.2%, respectively) and relapse-free survival (89.2%, 73.9%, and 67.9%, respectively) were significantly different independent of the genetic lesion, conditioning regimen, donor, and stem cell source. These data support the PCR-based approach playing a clinical relevance in AML transplant management.
Collapse
|
12
|
Hu G, Cheng Y, Zuo Y, Chang Y, Suo P, Jia Y, Lu A, Wang Y, Jiao S, Zhang L, Sun Y, Yan C, Xu L, Zhang X, Liu K, Wang Y, Zhang L, Huang X. Comparisons of Long-Term Survival and Safety of Haploidentical Hematopoietic Stem Cell Transplantation After CAR-T Cell Therapy or Chemotherapy in Pediatric Patients With First Relapse of B-Cell Acute Lymphoblastic Leukemia Based on MRD-Guided Treatment. Front Immunol 2022; 13:915590. [PMID: 35734165 PMCID: PMC9207442 DOI: 10.3389/fimmu.2022.915590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
Measurable residual disease (MRD) positivity before haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is an independent prognostic factor in determining outcomes in patients with B-cell acute lymphoblastic leukemia (ALL). In this study, we conducted a parallel comparison of the efficacy and safety in patients with suboptimal MRD response after reinduction who underwent haplo-HSCT after chimeric antigen receptor T-cell (CAR-T) therapy or chemotherapy. Forty B-cell ALL patients who relapsed after first-line chemotherapy and with an MRD ≥0.1% after reinduction were analyzed. The median pre-HSCT MRD in the CAR-T group (n = 26) was significantly lower than that in the chemotherapy group (n = 14) (0.009% vs. 0.3%, p = 0.006). The CAR-T group exhibited a trend toward improved 3-year leukemia-free survival and a significantly improved 3-year overall survival compared to the chemotherapy group [71.8% (95% confidence interval (CI): 53.9–89.6) vs. 44.4% (95% CI: 15.4–73.4), p = 0.19 and 84.6% (95% CI: 70.6–98.5) vs. 40.0% (95% CI: 12.7–67.2), p = 0.008; respectively]. Furthermore, no increased risk of graft-versus-host disease, treatment-related mortality, or infection was observed in the CAR-T group. Our study suggests that CAR-T therapy effectively eliminates pre-HSCT MRD, resulting in better survival in the context of haplo-HSCT.
Collapse
Affiliation(s)
- Guanhua Hu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Yifei Cheng
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Yingxi Zuo
- Department of Pediatrics, Peking University People’s Hospital, Peking University, Beijing, China
| | - Yingjun Chang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Pan Suo
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Yueping Jia
- Department of Pediatrics, Peking University People’s Hospital, Peking University, Beijing, China
| | - Aidong Lu
- Department of Pediatrics, Peking University People’s Hospital, Peking University, Beijing, China
| | - Yu Wang
- Department of Immunotherapy, Beijing Yongtai Reike Biotechnology Company Ltd., Beijing, China
| | - Shunchang Jiao
- Department of Hematology, Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Longji Zhang
- Department of Immunotherapy, Shenzhen Geno-immune Medical Institute, Shenzhen, China
| | - Yuqian Sun
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Chenhua Yan
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Lanping Xu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Xiaohui Zhang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Kaiyan Liu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Yu Wang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Leping Zhang
- Department of Pediatrics, Peking University People’s Hospital, Peking University, Beijing, China
- *Correspondence: Leping Zhang, ; Xiaojun Huang,
| | - Xiaojun Huang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
- *Correspondence: Leping Zhang, ; Xiaojun Huang,
| |
Collapse
|
13
|
Zhang Y, Wang P, Cassady K, Zou Z, Li Y, Deng X, Yang W, Peng X, Zhang X, Feng Y. Pretransplantation minimal residual disease monitoring by multiparameter flow cytometry predicts outcomes of AML patients receiving allogeneic hematopoietic stem cell transplantation. Transpl Immunol 2022; 72:101596. [PMID: 35390479 DOI: 10.1016/j.trim.2022.101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE Is minimal residual disease (MRD) monitoring by multiparameter flow cytometry (MFC) prognostic for acute myeloid leukemia (AML) patients before allogeneic hemopoietic stem cell transplantation (allo-HSCT)? And if so, what level of MRD eradication can be used to help guide the timing of HSCT? Can haplo-HSCT improve the prognosis of AML patients with MRD positive? To figure out these questions, we initiated this retrospective study. METHODS 96 AML patients were included retrospectively and divided into 5 groups, according to pre-transplantation MRD levels (from 5 × 10-2 to <1 × 10-4), to analyze the overall survival (OS), disease-free survival (DFS) and cumulative incidence of relapse (CIR). Secondly, we compared the prognosis of MRD-negative (MRDneg) and MRD-positive (MRDpos) AML patients (cutoff value = 1 × 10-3) who underwent allo-HSCT, and further analyzed the prognosis of MRDpos patients after received different transplantation modalities. RESULTS It is found that the 2-year OS and DFS of MRD negative group were better than the MRD positive group, and that the deeper the eradication of MRD before transplantation, the better the prognosis of patients. The CIR in patients received HLA-identical transplantation, was higher in the MRDpos than in the MRDneg. Haploid transplantation reduced the CIR disparity between MRDpos and MRDneg group. Subsequently, in AML patients who remain MRD positive before HSCT, we show that haplo-HSCT offered a better prognosis than HLA-identical transplantation (MSDT and MUDT). CONCLUSION It is suggested that achieving MFC-MRD <10-3 (10-4 or even better) before allo-HSCT could reduce the relapse of AML and improve OS and DFS significantly, while haplo-HSCT may be preferred for patients not achieving MRD negativity.
Collapse
Affiliation(s)
- Yun Zhang
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Ping Wang
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, China
| | | | - Zhongmin Zou
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Yi Li
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xiaojuan Deng
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Wuchen Yang
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xiangui Peng
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, China.
| | - Xi Zhang
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, China.
| | - Yimei Feng
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, China.
| |
Collapse
|
14
|
Gaballa MR, Banerjee P, Milton DR, Jiang X, Ganesh C, Khazal S, Nandivada V, Islam S, Kaplan M, Daher M, Basar R, Alousi A, Mehta R, Alatrash G, Khouri I, Oran B, Marin D, Popat U, Olson A, Tewari P, Jain N, Jabbour E, Ravandi F, Kantarjian H, Chen K, Champlin R, Shpall E, Rezvani K, Kebriaei P. Blinatumomab maintenance after allogeneic hematopoietic cell transplantation for B-lineage acute lymphoblastic leukemia. Blood 2022; 139:1908-1919. [PMID: 34914826 PMCID: PMC8952188 DOI: 10.1182/blood.2021013290] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/29/2021] [Indexed: 11/20/2022] Open
Abstract
Patients with B-lineage acute lymphoblastic leukemia (ALL) are at high-risk for relapse after allogeneic hematopoietic cell transplantation (HCT). We conducted a single-center phase 2 study evaluating the feasibility of 4 cycles of blinatumomab administered every 3 months during the first year after HCT in an effort to mitigate relapse in high-risk ALL patients. Twenty-one of 23 enrolled patients received at least 1 cycle of blinatumomab and were included in the analysis. The median time from HCT to the first cycle of blinatumomab was 78 days (range, 44 to 105). Twelve patients (57%) completed all 4 treatment cycles. Neutropenia was the only grade 4 adverse event (19%). Rates of cytokine release (5% G1) and neurotoxicity (5% G2) were minimal. The cumulative incidence of acute graft-versus-host disease (GVHD) grades 2 to 4 and 3 to 4 were 33% and 5%, respectively; 2 cases of mild (10%) and 1 case of moderate (5%) chronic GVHD were noted. With a median follow-up of 14.3 months, the 1-year overall survival (OS), progression-free survival (PFS), and nonrelapse mortality (NRM) rates were 85%, 71%, and 0%, respectively. In a matched analysis with a contemporary cohort of 57 patients, we found no significant difference between groups regarding blinatumomab's efficacy. Correlative studies of baseline and posttreatment samples identified patients with specific T-cell profiles as "responders" or "nonresponders" to therapy. Responders had higher proportions of effector memory CD8 T-cell subsets. Nonresponders were T-cell deficient and expressed more inhibitory checkpoint molecules, including T-cell immunoglobulin and mucin domain 3 (TIM3). We found that blinatumomab postallogeneic HCT is feasible, and its benefit is dependent on the immune milieu at time of treatment. This paper is posted on ClinicalTrials.gov, study ID: NCT02807883.
Collapse
Affiliation(s)
- Mahmoud R Gaballa
- Bone Marrow Transplant and Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Pinaki Banerjee
- Department of Stem Cell Transplantation & Cellular Therapy, Houston
| | | | - Xianli Jiang
- Department of Bioinformatics & Computational Biology; and
| | - Christina Ganesh
- Department of Stem Cell Transplantation & Cellular Therapy, Houston
| | - Sajad Khazal
- Department of Pediatric Stem Cell Transplantation & Cellular Therapy and
| | | | - Sanjida Islam
- Department of Stem Cell Transplantation & Cellular Therapy, Houston
| | - Mecit Kaplan
- Department of Stem Cell Transplantation & Cellular Therapy, Houston
| | - May Daher
- Department of Stem Cell Transplantation & Cellular Therapy, Houston
| | - Rafet Basar
- Department of Stem Cell Transplantation & Cellular Therapy, Houston
| | - Amin Alousi
- Department of Stem Cell Transplantation & Cellular Therapy, Houston
| | - Rohtesh Mehta
- Department of Stem Cell Transplantation & Cellular Therapy, Houston
| | - Gheath Alatrash
- Department of Stem Cell Transplantation & Cellular Therapy, Houston
| | - Issa Khouri
- Department of Stem Cell Transplantation & Cellular Therapy, Houston
| | - Betul Oran
- Department of Stem Cell Transplantation & Cellular Therapy, Houston
| | - David Marin
- Department of Stem Cell Transplantation & Cellular Therapy, Houston
| | - Uday Popat
- Department of Stem Cell Transplantation & Cellular Therapy, Houston
| | - Amanda Olson
- Department of Stem Cell Transplantation & Cellular Therapy, Houston
| | - Priti Tewari
- Department of Pediatric Stem Cell Transplantation & Cellular Therapy and
| | - Nitin Jain
- Department of Leukemia, MD Anderson Cancer Center, University of Texas, Houston, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, MD Anderson Cancer Center, University of Texas, Houston, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, MD Anderson Cancer Center, University of Texas, Houston, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, MD Anderson Cancer Center, University of Texas, Houston, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics & Computational Biology; and
| | - Richard Champlin
- Department of Stem Cell Transplantation & Cellular Therapy, Houston
| | - Elizabeth Shpall
- Department of Stem Cell Transplantation & Cellular Therapy, Houston
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation & Cellular Therapy, Houston
| | - Partow Kebriaei
- Department of Stem Cell Transplantation & Cellular Therapy, Houston
| |
Collapse
|
15
|
Elucidating minimal residual disease of paediatric B-cell acute lymphoblastic leukaemia by single-cell analysis. Nat Cell Biol 2022; 24:242-252. [PMID: 35145224 DOI: 10.1038/s41556-021-00814-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022]
Abstract
Minimal residual disease that persists after chemotherapy is the most valuable prognostic marker for haematological malignancies and solid cancers. Unfortunately, our understanding of the resistance elicited in minimal residual disease is limited due to the rarity and heterogeneity of the residual cells. Here we generated 161,986 single-cell transcriptomes to analyse the dynamic changes of B-cell acute lymphoblastic leukaemia (B-ALL) at diagnosis, residual and relapse by combining single-cell RNA sequencing and B-cell-receptor sequencing. In contrast to those at diagnosis, the leukaemic cells at relapse tended to shift to poorly differentiated states, whereas the changes in the residual cells were more complicated. Differential analyses highlighted the activation of the hypoxia pathway in residual cells, resistant clones and B-ALL with MLL rearrangement. Both in vitro and in vivo models demonstrated that inhibition of the hypoxia pathway sensitized leukaemic cells to chemotherapy. This single-cell analysis of minimal residual disease opens up an avenue for the identification of potent treatment opportunities for B-ALL.
