1
|
Shi S, Zhou Q, Zhao D, Zarif M, Wei C, Sibai H, Chang H. Molecular genetic characterization of mixed-phenotype acute leukemia (MPAL) with BCR::ABL1 fusion. Leuk Res 2025; 151:107665. [PMID: 40020451 DOI: 10.1016/j.leukres.2025.107665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Mixed-phenotype acute leukemia with BCR::ABL1 fusion (MPALBCR::ABL1), previously known as Philadelphia chromosome-positive mixed phenotype acute leukemia, is a heterogeneous group that is segregated into different subtypes based on WHO-HAEM5. The genetic profile of MPALBCR::ABL1 remains poorly defined due to its rarity. METHODS We conducted a retrospective study of 16 patients with MPALBCR::ABL1 and compared their clinical and laboratory profiles to 20 patients with AMLBCR::ABL1. RESULTS Compared to patients with AMLBCR::ABL with a median age of 64 years old, patients with MPALBCR::ABL1 were significantly younger at a median of 47 years old (P = 0.031) with similar white blood cell (WBC) count, hemoglobin (Hb) count, platelet (PLT) count, lactate dehydrogenase (LDH) levels, and bone marrow blast percentage. MPALBCR::ABL1 patients harboured a similar frequency of co-occurring additional cytogenetic abnormalities (ACA) compared to AMLBCR::ABL1 with monosomy 7 (25 %) being the most common ACA in MPALBCR::ABL1. The most commonly mutated gene in MPALBCR::ABL1 patients was RUNX1 at 45 %. The overall survival (OS) and event-free survival (EFS) between MPALBCR::ABL1 and AMLBCR::ABL1 significantly differed, conferring a better prognosis for patients with MPALBCR::ABL1. CONCLUSION Our results indicate that adult patients with MPALBCR::ABL1 present with younger age and may have better survival outcomes than patients with AMLBCR::ABL1. In addition, our next-generation sequencing (NGS) data indicates that RUNX1 is frequently mutated in B/myeloid MPALBCR::ABL1 compared to AMLBCR::ABL1. Future studies are warranted to further elucidate the role of RUNX1 in this disease.
Collapse
MESH Headings
- Humans
- Middle Aged
- Male
- Female
- Retrospective Studies
- Adult
- Aged
- Fusion Proteins, bcr-abl/genetics
- Leukemia, Biphenotypic, Acute/genetics
- Leukemia, Biphenotypic, Acute/pathology
- Leukemia, Biphenotypic, Acute/mortality
- Leukemia, Biphenotypic, Acute/diagnosis
- Prognosis
- Young Adult
- Core Binding Factor Alpha 2 Subunit/genetics
- Phenotype
- Aged, 80 and over
- Survival Rate
Collapse
Affiliation(s)
- Sophia Shi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Hematology, University Health Network, Toronto, Ontario, Canada
| | - Qianghua Zhou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Hematology, University Health Network, Toronto, Ontario, Canada
| | - Davidson Zhao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Hematology, University Health Network, Toronto, Ontario, Canada
| | - Mojgan Zarif
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Cuihong Wei
- Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Hassan Sibai
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Hematology, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Peng W, Merlo LMF, Grabler S, Montgomery JD, Mandik-Nayak L. IDO2 Drives Autoantibody Production and Joint Inflammation in a Preclinical Model of Arthritis by Repressing Runx1 Function in B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1595-1604. [PMID: 39400244 DOI: 10.4049/jimmunol.2400445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
The immunomodulatory enzyme IDO2 is an essential mediator of autoantibody production and joint inflammation in preclinical models of autoimmune arthritis. Although originally identified as a tryptophan-catabolizing enzyme, we recently discovered a previously unknown nonenzymatic pathway is essential for the proarthritic function of IDO2. We subsequently identified Runx1 (Runt-related transcription factor 1) as a potential component of the nonenzymatic pathway IDO2 uses to drive arthritis. In this study, we find that IDO2 directly binds Runx1 and inhibits its localization to the nucleus, implicating Runx1 as a downstream component of IDO2 function. To directly test whether Runx1 mediates the downstream pathway driving B cell activation in arthritis, we bred B cell conditional Runx1-deficient (CD19cre Runx1flox/flox) mice onto the KRN.g7 arthritis model in the presence or absence of IDO2. Runx1 loss did not affect arthritis in the presence of IDO2; however, deleting Runx1 reversed the antiarthritic effect of IDO2 loss in this model. Further studies demonstrated that the IDO2-Runx1 interaction could be blocked with a therapeutic anti-IDO2 mAb in vitro and that Runx1 was required for IDO2 Ig's therapeutic effect in vivo. Taken together, these data demonstrate that IDO2 mediates autoantibody production and joint inflammation by acting as a repressor of Runx1 function in B cells and implicate therapeutic targeting of IDO2-Runx1 binding as a strategy to inhibit autoimmune arthritis and other autoantibody-mediated diseases.
Collapse
Affiliation(s)
- Weidan Peng
- Lankenau Institute for Medical Research, Wynnewood, PA
| | | | | | | | | |
Collapse
|
3
|
Beyze A, Larroque C, Le Quintrec M. The role of antibody glycosylation in autoimmune and alloimmune kidney diseases. Nat Rev Nephrol 2024; 20:672-689. [PMID: 38961307 DOI: 10.1038/s41581-024-00850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 07/05/2024]
Abstract
Immunoglobulin glycosylation is a pivotal mechanism that drives the diversification of antibody functions. The composition of the IgG glycome is influenced by environmental factors, genetic traits and inflammatory contexts. Differential IgG glycosylation has been shown to intricately modulate IgG effector functions and has a role in the initiation and progression of various diseases. Analysis of IgG glycosylation is therefore a promising tool for predicting disease severity. Several autoimmune and alloimmune disorders, including critical and potentially life-threatening conditions such as systemic lupus erythematosus, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and antibody-mediated kidney graft rejection, are driven by immunoglobulin. In certain IgG-driven kidney diseases, including primary membranous nephropathy, IgA nephropathy and lupus nephritis, particular glycome characteristics can enhance in situ complement activation and the recruitment of innate immune cells, resulting in more severe kidney damage. Hypofucosylation, hypogalactosylation and hyposialylation are the most common IgG glycosylation traits identified in these diseases. Modulating IgG glycosylation could therefore be a promising therapeutic strategy for regulating the immune mechanisms that underlie IgG-driven kidney diseases and potentially reduce the burden of immunosuppressive drugs in affected patients.
Collapse
Affiliation(s)
- Anaïs Beyze
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France.
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.
- University of Montpellier, Montpellier, France.
| | - Christian Larroque
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Moglie Le Quintrec
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France.
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.
- University of Montpellier, Montpellier, France.
| |
Collapse
|
4
|
Nagel S, Meyer C. Identification of Gene Regulatory Networks in B-Cell Progenitor Differentiation and Leukemia. Genes (Basel) 2024; 15:978. [PMID: 39202339 PMCID: PMC11353346 DOI: 10.3390/genes15080978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Pro-B- and pre-B-cells are consecutive entities in early B-cell development, representing cells of origin for B-cell precursor acute lymphoid leukemia (BCP-ALL). Normal B-cell differentiation is critically regulated by specific transcription factors (TFs). Accordingly, TF-encoding genes are frequently deregulated or mutated in BCP-ALL. Recently, we described TF-codes which delineate physiological activities of selected groups of TF-encoding genes in hematopoiesis including B-cell development. Here, we exploited these codes to uncover regulatory connections between particular TFs in pro-B- and pre-B-cells via an analysis of developmental TFs encoded by NKL and TALE homeobox genes and by ETS and T-box genes. Comprehensive expression analyses in BCP-ALL cell lines helped identify validated models to study their mutual regulation in vitro. Knockdown and overexpression experiments and subsequent RNA quantification of TF-encoding genes in selected model cell lines revealed activating, inhibitory or absent connections between nine TFs operating in early B-cell development, including HLX, MSX1, IRX1, MEIS1, ETS2, ERG, SPIB, EOMES, and TBX21. In addition, genomic profiling revealed BCP-ALL subtype-specific copy number alterations of ERG at 21q22, while a deletion of the TGFbeta-receptor gene TGFBR2 at 3p24 resulted in an upregulation of EOMES. Finally, we combined the data to uncover gene regulatory networks which control normal differentiation of early B-cells, collectively endorsing more detailed evaluation of BCP-ALL subtypes.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| | | |
Collapse
|
5
|
Shin B, Zhou W, Wang J, Gao F, Rothenberg EV. Runx factors launch T cell and innate lymphoid programs via direct and gene network-based mechanisms. Nat Immunol 2023; 24:1458-1472. [PMID: 37563311 PMCID: PMC10673614 DOI: 10.1038/s41590-023-01585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
Runx factors are essential for lineage specification of various hematopoietic cells, including T lymphocytes. However, they regulate context-specific genes and occupy distinct genomic regions in different cell types. Here, we show that dynamic Runx binding shifts in mouse early T cell development are mostly not restricted by local chromatin state but regulated by Runx dosage and functional partners. Runx cofactors compete to recruit a limited pool of Runx factors in early T progenitor cells, and a modest increase in Runx protein availability at pre-commitment stages causes premature Runx occupancy at post-commitment binding sites. This increased Runx factor availability results in striking T cell lineage developmental acceleration by selectively activating T cell-identity and innate lymphoid cell programs. These programs are collectively regulated by Runx together with other, Runx-induced transcription factors that co-occupy Runx-target genes and propagate gene network changes.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Wen Zhou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Program in Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA, USA
- BillionToOne, Menlo Park, CA, USA
| | - Jue Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Program in Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA, USA
| | - Fan Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Bioinformatics Resource Center, Beckman Institute of California Institute of Technology, Pasadena, CA, USA
- Lyterian Therapeutics, South San Francisco, CA, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
6
|
Zhang Y, Cui D, Huang M, Zheng Y, Zheng B, Chen L, Chen Q. NONO regulates B-cell development and B-cell receptor signaling. FASEB J 2023; 37:e22862. [PMID: 36906291 DOI: 10.1096/fj.202201909rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/13/2023]
Abstract
The paraspeckle protein NONO is a multifunctional nuclear protein participating in the regulation of transcriptional regulation, mRNA splicing and DNA repair. However, whether NONO plays a role in lymphopoiesis is not known. In this study, we generated mice with global deletion of NONO and bone marrow (BM) chimeric mice in which NONO is deleted in all of mature B cells. We found that the global deletion of NONO in mice did not affect T-cell development but impaired early B-cell development in BM at pro- to pre-B-cell transition stage and B-cell maturation in the spleen. Studies of BM chimeric mice demonstrated that the impaired B-cell development in NONO-deficient mice is B-cell-intrinsic. NONO-deficient B cells displayed normal BCR-induced cell proliferation but increased BCR-induced cell apoptosis. Moreover, we found that NONO deficiency impaired BCR-induced activation of ERK, AKT, and NF-κB pathways in B cells, and altered BCR-induced gene expression profile. Thus, NONO plays a critical role in B-cell development and BCR-induced B-cell activation.
Collapse
Affiliation(s)
- Yongguang Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, China
| | - Dongya Cui
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, China
| | - Miaohui Huang
- Department of Reproductive Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Yongwei Zheng
- Guangzhou Bio-Gene Technology Co., Ltd, Guangzhou, China
| | - Baijiao Zheng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, China
| | - Liling Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, China
| |
Collapse
|
7
|
Shin B, Rothenberg EV. Multi-modular structure of the gene regulatory network for specification and commitment of murine T cells. Front Immunol 2023; 14:1108368. [PMID: 36817475 PMCID: PMC9928580 DOI: 10.3389/fimmu.2023.1108368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
T cells develop from multipotent progenitors by a gradual process dependent on intrathymic Notch signaling and coupled with extensive proliferation. The stages leading them to T-cell lineage commitment are well characterized by single-cell and bulk RNA analyses of sorted populations and by direct measurements of precursor-product relationships. This process depends not only on Notch signaling but also on multiple transcription factors, some associated with stemness and multipotency, some with alternative lineages, and others associated with T-cell fate. These factors interact in opposing or semi-independent T cell gene regulatory network (GRN) subcircuits that are increasingly well defined. A newly comprehensive picture of this network has emerged. Importantly, because key factors in the GRN can bind to markedly different genomic sites at one stage than they do at other stages, the genes they significantly regulate are also stage-specific. Global transcriptome analyses of perturbations have revealed an underlying modular structure to the T-cell commitment GRN, separating decisions to lose "stem-ness" from decisions to block alternative fates. Finally, the updated network sheds light on the intimate relationship between the T-cell program, which depends on the thymus, and the innate lymphoid cell (ILC) program, which does not.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V. Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
8
|
Kodgule R, Goldman JW, Monovich AC, Saari T, Aguilar AR, Hall CN, Rajesh N, Gupta J, Chu SCA, Ye L, Gurumurthy A, Iyer A, Brown NA, Chiang MY, Cieslik MP, Ryan RJ. ETV6 Deficiency Unlocks ERG-Dependent Microsatellite Enhancers to Drive Aberrant Gene Activation in B-Lymphoblastic Leukemia. Blood Cancer Discov 2023; 4:34-53. [PMID: 36350827 PMCID: PMC9820540 DOI: 10.1158/2643-3230.bcd-21-0224] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/30/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Distal enhancers play critical roles in sustaining oncogenic gene-expression programs. We identify aberrant enhancer-like activation of GGAA tandem repeats as a characteristic feature of B-cell acute lymphoblastic leukemia (B-ALL) with genetic defects of the ETV6 transcriptional repressor, including ETV6-RUNX1+ and ETV6-null B-ALL. We show that GGAA repeat enhancers are direct activators of previously identified ETV6-RUNX1+/- like B-ALL "signature" genes, including the likely leukemogenic driver EPOR. When restored to ETV6-deficient B-ALL cells, ETV6 directly binds to GGAA repeat enhancers, represses their acetylation, downregulates adjacent genes, and inhibits B-ALL growth. In ETV6-deficient B-ALL cells, we find that the ETS transcription factor ERG directly binds to GGAA microsatellite enhancers and is required for sustained activation of repeat enhancer-activated genes. Together, our findings reveal an epigenetic gatekeeper function of the ETV6 tumor suppressor gene and establish microsatellite enhancers as a key mechanism underlying the unique gene-expression program of ETV6-RUNX1+/- like B-ALL. SIGNIFICANCE We find a unifying mechanism underlying a leukemia subtype-defining gene-expression signature that relies on repetitive elements with poor conservation between humans and rodents. The ability of ETV6 to antagonize promiscuous, nonphysiologic ERG activity may shed light on other roles of these key regulators in hematolymphoid development and human disease. See related commentary by Mercher, p. 2. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Rohan Kodgule
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Joshua W. Goldman
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Travis Saari
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Athalee R. Aguilar
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Cody N. Hall
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Niharika Rajesh
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Juhi Gupta
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shih-Chun A. Chu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Li Ye
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Aishwarya Gurumurthy
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ashwin Iyer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Noah A. Brown
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Mark Y. Chiang
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Marcin P. Cieslik
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Russell J.H. Ryan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
9
|
Wray JP, Deltcheva EM, Boiers C, Richardson SЕ, Chhetri JB, Brown J, Gagrica S, Guo Y, Illendula A, Martens JHA, Stunnenberg HG, Bushweller JH, Nimmo R, Enver T. Regulome analysis in B-acute lymphoblastic leukemia exposes Core Binding Factor addiction as a therapeutic vulnerability. Nat Commun 2022; 13:7124. [PMID: 36411286 PMCID: PMC9678885 DOI: 10.1038/s41467-022-34653-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/01/2022] [Indexed: 11/22/2022] Open
Abstract
The ETV6-RUNX1 onco-fusion arises in utero, initiating a clinically silent pre-leukemic state associated with the development of pediatric B-acute lymphoblastic leukemia (B-ALL). We characterize the ETV6-RUNX1 regulome by integrating chromatin immunoprecipitation- and RNA-sequencing and show that ETV6-RUNX1 functions primarily through competition for RUNX1 binding sites and transcriptional repression. In pre-leukemia, this results in ETV6-RUNX1 antagonization of cell cycle regulation by RUNX1 as evidenced by mass cytometry analysis of B-lineage cells derived from ETV6-RUNX1 knock-in human pluripotent stem cells. In frank leukemia, knockdown of RUNX1 or its co-factor CBFβ results in cell death suggesting sustained requirement for RUNX1 activity which is recapitulated by chemical perturbation using an allosteric CBFβ-inhibitor. Strikingly, we show that RUNX1 addiction extends to other genetic subtypes of pediatric B-ALL and also adult disease. Importantly, inhibition of RUNX1 activity spares normal hematopoiesis. Our results suggest that chemical intervention in the RUNX1 program may provide a therapeutic opportunity in ALL.
Collapse
Affiliation(s)
- Jason P Wray
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
| | - Elitza M Deltcheva
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
| | - Charlotta Boiers
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, 221 84, Lund, Sweden
| | - Simon Е Richardson
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, CB2 0AW, UK
| | | | - John Brown
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
| | - Sladjana Gagrica
- IMED Oncology, AstraZeneca, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Yanping Guo
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
| | - Anuradha Illendula
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525, GA, Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525, GA, Nijmegen, The Netherlands
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Rachael Nimmo
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK
- Oxford Biomedica (UK) Ltd, Windrush Court, Transport Way, Oxford, OX4 6LT, UK
| | - Tariq Enver
- Department of Cancer Biology UCL Cancer Institute, UCL, London, WC1E 6DD, UK.
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, 221 84, Lund, Sweden.
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
10
|
Avagyan S, Brown AL. To T or not to B: germline RUNX1 mutation preferences in pediatric ALL predisposition. J Clin Invest 2021; 131:e152464. [PMID: 34623329 PMCID: PMC8409576 DOI: 10.1172/jci152464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Germline RUNX1 variants have been identified in relation to myeloid malignancy predisposition, with lymphoid hematological malignancies present at a lower frequency in families. In this issue of the JCI, Li and Yang et al. examined the frequency and type of germline RUNX1 variants in pediatric patients with acute lymphoblastic leukemia (ALL). Patients with T cell ALL (T-ALL) harbored rare, damaging RUNX1 mutations that were not seen in patients with B cell ALL (B-ALL). Further, several of the T-ALL-associated RUNX1 variants had potential dominant-negative activity. RUNX1-mutated T-ALL cases were also associated with somatic JAK3 mutations and enriched for the early T cell precursor (ETP) leukemia subtype, a finding that was validated when RUNX1 and JAK3 mutations were combined in mice. This study confirms germline RUNX1 predisposition beyond myeloid malignancy, demonstrates the importance of examining both germline and somatic mutations in malignancy cohorts, and demarcates the ETP ALL subtype as a flag for germline predisposition in patients.
Collapse
Affiliation(s)
- Serine Avagyan
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, and
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Six KA, Gerdemann U, Brown AL, Place AE, Cantor AB, Kutny MA, Avagyan S. B-cell acute lymphoblastic leukemia in patients with germline RUNX1 mutations. Blood Adv 2021; 5:3199-3202. [PMID: 34424323 PMCID: PMC8405188 DOI: 10.1182/bloodadvances.2021004653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022] Open
Abstract
Germline RUNX1 mutations underlie a syndrome, RUNX1-familial platelet disorder (RUNX1-FPD), characterized by bleeding symptoms that result from quantitative and/or qualitative defect in platelets and a significantly increased risk for developing hematologic malignancies. Myeloid neoplasms are the most commonly diagnosed hematologic malignancies, followed by lymphoid malignancies of T-cell origin. Here, we describe the first 2 cases of B-cell acute lymphoblastic leukemia (B-ALL) in patients with confirmed germline RUNX1 mutations. While 1 of the patients had a known diagnosis of RUNX1-FPD with a RUNX1 p.P240Hfs mutation, the other was the index patient of a kindred with a novel RUNX1 variant, RUNX1 c.587C>T (p.T196I), noted on a targeted genetic testing of the B-ALL diagnostic sample. We discuss the clinical course, treatment approaches, and the outcome for the 2 patients. Additionally, we describe transient resolution of the mild thrombocytopenia and bleeding symptoms during therapy, as well as the finding of clonal hematopoiesis with a TET2 mutant clone in 1 of the patients. It is critical to consider testing for germline RUNX1 mutations in patients presenting with B-ALL who have a personal or family history of thrombocytopenia, bleeding symptoms, or RUNX1 variants identified on genetic testing at diagnosis.
Collapse
Affiliation(s)
- Kathryn A Six
- Division of Hematology/Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Ulrike Gerdemann
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA; and
| | - Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Centre for Cancer Biology, SA Pathology and University of South Australia, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Andrew E Place
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA; and
| | - Alan B Cantor
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA; and
| | - Matthew A Kutny
- Division of Hematology/Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Serine Avagyan
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA; and
| |
Collapse
|
12
|
Pi WC, Wang J, Shimada M, Lin JW, Geng H, Lee YL, Lu R, Li D, Wang GG, Roeder RG, Chen WY. E2A-PBX1 functions as a coactivator for RUNX1 in acute lymphoblastic leukemia. Blood 2020; 136:11-23. [PMID: 32276273 PMCID: PMC7332894 DOI: 10.1182/blood.2019003312] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/05/2020] [Indexed: 12/13/2022] Open
Abstract
E2A, a basic helix-loop-helix transcription factor, plays a crucial role in determining tissue-specific cell fate, including differentiation of B-cell lineages. In 5% of childhood acute lymphoblastic leukemia (ALL), the t(1,19) chromosomal translocation specifically targets the E2A gene and produces an oncogenic E2A-PBX1 fusion protein. Although previous studies have shown the oncogenic functions of E2A-PBX1 in cell and animal models, the E2A-PBX1-enforced cistrome, the E2A-PBX1 interactome, and related mechanisms underlying leukemogenesis remain unclear. Here, by unbiased genomic profiling approaches, we identify the direct target sites of E2A-PBX1 in t(1,19)-positive pre-B ALL cells and show that, compared with normal E2A, E2A-PBX1 preferentially binds to a subset of gene loci cobound by RUNX1 and gene-activating machineries (p300, MED1, and H3K27 acetylation). Using biochemical analyses, we further document a direct interaction of E2A-PBX1, through a region spanning the PBX1 homeodomain, with RUNX1. Our results also show that E2A-PBX1 binding to gene enhancers is dependent on the RUNX1 interaction but not the DNA-binding activity harbored within the PBX1 homeodomain of E2A-PBX1. Transcriptome analyses and cell transformation assays further establish a significant RUNX1 requirement for E2A-PBX1-mediated target gene activation and leukemogenesis. Notably, the RUNX1 locus itself is also directly activated by E2A-PBX1, indicating a multilayered interplay between E2A-PBX1 and RUNX1. Collectively, our study provides the first unbiased profiling of the E2A-PBX1 cistrome in pre-B ALL cells and reveals a previously unappreciated pathway in which E2A-PBX1 acts in concert with RUNX1 to enforce transcriptome alterations for the development of pre-B ALL.