Collapse
|
16
|
Hu GH, Cheng YF, Zuo YX, Chang YJ, Suo P, Wu J, Jia YP, Lu AD, Li YC, Wang Y, Jiao SC, Zhang LJ, Zhao XY, Yan CH, Xu LP, Zhang XH, Liu KY, Wang Y, Zhang LP, Huang XJ. Chimeric Antigens Receptor T Cell Therapy Improve the Prognosis of Pediatric Acute Lymphoblastic Leukemia With Persistent/Recurrent Minimal Residual Disease in First Complete Remission. Front Immunol 2022; 12:731435. [PMID: 35069522 PMCID: PMC8777073 DOI: 10.3389/fimmu.2021.731435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Background The presence of minimal residual disease (MRD) is an independent risk factor for poor prognosis in patients with acute lymphoblastic leukemia (ALL). Moreover, the role of chimeric antigen receptor T-cell (CAR-T) therapy in patients with MRD is currently unclear. Methods We conducted a prospective study to investigate the role of CAR-T therapy in patients with persistent/recurrent MRD-positive ALL in first remission. Results A total of 77 patients who had persistent/recurrent MRD were included. Of these patients, 43 were enrolled in the CAR-T group, 20 received chemotherapy as a bridge to allogeneic hematopoietic cell transplantation (allo-HSCT), and 14 patients received intensified chemotherapy. MRD negativity was achieved in 90.7% of the patients after CAR-T infusion. Patients who received CAR-T therapy had a higher 3-year leukemia-free survival (LFS) than patients who did not (77.8% vs. 51.1%, P = 0.033). Furthermore, patients in the CAR-T group had a higher 3-year LFS than those in the chemotherapy bridge-to-allo-HSCT group [77.8% (95% CI, 64.8-90.7%) vs. 68.7% (95% CI, 47.7-89.6%), P = 0.575] and had a significantly higher 3-year LFS than those in the intensified chemotherapy group [77.8% (95% CI, 64.8-90.7%) vs. 28.6% (95% CI, 4.9-52.3%), P = 0.001]. Among the patients who received CAR-T therapy, eight were not bridged to allo-HSCT, and six (75%) remained in remission with a median follow-up of 23.0 months after CAR-T infusion. Conclusions Our findings show that CAR-T therapy can effectively eliminate MRD and improve survival in patients with a suboptimal MRD response.
Collapse
Affiliation(s)
- Guan-hua Hu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Yi-fei Cheng
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Ying-xi Zuo
- Department of Pediatrics, Peking University People’s Hospital, Peking University, Beijing, China
| | - Ying-jun Chang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Pan Suo
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Jun Wu
- Department of Pediatrics, Peking University People’s Hospital, Peking University, Beijing, China
| | - Yue-ping Jia
- Department of Pediatrics, Peking University People’s Hospital, Peking University, Beijing, China
| | - Ai-dong Lu
- Department of Pediatrics, Peking University People’s Hospital, Peking University, Beijing, China
| | - Ying-chun Li
- Beijing Yongtai Reike Biotechnology Company Ltd, Beijing, China
| | - Yu Wang
- Beijing Yongtai Reike Biotechnology Company Ltd, Beijing, China
| | - Shun-chang Jiao
- Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Long-ji Zhang
- Shenzhen Geno-immune Medical Institute, Shenzhen, China
| | - Xiang-yu Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Chen-hua Yan
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Lan-ping Xu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Xiao-hui Zhang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Kai-yan Liu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Yu Wang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | - Le-ping Zhang
- Department of Pediatrics, Peking University People’s Hospital, Peking University, Beijing, China
| | - Xiao-jun Huang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Pincez T, Santiago R, Bittencourt H, Louis I, Bilodeau M, Rouette A, Jouan L, Landry JR, Couture F, Richer J, Teira P, Duval M, Cellot S. Intensive monitoring of minimal residual disease and chimerism after allogeneic hematopoietic stem cell transplantation for acute leukemia in children. Bone Marrow Transplant 2021; 56:2981-2989. [PMID: 34475524 DOI: 10.1038/s41409-021-01408-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/04/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Posttransplant leukemia detection before overt relapse is key to the success of immunotherapeutic interventions, as they are more efficient when leukemia burden is low. However, optimal schedule and monitoring methods are not well defined. We report the intensive bone marrow monitoring of minimal residual disease (MRD) using flow cytometry (FC) and nested reverse transcription polymerase chain reaction (RT-PCR) whenever a fusion transcript allowed it and chimerism by PCR at 11 timepoints in the first 2 years after transplant. Seventy-one transplants were performed in 59 consecutive children, for acute myeloid (n = 38), lymphoid (n = 31), or mixed-phenotype (n = 2) leukemia. MRD was monitored in 62 cases using FC (n = 58) and/or RT-PCR (n = 35). Sixty-seven percent of leukemia recurrences were detected before overt relapse, with a detection rate of 89% by RT-PCR and 40% by FC alone. Increased mixed chimerism was never the first evidence of recurrence. Two patients monitored by RT-PCR relapsed without previous MRD detection, one after missed scheduled evaluation and the other 4.7 years post transplant. Among the 22 cases with MRD detection without overt relapse, 19 received therapeutic interventions. Eight (42%) never relapsed. In conclusion, intensive marrow monitoring by RT-PCR effectively allows for early detection of posttransplant leukemia recurrence.
Collapse
Affiliation(s)
- Thomas Pincez
- Service d'Hématologie-Oncologie Pédiatrique, Centre de Cancérologie Charles-Bruneau, CHU Sainte-Justine, Montréal, QC, Canada
| | - Raoul Santiago
- Service d'Hématologie-Oncologie Pédiatrique, Centre de Cancérologie Charles-Bruneau, CHU Sainte-Justine, Montréal, QC, Canada
| | - Henrique Bittencourt
- Service d'Hématologie-Oncologie Pédiatrique, Centre de Cancérologie Charles-Bruneau, CHU Sainte-Justine, Montréal, QC, Canada.,Département de Pédiatrie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Isabelle Louis
- Service d'Hématologie-Oncologie Pédiatrique, Centre de Cancérologie Charles-Bruneau, CHU Sainte-Justine, Montréal, QC, Canada
| | - Mélanie Bilodeau
- Service d'Hématologie-Oncologie Pédiatrique, Centre de Cancérologie Charles-Bruneau, CHU Sainte-Justine, Montréal, QC, Canada
| | - Alexandre Rouette
- Laboratoire de Diagnostic Moléculaire, CHU Sainte-Justine, Montréal, QC, Canada
| | - Loubna Jouan
- Centre Intégré de Génomique Clinique Pédiatrique, CHU Sainte-Justine, Montréal, QC, Canada
| | - Josette-Renée Landry
- Département de Pédiatrie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Françoise Couture
- Laboratoire de Diagnostic Moléculaire, CHU Sainte-Justine, Montréal, QC, Canada
| | - Johanne Richer
- Service d'Hématologie-Oncologie Pédiatrique, Centre de Cancérologie Charles-Bruneau, CHU Sainte-Justine, Montréal, QC, Canada
| | - Pierre Teira
- Service d'Hématologie-Oncologie Pédiatrique, Centre de Cancérologie Charles-Bruneau, CHU Sainte-Justine, Montréal, QC, Canada.,Département de Pédiatrie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Michel Duval
- Service d'Hématologie-Oncologie Pédiatrique, Centre de Cancérologie Charles-Bruneau, CHU Sainte-Justine, Montréal, QC, Canada. .,Département de Pédiatrie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.
| | - Sonia Cellot
- Service d'Hématologie-Oncologie Pédiatrique, Centre de Cancérologie Charles-Bruneau, CHU Sainte-Justine, Montréal, QC, Canada.,Département de Pédiatrie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
18
|
Healy FM, Dahal LN, Jones JRE, Floisand Y, Woolley JF. Recent Progress in Interferon Therapy for Myeloid Malignancies. Front Oncol 2021; 11:769628. [PMID: 34778087 PMCID: PMC8586418 DOI: 10.3389/fonc.2021.769628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/13/2021] [Indexed: 12/29/2022] Open
Abstract
Myeloid malignancies are a heterogeneous group of clonal haematopoietic disorders, caused by abnormalities in haematopoietic stem cells (HSCs) and myeloid progenitor cells that originate in the bone marrow niche. Each of these disorders are unique and present their own challenges with regards to treatment. Acute myeloid leukaemia (AML) is considered the most aggressive myeloid malignancy, only potentially curable with intensive cytotoxic chemotherapy with or without allogeneic haematopoietic stem cell transplantation. In comparison, patients diagnosed with chronic myeloid leukaemia (CML) and treated with tyrosine kinase inhibitors (TKIs) have a high rate of long-term survival. However, drug resistance and relapse are major issues in both these diseases. A growing body of evidence suggests that Interferons (IFNs) may be a useful therapy for myeloid malignancies, particularly in circumstances where patients are resistant to existing front-line therapies and have risk of relapse following haematopoietic stem cell transplant. IFNs are a major class of cytokines which are known to play an integral role in the non-specific immune response. IFN therapy has potential as a combination therapy in AML patients to reduce the impact of minimal residual disease on relapse. Alongside this, IFNs can potentially sensitize leukaemic cells to TKIs in resistant CML patients. There is evidence also that IFNs have a therapeutic role in myeloproliferative neoplasms (MPNs) such as polycythaemia vera (PV) and primary myelofibrosis (PMF), where they can restore polyclonality in patients. Novel formulations have improved the clinical effectiveness of IFNs. Low dose pegylated IFN formulations improve pharmacokinetics and improve patient tolerance to therapies, thereby minimizing the risk of haematological toxicities. Herein, we will discuss recent developments and the current understanding of the molecular and clinical implications of Type I IFNs for the treatment of myeloid malignancies.
Collapse
Affiliation(s)
- Fiona M Healy
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Lekh N Dahal
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Jack R E Jones
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Yngvar Floisand
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom.,The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - John F Woolley
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
19
|
Chen D, You F, Xiang S, Wang Y, Li Y, Meng H, An G, Zhang T, Li Z, Jiang L, Wu H, Sheng B, Zhang B, Yang L. Chimeric antigen receptor T cells derived from CD7 nanobody exhibit robust antitumor potential against CD7-positive malignancies. Am J Cancer Res 2021; 11:5263-5281. [PMID: 34873460 PMCID: PMC8640809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023] Open
Abstract
The great success of chimeric antigen receptor T (CAR-T)-cell therapy in B-cell malignancies has significantly promoted its rapid expansion to other targets and indications, including T-cell malignancies and acute myeloid leukemia. However, owing to the life-threatening T-cell hypoplasia caused by CD7-CAR-T cells specific cytotoxic against normal T cells, as well as CAR-T cell-fratricide caused by the shared CD7 antigen on the T-cell surface, the clinical application of CD7 as a potential target for CD7+ malignancies is lagging. Here, we generated CD7ΔT cells using an anti-CD7 nanobody fragment coupled with an endoplasmic reticulum/Golgi retention domain and demonstrated that these cells transduced with CD7-CAR could prevent fratricide and achieve expansion. Additionally, CD7ΔCD7-CAR-T cells exhibited robust antitumor potiential against CD7+ tumors in vitro as well as in cell-line and patient-derived xenograft models of CD7-positive malignancies. Furthermore, we confirmed that the antitumor activity of CD7-CAR-T cells was positively correlated with the antigen density of tumor cells. This strategy adapts well with current clinical-grade CAR-T-cell manufacturing processes and can be rapidly applied for the therapy of patients with CD7+ malignancies.
Collapse
Affiliation(s)
- Dan Chen
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow UniversitySuzhou, Jiangsu, China
| | - Fengtao You
- PersonGen BioTherapeutics (Suzhou) Co., Ltd.Suzhou, Jiangsu, China
| | - Shufen Xiang
- PersonGen BioTherapeutics (Suzhou) Co., Ltd.Suzhou, Jiangsu, China
| | - Yinyan Wang
- PersonGen BioTherapeutics (Suzhou) Co., Ltd.Suzhou, Jiangsu, China
| | - Yafen Li
- PersonGen BioTherapeutics (Suzhou) Co., Ltd.Suzhou, Jiangsu, China
| | - Huimin Meng
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow UniversitySuzhou, Jiangsu, China
| | - Gangli An
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow UniversitySuzhou, Jiangsu, China
| | - Tingting Zhang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow UniversitySuzhou, Jiangsu, China
| | - Zixuan Li
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow UniversitySuzhou, Jiangsu, China
| | - Licui Jiang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow UniversitySuzhou, Jiangsu, China
| | - Hai Wu
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow UniversitySuzhou, Jiangsu, China
| | - Binjie Sheng
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow UniversitySuzhou, Jiangsu, China
| | - Bozhen Zhang
- PersonGen BioTherapeutics (Suzhou) Co., Ltd.Suzhou, Jiangsu, China
- PersonGen-Anke Cellular Therapeutics Co., Ltd.Hefei, Anhui, China
| | - Lin Yang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow UniversitySuzhou, Jiangsu, China
- PersonGen BioTherapeutics (Suzhou) Co., Ltd.Suzhou, Jiangsu, China
- PersonGen-Anke Cellular Therapeutics Co., Ltd.Hefei, Anhui, China
| |
Collapse
|
20
|
Clofarabine-fludarabine-busulfan in HCT for pediatric leukemia: an effective, low toxicity, TBI-free conditioning regimen. Blood Adv 2021; 6:1719-1730. [PMID: 34781362 PMCID: PMC8941455 DOI: 10.1182/bloodadvances.2021005224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/10/2021] [Indexed: 11/20/2022] Open
Abstract
CloFluBu-conditioning results in encouraging EFS for ALL and AML, with low TRM, limited incidence of aGvHD and GF, and no cases of VOD. Minimal residual disease status prior to transplantation impacted outcome due to increased relapse risk in both AML and ALL patients.
We prospectively studied clofarabine-fludarabine-busulfan (CloFluBu)-conditioning in allogeneic hematopoietic cell therapy (HCT) for lymphoid and myeloid malignancies and hypothesized that CloFluBu provides a less toxic alternative to conventional conditioning regimens, with adequate antileukemic activity. All patients receiving their first HCT, from 2011-2019, were included and received CloFluBu. The primary endpoint was event-free survival (EFS). Secondary endpoints were overall survival (OS), graft-versus-host disease (GvHD)-relapse-free survival (GRFS), treatment-related mortality (TRM), cumulative incidence of relapse (CIR), acute and chronic GvHD (aGvHD and cGvHD), and veno-occlusive disease (VOD). Cox proportional hazard and Fine and Gray competing-risk models were used for data analysis. One hundred fifty-five children were included: 60 acute lymphoid leukemia (ALL), 69 acute myeloid leukemia (AML), and 26 other malignancies (mostly MDS-EB). The median age was 9.7 (0.5 to 18.6) years. Estimated 2-year EFS was 72.0% ± 6.0 in ALL patients, and 62.4% ± 6.0 in AML patients. TRM in the whole cohort was 11.0% ± 2.6, incidence of aGvHD 3 to 4 at 6 months was 12.3% ± 2.7, extensive cGvHD at 2 years was 6.4% ± 2.1. Minimal residual disease-positivity prior to HCT was associated with higher CIR, both in ALL and AML. CloFluBu showed limited toxicity and encouraging EFS. CloFluBu is a potentially less toxic alternative to conventional conditioning regimens. Randomized prospective studies are needed.
Collapse
|
21
|
The Role of Allogeneic Hematopoietic Stem Cell Transplantation in Pediatric Leukemia. J Clin Med 2021; 10:jcm10173790. [PMID: 34501237 PMCID: PMC8432223 DOI: 10.3390/jcm10173790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) offers potentially curative treatment for many children with high-risk or relapsed acute leukemia (AL), thanks to the combination of intense preparative radio/chemotherapy and the graft-versus-leukemia (GvL) effect. Over the years, progress in high-resolution donor typing, choice of conditioning regimen, graft-versus-host disease (GvHD) prophylaxis and supportive care measures have continuously improved overall transplant outcome, and recent successes using alternative donors have extended the potential application of allotransplantation to most patients. In addition, the importance of minimal residual disease (MRD) before and after transplantation is being increasingly clarified and MRD-directed interventions may be employed to further ameliorate leukemia-free survival after allogeneic HSCT. These advances have occurred in parallel with continuous refinements in chemotherapy protocols and the development of targeted therapies, which may redefine the indications for HSCT in the coming years. This review discusses the role of HSCT in childhood AL by analysing transplant indications in both acute lymphoblastic and acute myeloid leukemia, together with current and most promising strategies to further improve transplant outcome, including optimization of conditioning regimen and MRD-directed interventions.
Collapse
|
22
|
Paiva B, Vidriales MB, Sempere A, Tarín F, Colado E, Benavente C, Cedena MT, Sánchez J, Caballero-Velazquez T, Cordón L, Garces JJ, Simoes C, Martínez-Cuadrón D, Bernal T, Botella C, Grille S, Serrano J, Rodríguez-Medina C, Algarra L, Alonso-Domínguez JM, Amigo ML, Barrios M, García-Boyero R, Colorado M, Pérez-Oteyza J, Pérez-Encinas M, Costilla-Barriga L, Sayas MJ, Pérez O, González-Díaz M, Pérez-Simón JA, Martínez-López J, Sossa C, Orfao A, San Miguel JF, Sanz MÁ, Montesinos P. Impact of measurable residual disease by decentralized flow cytometry: a PETHEMA real-world study in 1076 patients with acute myeloid leukemia. Leukemia 2021; 35:2358-2370. [PMID: 33526859 DOI: 10.1038/s41375-021-01126-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 01/07/2021] [Indexed: 01/29/2023]
Abstract
The role of decentralized assessment of measurable residual disease (MRD) for risk stratification in acute myeloid leukemia (AML) remains largely unknown, and so it does which methodological aspects are critical to empower the evaluation of MRD with prognostic significance, particularly if using multiparameter flow cytometry (MFC). We analyzed 1076 AML patients in first remission after induction chemotherapy, in whom MRD was evaluated by MFC in local laboratories of 60 Hospitals participating in the PETHEMA registry. We also conducted a survey on technical aspects of MRD testing to determine the impact of methodological heterogeneity in the prognostic value of MFC. Our results confirmed the recommended cutoff of 0.1% to discriminate patients with significantly different cumulative-incidence of relapse (-CIR- HR:0.71, P < 0.001) and overall survival (HR: 0.73, P = 0.001), but uncovered the limited prognostic value of MFC based MRD in multivariate and recursive partitioning models including other clinical, genetic and treatment related factors. Virtually all aspects related with methodological, interpretation, and reporting of MFC based MRD testing impacted in its ability to discriminate patients with different CIR. Thus, this study demonstrated that "real-world" assessment of MRD using MFC is prognostic in patients at first remission, and urges greater standardization for improved risk-stratification toward clinical decisions in AML.