Collapse
MESH Headings
- Amino Acid Motifs
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Core Binding Factor Alpha 2 Subunit/chemistry
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/physiology
- DNA/metabolism
- Enhancer Elements, Genetic
- Gene Expression Regulation, Leukemic/genetics
- Histone Code
- Homeodomain Proteins/chemistry
- Homeodomain Proteins/physiology
- Humans
- Mediator Complex/metabolism
- Neoplasm Proteins/metabolism
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/physiology
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Protein Domains
- Protein Interaction Mapping
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Structure-Activity Relationship
- Transcriptome
- p300-CBP Transcription Factors/metabolism
Collapse
Affiliation(s)
- Wen-Chieh Pi
- Institute of Biochemistry and Molecular Biology and
- Biomedical Industry PhD Program, National Yang-Ming University, Taipei, Taiwan
| | - Jun Wang
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Miho Shimada
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY
| | - Jia-Wei Lin
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Huimin Geng
- Laboratory Medicine, UCSF School of Medicine, San Francisco, CA; and
| | - Yu-Ling Lee
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY
| | - Rui Lu
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Dongxu Li
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology and
- Biomedical Industry PhD Program, National Yang-Ming University, Taipei, Taiwan
- Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
13
|
Seitz V, Kleo K, Dröge A, Schaper S, Elezkurtaj S, Bedjaoui N, Dimitrova L, Sommerfeld A, Berg E, von der Wall E, Müller U, Joosten M, Lenze D, Heimesaat MM, Baldus C, Zinser C, Cieslak A, Macintyre E, Stocking C, Hennig S, Hummel M. Evidence for a role of RUNX1 as recombinase cofactor for TCRβ rearrangements and pathological deletions in ETV6-RUNX1 ALL. Sci Rep 2020; 10:10024. [PMID: 32572036 PMCID: PMC7308335 DOI: 10.1038/s41598-020-65744-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/06/2020] [Indexed: 11/08/2022] Open
Abstract
T-cell receptor gene beta (TCRβ) gene rearrangement represents a complex, tightly regulated molecular mechanism involving excision, deletion and recombination of DNA during T-cell development. RUNX1, a well-known transcription factor for T-cell differentiation, has recently been described to act in addition as a recombinase cofactor for TCRδ gene rearrangements. In this work we employed a RUNX1 knock-out mouse model and demonstrate by deep TCRβ sequencing, immunostaining and chromatin immunoprecipitation that RUNX1 binds to the initiation site of TCRβ rearrangement and its homozygous inactivation induces severe structural changes of the rearranged TCRβ gene, whereas heterozygous inactivation has almost no impact. To compare the mouse model results to the situation in Acute Lymphoblastic Leukemia (ALL) we analyzed TCRβ gene rearrangements in T-ALL samples harboring heterozygous Runx1 mutations. Comparable to the Runx1+/- mouse model, heterozygous Runx1 mutations in T-ALL patients displayed no detectable impact on TCRβ rearrangements. Furthermore, we reanalyzed published sequence data from recurrent deletion borders of ALL patients carrying an ETV6-RUNX1 translocation. RUNX1 motifs were significantly overrepresented at the deletion ends arguing for a role of RUNX1 in the deletion mechanism. Collectively, our data imply a role of RUNX1 as recombinase cofactor for both physiological and aberrant deletions.
Collapse
Affiliation(s)
- V Seitz
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
- HS Diagnomics GmbH, Berlin, Germany
| | - K Kleo
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - A Dröge
- HS Diagnomics GmbH, Berlin, Germany
| | | | - S Elezkurtaj
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - N Bedjaoui
- University of Paris, Institute Necker-Enfants Malades (INEM), INSERM U1151, Laboratoire d'Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - L Dimitrova
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - A Sommerfeld
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - E Berg
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - E von der Wall
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - U Müller
- Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | - M Joosten
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - D Lenze
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany
| | - M M Heimesaat
- Charité University Medicine Berlin, Institute of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
| | - C Baldus
- University Medical Center Schleswig-Holstein, Department of Internal Medicine II, Kiel, Germany
| | - C Zinser
- Precigen Bioinformatics Germany GmbH, Munich, Germany
| | - A Cieslak
- University of Paris, Institute Necker-Enfants Malades (INEM), INSERM U1151, Laboratoire d'Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - E Macintyre
- University of Paris, Institute Necker-Enfants Malades (INEM), INSERM U1151, Laboratoire d'Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - C Stocking
- University Medical Center Eppendorf, Department of Stem Cell Transplantation, Hamburg, Germany
| | - S Hennig
- HS Diagnomics GmbH, Berlin, Germany
| | - M Hummel
- Charité University Medicine Berlin, Institute of Pathology, Berlin, Germany.
| |
Collapse
|
14
|
Xiao L, Peng Z, Zhu A, Xue R, Lu R, Mi J, Xi S, Chen W, Jiang S. Inhibition of RUNX1 promotes cisplatin-induced apoptosis in ovarian cancer cells. Biochem Pharmacol 2020; 180:114116. [PMID: 32579960 DOI: 10.1016/j.bcp.2020.114116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
Runt-related transcription factor 1 (RUNX1), one subunit of core-binding factors in hematopoiesis and leukemia, was highly expressed in ovarian cancer (OC), but the role of RUNX1 in OC is largely unknown. Since we found that high expression of RUNX1 is correlated with poor survival in patients with OC through bioinformatic analysis of TCGA database, we developed RUNX1-knockout clones by CRISPR/Cas9 technique and discovered that RUNX1 depletion could promote cisplatin-induced apoptosis in OC cells, which was further confirmed by RUNX1 knockdown and overexpression. We also proved that RUNX1 could elevate the expression of BCL2. We then examined a total of 32 candidate miRNAs that might mediate the regulation between RUNX1 and BCL2, of which three miRNAs from the miR-17~92 cluster were found to be negatively regulated by RUNX1. Consistently, our analysis of data from TCGA database revealed the negative correlation between RUNX1 and the cluster. We further confirmed that miR-17~92 cluster could enhance cisplatin-induced apoptosis by directly targeting BCL2 3'UTR. Since rescue experiments proved that RUNX1 could repress cisplatin-induced apoptosis by up-regulating BCL2 via miR-17~92 cluster, combining RUNX1 inhibitor Ro5-3335 and cisplatin showed synergic effect in triggering OC cell apoptosis. Collectively, these findings show for the first time that combinational treatment of cisplatin and RUNX1 inhibitor could be used to potentiate apoptosis of ovarian cancer cells, and reveal the potential of targeting RUNX1 in ovarian cancer chemotherapy.
Collapse
Affiliation(s)
- Li Xiao
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhennan Peng
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anqi Zhu
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Renxing Xue
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Renming Lu
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Mi
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaowei Xi
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Songshan Jiang
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
15
|
Klarić L, Tsepilov YA, Stanton CM, Mangino M, Sikka TT, Esko T, Pakhomov E, Salo P, Deelen J, McGurnaghan SJ, Keser T, Vučković F, Ugrina I, Krištić J, Gudelj I, Štambuk J, Plomp R, Pučić-Baković M, Pavić T, Vilaj M, Trbojević-Akmačić I, Drake C, Dobrinić P, Mlinarec J, Jelušić B, Richmond A, Timofeeva M, Grishchenko AK, Dmitrieva J, Bermingham ML, Sharapov SZ, Farrington SM, Theodoratou E, Uh HW, Beekman M, Slagboom EP, Louis E, Georges M, Wuhrer M, Colhoun HM, Dunlop MG, Perola M, Fischer K, Polasek O, Campbell H, Rudan I, Wilson JF, Zoldoš V, Vitart V, Spector T, Aulchenko YS, Lauc G, Hayward C. Glycosylation of immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases. SCIENCE ADVANCES 2020; 6:eaax0301. [PMID: 32128391 PMCID: PMC7030929 DOI: 10.1126/sciadv.aax0301] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 11/19/2019] [Indexed: 05/03/2023]
Abstract
Effector functions of immunoglobulin G (IgG) are regulated by the composition of a glycan moiety, thus affecting activity of the immune system. Aberrant glycosylation of IgG has been observed in many diseases, but little is understood about the underlying mechanisms. We performed a genome-wide association study of IgG N-glycosylation (N = 8090) and, using a data-driven network approach, suggested how associated loci form a functional network. We confirmed in vitro that knockdown of IKZF1 decreases the expression of fucosyltransferase FUT8, resulting in increased levels of fucosylated glycans, and suggest that RUNX1 and RUNX3, together with SMARCB1, regulate expression of glycosyltransferase MGAT3. We also show that variants affecting the expression of genes involved in the regulation of glycoenzymes colocalize with variants affecting risk for inflammatory diseases. This study provides new evidence that variation in key transcription factors coupled with regulatory variation in glycogenes modifies IgG glycosylation and has influence on inflammatory diseases.
Collapse
Affiliation(s)
- Lucija Klarić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Yakov A. Tsepilov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Chloe M. Stanton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust, London, UK
| | - Timo Tõnis Sikka
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Division of Endocrinology, Boston Children’s Hospital, Cambridge, MA, USA
| | - Eugene Pakhomov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Perttu Salo
- Genomics and Biomarkers Unit, Department of Health, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Joris Deelen
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stuart J. McGurnaghan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Ivo Ugrina
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- University of Split, Faculty of Science, Split, Croatia
| | | | - Ivan Gudelj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Rosina Plomp
- Leiden University Medical Centre, Leiden, Netherlands
| | | | - Tamara Pavić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Marija Vilaj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | | | - Camilla Drake
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Paula Dobrinić
- Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Jelena Mlinarec
- Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Barbara Jelušić
- Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Anne Richmond
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Maria Timofeeva
- Colon Cancer Genetics Group, Cancer Research UK Edinburgh Centre and Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alexander K. Grishchenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Julia Dmitrieva
- Unit of Animal Genomics, WELBIO, GIGA-R and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Mairead L. Bermingham
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Sodbo Zh. Sharapov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Susan M. Farrington
- Colon Cancer Genetics Group, Cancer Research UK Edinburgh Centre and Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Hae-Won Uh
- Leiden University Medical Centre, Leiden, Netherlands
- Department of Biostatistics and Research Support, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
| | - Eline P. Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
| | - Edouard Louis
- CHU-Liège and Unit of Gastroenterology, GIGA-R and Faculty of Medicine, University of Liège, Liège, Belgium
| | - Michel Georges
- Unit of Animal Genomics, WELBIO, GIGA-R and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | - Helen M. Colhoun
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Department of Public Health, NHS Fife, Kirkcaldy, UK
| | - Malcolm G. Dunlop
- Colon Cancer Genetics Group, Cancer Research UK Edinburgh Centre and Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Markus Perola
- Genomics and Biomarkers Unit, Department of Health, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Krista Fischer
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Ozren Polasek
- Department of Public Health, Faculty of Medicine, University of Split, Split, Croatia
- Gen-info, Zagreb, Croatia
- Psychiatric Hospital Sveti Ivan, Zagreb, Croatia
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - James F. Wilson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Vlatka Zoldoš
- Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Veronique Vitart
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Tim Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Yurii S. Aulchenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
- PolyOmica, Het Vlaggeschip 61, 5237 PA 's-Hertogenbosch, Netherlands
- Kurchatov Genomics Center, Institute of Cytology & Genetics, Novosibirsk, Russia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Generation Scotland, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Satpathy AT, Granja JM, Yost KE, Qi Y, Meschi F, McDermott GP, Olsen BN, Mumbach MR, Pierce SE, Corces MR, Shah P, Bell JC, Jhutty D, Nemec CM, Wang J, Wang L, Yin Y, Giresi PG, Chang ALS, Zheng GXY, Greenleaf WJ, Chang HY. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat Biotechnol 2019; 37:925-936. [PMID: 31375813 PMCID: PMC7299161 DOI: 10.1038/s41587-019-0206-z] [Citation(s) in RCA: 582] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/01/2019] [Indexed: 02/08/2023]
Abstract
Understanding complex tissues requires single-cell deconstruction of gene regulation with precision and scale. Here, we assess the performance of a massively parallel droplet-based method for mapping transposase-accessible chromatin in single cells using sequencing (scATAC-seq). We apply scATAC-seq to obtain chromatin profiles of more than 200,000 single cells in human blood and basal cell carcinoma. In blood, application of scATAC-seq enables marker-free identification of cell type-specific cis- and trans-regulatory elements, mapping of disease-associated enhancer activity and reconstruction of trajectories of cellular differentiation. In basal cell carcinoma, application of scATAC-seq reveals regulatory networks in malignant, stromal and immune cells in the tumor microenvironment. Analysis of scATAC-seq profiles from serial tumor biopsies before and after programmed cell death protein 1 blockade identifies chromatin regulators of therapy-responsive T cell subsets and reveals a shared regulatory program that governs intratumoral CD8+ T cell exhaustion and CD4+ T follicular helper cell development. We anticipate that scATAC-seq will enable the unbiased discovery of gene regulatory factors across diverse biological systems.
Collapse
Affiliation(s)
- Ansuman T Satpathy
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey M Granja
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA, USA
| | - Yanyan Qi
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA, USA
| | | | | | | | - Maxwell R Mumbach
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah E Pierce
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - M Ryan Corces
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA, USA
| | | | | | | | | | - Jean Wang
- 10x Genomics, Inc., Pleasanton, CA, USA
| | - Li Wang
- 10x Genomics, Inc., Pleasanton, CA, USA
| | | | | | - Anne Lynn S Chang
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA, USA
| | | | - William J Greenleaf
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
17
|
Hong D, Fritz AJ, Gordon JA, Tye CE, Boyd JR, Tracy KM, Frietze SE, Carr FE, Nickerson JA, Van Wijnen AJ, Imbalzano AN, Zaidi SK, Lian JB, Stein JL, Stein GS. RUNX1-dependent mechanisms in biological control and dysregulation in cancer. J Cell Physiol 2019; 234:8597-8609. [PMID: 30515788 PMCID: PMC6395522 DOI: 10.1002/jcp.27841] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 01/02/2023]
Abstract
The RUNX1 transcription factor has recently been shown to be obligatory for normal development. RUNX1 controls the expression of genes essential for proper development in many cell lineages and tissues including blood, bone, cartilage, hair follicles, and mammary glands. Compromised RUNX1 regulation is associated with many cancers. In this review, we highlight evidence for RUNX1 control in both invertebrate and mammalian development and recent novel findings of perturbed RUNX1 control in breast cancer that has implications for other solid tumors. As RUNX1 is essential for definitive hematopoiesis, RUNX1 mutations in hematopoietic lineage cells have been implicated in the etiology of several leukemias. Studies of solid tumors have revealed a context-dependent function for RUNX1 either as an oncogene or a tumor suppressor. These RUNX1 functions have been reported for breast, prostate, lung, and skin cancers that are related to cancer subtypes and different stages of tumor development. Growing evidence suggests that RUNX1 suppresses aggressiveness in most breast cancer subtypes particularly in the early stage of tumorigenesis. Several studies have identified RUNX1 suppression of the breast cancer epithelial-to-mesenchymal transition. Most recently, RUNX1 repression of cancer stem cells and tumorsphere formation was reported for breast cancer. It is anticipated that these new discoveries of the context-dependent diversity of RUNX1 functions will lead to innovative therapeutic strategies for the intervention of cancer and other abnormalities of normal tissues.
Collapse
Affiliation(s)
- Deli Hong
- Dana Farber Cancer Institute, Boston, Massachusetts
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Jonathan A Gordon
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Joseph R Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Kirsten M Tracy
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Seth E Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - Frances E. Carr
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | | | - Andre J. Van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Anthony N. Imbalzano
- Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts
| | - Sayyed K. Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Jane B. Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Janet L. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Gary S. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| |
Collapse
|
18
|
Xu LS, Francis A, Turkistany S, Shukla D, Wong A, Batista CR, DeKoter RP. ETV6-RUNX1 interacts with a region in SPIB intron 1 to regulate gene expression in pre-B-cell acute lymphoblastic leukemia. Exp Hematol 2019; 73:50-63.e2. [PMID: 30986496 DOI: 10.1016/j.exphem.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 11/19/2022]
Abstract
The most frequently occurring genetic abnormality in pediatric B-lymphocyte-lineage acute lymphoblastic leukemia is the t(12;21) chromosomal translocation that results in a ETV6-RUNX1 (also known as TEL-AML1) fusion gene. Expression of ETV6-RUNX1 induces a preleukemic condition leading to acquisition of secondary driver mutations, but the mechanism is poorly understood. SPI-B (encoded by SPIB) is an important transcriptional activator of B-cell development and differentiation. We hypothesized that SPIB is directly transcriptionally repressed by ETV6-RUNX1. Using chromatin immunoprecipitation, we identified a regulatory region in the first intron of SPIB that interacts with ETV6-RUNX1. Mutation of the RUNX1 binding site in SPIB intron 1 prevented transcriptional repression in transient transfection assays. Next, we sought to determine to what extent gene expression in REH cells can be altered by ectopic SPI-B expression. SPI-B expression was forced using CRISPR-mediated gene activation and also using a retroviral vector. Forced expression of SPI-B resulted in altered gene expression and, at high levels, impaired cell proliferation and induced apoptosis. Finally, we identified CARD11 and CDKN1A (encoding p21) as transcriptional targets of SPI-B involved in regulation of proliferation and apoptosis. Taken together, this study identifies SPIB as an important target of ETV6-RUNX1 in regulation of B-cell gene expression in t(12;21) leukemia.
Collapse
MESH Headings
- Apoptosis/genetics
- CARD Signaling Adaptor Proteins/biosynthesis
- CARD Signaling Adaptor Proteins/genetics
- Cell Line, Tumor
- Cell Proliferation/genetics
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 12/metabolism
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 21/metabolism
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Cyclin-Dependent Kinase Inhibitor p21/biosynthesis
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Gene Expression Regulation, Leukemic
- Guanylate Cyclase/biosynthesis
- Guanylate Cyclase/genetics
- Humans
- Introns
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Response Elements
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Li S Xu
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Alyssa Francis
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | | | - Devanshi Shukla
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Alison Wong
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Carolina R Batista
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Rodney P DeKoter
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada.
| |
Collapse
|
19
|
Feedforward regulation of Myc coordinates lineage-specific with housekeeping gene expression during B cell progenitor cell differentiation. PLoS Biol 2019; 17:e2006506. [PMID: 30978178 PMCID: PMC6481923 DOI: 10.1371/journal.pbio.2006506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 04/24/2019] [Accepted: 03/16/2019] [Indexed: 12/18/2022] Open
Abstract
The differentiation of self-renewing progenitor cells requires not only the regulation of lineage- and developmental stage–specific genes but also the coordinated adaptation of housekeeping functions from a metabolically active, proliferative state toward quiescence. How metabolic and cell-cycle states are coordinated with the regulation of cell type–specific genes is an important question, because dissociation between differentiation, cell cycle, and metabolic states is a hallmark of cancer. Here, we use a model system to systematically identify key transcriptional regulators of Ikaros-dependent B cell–progenitor differentiation. We find that the coordinated regulation of housekeeping functions and tissue-specific gene expression requires a feedforward circuit whereby Ikaros down-regulates the expression of Myc. Our findings show how coordination between differentiation and housekeeping states can be achieved by interconnected regulators. Similar principles likely coordinate differentiation and housekeeping functions during progenitor cell differentiation in other cell lineages. The human body is made from billions of cells comprizing many specialized cell types. All of these cells ultimately come from a single fertilized oocyte in a process that has two key features: proliferation, which expands cell numbers, and differentiation, which diversifies cell types. Here, we have examined the transition from proliferation to differentiation using B lymphocytes as an example. We find that the transition from proliferation to differentiation involves changes in the expression of genes, which can be categorized into cell-type–specific genes and broadly expressed “housekeeping” genes. The expression of many housekeeping genes is controlled by the gene regulatory factor Myc, whereas the expression of many B lymphocyte–specific genes is controlled by the Ikaros family of gene regulatory proteins. Myc is repressed by Ikaros, which means that changes in housekeeping and tissue-specific gene expression are coordinated during the transition from proliferation to differentiation.
Collapse
|
20
|
Chi Y, Huang Z, Chen Q, Xiong X, Chen K, Xu J, Zhang Y, Zhang W. Loss of runx1 function results in B cell immunodeficiency but not T cell in adult zebrafish. Open Biol 2019; 8:rsob.180043. [PMID: 30045885 PMCID: PMC6070721 DOI: 10.1098/rsob.180043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
Transcription factor RUNX1 holds an integral role in multiple-lineage haematopoiesis and is implicated as a cofactor in V(D)J rearrangements during lymphocyte development. Runx1 deficiencies resulted in immaturity and reduction of lymphocytes in mice. In this study, we found that runx1W84X/W84X mutation led to the reduction and disordering of B cells, as well as the failure of V(D)J rearrangements in B cells but not T cells, resulting in antibody-inadequate-mediated immunodeficiency in adult zebrafish. By contrast, T cell development was not affected. The decreased number of B cells mainly results from excessive apoptosis in immature B cells. Disrupted B cell development results in runx1W84X/W84X mutants displaying a similar phenotype to common variable immunodeficiency—a primary immunodeficiency disease primarily characterized by frequent susceptibility to infection and deficient immune response, with marked reduction of antibody production of IgG, IgA and/or IgM. Our studies demonstrated an evolutionarily conserved function of runx1 in maturation and differentiation of B cells in adult zebrafish, which will serve as a valuable model for the study of immune deficiency diseases and their treatments.
Collapse
Affiliation(s)
- Yali Chi
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.,Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zhibin Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Qi Chen
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xiaojie Xiong
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Kemin Chen
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Yiyue Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Wenqing Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China .,Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
21
|
de Smith AJ, Walsh KM, Francis SS, Zhang C, Hansen HM, Smirnov I, Morimoto L, Whitehead TP, Kang A, Shao X, Barcellos LF, McKean-Cowdin R, Zhang L, Fu C, Wang R, Yu H, Hoh J, Dewan AT, Metayer C, Ma X, Wiemels JL. BMI1 enhancer polymorphism underlies chromosome 10p12.31 association with childhood acute lymphoblastic leukemia. Int J Cancer 2018; 143:2647-2658. [PMID: 29923177 PMCID: PMC6235695 DOI: 10.1002/ijc.31622] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 01/07/2023]
Abstract
Genome-wide association studies of childhood acute lymphoblastic leukemia (ALL) have identified regions of association at PIP4K2A and upstream of BMI1 at chromosome 10p12.31-12.2. The contribution of both loci to ALL risk and underlying functional variants remain to be elucidated. We carried out single nucleotide polymorphism (SNP) imputation across chromosome 10p12.31-12.2 in Latino and non-Latino white ALL cases and controls from two independent California childhood leukemia studies, and additional Genetic Epidemiology Research on Aging study controls. Ethnicity-stratified association analyses were performed using logistic regression, with meta-analysis including 3,133 cases (1,949 Latino, 1,184 non-Latino white) and 12,135 controls (8,584 Latino, 3,551 non-Latino white). SNP associations were identified at both BMI1 and PIP4K2A. After adjusting for the lead PIP4K2A SNP, genome-wide significant associations remained at BMI1, and vice-versa (pmeta < 10-10 ), supporting independent effects. Lead SNPs differed by ethnicity at both peaks. We sought functional variants in tight linkage disequilibrium with both the lead Latino SNP among Admixed Americans and lead non-Latino white SNP among Europeans. This pinpointed rs11591377 (pmeta = 2.1 x 10-10 ) upstream of BMI1, residing within a hematopoietic stem cell enhancer of BMI1, and which showed significant preferential binding of the risk allele to MYBL2 (p = 1.73 x 10-5 ) and p300 (p = 1.55 x 10-3 ) transcription factors using binomial tests on ChIP-Seq data from a SNP heterozygote. At PIP4K2A, we identified rs4748812 (pmeta = 1.3 x 10-15 ), which alters a RUNX1 binding motif and demonstrated chromosomal looping to the PIP4K2A promoter. Fine-mapping chromosome 10p12 in a multi-ethnic ALL GWAS confirmed independent associations and identified putative functional variants upstream of BMI1 and at PIP4K2A.