Collapse
Affiliation(s)
- Bruno Paiva
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBER-ONC number CB16/12/00369, Pamplona, Spain
| | - María-Belen Vidriales
- Department of Hematology, University Hospital of Salamanca (HUS/IBSAL), CIBERONC (CB16/12/002333) and Center for Cancer Research-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Amparo Sempere
- Hospital Universitario y Politécnico La Fe, CIBER-ONC number CB16/12/00284, Valencia, Spain
| | - Fabián Tarín
- Hospital General Universitario de Alicante, Alicante, Spain
| | - Enrique Colado
- Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria y Universitario Oncológico del Principado de Asturias (ISPA / IUOPA), Oviedo, Spain
| | | | | | | | - Teresa Caballero-Velazquez
- Hopsital Universitario Virgen del Rocío, Instituto de Biomedicina (IBIS / CSIC / CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | - Lourdes Cordón
- Hospital Universitario y Politécnico La Fe, CIBER-ONC number CB16/12/00284, Valencia, Spain
| | - Juan-Jose Garces
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBER-ONC number CB16/12/00369, Pamplona, Spain
| | - Catia Simoes
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBER-ONC number CB16/12/00369, Pamplona, Spain
| | - David Martínez-Cuadrón
- Hospital Universitario y Politécnico La Fe, CIBER-ONC number CB16/12/00284, Valencia, Spain
| | - Teresa Bernal
- Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria y Universitario Oncológico del Principado de Asturias (ISPA / IUOPA), Oviedo, Spain
| | - Carmen Botella
- Hospital General Universitario de Alicante, Alicante, Spain
| | - Sofia Grille
- Hospital de Clinicas. Montevideo, Uruguay, Spain
| | | | | | | | | | | | - Manuel Barrios
- Hospital Regional Universitario de Málaga, Malaga, Spain
| | | | | | | | | | | | | | - Olga Pérez
- Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Marcos González-Díaz
- Department of Hematology, University Hospital of Salamanca (HUS/IBSAL), CIBERONC (CB16/12/002333) and Center for Cancer Research-IBMCC (USAL-CSIC), Salamanca, Spain
| | - José A Pérez-Simón
- Hopsital Universitario Virgen del Rocío, Instituto de Biomedicina (IBIS / CSIC / CIBERONC), Universidad de Sevilla, Sevilla, Spain
| | | | | | - Alberto Orfao
- Cancer Research Center (IBMCC-CSIC/USAL-IBSAL); Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain.,(USAL) Centro de Investigación Biomédica en Red de Cáncer, Instituto Carlos III, Salamanca, Spain.,CIBER-ONC number CB16/12/00400, Salamanca, Spain
| | - Jesús F San Miguel
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBER-ONC number CB16/12/00369, Pamplona, Spain
| | - Miguel-Ángel Sanz
- Hospital Universitario y Politécnico La Fe, CIBER-ONC number CB16/12/00284, Valencia, Spain
| | - Pau Montesinos
- Hospital Universitario y Politécnico La Fe, CIBER-ONC number CB16/12/00284, Valencia, Spain.
| | | |
Collapse
|
23
|
Choi JK, Mead PE. Laboratory Aspects of Minimal / Measurable Residual Disease Testing in B-Lymphoblastic Leukemia. Clin Lab Med 2021; 41:485-495. [PMID: 34304777 DOI: 10.1016/j.cll.2021.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Minimal residual disease detection provides critical prognostic predictor of treatment outcome and is the standard of care for B lymphoblastic leukemia. Flow cytometry-based minimal residual disease detection is the most common test modality and has high sensitivity (0.01%) and a rapid turnaround time (24 hours). This article details the leukemia associated immunophenotype analysis approach for flow cytometry-based minimal residual disease detection used at St. Jude Children's Research Hospital and importance of using guide gates and back-gating.
Collapse
Affiliation(s)
- John Kim Choi
- Division of Laboratory Medicine, The University of Alabama at Birmingham, WP P230N, 619 19th Street South, Birmingham, AL 35249-7331, USA.
| | - Paul E Mead
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, D4026G, Mailstop 342, Memphis, TN 38105, USA
| |
Collapse
|
24
|
Different Kinetics and Risk Factors for Isolated Extramedullary Relapse after Allogeneic Hematopoietic Stem Cell Transplantation in Children with Acute Leukemia. Transplant Cell Ther 2021; 27:859.e1-859.e10. [PMID: 34216791 DOI: 10.1016/j.jtct.2021.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 12/18/2022]
Abstract
Relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains the most frequent cause of post-transplantation mortality. Isolated extramedullary (EM) relapse (iEMR) after HSCT is relatively rare and not well characterized, particularly in pediatric patients. We retrospectively analyzed 1527 consecutive pediatric patients with acute leukemia after allo-HSCT to study the incidence, risk factors, and outcome of iEMR compared with systemic relapse. The 5-year cumulative incidence of systemic relapse (either bone marrow [BM] only or BM combined with EMR) was 24.8%, and that of iEMR was 5.5%. The onset of relapse after allo-HSCT was significantly longer in EM sites than in BM sites (7.19 and 5.58 months, respectively; P = .013). Complete response (CR) 2+/active disease at transplantation (hazard ratio [HR], 3.1; P < .001) and prior EM disease (HR, 2.3; P = .007) were independent risk factors for iEMR. Chronic graft-versus-host disease reduced the risk of systemic relapse (HR, 0.5; P = .043) but did not protect against iEMR. The prognosis of patients who developed iEMR remained poor but was slightly better than that of patients who developed systemic relapse (3-year overall survival, 16.5% versus 15.3%; P = .089). Patients experiencing their first systemic relapse continued to have further systemic relapse, but only a minority progressed to iEMR, whereas those experiencing their iEMR at first relapse developed further systemic relapse and iEMR at approximately similar frequencies. A second iEMR was more common after a first iEMR than after a first systemic relapse (58.8% versus 13.0%; P = .001) and was associated with poor outcome. iEMR has a poor prognosis, particularly after a second relapse, and effective strategies are needed to improve outcomes.
Collapse
|
25
|
Measurable residual disease status and outcome of transplant in acute myeloid leukemia in second complete remission: a study by the acute leukemia working party of the EBMT. Blood Cancer J 2021; 11:88. [PMID: 33980810 PMCID: PMC8116335 DOI: 10.1038/s41408-021-00479-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/07/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Measurable residual disease (MRD) prior to hematopoietic cell transplant (HCT) for acute myeloid leukemia (AML) in first complete morphological remission (CR1) is an independent predictor of outcome, but few studies address CR2. This analysis by the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation registry assessed HCT outcomes by declared MRD status in a cohort of 1042 adult patients with AML CR2 at HCT. Patients were transplanted 2006–2016 from human leukocyte antigen (HLA) matched siblings (n = 719) or HLA 10/10 matched unrelated donors (n = 293). Conditioning was myeloablative (n = 610) or reduced-intensity (n = 432) and 566 patients (54%) had in-vivo T cell depletion. At HCT, 749 patients (72%) were MRD negative (MRD NEG) and 293 (28%) were MRD positive (MRD POS). Time from diagnosis to HCT was longer in MRD NEG than MRD POS patients (18 vs. 16 months (P < 0.001). Two-year relapse rates were 24% (95% CI, 21–28) and 40% (95% CI, 34–46) in MRD NEG and MRD POS groups (P < 0.001), respectively. Leukemia-free survival (LFS) was 57% (53–61) and 46% (40–52%), respectively (P = 0.001), but there was no difference in terms of overall survival. Prognostic factors for relapse and LFS were MRD NEG status, good risk cytogenetics, and longer time from diagnosis to HCT. In-vivo T cell depletion predicted relapse.
Collapse
|
26
|
Minimal Residual Disease in Acute Lymphoblastic Leukemia: Current Practice and Future Directions. Cancers (Basel) 2021; 13:cancers13081847. [PMID: 33924381 PMCID: PMC8069391 DOI: 10.3390/cancers13081847] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/31/2021] [Accepted: 04/11/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Acute lymphoblastic leukemia minimal residual disease (MRD) refers to the presence of residual leukemia cells following the achievement of complete remission, but below the limit of detection using conventional morphologic assessment. Up to two thirds of children may have MRD detectable after induction therapy depending on the biological subtype and method of detection. Patients with detectable MRD have an increased likelihood of relapse. A rapid reduction of MRD reveals leukemia sensitivity to therapy and under this premise, MRD has emerged as the strongest independent predictor of individual patient outcome and is crucial for risk stratification. However, it is a poor surrogate for treatment effect on long term outcome at the trial level, with impending need of randomized trials to prove efficacy of MRD-adapted interventions. Abstract Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer and advances in its clinical and laboratory biology have grown exponentially over the last few decades. Treatment outcome has improved steadily with over 90% of patients surviving 5 years from initial diagnosis. This success can be attributed in part to the development of a risk stratification approach to identify those subsets of patients with an outstanding outcome that might qualify for a reduction in therapy associated with fewer short and long term side effects. Likewise, recognition of patients with an inferior prognosis allows for augmentation of therapy, which has been shown to improve outcome. Among the clinical and biological variables known to impact prognosis, the kinetics of the reduction in tumor burden during initial therapy has emerged as the most important prognostic variable. Specifically, various methods have been used to detect minimal residual disease (MRD) with flow cytometric and molecular detection of antigen receptor gene rearrangements being the most common. However, many questions remain as to the optimal timing of these assays, their sensitivity, integration with other variables and role in treatment allocation of various ALL subgroups. Importantly, the emergence of next generation sequencing assays is likely to broaden the use of these assays to track disease evolution. This review will discuss the biological basis for utilizing MRD in risk assessment, the technical approaches and limitations of MRD detection and its emerging applications.
Collapse
|
27
|
Abstract
Acute leukemias are the most common pediatric cancer. With a cure rate of about 80%, their treatment is based on a combination of cytotoxic chemotherapies whose intensity is adapted to prognostic factors. Sometimes, allogeneic hematopoietic stem cell transplantation is indicated. New therapeutic options are being developed, such as CAR T-cells.
Collapse
|
28
|
Buccisano F, Palmieri R, Piciocchi A, Maurillo L, Del Principe MI, Paterno G, Soddu S, Cerretti R, De Angelis G, Mariotti B, Irno Consalvo MA, Conti C, Fraboni D, Divona M, Ottone T, Lavorgna S, Panetta P, Voso MT, Arcese W, Venditti A. Use of Measurable Residual Disease to Evolve Transplant Policy in Acute Myeloid Leukemia: A 20-Year Monocentric Observation. Cancers (Basel) 2021; 13:1083. [PMID: 33802502 PMCID: PMC7959451 DOI: 10.3390/cancers13051083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Measurable residual disease (MRD) is increasingly employed as a biomarker of quality of complete remission (CR) in intensively treated acute myeloid leukemia (AML) patients. We evaluated if a MRD-driven transplant policy improved outcome as compared to a policy solely relying on a familiar donor availability. High-risk patients (adverse karyotype, FLT3-ITD) received allogeneic hematopoietic cell transplant (alloHCT) whereas for intermediate and low risk ones (CBF-AML and NPM1-mutated), alloHCT or autologous SCT was delivered depending on the post-consolidation measurable residual disease (MRD) status, as assessed by flow cytometry. For comparison, we analyzed a matched historical cohort of patients in whom alloHCT was delivered based on the sole availability of a matched sibling donor. Ten-years overall and disease-free survival were longer in the MRD-driven cohort as compared to the historical cohort (47.7% vs. 28.7%, p = 0.012 and 42.0% vs. 19.5%, p = 0.0003). The favorable impact of this MRD-driven strategy was evident for the intermediate-risk category, particularly for MRD positive patients. In the low-risk category, the significantly lower CIR of the MRD-driven cohort did not translate into a survival advantage. In conclusion, a MRD-driven transplant allocation may play a better role than the one based on the simple donor availability. This approach determines a superior outcome of intermediate-risk patients whereat in low-risk ones a careful evaluation is needed for transplant allocation.
Collapse
Affiliation(s)
- Francesco Buccisano
- Department of Biomedicine and Prevention, University Tor Vergata of Roma, 00133 Rome, Italy; (R.P.); (L.M.); (M.I.D.P.); (G.P.); (R.C.); (G.D.A.); (B.M.); (M.A.I.C.); (C.C.); (D.F.); (M.D.); (T.O.); (S.L.); (P.P.); (M.T.V.); (W.A.); (A.V.)
| | - Raffaele Palmieri
- Department of Biomedicine and Prevention, University Tor Vergata of Roma, 00133 Rome, Italy; (R.P.); (L.M.); (M.I.D.P.); (G.P.); (R.C.); (G.D.A.); (B.M.); (M.A.I.C.); (C.C.); (D.F.); (M.D.); (T.O.); (S.L.); (P.P.); (M.T.V.); (W.A.); (A.V.)
| | | | - Luca Maurillo
- Department of Biomedicine and Prevention, University Tor Vergata of Roma, 00133 Rome, Italy; (R.P.); (L.M.); (M.I.D.P.); (G.P.); (R.C.); (G.D.A.); (B.M.); (M.A.I.C.); (C.C.); (D.F.); (M.D.); (T.O.); (S.L.); (P.P.); (M.T.V.); (W.A.); (A.V.)
| | - Maria Ilaria Del Principe
- Department of Biomedicine and Prevention, University Tor Vergata of Roma, 00133 Rome, Italy; (R.P.); (L.M.); (M.I.D.P.); (G.P.); (R.C.); (G.D.A.); (B.M.); (M.A.I.C.); (C.C.); (D.F.); (M.D.); (T.O.); (S.L.); (P.P.); (M.T.V.); (W.A.); (A.V.)
| | - Giovangiacinto Paterno
- Department of Biomedicine and Prevention, University Tor Vergata of Roma, 00133 Rome, Italy; (R.P.); (L.M.); (M.I.D.P.); (G.P.); (R.C.); (G.D.A.); (B.M.); (M.A.I.C.); (C.C.); (D.F.); (M.D.); (T.O.); (S.L.); (P.P.); (M.T.V.); (W.A.); (A.V.)
| | - Stefano Soddu
- Centro Dati Fondazione GIMEMA, 00100 Rome, Italy; (A.P.); (S.S.)
| | - Raffaella Cerretti
- Department of Biomedicine and Prevention, University Tor Vergata of Roma, 00133 Rome, Italy; (R.P.); (L.M.); (M.I.D.P.); (G.P.); (R.C.); (G.D.A.); (B.M.); (M.A.I.C.); (C.C.); (D.F.); (M.D.); (T.O.); (S.L.); (P.P.); (M.T.V.); (W.A.); (A.V.)
- Rome Transplant Network, Tor Vergata University Hospital, 00133 Rome, Italy
| | - Gottardo De Angelis
- Department of Biomedicine and Prevention, University Tor Vergata of Roma, 00133 Rome, Italy; (R.P.); (L.M.); (M.I.D.P.); (G.P.); (R.C.); (G.D.A.); (B.M.); (M.A.I.C.); (C.C.); (D.F.); (M.D.); (T.O.); (S.L.); (P.P.); (M.T.V.); (W.A.); (A.V.)
- Rome Transplant Network, Tor Vergata University Hospital, 00133 Rome, Italy
| | - Benedetta Mariotti
- Department of Biomedicine and Prevention, University Tor Vergata of Roma, 00133 Rome, Italy; (R.P.); (L.M.); (M.I.D.P.); (G.P.); (R.C.); (G.D.A.); (B.M.); (M.A.I.C.); (C.C.); (D.F.); (M.D.); (T.O.); (S.L.); (P.P.); (M.T.V.); (W.A.); (A.V.)
- Rome Transplant Network, Tor Vergata University Hospital, 00133 Rome, Italy
| | - Maria Antonietta Irno Consalvo
- Department of Biomedicine and Prevention, University Tor Vergata of Roma, 00133 Rome, Italy; (R.P.); (L.M.); (M.I.D.P.); (G.P.); (R.C.); (G.D.A.); (B.M.); (M.A.I.C.); (C.C.); (D.F.); (M.D.); (T.O.); (S.L.); (P.P.); (M.T.V.); (W.A.); (A.V.)
| | - Consuelo Conti
- Department of Biomedicine and Prevention, University Tor Vergata of Roma, 00133 Rome, Italy; (R.P.); (L.M.); (M.I.D.P.); (G.P.); (R.C.); (G.D.A.); (B.M.); (M.A.I.C.); (C.C.); (D.F.); (M.D.); (T.O.); (S.L.); (P.P.); (M.T.V.); (W.A.); (A.V.)
| | - Daniela Fraboni
- Department of Biomedicine and Prevention, University Tor Vergata of Roma, 00133 Rome, Italy; (R.P.); (L.M.); (M.I.D.P.); (G.P.); (R.C.); (G.D.A.); (B.M.); (M.A.I.C.); (C.C.); (D.F.); (M.D.); (T.O.); (S.L.); (P.P.); (M.T.V.); (W.A.); (A.V.)
| | - Mariadomenica Divona
- Department of Biomedicine and Prevention, University Tor Vergata of Roma, 00133 Rome, Italy; (R.P.); (L.M.); (M.I.D.P.); (G.P.); (R.C.); (G.D.A.); (B.M.); (M.A.I.C.); (C.C.); (D.F.); (M.D.); (T.O.); (S.L.); (P.P.); (M.T.V.); (W.A.); (A.V.)
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University Tor Vergata of Roma, 00133 Rome, Italy; (R.P.); (L.M.); (M.I.D.P.); (G.P.); (R.C.); (G.D.A.); (B.M.); (M.A.I.C.); (C.C.); (D.F.); (M.D.); (T.O.); (S.L.); (P.P.); (M.T.V.); (W.A.); (A.V.)
| | - Serena Lavorgna
- Department of Biomedicine and Prevention, University Tor Vergata of Roma, 00133 Rome, Italy; (R.P.); (L.M.); (M.I.D.P.); (G.P.); (R.C.); (G.D.A.); (B.M.); (M.A.I.C.); (C.C.); (D.F.); (M.D.); (T.O.); (S.L.); (P.P.); (M.T.V.); (W.A.); (A.V.)
| | - Paola Panetta
- Department of Biomedicine and Prevention, University Tor Vergata of Roma, 00133 Rome, Italy; (R.P.); (L.M.); (M.I.D.P.); (G.P.); (R.C.); (G.D.A.); (B.M.); (M.A.I.C.); (C.C.); (D.F.); (M.D.); (T.O.); (S.L.); (P.P.); (M.T.V.); (W.A.); (A.V.)
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University Tor Vergata of Roma, 00133 Rome, Italy; (R.P.); (L.M.); (M.I.D.P.); (G.P.); (R.C.); (G.D.A.); (B.M.); (M.A.I.C.); (C.C.); (D.F.); (M.D.); (T.O.); (S.L.); (P.P.); (M.T.V.); (W.A.); (A.V.)
| | - William Arcese
- Department of Biomedicine and Prevention, University Tor Vergata of Roma, 00133 Rome, Italy; (R.P.); (L.M.); (M.I.D.P.); (G.P.); (R.C.); (G.D.A.); (B.M.); (M.A.I.C.); (C.C.); (D.F.); (M.D.); (T.O.); (S.L.); (P.P.); (M.T.V.); (W.A.); (A.V.)
- Rome Transplant Network, Tor Vergata University Hospital, 00133 Rome, Italy
| | - Adriano Venditti
- Department of Biomedicine and Prevention, University Tor Vergata of Roma, 00133 Rome, Italy; (R.P.); (L.M.); (M.I.D.P.); (G.P.); (R.C.); (G.D.A.); (B.M.); (M.A.I.C.); (C.C.); (D.F.); (M.D.); (T.O.); (S.L.); (P.P.); (M.T.V.); (W.A.); (A.V.)
| |
Collapse
|
29
|
Abstract
PURPOSE OF THE REVIEW Infant leukemia is a rare, distinct subgroup of pediatric acute leukemias diagnosed in children under 1 year of age and characterized by unique, aggressive biology. Here, we review its clinical presentation, underlying molecular biology, current treatment strategies, and novel therapeutic approaches. RECENT FINDINGS Infant leukemias are associated with high-risk molecular features and high rates of chemotherapy resistance. International collaborative clinical trials have led to better understanding of the underlying molecular biology, refined risk-based stratification, and investigated the use of hematopoietic stem cell transplantation. However, intensification of chemotherapy has failed to improve outcomes, and current regimens are associated with significant treatment-related and long-term toxicities. Infants with leukemia remain a challenging group to treat. We must continue collaborative efforts to move beyond traditional cytotoxic chemotherapy, incorporate molecularly targeted strategies and immunotherapy, and increase access to clinical trials to improve outcomes for this high-risk group of patients.
Collapse
|
30
|
Chojecki A. Minimal Residual Disease in Acute Myelogenous Leukemia Is Predictive, Unless You Are Over Age 60 and Treated with Decitabine. Transplant Cell Ther 2021; 27:197-198. [PMID: 33781515 DOI: 10.1016/j.jtct.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Affiliation(s)
- Aleksander Chojecki
- Department of Hematology and Cellular Therapy, Levine Cancer Institute Atrium Health, Charlotte, North Carolina.
| |
Collapse
|
31
|
Merli P, Ifversen M, Truong TH, Marquart HV, Buechner J, Wölfl M, Bader P. Minimal Residual Disease Prior to and After Haematopoietic Stem Cell Transplantation in Children and Adolescents With Acute Lymphoblastic Leukaemia: What Level of Negativity Is Relevant? Front Pediatr 2021; 9:777108. [PMID: 34805054 PMCID: PMC8602790 DOI: 10.3389/fped.2021.777108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
Minimal residual disease (MRD) assessment plays a central role in risk stratification and treatment guidance in paediatric patients with acute lymphoblastic leukaemia (ALL). As such, MRD prior to haematopoietic stem cell transplantation (HSCT) is a major factor that is independently correlated with outcome. High burden of MRD is negatively correlated with post-transplant survival, as both the risk of leukaemia recurrence and non-relapse mortality increase with greater levels of MRD. Despite growing evidence supporting these findings, controversies still exist. In particular, it is still not clear whether multiparameter flow cytometry and real-time quantitative polymerase chain reaction, which is used to recognise immunoglobulin and T-cell receptor gene rearrangements, can be employed interchangeably. Moreover, the higher sensitivity in MRD quantification offered by next-generation sequencing techniques may further refine the ability to stratify transplant-associated risks. While MRD quantification from bone marrow prior to HSCT remains the state of the art, heavily pre-treated patients may benefit from additional staging, such as using 18F-fluorodeoxyglucose positron emission tomography/computed tomography to detect focal residues of disease. Additionally, the timing of MRD detection (i.e., immediately before administration of the conditioning regimen or weeks before) is a matter of debate. Pre-transplant MRD negativity has previously been associated with superior outcomes; however, in the recent For Omitting Radiation Under Majority age (FORUM) study, pre-HSCT MRD positivity was associated with neither relapse risk nor survival. In this review, we discuss the level of MRD that may require pre-transplant therapy intensification, risking time delay and complications (as well as losing the window for HSCT if disease progression occurs), as opposed to an adapted post-transplant strategy to achieve long-term remission. Indeed, MRD monitoring may be a valuable tool to guide individualised treatment decisions, including tapering of immunosuppression, cellular therapies (such as donor lymphocyte infusions) or additional immunotherapy (such as bispecific T-cell engagers or chimeric antigen receptor T-cell therapy).