Collapse
Affiliation(s)
- Adam J. de Smith
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, CA 90033
| | - Kyle M. Walsh
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158
- Department of Neurosurgery, Duke University, Durham, NC 27710
| | - Stephen S. Francis
- Department of Epidemiology, School of Community Health Sciences, University of Nevada Reno, Reno, NV 89557
| | - Chenan Zhang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158
| | - Helen M. Hansen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158
| | - Ivan Smirnov
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158
| | - Libby Morimoto
- School of Public Health, University of California Berkeley, Berkeley, CA 94720
| | - Todd P. Whitehead
- School of Public Health, University of California Berkeley, Berkeley, CA 94720
| | - Alice Kang
- School of Public Health, University of California Berkeley, Berkeley, CA 94720
| | - Xiaorong Shao
- School of Public Health, University of California Berkeley, Berkeley, CA 94720
| | - Lisa F. Barcellos
- School of Public Health, University of California Berkeley, Berkeley, CA 94720
| | - Roberta McKean-Cowdin
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, CA 90033
| | - Luoping Zhang
- School of Public Health, University of California Berkeley, Berkeley, CA 94720
| | - Cecilia Fu
- Children’s Hospital of Los Angeles, Los Angeles, CA 90027
| | - Rong Wang
- Department of Chronic Diseases Epidemiology, School of Public Health, Yale University, New Haven, CT 06520
| | - Herbert Yu
- University of Hawaii Cancer Center, Honolulu, HI 96813
| | - Josephine Hoh
- Department of Chronic Diseases Epidemiology, School of Public Health, Yale University, New Haven, CT 06520
| | - Andrew T. Dewan
- Department of Chronic Diseases Epidemiology, School of Public Health, Yale University, New Haven, CT 06520
| | - Catherine Metayer
- School of Public Health, University of California Berkeley, Berkeley, CA 94720
| | - Xiaomei Ma
- Department of Chronic Diseases Epidemiology, School of Public Health, Yale University, New Haven, CT 06520
| | - Joseph L. Wiemels
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, CA 90033
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158
| |
Collapse
|
22
|
Debaize L, Jakobczyk H, Avner S, Gaudichon J, Rio AG, Sérandour AA, Dorsheimer L, Chalmel F, Carroll JS, Zörnig M, Rieger MA, Delalande O, Salbert G, Galibert MD, Gandemer V, Troadec MB. Interplay between transcription regulators RUNX1 and FUBP1 activates an enhancer of the oncogene c-KIT and amplifies cell proliferation. Nucleic Acids Res 2018; 46:11214-11228. [PMID: 30500954 PMCID: PMC6265458 DOI: 10.1093/nar/gky756] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/31/2022] Open
Abstract
Runt-related transcription factor 1 (RUNX1) is a well-known master regulator of hematopoietic lineages but its mechanisms of action are still not fully understood. Here, we found that RUNX1 localizes on active chromatin together with Far Upstream Binding Protein 1 (FUBP1) in human B-cell precursor lymphoblasts, and that both factors interact in the same transcriptional regulatory complex. RUNX1 and FUBP1 chromatin localization identified c-KIT as a common target gene. We characterized two regulatory regions, at +700 bp and +30 kb within the first intron of c-KIT, bound by both RUNX1 and FUBP1, and that present active histone marks. Based on these regions, we proposed a novel FUBP1 FUSE-like DNA-binding sequence on the +30 kb enhancer. We demonstrated that FUBP1 and RUNX1 cooperate for the regulation of the expression of the oncogene c-KIT. Notably, upregulation of c-KIT expression by FUBP1 and RUNX1 promotes cell proliferation and renders cells more resistant to the c-KIT inhibitor imatinib mesylate, a common therapeutic drug. These results reveal a new mechanism of action of RUNX1 that implicates FUBP1, as a facilitator, to trigger transcriptional regulation of c-KIT and to regulate cell proliferation. Deregulation of this regulatory mechanism may explain some oncogenic function of RUNX1 and FUBP1.
Collapse
Affiliation(s)
- Lydie Debaize
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Hélène Jakobczyk
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Stéphane Avner
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Jérémie Gaudichon
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Anne-Gaëlle Rio
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Aurélien A Sérandour
- CRCINA, INSERM, CNRS, Université d’Angers, Université de Nantes, 44035 Nantes, France
- Ecole Centrale de Nantes, Nantes, France
| | - Lena Dorsheimer
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, F-35000 Rennes, France
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Martin Zörnig
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, D-60528 Frankfurt, Germany
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Olivier Delalande
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Gilles Salbert
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Marie-Dominique Galibert
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
- Génétique Somatique des Cancers, Centre Hospitalier Universitaire, 35033 Rennes, France
| | - Virginie Gandemer
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
- Department of pediatric oncohematology, Centre Hospitalier Universitaire, 35203 Rennes, France
| | - Marie-Bérengère Troadec
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| |
Collapse
|
23
|
Iguchi T, Miyauchi E, Watanabe S, Masai H, Miyatake S. A BTB-ZF protein, ZNF131, is required for early B cell development. Biochem Biophys Res Commun 2018; 501:570-575. [PMID: 29750959 DOI: 10.1016/j.bbrc.2018.05.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/07/2018] [Indexed: 10/16/2022]
Abstract
Members of the BTB-ZF transcription factor family play important roles in lymphocyte development. During T cell development, ZNF131, a BTB-ZF protein, is critical for the double-negative (DN) to double-positive (DP) transition and is also involved in cell proliferation. Here, we report that knockout of Znf131 at the pre-pro-B cell stage in mb1-Cre knock-in mouse resulted in defect of pro-B to pre-B cell transition. ZNF131 was shown to be required for efficient pro-B cell proliferation as well as for immunoglobulin heavy chain gene rearrangement that occurs in the proliferating pro-B cells. We speculate that inefficient gene rearrangement may be due to loss of cell proliferation, since cell cycle progression and immunoglobulin gene rearrangement, which would occur in a mutually exclusive manner, may be interconnected or coupled to avoid occurrence of genomic instability. ZNF131 suppresses expression of Cdk inhibitor, p21cip1, and that of pro-apoptotic factors, Bax and Puma, targets of p53, to facilitate cell cycle progression and suppress unnecessary apoptosis, respectively, of pro-B cells. There results demonstrate the essential roles of ZNF131 in coordinating the B cell differentiation and proliferation.
Collapse
Affiliation(s)
- Tomohiro Iguchi
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 4-6-1 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Emako Miyauchi
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 4-6-1 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Shirokane-dai 4-6-1, Minatoku-ku, Tokyo 108-8639, Japan
| | - Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 4-6-1 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Shoichiro Miyatake
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 4-6-1 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; Graduate School of Environmental Health Sciences, Azabu University, 1-17-71 Chuo-ku, Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan.
| |
Collapse
|
24
|
Haines RR, Barwick BG, Scharer CD, Majumder P, Randall TD, Boss JM. The Histone Demethylase LSD1 Regulates B Cell Proliferation and Plasmablast Differentiation. THE JOURNAL OF IMMUNOLOGY 2018; 201:2799-2811. [PMID: 30232138 DOI: 10.4049/jimmunol.1800952] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/22/2018] [Indexed: 01/01/2023]
Abstract
B cells undergo epigenetic remodeling as they differentiate into Ab-secreting cells (ASC). LSD1 is a histone demethylase known to decommission active enhancers and cooperate with the ASC master regulatory transcription factor Blimp-1. The contribution of LSD1 to ASC formation is poorly understood. In this study, we show that LSD1 is necessary for proliferation and differentiation of mouse naive B cells (nB) into plasmablasts (PB). Following LPS inoculation, LSD1-deficient hosts exhibited a 2-fold reduction of splenic PB and serum IgM. LSD1-deficient PB exhibited derepression and superinduction of genes involved in immune system processes; a subset of these being direct Blimp-1 target-repressed genes. Cell cycle genes were globally downregulated without LSD1, which corresponded to a decrease in the proliferative capacity of LSD1-deficient activated B cells. PB lacking LSD1 displayed increased histone H3 lysine 4 monomethylation and chromatin accessibility at nB active enhancers and the binding sites of transcription factors Blimp-1, PU.1, and IRF4 that mapped to LSD1-repressed genes. Together, these data show that LSD1 is required for normal in vivo PB formation, distinguish LSD1 as a transcriptional rheostat and epigenetic modifier of B cell differentiation, and identify LSD1 as a factor responsible for decommissioning nB active enhancers.
Collapse
Affiliation(s)
- Robert R Haines
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Benjamin G Barwick
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | | | - Parimal Majumder
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Troy D Randall
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| |
Collapse
|
25
|
Chow M, Gao L, MacManiman JD, Bicocca VT, Chang BH, Alumkal JJ, Tyner JW. Maintenance and pharmacologic targeting of ROR1 protein levels via UHRF1 in t(1;19) pre-B-ALL. Oncogene 2018; 37:5221-5232. [PMID: 29849118 PMCID: PMC6150818 DOI: 10.1038/s41388-018-0299-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/04/2018] [Accepted: 04/13/2018] [Indexed: 12/23/2022]
Abstract
Expression of the transmembrane pseudokinase ROR1 is required for survival of t(1;19)-pre-B-cell acute lymphoblastic leukemia (t(1;19) pre-B-ALL), chronic lymphocytic leukemia, and many solid tumors. However, targeting ROR1 with small-molecules has been challenging due to the absence of ROR1 kinase activity. To identify genes that regulate ROR1 expression and may, therefore, serve as surrogate drug targets, we employed an siRNA screening approach and determined that the epigenetic regulator and E3 ubiquitin ligase, UHRF1, is required for t(1;19) pre-B-ALL cell viability in a ROR1-dependent manner. Upon UHRF1 silencing, ROR1 protein is reduced without altering ROR1 mRNA, and ectopically expressed UHRF1 is sufficient to increase ROR1 levels. Additionally, proteasome inhibition rescues loss of ROR1 protein after UHRF1 silencing, suggesting a role for the proteasome in the UHRF1-ROR1 axis. Finally, we show that ROR1-positive cells are twice as sensitive to the UHRF1-targeting drug, naphthazarin, and undergo increased apoptosis compared to ROR1-negative cells. Naphthazarin elicits reduced expression of UHRF1 and ROR1, and combination of naphthazarin with inhibitors of pre-B cell receptor signaling results in further reduction of cell survival compared with either inhibitor alone. Therefore, our work reveals a mechanism by which UHRF1 stabilizes ROR1, suggesting a potential targeting strategy to inhibit ROR1 in t(1;19) pre-B-ALL and other malignancies.
Collapse
MESH Headings
- CCAAT-Enhancer-Binding Proteins/deficiency
- CCAAT-Enhancer-Binding Proteins/genetics
- CCAAT-Enhancer-Binding Proteins/metabolism
- Cell Line, Tumor
- Cell Survival/drug effects
- Down-Regulation/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Silencing
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Molecular Targeted Therapy
- Naphthoquinones/pharmacology
- Naphthoquinones/therapeutic use
- Receptor Tyrosine Kinase-like Orphan Receptors/metabolism
- Ubiquitin-Protein Ligases
Collapse
Affiliation(s)
- Marilynn Chow
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, USA
| | - Lina Gao
- Knight Cancer Institute, Oregon Health and Science University, Portland, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, USA
| | - Jason D MacManiman
- Knight Cancer Institute, Oregon Health and Science University, Portland, USA
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, USA
| | - Vincent T Bicocca
- Knight Cancer Institute, Oregon Health and Science University, Portland, USA
| | - Bill H Chang
- Knight Cancer Institute, Oregon Health and Science University, Portland, USA
- Division of Pediatric Hematology and Oncology at Doernbecher Children's Hospital, Oregon Health and Science University, Portland, USA
| | - Joshi J Alumkal
- Knight Cancer Institute, Oregon Health and Science University, Portland, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, USA
| | - Jeffrey W Tyner
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, USA.
- Knight Cancer Institute, Oregon Health and Science University, Portland, USA.
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, USA.
| |
Collapse
|
26
|
Booth CAG, Barkas N, Neo WH, Boukarabila H, Soilleux EJ, Giotopoulos G, Farnoud N, Giustacchini A, Ashley N, Carrelha J, Jamieson L, Atkinson D, Bouriez-Jones T, Prinjha RK, Milne TA, Teachey DT, Papaemmanuil E, Huntly BJP, Jacobsen SEW, Mead AJ. Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors. Cancer Cell 2018; 33:274-291.e8. [PMID: 29438697 DOI: 10.1016/j.ccell.2018.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/13/2017] [Accepted: 01/08/2018] [Indexed: 02/08/2023]
Abstract
Lympho-myeloid restricted early thymic progenitors (ETPs) are postulated to be the cell of origin for ETP leukemias, a therapy-resistant leukemia associated with frequent co-occurrence of EZH2 and RUNX1 inactivating mutations, and constitutively activating signaling pathway mutations. In a mouse model, we demonstrate that Ezh2 and Runx1 inactivation targeted to early lymphoid progenitors causes a marked expansion of pre-leukemic ETPs, showing transcriptional signatures characteristic of ETP leukemia. Addition of a RAS-signaling pathway mutation (Flt3-ITD) results in an aggressive leukemia co-expressing myeloid and lymphoid genes, which can be established and propagated in vivo by the expanded ETPs. Both mouse and human ETP leukemias show sensitivity to BET inhibition in vitro and in vivo, which reverses aberrant gene expression induced by Ezh2 inactivation.
Collapse
Affiliation(s)
- Christopher A G Booth
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Nikolaos Barkas
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Wen Hao Neo
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Hanane Boukarabila
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Elizabeth J Soilleux
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - George Giotopoulos
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Noushin Farnoud
- Center for Molecular Oncology, Center for Heme Malignancies and Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alice Giustacchini
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Neil Ashley
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Joana Carrelha
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lauren Jamieson
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Deborah Atkinson
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Tiphaine Bouriez-Jones
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Rab K Prinjha
- Epigenetics DPU, Oncology and Immuno-Inflammation Therapy Area Units, GlaxoSmithKline, Stevenage, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - David T Teachey
- Division of Oncology, Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elli Papaemmanuil
- Center for Molecular Oncology, Center for Heme Malignancies and Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Brian J P Huntly
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Sten Eirik W Jacobsen
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Adam J Mead
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LE, UK.
| |
Collapse
|
27
|
Soto-Feliciano YM, Bartlebaugh JME, Liu Y, Sánchez-Rivera FJ, Bhutkar A, Weintraub AS, Buenrostro JD, Cheng CS, Regev A, Jacks TE, Young RA, Hemann MT. PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes. Genes Dev 2017; 31:973-989. [PMID: 28607179 PMCID: PMC5495126 DOI: 10.1101/gad.295857.117] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Abstract
In this study, Soto-Feliciano et al. describe the function of the plant homeodomain finger 6 (PHF6) protein in leukemia and define its role in regulating chromatin accessibility to lineage-specific transcription factors. Their findings suggest that active maintenance of a precise chromatin landscape is essential for sustaining proper leukemia cell identity and that loss of a single factor (PHF6) can cause focal changes in chromatin accessibility and nucleosome positioning that render cells susceptible to lineage transition. Developmental and lineage plasticity have been observed in numerous malignancies and have been correlated with tumor progression and drug resistance. However, little is known about the molecular mechanisms that enable such plasticity to occur. Here, we describe the function of the plant homeodomain finger protein 6 (PHF6) in leukemia and define its role in regulating chromatin accessibility to lineage-specific transcription factors. We show that loss of Phf6 in B-cell leukemia results in systematic changes in gene expression via alteration of the chromatin landscape at the transcriptional start sites of B-cell- and T-cell-specific factors. Additionally, Phf6KO cells show significant down-regulation of genes involved in the development and function of normal B cells, show up-regulation of genes involved in T-cell signaling, and give rise to mixed-lineage lymphoma in vivo. Engagement of divergent transcriptional programs results in phenotypic plasticity that leads to altered disease presentation in vivo, tolerance of aberrant oncogenic signaling, and differential sensitivity to frontline and targeted therapies. These findings suggest that active maintenance of a precise chromatin landscape is essential for sustaining proper leukemia cell identity and that loss of a single factor (PHF6) can cause focal changes in chromatin accessibility and nucleosome positioning that render cells susceptible to lineage transition.
Collapse
Affiliation(s)
- Yadira M Soto-Feliciano
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Jordan M E Bartlebaugh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Yunpeng Liu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Francisco J Sánchez-Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Abraham S Weintraub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Jason D Buenrostro
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Christine S Cheng
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Aviv Regev
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tyler E Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Richard A Young
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
28
|
Solanki A, Lau CI, Saldaña JI, Ross S, Crompton T. The transcription factor Gli3 promotes B cell development in fetal liver through repression of Shh. J Exp Med 2017; 214:2041-2058. [PMID: 28533268 PMCID: PMC5502423 DOI: 10.1084/jem.20160852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 02/28/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
Solanki et al. show that stromal activity of the transcription factor Gli3 is required for B cell development in the fetal liver. Gli3 functions to repress Shh expression, and Shh signals to developing B cells to regulate their development at multiple developmental stages. Before birth, B cells develop in the fetal liver (FL). In this study, we show that Gli3 activity in the FL stroma is required for B cell development. In the Gli3-deficient FL, B cell development was reduced at multiple stages, whereas the Sonic hedgehog (Hh [Shh])–deficient FL showed increased B cell development, and Gli3 functioned to repress Shh transcription. Use of a transgenic Hh-reporter mouse showed that Shh signals directly to developing B cells and that Hh pathway activation was increased in developing B cells from Gli3-deficient FLs. RNA sequencing confirmed that Hh-mediated transcription is increased in B-lineage cells from Gli3-deficient FL and showed that these cells expressed reduced levels of B-lineage transcription factors and B cell receptor (BCR)/pre-BCR–signaling genes. Expression of the master regulators of B cell development Ebf1 and Pax5 was reduced in developing B cells from Gli3-deficient FL but increased in Shh-deficient FL, and in vitro Shh treatment or neutralization reduced or increased their expression, respectively.
Collapse
Affiliation(s)
- Anisha Solanki
- Great Ormond Street Institute of Child Health, University College London, London, England, UK
| | - Ching-In Lau
- Great Ormond Street Institute of Child Health, University College London, London, England, UK
| | - José Ignacio Saldaña
- Great Ormond Street Institute of Child Health, University College London, London, England, UK.,School of Health, Sport, and Bioscience, University of East London, London, England, UK
| | - Susan Ross
- Great Ormond Street Institute of Child Health, University College London, London, England, UK
| | - Tessa Crompton
- Great Ormond Street Institute of Child Health, University College London, London, England, UK
| |
Collapse
|
29
|
Saelee P, Kearly A, Nutt SL, Garrett-Sinha LA. Genome-Wide Identification of Target Genes for the Key B Cell Transcription Factor Ets1. Front Immunol 2017; 8:383. [PMID: 28439269 PMCID: PMC5383717 DOI: 10.3389/fimmu.2017.00383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/17/2017] [Indexed: 12/16/2022] Open
Abstract
Background The transcription factor Ets1 is highly expressed in B lymphocytes. Loss of Ets1 leads to premature B cell differentiation into antibody-secreting cells (ASCs), secretion of autoantibodies, and development of autoimmune disease. Despite the importance of Ets1 in B cell biology, few Ets1 target genes are known in these cells. Results To obtain a more complete picture of the function of Ets1 in regulating B cell differentiation, we performed Ets1 ChIP-seq in primary mouse B cells to identify >10,000-binding sites, many of which were localized near genes that play important roles in B cell activation and differentiation. Although Ets1 bound to many sites in the genome, it was required for regulation of less than 5% of them as evidenced by gene expression changes in B cells lacking Ets1. The cohort of genes whose expression was altered included numerous genes that have been associated with autoimmune disease susceptibility. We focused our attention on four such Ets1 target genes Ptpn22, Stat4, Egr1, and Prdm1 to assess how they might contribute to Ets1 function in limiting ASC formation. We found that dysregulation of these particular targets cannot explain altered ASC differentiation in the absence of Ets1. Conclusion We have identified genome-wide binding targets for Ets1 in B cells and determined that a relatively small number of these putative target genes require Ets1 for their normal expression. Interestingly, a cohort of genes associated with autoimmune disease susceptibility is among those that are regulated by Ets1. Identification of the target genes of Ets1 in B cells will help provide a clearer picture of how Ets1 regulates B cell responses and how its loss promotes autoantibody secretion.
Collapse
Affiliation(s)
- Prontip Saelee
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - Alyssa Kearly
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
30
|
Behrens K, Maul K, Tekin N, Kriebitzsch N, Indenbirken D, Prassolov V, Müller U, Serve H, Cammenga J, Stocking C. RUNX1 cooperates with FLT3-ITD to induce leukemia. J Exp Med 2017; 214:737-752. [PMID: 28213513 PMCID: PMC5339673 DOI: 10.1084/jem.20160927] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/27/2016] [Accepted: 01/27/2017] [Indexed: 01/08/2023] Open
Abstract
Behrens et al. establish the interplay of activated FLT3 receptor and the phosphorylated RUNX1 transcription factor in uncoupling proliferation and differentiation signals in acute leukemia. These findings demonstrate that RUNX1 is a viable therapeutic target in FLT3-mutated AML. Acute myeloid leukemia (AML) is induced by the cooperative action of deregulated genes that perturb self-renewal, proliferation, and differentiation. Internal tandem duplications (ITDs) in the FLT3 receptor tyrosine kinase are common mutations in AML, confer poor prognosis, and stimulate myeloproliferation. AML patient samples with FLT3-ITD express high levels of RUNX1, a transcription factor with known tumor-suppressor function. In this study, to understand this paradox, we investigated the impact of RUNX1 and FLT3-ITD coexpression. FLT3-ITD directly impacts on RUNX1 activity, whereby up-regulated and phosphorylated RUNX1 cooperates with FLT3-ITD to induce AML. Inactivating RUNX1 in tumors releases the differentiation block and down-regulates genes controlling ribosome biogenesis. We identified Hhex as a direct target of RUNX1 and FLT3-ITD stimulation and confirmed high HHEX expression in FLT3-ITD AMLs. HHEX could replace RUNX1 in cooperating with FLT3-ITD to induce AML. These results establish and elucidate the unanticipated oncogenic function of RUNX1 in AML. We predict that blocking RUNX1 activity will greatly enhance current therapeutic approaches using FLT3 inhibitors.
Collapse
Affiliation(s)
- Kira Behrens
- Retroviral Pathogenesis, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Katrin Maul
- Retroviral Pathogenesis, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Nilgün Tekin
- Retroviral Pathogenesis, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany.,Virus Genomics, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Neele Kriebitzsch
- Retroviral Pathogenesis, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Daniela Indenbirken
- Viral Transformation, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | | | - Ursula Müller
- Retroviral Pathogenesis, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, Johann Wolfgang Goethe-University, 60590 Frankfurt am Main, Germany
| | - Jörg Cammenga
- Department of Hematology, Institute for Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Carol Stocking
- Retroviral Pathogenesis, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| |
Collapse
|
31
|
MLL-AF9 and MLL-AF4 oncofusion proteins bind a distinct enhancer repertoire and target the RUNX1 program in 11q23 acute myeloid leukemia. Oncogene 2017; 36:3346-3356. [PMID: 28114278 PMCID: PMC5474565 DOI: 10.1038/onc.2016.488] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 11/14/2016] [Accepted: 11/22/2016] [Indexed: 12/27/2022]
Abstract
In 11q23 leukemias, the N-terminal part of the mixed lineage leukemia (MLL) gene is fused to >60 different partner genes. In order to define a core set of MLL rearranged targets, we investigated the genome-wide binding of the MLL-AF9 and MLL-AF4 fusion proteins and associated epigenetic signatures in acute myeloid leukemia (AML) cell lines THP-1 and MV4-11. We uncovered both common as well as specific MLL-AF9 and MLL-AF4 target genes, which were all marked by H3K79me2, H3K27ac and H3K4me3. Apart from promoter binding, we also identified MLL-AF9 and MLL-AF4 binding at specific subsets of non-overlapping active distal regulatory elements. Despite this differential enhancer binding, MLL-AF9 and MLL-AF4 still direct a common gene program, which represents part of the RUNX1 gene program and constitutes of CD34+ and monocyte-specific genes. Comparing these data sets identified several zinc finger transcription factors (TFs) as potential MLL-AF9 co-regulators. Together, these results suggest that MLL fusions collaborate with specific subsets of TFs to deregulate the RUNX1 gene program in 11q23 AMLs.