Collapse
Affiliation(s)
- Pietro Merli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marianne Ifversen
- Pediatric Stem Cell Transplant and Immune Deficiency, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Tony H Truong
- Division of Pediatric Oncology and Bone Marrow Transplant, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Hanne V Marquart
- Section for Diagnostic Immunology, Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jochen Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
| | - Matthias Wölfl
- Pediatric Hematology, Oncology and Stem Cell Transplantation, Children's Hospital, Würzburg University Hospital, Würzburg, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, Goethe University, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
32
|
Hoffman AE, Schoonmade LJ, Kaspers GJ. Pediatric relapsed acute myeloid leukemia: a systematic review. Expert Rev Anticancer Ther 2020; 21:45-52. [PMID: 33111585 DOI: 10.1080/14737140.2021.1841640] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Pediatric relapsed acute myeloid leukemia (AML) remains lethal in the majority of cases, despite intensive therapy. Randomized trials are largely lacking, and the main issues of optimal therapy and prognostic factors remain unclear. Area covered: This systematic review includes all literature evaluating treatment outcome after first relapse. We searched databases PubMed and Embase.com. Twelve out of six thousand articles were ultimately included, based on age of the population (<21 years), relapsed AML, and information on clinical outcome (second complete remission (CR2), disease-free survival (DFS), event-free survival (EFS) and overall survival (OS)). There was only one randomized clinical trial reported. This review shows that there is no standard treatment for relapsed AML in children, and that outcome varies for CR2 and (2- to 10-year) OS rates, mean 64% (range, 50-75%), and 31% (16-43%), respectively. Children treated with chemotherapy only in first complete remission (CR1) tend to have better outcome after relapse than children receiving allo-SCT in CR1. Allo-SCT seems to be the most effective consolidation therapy in children achieving CR2, after relapse. Duration of CR1 was the most frequently reported statistically significant prognostic factor. Through randomized clinical trials, better knowledge of prognostic factors enabling risk-stratified treatment, and of more effective and less toxic therapies, should contribute to better clinical outcome for children with relapsed AML. Expert opinion: Outcome of pediatric relapsed AML has improved to OS rates up to 40%. However, there is a lack of knowledge on (independent) prognostic factors, optimal reinduction chemotherapy, timing of allo-SCT, and late effects. International collaboration should enable large, randomized clinical trials addressing these issues.
Collapse
Affiliation(s)
- Anne E Hoffman
- Emma Children's Hospital, Amsterdam UMC, Pediatric Oncology, Vrije Universiteit Amsterdam , Amsterdam
| | - Linda J Schoonmade
- Medical Library, Vrije Universiteit Amsterdam , Amsterdam, The Netherlands
| | - Gertjan Jl Kaspers
- Emma Children's Hospital, Amsterdam UMC, Pediatric Oncology, Vrije Universiteit Amsterdam , Amsterdam.,Princess Máxima Center For Pediatric Oncolocy , The Netherlands, Utrecht
| |
Collapse
|
33
|
Gaut D, Mead M. Measurable residual disease in hematopoietic stem cell transplantation-eligible patients with acute myeloid leukemia: clinical significance and promising therapeutic strategies. Leuk Lymphoma 2020; 62:8-31. [DOI: 10.1080/10428194.2020.1827251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Daria Gaut
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Monica Mead
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
34
|
Treatment of Childhood Acute Myeloid Leukemia in Uruguay: Results of 2 Consecutive Protocols Over 20 Years. J Pediatr Hematol Oncol 2020; 42:359-366. [PMID: 32068649 DOI: 10.1097/mph.0000000000001751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We evaluated the outcome of 71 children with de novo acute myeloid leukemia enrolled in 2 consecutive protocols in the main pediatric hospital in Uruguay. In the LAM97 protocol (n=34), patients received, as consolidation, autologous or allogeneic hematopoietic stem cell transplantation (HSCT), depending on the availability or not of a matched sibling donor. In the LAM08 protocol (n=37), patients were stratified into risk groups, autologous HSCT was abandoned, and allogeneic HSCT was limited to intermediate-risk patients with matched sibling donor and to all patients who fulfilled the high-risk criteria. Complete remission was achieved in 91% and 92% of patients in LAM97 and LAM08, respectively. Deaths in complete remission were 9.6% and 17.6%, respectively. The incidence of relapse was significantly higher in LAM97, 35.4%, versus 12.5% in LAM08. The 5-year event-free survival and overall survival were 50.0% and 55.9% in LAM97 and 59.9% and 64.8% in LAM08. The 5-year overall survival rates in each of the risk groups were 85.7% and 100% for low risk, 50.0% and 61.2% for intermediate risk, and 42.9% and 50.0% for high risk in LAM97 and LAM08 protocols, respectively. Survival has improved over the last 2 decades, and results are comparable to those published in Europe and North America.
Collapse
|
35
|
Abstract
Acute lymphoblastic leukaemia develops in both children and adults, with a peak incidence between 1 year and 4 years. Most acute lymphoblastic leukaemia arises in healthy individuals, and predisposing factors such as inherited genetic susceptibility or environmental exposure have been identified in only a few patients. It is characterised by chromosomal abnormalities and genetic alterations involved in differentiation and proliferation of lymphoid precursor cells. Along with response to treatment, these abnormalities are important prognostic factors. Disease-risk stratification and the development of intensified chemotherapy protocols substantially improves the outcome of patients with acute lymphoblastic leukaemia, particularly in children (1-14 years), but also in adolescents and young adults (15-39 years). However, the outcome of older adults (≥40 years) and patients with relapsed or refractory acute lymphoblastic leukaemia remains poor. New immunotherapeutic strategies, such as monoclonal antibodies and chimeric antigen receptor (CAR) T cells, are being developed and over the next few years could change the options for acute lymphoblastic leukaemia treatment.
Collapse
Affiliation(s)
- Florent Malard
- Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, Sorbonne University, Paris, France; Sorbonne University, INSERM, Saint-Antoine Research Centre, Paris, France
| | - Mohamad Mohty
- Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, Sorbonne University, Paris, France; Sorbonne University, INSERM, Saint-Antoine Research Centre, Paris, France.
| |
Collapse
|
36
|
Venditti A, Gale RP, Buccisano F, Ossenkoppele G. Should persons with acute myeloid leukemia (AML) in 1st histological complete remission who are measurable residual disease (MRD) test positive receive an allotransplant? Leukemia 2020; 34:963-965. [PMID: 32132654 DOI: 10.1038/s41375-020-0780-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Adriano Venditti
- Department of Biomedicine and Prevention at University "Tor Vergata", Fondazione Policlinico Tor Vergata, Rome, Italy.
| | - Robert Peter Gale
- Haematology Research Centre, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Francesco Buccisano
- Department of Biomedicine and Prevention at University "Tor Vergata", Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Gert Ossenkoppele
- Department of Hematology, VU University Medical Centre Amsterdam, Amsterdam, Noord-Holland, The Netherlands
| |
Collapse
|
37
|
Zhang YM, Zhang Y, Ni X, Gao L, Qiu HY, Zhang YS, Tang GS, Chen J, Zhang WP, Wang JM, Yang JM, Hu XX. [Effect of consolidation before allogeneic hematopoietic stem cell transplantation for non-favorable acute myeloid leukemia patients with first complete remisson and negative minimal residual disease]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:16-22. [PMID: 32023749 PMCID: PMC7357906 DOI: 10.3760/cma.j.issn.0253-2727.2020.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Indexed: 11/23/2022]
Abstract
Objective: To probe the prognostic value of consolidation chemotherapy in non-favorable acute myeloid leukemia (AML) patients who were candidates for allogeneic hematopoietic stem cell transplantation (allo-HSCT) with first complete remission (CR(1)) and negative minimal residual disease (MRD(-)) . Methods: A retrospective analysis was conducted on 155 patients with non-favorable AML who received allo-HSCT in CR(1)/MRD(-) from January 2010 to March 2019. The survival data were compared between patients who received and those not received pre-transplant consolidation chemotherapy. Results: A total of 102 patients received pre-transplant consolidation chemotherapy (consolidation group) , and 53 cases directly proceeded to allo-HSCT when CR(1)/MRD(-) was achieved (nonconsolidation group) . The median ages were 39 (18-56) years old and 38 (19-67) years old, respectively. Five-year post-transplant overall survival [ (59.3±7.5) % vs (62.2±6.9) %, P=0.919] and relapse-free survival [ (53.0±8.9) % vs (61.6±7.0) %, P=0.936] were not significantly different between the two groups (consolidation vs nonconsolidation) . There was a weak relationship between consolidation therapy and cumulative incidence of relapse [consolidation: (21.9±5.4) % vs nonconsolidation: (18.3±6.0) %, P=0.942], as well as non-relapse mortality [consolidation: (22.4±4.3) % vs nonconsolidation: (28.4±6.5) %,P=0.464]. Multivariate analysis indicated that pre-transplant consolidation and the consolidation courses (< 2 vs ≥2 courses) did not have an impact on allo-HSCT outcomes. Conclusion: Allo-HSCT for candidate patients without further consolidation when CR(1)/MRD(-) was attained was feasible.
Collapse
Affiliation(s)
- Y M Zhang
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - Y Zhang
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - X Ni
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - L Gao
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - H Y Qiu
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - Y S Zhang
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - G S Tang
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - J Chen
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - W P Zhang
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - J M Wang
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - J M Yang
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - X X Hu
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| |
Collapse
|
38
|
Summers C, Sheth VS, Bleakley M. Minor Histocompatibility Antigen-Specific T Cells. Front Pediatr 2020; 8:284. [PMID: 32582592 PMCID: PMC7283489 DOI: 10.3389/fped.2020.00284] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 01/05/2023] Open
Abstract
Minor Histocompatibility (H) antigens are major histocompatibility complex (MHC)/Human Leukocyte Antigen (HLA)-bound peptides that differ between allogeneic hematopoietic stem cell transplantation (HCT) recipients and their donors as a result of genetic polymorphisms. Some minor H antigens can be used as therapeutic T cell targets to augment the graft-vs.-leukemia (GVL) effect in order to prevent or manage leukemia relapse after HCT. Graft engineering and post-HCT immunotherapies are being developed to optimize delivery of T cells specific for selected minor H antigens. These strategies have the potential to reduce relapse risk and thereby permit implementation of HCT approaches that are associated with less toxicity and fewer late effects, which is particularly important in the growing and developing pediatric patient. Most minor H antigens are expressed ubiquitously, including on epithelial tissues, and can be recognized by donor T cells following HCT, leading to graft-vs.-host disease (GVHD) as well as GVL. However, those minor H antigens that are expressed predominantly on hematopoietic cells can be targeted for selective GVL. Once full donor hematopoietic chimerism is achieved after HCT, hematopoietic-restricted minor H antigens are present only on residual recipient malignant hematopoietic cells, and these minor H antigens serve as tumor-specific antigens for donor T cells. Minor H antigen-specific T cells that are delivered as part of the donor hematopoietic stem cell graft at the time of HCT contribute to relapse prevention. However, in some cases the minor H antigen-specific T cells delivered with the graft may be quantitatively insufficient or become functionally impaired over time, leading to leukemia relapse. Following HCT, adoptive T cell immunotherapy can be used to treat or prevent relapse by delivering large numbers of donor T cells targeting hematopoietic-restricted minor H antigens. In this review, we discuss minor H antigens as T cell targets for augmenting the GVL effect in engineered HCT grafts and for post-HCT immunotherapy. We will highlight the importance of these developments for pediatric HCT.
Collapse
Affiliation(s)
- Corinne Summers
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Vipul S Sheth
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
39
|
Muffly L, Curran E. Pediatric-inspired protocols in adult acute lymphoblastic leukemia: are the results bearing fruit? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:17-23. [PMID: 31808881 PMCID: PMC6913493 DOI: 10.1182/hematology.2019000009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Observational findings demonstrating improved survival for younger adults following pediatric, as opposed to adult, acute lymphoblastic leukemia (ALL) regimens have been translated into international, prospective multicenter clinical trials testing the pediatric regimen in young adult ALL. The results of these studies confirm the feasibility of delivering the pediatric regimen in the adult oncology setting and establish the superiority of this approach relative to historical adult cooperative group regimen results. Specific toxicities, including thrombosis, hepatotoxicity, and osteonecrosis, are more prevalent in adults receiving the pediatric regimen relative to young children. Persistent minimal residual disease (MRD) is a strong prognostic indicator in adults receiving the pediatric regimen; sensitive, high-quality MRD evaluation should be performed in all patients receiving these therapies. Incorporation of targeted agents, particularly in the frontline and MRD+ setting, will usher in the next era of the pediatric regimen in adult ALL.
Collapse
Affiliation(s)
- Lori Muffly
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA; and
| | - Emily Curran
- Department of Internal Medicine, Division of Hematology & Oncology, The Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
40
|
GIMEMA AML1310 trial of risk-adapted, MRD-directed therapy for young adults with newly diagnosed acute myeloid leukemia. Blood 2019; 134:935-945. [DOI: 10.1182/blood.2018886960] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
Key Points
A risk-adapted, MRD-driven transplant strategy is a feasible approach for the treatment of younger adults with AML. Pretransplant MRD positivity should not contraindicate delivery of an allogeneic stem cell transplant.
Collapse
|
41
|
Selim A, Alvaro F, Cole CH, Fraser CJ, Mechinaud F, O'Brien TA, Shaw PJ, Tapp H, Teague L, Nivison-Smith I, Moore AS. Hematopoietic stem cell transplantation for children with acute myeloid leukemia in second remission: A report from the Australasian Bone Marrow Transplant Recipient Registry and the Australian and New Zealand Children's Haematology Oncology Group. Pediatr Blood Cancer 2019; 66:e27812. [PMID: 31111633 DOI: 10.1002/pbc.27812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/10/2019] [Accepted: 05/01/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Approximately one-third of children with acute myeloid leukemia (AML) relapse, requiring re-treatment and allogeneic hematopoietic stem cell transplantation (HSCT). Although achieving second complete remission (CR2) prior to HSCT is desirable, once CR2 is attained, it is unclear if there is any benefit from further chemotherapy prior to HSCT. Moreover, although pre-HSCT minimal residual disease (MRD) has prognostic value in acute lymphoblastic leukemia, the benefit of MRD reduction after achieving CR prior to HSCT is less clear for AML. PROCEDURE To address these questions, we analyzed data from pediatric transplant centers in Australia and New Zealand concerning relapsed childhood AML cases occurring between 1998 and 2013. Given the retrospective nature of our analysis and assay data available, we analyzed patients on the basis of measurable residual disease (MeRD) by any methodology, rather than MRD in the conventional sense. RESULTS We observed improved overall survival (OS) in children receiving two chemotherapy cycles, compared to one cycle or three or more cycles pre-HSCT. Improved OS with two cycles remained significant for patients without MeRD after cycle 1. CONCLUSIONS These data suggest that a second chemotherapy cycle pre-HSCT may improve survival by lowering disease burden. Prospective trials assessing strategies to reduce pre-HSCT MRD in relapsed childhood AML are warranted.
Collapse
Affiliation(s)
- Adrian Selim
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | | | - Catherine H Cole
- Department of Haematology/Oncology, Princess Margaret Hospital for Children, Perth, Australia
| | - Chris J Fraser
- Oncology Services Group, Queensland Children's Hospital, Brisbane, Australia
| | | | - Tracey A O'Brien
- Kids' Cancer Centre, Sydney Children's Hospital, Sydney, Australia
| | - Peter J Shaw
- Oncology Unit, The Children's Hospital at Westmead, Sydney, Australia
| | - Heather Tapp
- Department of Clinical Haematology/Oncology, Women's and Children's Hospital, Adelaide, Australia
| | | | - Ian Nivison-Smith
- Australasian Bone Marrow Transplant Recipient Registry, Sydney, Australia
| | - Andrew S Moore
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia.,Oncology Services Group, Queensland Children's Hospital, Brisbane, Australia.,Child Health Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
42
|
Natural Killer Immunotherapy for Minimal Residual Disease Eradication Following Allogeneic Hematopoietic Stem Cell Transplantation in Acute Myeloid Leukemia. Int J Mol Sci 2019; 20:ijms20092057. [PMID: 31027331 PMCID: PMC6539946 DOI: 10.3390/ijms20092057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
The most common cause of death in patients with acute myeloid leukemia (AML) who receive allogeneic hematopoietic stem cell transplantation (allo-HSCT) is AML relapse. Therefore, additive therapies post allo-HSCT have significant potential to prevent relapse. Natural killer (NK)-cell-based immunotherapies can be incorporated into the therapeutic armamentarium for the eradication of AML cells post allo-HSCT. In recent studies, NK cell-based immunotherapies, the use of adoptive NK cells, NK cells in combination with cytokines, immune checkpoint inhibitors, bispecific and trispecific killer cell engagers, and chimeric antigen receptor-engineered NK cells have all shown antitumor activity in AML patients. In this review, we will discuss the current strategies with these NK cell-based immunotherapies as possible therapies to cure AML patients post allo-HSCT. Additionally, we will discuss various means of immune escape in order to further understand the mechanism of NK cell-based immunotherapies against AML.
Collapse
|
43
|
Murillo L, Dapena JL, Velasco P, de Heredia CD. Use of inotuzumab-ozogamicin in a child with Down syndrome and refractory B-cell precursor acute lymphoblastic leukemia. Pediatr Blood Cancer 2019; 66:e27562. [PMID: 30485640 DOI: 10.1002/pbc.27562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/28/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Laura Murillo
- Servicio de Oncología y Hematología Pediátricas, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - José Luis Dapena
- Servicio de Oncología y Hematología Pediátricas, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Pablo Velasco
- Servicio de Oncología y Hematología Pediátricas, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Cristina Díaz de Heredia
- Servicio de Oncología y Hematología Pediátricas, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
44
|
Ehinger M, Pettersson L. Measurable residual disease testing for personalized treatment of acute myeloid leukemia. APMIS 2019; 127:337-351. [PMID: 30919505 DOI: 10.1111/apm.12926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022]
Abstract
This review summarizes - with the practicing hematologist in mind - the methods used to determine measurable residual disease (MRD) in everyday practice with some future perspectives, and the current knowledge about the prognostic impact of MRD on outcome in acute myeloid leukemia (AML), excluding acute promyelocytic leukemia. Possible implications for choice of MRD method, timing of MRD monitoring, and guidance of therapy are discussed in general and in some detail for certain types of leukemia with specific molecular markers to monitor, including core binding factor (CBF)-leukemias and NPM1-mutated leukemias.
Collapse
Affiliation(s)
- Mats Ehinger
- Department of Clinical Sciences, Pathology, Skane University Hospital, Lund University, Lund, Sweden
| | - Louise Pettersson
- Department of Pathology, Halland Hospital Halmstad, Region Halland, Halmstad, Sweden.,Faculty of Medicine, Division of Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
45
|
Gökbuget N, Dombret H, Giebel S, Bruggemann M, Doubek M, Foà R, Hoelzer D, Kim C, Martinelli G, Parovichnikova E, Rambaldi A, Ribera JM, Schoonen M, Stieglmaier JM, Zugmaier G, Bassan R. Minimal residual disease level predicts outcome in adults with Ph-negative B-precursor acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2019; 24:337-348. [PMID: 30757960 DOI: 10.1080/16078454.2019.1567654] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Detectable minimal residual disease (MRD) after therapy for acute lymphoblastic leukemia (ALL) is the strongest predictor of hematologic relapse. This study evaluated outcomes of patients with B-cell precursor ALL with MRD of ≥10-4 Methods: Study population was from ALL study groups in Europe managed in national study protocols 2000-2014. MRD was measured by polymerase chain reaction or flow cytometry. Patients were age ≥15 years at initial ALL diagnosis. Patients were excluded if exposed to blinatumomab within 18 months of baseline or prior alloHSCT. RESULTS Of 272 patients in CR1, baseline MRD was ≥10-1, 10-2 to <10-1, 10-3 to <10-2, and 10-4 to <10-3 in 15 (6%), 71 (26%), 109 (40%), and 77 (28%) patients, respectively. Median duration of complete remission (DoR) was 18.5 months (95% confidence interval [CI], 11.9-27.2), median relapse-free survival (RFS) was 12.4 months (95% CI, 10.0-19.0) and median overall survival (OS) was 32.5 months (95% CI, 23.6-48.0). Lower baseline MRD level (P ≤ .0003) and white blood cell count <30,000/µL at diagnosis (P ≤ .0053) were strong predictors for better RFS and DoR. Allogeneic hematopoietic stem cell transplantation (alloHSCT) was associated with longer RFS (hazard ratio [HR], 0.59; 95% CI, 0.41-0.84) and DoR (HR, 0.43; 95% CI, 0.29-0.64); the association with OS was not significant (HR, 0.72; 95% CI, 0.50-1.05). DISCUSSION In conclusion, RFS, DoR, and OS are relatively short in patients with MRD-positive ALL, particularly at higher MRD levels. AlloHSCT may improve survival but has limitations. Alternative approaches are needed to improve outcomes in MRD-positive ALL.