Collapse
|
32
|
Lilljebjörn H, Henningsson R, Hyrenius-Wittsten A, Olsson L, Orsmark-Pietras C, von Palffy S, Askmyr M, Rissler M, Schrappe M, Cario G, Castor A, Pronk CJH, Behrendtz M, Mitelman F, Johansson B, Paulsson K, Andersson AK, Fontes M, Fioretos T. Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat Commun 2016; 7:11790. [PMID: 27265895 PMCID: PMC4897744 DOI: 10.1038/ncomms11790] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/11/2016] [Accepted: 04/28/2016] [Indexed: 12/16/2022] Open
Abstract
Fusion genes are potent driver mutations in cancer. In this study, we delineate the fusion gene landscape in a consecutive series of 195 paediatric B-cell precursor acute lymphoblastic leukaemia (BCP ALL). Using RNA sequencing, we find in-frame fusion genes in 127 (65%) cases, including 27 novel fusions. We describe a subtype characterized by recurrent IGH-DUX4 or ERG-DUX4 fusions, representing 4% of cases, leading to overexpression of DUX4 and frequently co-occurring with intragenic ERG deletions. Furthermore, we identify a subtype characterized by an ETV6-RUNX1-like gene-expression profile and coexisting ETV6 and IKZF1 alterations. Thus, this study provides a detailed overview of fusion genes in paediatric BCP ALL and adds new pathogenetic insights, which may improve risk stratification and provide therapeutic options for this disease.
Collapse
Affiliation(s)
- Henrik Lilljebjörn
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | | | - Axel Hyrenius-Wittsten
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | - Linda Olsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | - Christina Orsmark-Pietras
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | - Sofia von Palffy
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | - Maria Askmyr
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | - Marianne Rissler
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Gunnar Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Anders Castor
- Department of Pediatrics, Skåne University Hospital, Lund University, Lund 22185, Sweden
| | - Cornelis J. H. Pronk
- Department of Pediatrics, Skåne University Hospital, Lund University, Lund 22185, Sweden
| | - Mikael Behrendtz
- Department of Pediatrics, Linköping University Hospital, Linköping 58185, Sweden
| | - Felix Mitelman
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | - Bertil Johansson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
- Department of Clinical Genetics, University and Regional Laboratories Region Skåne, Lund 22185, Sweden
| | - Kajsa Paulsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | - Anna K. Andersson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
| | - Magnus Fontes
- Centre for Mathematical Sciences, Lund University, Lund 22362, Sweden
| | - Thoas Fioretos
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund 22184, Sweden
- Department of Clinical Genetics, University and Regional Laboratories Region Skåne, Lund 22185, Sweden
| |
Collapse
|
33
|
Pang SHM, Minnich M, Gangatirkar P, Zheng Z, Ebert A, Song G, Dickins RA, Corcoran LM, Mullighan CG, Busslinger M, Huntington ND, Nutt SL, Carotta S. PU.1 cooperates with IRF4 and IRF8 to suppress pre-B-cell leukemia. Leukemia 2016; 30:1375-87. [PMID: 26932576 PMCID: PMC5179358 DOI: 10.1038/leu.2016.27] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 11/14/2015] [Accepted: 01/08/2016] [Indexed: 12/22/2022]
Abstract
The Ets family transcription factor PU.1 and the interferon regulatory factor (IRF)4 and IRF8 regulate gene expression by binding to composite DNA sequences known as Ets/interferon consensus elements. Although all three factors are expressed from the onset of B-cell development, single deficiency of these factors in B-cell progenitors only mildly impacts on bone marrow B lymphopoiesis. Here we tested whether PU.1 cooperates with IRF factors in regulating early B-cell development. Lack of PU.1 and IRF4 resulted in a partial block in development the pre-B-cell stage. The combined deletion of PU.1 and IRF8 reduced recirculating B-cell numbers. Strikingly, all PU.1/IRF4 and ~50% of PU.1/IRF8 double deficient mice developed pre-B-cell acute lymphoblastic leukemia (B-ALL) associated with reduced expression of the established B-lineage tumor suppressor genes, Ikaros and Spi-B. These genes are directly regulated by PU.1/IRF4/IRF8, and restoration of Ikaros or Spi-B expression inhibited leukemic cell growth. In summary, we demonstrate that PU.1, IRF4 and IRF8 cooperate to regulate early B-cell development and to prevent pre-B-ALL formation.
Collapse
Affiliation(s)
- Swee Heng Milon Pang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Martina Minnich
- The Institute of Molecular Pathology, Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Pradnya Gangatirkar
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhiqiang Zheng
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Anja Ebert
- The Institute of Molecular Pathology, Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Guangchun Song
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678, USA
| | - Ross A Dickins
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lynn M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678, USA
| | - Meinrad Busslinger
- The Institute of Molecular Pathology, Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sebastian Carotta
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
34
|
Runx1 downregulates stem cell and megakaryocytic transcription programs that support niche interactions. Blood 2016; 127:3369-81. [PMID: 27076172 DOI: 10.1182/blood-2015-09-668129] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/31/2016] [Indexed: 12/20/2022] Open
Abstract
Disrupting mutations of the RUNX1 gene are found in 10% of patients with myelodysplasia (MDS) and 30% of patients with acute myeloid leukemia (AML). Previous studies have revealed an increase in hematopoietic stem cells (HSCs) and multipotent progenitor (MPP) cells in conditional Runx1-knockout (KO) mice, but the molecular mechanism is unresolved. We investigated the myeloid progenitor (MP) compartment in KO mice, arguing that disruptions at the HSC/MPP level may be amplified in downstream cells. We demonstrate that the MP compartment is increased by more than fivefold in Runx1 KO mice, with a prominent skewing toward megakaryocyte (Meg) progenitors. Runx1-deficient granulocyte-macrophage progenitors are characterized by increased cloning capacity, impaired development into mature cells, and HSC and Meg transcription signatures. An HSC/MPP subpopulation expressing Meg markers was also increased in Runx1-deficient mice. Rescue experiments coupled with transcriptome analysis and Runx1 DNA-binding assays demonstrated that granulocytic/monocytic (G/M) commitment is marked by Runx1 suppression of genes encoding adherence and motility proteins (Tek, Jam3, Plxnc1, Pcdh7, and Selp) that support HSC-Meg interactions with the BM niche. In vitro assays confirmed that enforced Tek expression in HSCs/MPPs increases Meg output. Interestingly, besides this key repressor function of Runx1 to control lineage decisions and cell numbers in progenitors, our study also revealed a critical activating function in erythroblast differentiation, in addition to its known importance in Meg and G/M maturation. Thus both repressor and activator functions of Runx1 at multiple hematopoietic stages and lineages likely contribute to the tumor suppressor activity in MDS and AML.
Collapse
|
35
|
Bauer E, Schlederer M, Scheicher R, Horvath J, Aigner P, Schiefer AI, Kain R, Regele H, Hoermann G, Steiner G, Kenner L, Sexl V, Villunger A, Moriggl R, Stoiber D. Cooperation of ETV6/RUNX1 and BCL2 enhances immunoglobulin production and accelerates glomerulonephritis in transgenic mice. Oncotarget 2016; 7:12191-205. [PMID: 26919255 PMCID: PMC4914278 DOI: 10.18632/oncotarget.7687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/31/2016] [Indexed: 01/15/2023] Open
Abstract
The t(12;21) translocation generating the ETV6/RUNX1 fusion gene represents the most frequent chromosomal rearrangement in childhood leukemia. Presence of ETV6/RUNX1 alone is usually not sufficient for leukemia onset, and additional genetic alterations have to occur in ETV6/RUNX1-positive cells to cause transformation. We have previously generated an ETV6/RUNX1 transgenic mouse model where the expression of the fusion gene is restricted to CD19-positive B cells. Since BCL2 family members have been proposed to play a role in leukemogenesis, we investigated combined effects of ETV6/RUNX1 with exogenous expression of the antiapoptotic protein BCL2 by crossing ETV6/RUNX1 transgenic animals with Vav-BCL2 transgenic mice. Strikingly, co-expression of ETV6/RUNX1 and BCL2 resulted in significantly shorter disease latency in mice, indicating oncogene cooperativity. This was associated with faster development of follicular B cell lymphoma and exacerbated immune complex glomerulonephritis. ETV6/RUNX1-BCL2 double transgenic animals displayed increased B cell numbers and immunoglobulin titers compared to Vav-BCL2 transgenic mice. This led to pronounced deposition of immune complexes in glomeruli followed by accelerated development of immune complex glomerulonephritis. Thus, our study reveals a previously unrecognized synergism between ETV6/RUNX1 and BCL2 impacting on malignant disease and autoimmunity.
Collapse
Affiliation(s)
- Eva Bauer
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Michaela Schlederer
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Ruth Scheicher
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Jaqueline Horvath
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Petra Aigner
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Ana-Iris Schiefer
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Renate Kain
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Heinz Regele
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Gregor Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Günter Steiner
- Cluster Arthritis and Rehabilitation, Ludwig Boltzmann Society, Vienna, Austria
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Pathology of Laboratory Animals, University of Veterinary Medicine, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Dagmar Stoiber
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Essential control of early B-cell development by Mef2 transcription factors. Blood 2015; 127:572-81. [PMID: 26660426 DOI: 10.1182/blood-2015-04-643270] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 12/05/2015] [Indexed: 12/12/2022] Open
Abstract
The sequential activation of distinct developmental gene networks governs the ultimate identity of a cell, but the mechanisms involved in initiating downstream programs are incompletely understood. The pre-B-cell receptor (pre-BCR) is an important checkpoint of B-cell development and is essential for a pre-B cell to traverse into an immature B cell. Here, we show that activation of myocyte enhancer factor 2 (Mef2) transcription factors (TFs) by the pre-BCR is necessary for initiating the subsequent genetic network. We demonstrate that B-cell development is blocked at the pre-B-cell stage in mice deficient for Mef2c and Mef2d TFs and that pre-BCR signaling enhances the transcriptional activity of Mef2c/d through phosphorylation by the Erk5 mitogen-activating kinase. This activation is instrumental in inducing Krüppel-like factor 2 and several immediate early genes of the AP1 and Egr family. Finally, we show that Mef2 proteins cooperate with the products of their target genes (Irf4 and Egr2) to induce secondary waves of transcriptional regulation. Our findings uncover a novel role for Mef2c/d in coordinating the transcriptional network that promotes early B-cell development.
Collapse
|
38
|
The RUNX1–PU.1 axis in the control of hematopoiesis. Int J Hematol 2015; 101:319-29. [DOI: 10.1007/s12185-015-1762-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 01/16/2023]
|
39
|
Vitanza NA, Zaky W, Blum R, Meyer JA, Wang J, Bhatla T, Morrison DJ, Raetz EA, Carroll WL. Ikaros deletions in BCR-ABL-negative childhood acute lymphoblastic leukemia are associated with a distinct gene expression signature but do not result in intrinsic chemoresistance. Pediatr Blood Cancer 2014; 61:1779-85. [PMID: 24976218 PMCID: PMC4217284 DOI: 10.1002/pbc.25119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/07/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Ikaros, the product of IKZF1, is a regulator of lymphoid development and polymorphisms in the gene have been associated with the acute lymphoblastic leukemia (ALL). Additionally, IKZF1 deletions and mutations identify high-risk biological subsets of childhood ALL [Georgopoulos et al. Cell 1995;83(2):289-299; Mullighan et al. N Engl J Md 2009;360(5):470-480]. PROCEDURES To discover the underlying pathways modulated by Ikaros we performed gene expression and gene ontology analysis in IKZF1 deleted primary B-ALL pediatric patient samples. To validate downstream targets we performed qPCR on individual patient samples. We also created IKZF1 knockdown B-ALL cell lines with over 50% reduction of Ikaros, mimicking haplosufficient Ikaros deletions, and again performed qPCR to investigate the downstream targets. Finally, to understand the association of Ikaros deletion with a poor prognosis we challenged our IKZF1 knockdown cell lines with chemotherapy and compared responses to IKZF1 wild-type controls. RESULTS We report a specific gene expression signature of 735 up-regulated and 473 down-regulated genes in IKZF1 deleted primary B-ALL pediatric patient samples. Gene ontology studies revealed an up-regulation of genes associated with cell adhesion, cytoskeletal regulation, and motility in IKZF deleted patient samples. Validated up-regulated target genes in IKZF1 deleted patient samples included CTNND1 and PVRL2 (P = 0.0003 and P = 0.001), and RAB3IP and SPIB (P = 0.005 and P = 0.032) were down-regulated. In further studies in IKZF1 knockdown cell lines, apoptosis assays showed no significant chemoresistance. CONCLUSION IKZF1 knockdown alone does not impart intrinsic chemotherapy resistance suggesting that the association with a poor prognosis may be due to additional lesions, microenvironmental interactions with the bone marrow niche, or other factors.
Collapse
Affiliation(s)
- Nicholas A. Vitanza
- Department of Pediatric Hematology/Oncology, Laura and Isaac Perlmutter Cancer Center at New York University Langone Medical Center, New York, NY
| | - Wafik Zaky
- Department of Pediatric Patient Care, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Roy Blum
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Julia A. Meyer
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Jinhua Wang
- Department of Pediatric Hematology/Oncology, Laura and Isaac Perlmutter Cancer Center at New York University Langone Medical Center, New York, NY
| | - Teena Bhatla
- Department of Pediatric Hematology/Oncology, Laura and Isaac Perlmutter Cancer Center at New York University Langone Medical Center, New York, NY
| | - Debra J. Morrison
- Department of Pediatric Hematology/Oncology, Laura and Isaac Perlmutter Cancer Center at New York University Langone Medical Center, New York, NY
| | | | - William L. Carroll
- Department of Pediatric Hematology/Oncology, Laura and Isaac Perlmutter Cancer Center at New York University Langone Medical Center, New York, NY,Address for Correspondence: William L. Carroll, MD NYU Cancer Institute Smilow 1201 522 First Avenue New York NY 10016 Phone: 212-263-3276 Fax: 212-263-9190
| |
Collapse
|
40
|
Posttranslational modifications of RUNX1 as potential anticancer targets. Oncogene 2014; 34:3483-92. [PMID: 25263451 DOI: 10.1038/onc.2014.305] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 12/31/2022]
Abstract
The transcription factor RUNX1 is a master regulator of hematopoiesis. Disruption of RUNX1 activity has been implicated in the development of hematopoietic neoplasms. Recent studies also highlight the importance of RUNX1 in solid tumors both as a tumor promoter and a suppressor. Given its central role in cancer development, RUNX1 is an excellent candidate for targeted therapy. A potential strategy to target RUNX1 is through modulation of its posttranslational modifications (PTMs). Numerous studies have shown that RUNX1 activity is regulated by PTMs, including phosphorylation, acetylation, methylation and ubiquitination. These PTMs regulate RUNX1 activity either positively or negatively by altering RUNX1-mediated transcription, promoting protein degradation and affecting protein interactions. In this review, we first summarize the available data on the context- and dosage-dependent roles of RUNX1 in various types of neoplasms. We then provide a comprehensive overview of RUNX1 PTMs from biochemical and biologic perspectives. Finally, we discuss how aberrant PTMs of RUNX1 might contribute to tumorigenesis and also strategies to develop anticancer therapies targeting RUNX1 PTMs.
Collapse
|
41
|
Li X, Xu Z, Du W, Zhang Z, Wei Y, Wang H, Zhu Z, Qin L, Wang L, Niu Q, Zhao X, Girard L, Gong Y, Ma Z, Sun B, Yao Z, Minna JD, Terada LS, Liu Z. Aiolos promotes anchorage independence by silencing p66Shc transcription in cancer cells. Cancer Cell 2014; 25:575-89. [PMID: 24823637 PMCID: PMC4070880 DOI: 10.1016/j.ccr.2014.03.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/06/2014] [Accepted: 03/19/2014] [Indexed: 01/06/2023]
Abstract
Anchorage of tissue cells to their physical environment is an obligate requirement for survival that is lost in mature hematopoietic and in transformed epithelial cells. Here we find that a lymphocyte lineage-restricted transcription factor, Aiolos, is frequently expressed in lung cancers and predicts markedly reduced patient survival. Aiolos decreases expression of a large set of adhesion-related genes, disrupting cell-cell and cell-matrix interactions. Aiolos also reconfigures chromatin structure within the SHC1 gene, causing isoform-specific silencing of the anchorage reporter p66(Shc) and blocking anoikis in vitro and in vivo. In lung cancer tissues and single cells, p66(Shc) expression inversely correlates with that of Aiolos. Together, these findings suggest that Aiolos functions as an epigenetic driver of lymphocyte mimicry in metastatic epithelial cancers.
Collapse
Affiliation(s)
- Xichuan Li
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China; Laboratory of Epigenetics and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Xu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China; Laboratory of Epigenetics and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Wei Du
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China; Laboratory of Epigenetics and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhenfa Zhang
- Department of Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yiliang Wei
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China; Laboratory of Epigenetics and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hao Wang
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China; Laboratory of Epigenetics and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhiyan Zhu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China; Laboratory of Epigenetics and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Litao Qin
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China; Laboratory of Epigenetics and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lin Wang
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China; Laboratory of Epigenetics and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qing Niu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China; Laboratory of Epigenetics and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yimei Gong
- Division of Pulmonary and Critical Care, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Zhenyi Ma
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lance S Terada
- Division of Pulmonary and Critical Care, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Zhe Liu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin 300070, China; Laboratory of Epigenetics and Tumorigenesis, Tianjin Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
42
|
Prange KHM, Singh AA, Martens JHA. The genome-wide molecular signature of transcription factors in leukemia. Exp Hematol 2014; 42:637-50. [PMID: 24814246 DOI: 10.1016/j.exphem.2014.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/08/2023]
Abstract
Transcription factors control expression of genes essential for the normal functioning of the hematopoietic system and regulate development of distinct blood cell types. During leukemogenesis, aberrant regulation of transcription factors such as RUNX1, CBFβ, MLL, C/EBPα, SPI1, GATA, and TAL1 is central to the disease. Here, we will discuss the mechanisms of transcription factor deregulation in leukemia and how in recent years next-generation sequencing approaches have helped to elucidate the molecular role of many of these aberrantly expressed transcription factors. We will focus on the complexes in which these factors reside, the role of posttranslational modification of these factors, their involvement in setting up higher order chromatin structures, and their influence on the local epigenetic environment. We suggest that only comprehensive knowledge on all these aspects will increase our understanding of aberrant gene expression in leukemia as well as open new entry points for therapeutic intervention.
Collapse
Affiliation(s)
- Koen H M Prange
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Abhishek A Singh
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
43
|
Pang SHM, Carotta S, Nutt SL. Transcriptional control of pre-B cell development and leukemia prevention. Curr Top Microbiol Immunol 2014; 381:189-213. [PMID: 24831348 DOI: 10.1007/82_2014_377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The differentiation of early B cell progenitors is controlled by multiple transcriptional regulators and growth-factor receptors. The triad of DNA-binding proteins, E2A, EBF1, and PAX5 is critical for both the early specification and commitment of B cell progenitors, while a larger number of secondary determinants, such as members of the Ikaros, ETS, Runx, and IRF families have more direct roles in promoting stage-specific pre-B gene-expression program. Importantly, it is now apparent that mutations in many of these transcription factors are associated with the progression to acute lymphoblastic leukemia. In this review, we focus on recent studies that have shed light on the transcriptional hierarchy that controls efficient B cell commitment and differentiation as well as focus on the oncogenic consequences of the loss of many of the same factors.
Collapse
Affiliation(s)
- Swee Heng Milon Pang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | | | | |
Collapse
|
44
|
Linka Y, Ginzel S, Krüger M, Novosel A, Gombert M, Kremmer E, Harbott J, Thiele R, Borkhardt A, Landgraf P. The impact of TEL-AML1 (ETV6-RUNX1) expression in precursor B cells and implications for leukaemia using three different genome-wide screening methods. Blood Cancer J 2013; 3:e151. [PMID: 24121163 PMCID: PMC3816209 DOI: 10.1038/bcj.2013.48] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/18/2013] [Accepted: 09/04/2013] [Indexed: 02/03/2023] Open
Abstract
The reciprocal translocation t(12;21)(p13;q22), the most common structural genomic alteration in B-cell precursor acute lymphoblastic leukaemia in children, results in a chimeric transcription factor TEL-AML1 (ETV6-RUNX1). We identified directly and indirectly regulated target genes utilizing an inducible TEL-AML1 system derived from the murine pro B-cell line BA/F3 and a monoclonal antibody directed against TEL-AML1. By integration of promoter binding identified with chromatin immunoprecipitation (ChIP)-on-chip, gene expression and protein output through microarray technology and stable labelling of amino acids in cell culture, we identified 217 directly and 118 indirectly regulated targets of the TEL-AML1 fusion protein. Directly, but not indirectly, regulated promoters were enriched in AML1-binding sites. The majority of promoter regions were specific for the fusion protein and not bound by native AML1 or TEL. Comparison with gene expression profiles from TEL-AML1-positive patients identified 56 concordantly misregulated genes with negative effects on proliferation and cellular transport mechanisms and positive effects on cellular migration, and stress responses including immunological responses. In summary, this work for the first time gives a comprehensive insight into how TEL-AML1 expression may directly and indirectly contribute to alter cells to become prone for leukemic transformation.
Collapse
Affiliation(s)
- Y Linka
- Heinrich-Heine University of Dusseldorf, Medical Faculty, Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Dusseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Harder L, Eschenburg G, Zech A, Kriebitzsch N, Otto B, Streichert T, Behlich AS, Dierck K, Klingler B, Hansen A, Stanulla M, Zimmermann M, Kremmer E, Stocking C, Horstmann MA. Aberrant ZNF423 impedes B cell differentiation and is linked to adverse outcome of ETV6-RUNX1 negative B precursor acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2013; 210:2289-304. [PMID: 24081948 PMCID: PMC3804944 DOI: 10.1084/jem.20130497] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Differentiation arrest is a hallmark of acute leukemia. Genomic alterations in B cell differentiation factors such as PAX5, IKZF1, and EBF-1 have been identified in more than half of all cases of childhood B precursor acute lymphoblastic leukemia (ALL). Here, we describe a perturbed epigenetic and transcriptional regulation of ZNF423 in ALL as a novel mechanism interfering with B cell differentiation. Hypomethylation of ZNF423 regulatory sequences and BMP2 signaling result in transactivation of ZNF423α and a novel ZNF423β-isoform encoding a nucleosome remodeling and histone deacetylase complex-interacting domain. Aberrant ZNF423 inhibits the transactivation of EBF-1 target genes and leads to B cell maturation arrest in vivo. Importantly, ZNF423 expression is associated with poor outcome of ETV6-RUNX1-negative B precursor ALL patients. Our work demonstrates that ALL is more than a genetic disease and that epigenetics may uncover novel mechanisms of disease with prognostic implications.
Collapse
Affiliation(s)
- Lena Harder
- Research Institute Children's Cancer Center and Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|