Collapse
Affiliation(s)
- Nicola Gökbuget
- a Department of Medicine II, Department of Hematology/Oncology , University Hospital , Frankfurt , Germany
| | - Hervé Dombret
- b Hôpital Saint-Louis, University Paris Diderot , Paris , France
| | - Sebastian Giebel
- c Maria Sklodowska Curie Memorial Cancer Center , Gliwice , Poland
| | - Monika Bruggemann
- d Department of Hematology and Oncology , University Hospital Schleswig-Holstein, Campus Kiel , Kiel , Germany
| | - Michael Doubek
- e Department of Internal Medicine, Hematology and Oncology , University Hospital , Brno , Czech Republic
| | - Robin Foà
- f "Sapienza" University of Rome , Rome , Italy
| | - Dieter Hoelzer
- a Department of Medicine II, Department of Hematology/Oncology , University Hospital , Frankfurt , Germany
| | | | - Giovanni Martinelli
- h Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS , Meldola , Italy
| | | | - Alessandro Rambaldi
- j Dipartimento di Oncologia ed Ematologia , Università degli Studi di Milano and Ospedale Papa Giovanni XXIII , Bergamo , Italy
| | - Josep-Maria Ribera
- k ICO-Hospital Germans Trias I Pujol, Josep Carreras Research Institute , Barcelona , Spain
| | | | | | | | | |
Collapse
|
46
|
Kussman A, Shyr D, Hale G, Oshrine B, Petrovic A. Allogeneic hematopoietic cell transplantation in chemotherapy-induced aplasia in children with high-risk acute myeloid leukemia or myelodysplasia. Pediatr Blood Cancer 2019; 66:e27481. [PMID: 30318867 DOI: 10.1002/pbc.27481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
Relapse remains the most common cause of treatment failure after hematopoietic cell transplantation for acute myeloid leukemia. Inability to achieve hematologic complete remission has been a barrier to transplant for patients with refractory disease. We describe six children with refractory myeloid disease undergoing transplant in chemotherapy-induced aplasia, as a strategy to facilitate curative therapy in refractory patients. Clofarabine- or high-dose cytarabine-based chemotherapy regimens were used to achieve marrow aplasia, followed by reduced-intensity conditioning and allogeneic transplant before hematologic recovery. Long-term disease control was achieved in five, with one transplant-related mortality, suggesting the feasibility of this approach.
Collapse
Affiliation(s)
| | - David Shyr
- Primary Children's Hospital, University of Utah, Salt Lake City, Utah
| | - Gregory Hale
- Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | | | | |
Collapse
|
47
|
Kinetics and Risk Factors of Relapse after Allogeneic Stem Cell Transplantation in Children with Leukemia: A Long-Term Follow-Up Single-Center Study. Biol Blood Marrow Transplant 2019; 25:100-106. [DOI: 10.1016/j.bbmt.2018.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/07/2018] [Indexed: 01/13/2023]
|
48
|
Gilleece MH, Labopin M, Yakoub-Agha I, Volin L, Socié G, Ljungman P, Huynh A, Deconinck E, Wu D, Bourhis JH, Cahn JY, Polge E, Mohty M, Savani BN, Nagler A. Measurable residual disease, conditioning regimen intensity, and age predict outcome of allogeneic hematopoietic cell transplantation for acute myeloid leukemia in first remission: A registry analysis of 2292 patients by the Acute Leukemia Working Party European Society of Blood and Marrow Transplantation. Am J Hematol 2018; 93:1142-1152. [PMID: 29981272 DOI: 10.1002/ajh.25211] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 12/26/2022]
Abstract
Patients with acute myeloid leukemia (AML) in morphological first complete remission (CR1) pre-allogeneic hematopoietic cell transplantation (HCT) may have measurable residual disease (MRD) by molecular and immunophenotyping criteria. We assessed interactions of MRD status with HCT conditioning regimen intensity in patients aged <50 years (y) or ≥50y. This was a retrospective study by the European Society for Blood and Marrow Transplantation registry. Patients were >18y with AML CR1 MRD NEG/POS and recipients of HCT in 2000-2015. Conditioning regimens were myeloablative (MAC), reduced intensity (RIC) or non-myeloablative (NMA). Outcomes included leukemia free survival (LFS), overall survival (OS), relapse incidence (RI), non-relapse mortality (NRM), chronic graft-vs-host (cGVHD), and GVHD-free and relapse-free survival (GRFS). The 2292 eligible patients were categorized into four paired groups: <50y MRD POS MAC (N = 240) vs RIC/NMA (N = 58); <50y MRD NEG MAC (N = 665) vs RIC/NMA (N = 195); ≥50y MRD POS MAC (N = 126) vs RIC/NMA (N = 230), and ≥50y MRD NEG MAC (N = 223) vs RIC/NMA (N = 555). In multivariate analysis RIC/NMA was only inferior to MAC for patients in the <50y MRD POS group, with worse RI (HR 1.71) and LFS (HR 1.554). Patients <50Y MRD NEG had less cGVHD after RIC/NMA HCT (HR 0.714). GRFS was not significantly affected by conditioning intensity in any group. Patients aged <50y with AML CR1 MRD POS status should preferentially be offered MAC allo-HCT. Prospective studies are needed to address whether patients with AML CR1 MRD NEG may be spared the toxicity of MAC regimens. New approaches are needed for ≥50y AML CR1 MRD POS.
Collapse
Affiliation(s)
- Maria H. Gilleece
- Department of Haematology; Leeds Teaching Hospitals Trust, University of Leeds; Leeds United Kingdom
| | | | | | - Liisa Volin
- Comprehensive Cancer Center, Stem Cell Transplantation Unit; Helsinki University Hospital; Helsinki Finland
| | - Gerard Socié
- Service d'Hématologie Greffe; Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris; Paris France
| | - Per Ljungman
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital; Stockholm Sweden
| | - Anne Huynh
- Service d'Hématologie, Institut Universitaire du Cancer de Toulouse Oncopole; Toulouse France
| | - Eric Deconinck
- Hematology Department; CHRU Besancon, INSERM UMR1098, Universite de Franche-Comte; Besancon France
| | - Depei Wu
- Department of Hematology; First Affiliated Hospital of Soochow University; Suzhou Jiangsu China
| | | | - Jean Yves Cahn
- Department of Haematology, Centre Hospital; Universitaire Grenoble Alpes; Grenoble France
| | - Emmanuelle Polge
- Acute Leukemia Working Party; European Society for Blood and Marrow Transplantation Paris Study Office/European Center for Biostatistical and Epidemiological Evaluation in Hematopoietic Cell Therapy (CEREST-TC); Paris France
| | - Mohamad Mohty
- Hopital Saint-Antoine, Université Pierre and Marie Curie, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche U938; Paris France
| | - Bipin N. Savani
- Division of Hematology/Oncology, Department of Internal Medicine; Vanderbilt University Medical Center; Nashville Tennessee
| | - Arnon Nagler
- Chaim Sheba Medical Center; Tel Aviv University; Tel-Hashomer Israel
| |
Collapse
|
49
|
Methods and role of minimal residual disease after stem cell transplantation. Bone Marrow Transplant 2018; 54:681-690. [PMID: 30116018 DOI: 10.1038/s41409-018-0307-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/28/2018] [Accepted: 06/13/2018] [Indexed: 11/08/2022]
Abstract
Relapse is the major cause of treatment failure after stem cell transplantation. Despite the fact that relapses occurred even if transplantation was performed in complete remission, it is obvious that minimal residual disease is present though not morphologically evident. Since adaptive immunotherapy by donor lymphocyte infusion or other novel cell therapies as well as less toxic drugs, which can be used after transplantation, the detection of minimal residual disease (MRD) has become a clinical important variable for outcome. Besides the increasing options to treat MRD, the most advanced technologies currently allow to detect residual malignant cells with a sensitivity of 10-5 to 10-6.Under the patronage of the European Society for Blood and Marrow Transplantation (EBMT) and the American Society for Blood and Marrow Transplantation (ASBMT) the 3rd workshop was held on 4/5 November 2016 in Hamburg/Germany, with the aim to present an up-to-date status of epidemiology and biology of relapse and to summarize the currently available options to prevent and treat post-transplant relapse. Here the current methods and role of minimal residual disease for myeloid and lymphoid malignancies are summarized.
Collapse
|
50
|
Zhang R, Lu X, Wang H, You Y, Zhong Z, Zang S, Zhang C, Shi W, Li J, Wu Q, Fang J, Xia L. Idarubicin-Intensified Hematopoietic Cell Transplantation Improves Relapse and Survival of High-Risk Acute Leukemia Patients with Minimal Residual Disease. Biol Blood Marrow Transplant 2018; 25:47-55. [PMID: 30031936 DOI: 10.1016/j.bbmt.2018.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022]
Abstract
The optimal conditioning regimen of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for high-risk patients with minimal residual disease (MRD) remains controversial. We studied the results in 98 high-risk acute leukemia patients transplanted with idarubicin (IDA)-intensified conditioning regimens between 2012 January and 2017 January. Among these patients, 31 (31.6%) had more than 5% marrow blasts at time of transplantation and 67 patients were in morphologic remission: MRD negative status at time of conditioning was achieved in 39 patients (39.8%), whereas 28 (28.6%) remained carriers of any other positive MRD level in the bone marrow. Three-year relapse estimates of patients with MRD-positive remission was 22.0%, which was remarkably lower than patients with active disease (45.4%, P = .027) but approximate to that of patients in MRD-negative remission (15.5%, P = .522). There were no significant differences in terms of 3-year estimated overall survival (OS) and disease-free survival (DFS) between MRD-positive remission and MRD-negative remission groups (71.4% versus 79.1% [P = .562] and 67.9% versus 76.9% [P = .634], respectively). Moreover, the estimated rates of 3-year OS and DFS of patients in MRD-positive remission were significantly better than those in patients with active disease (71.4% versus 41.9% [P = .033] and 67.9% versus 38.7% [P = .037], respectively). These data indicate that IDA-intensified conditioning allo-HSCT could overcome the negative prognostic impact of MRD.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuan Lu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaodong Zhong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sibin Zang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junying Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Fang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|