1
|
de Franceschi L, Locatelli F, Rees D, Chabannon C, Dalle J, Rivella S, Iolascon A, Lobitz S, Abboud MR, de la Fuente J, Flevari P, Angelucci E, de Montalembert M. Selecting patients with sickle cell disease for gene addition or gene editing-based therapeutic approaches: Report on behalf of a joint EHA Specialized Working Group and EBMT Hemoglobinopathies Working Party consensus conference. Hemasphere 2025; 9:e70089. [PMID: 40084235 PMCID: PMC11904809 DOI: 10.1002/hem3.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/05/2024] [Accepted: 12/09/2024] [Indexed: 03/16/2025] Open
Abstract
Sickle cell disease (SCD) remains associated with reduced life expectancy and poor quality of life despite improvements observed in the last decades mostly related to comprehensive care, use of hydroxycarbamide, screening to identify patients at risk of strokes, and implementation of safe transfusion protocols. The course of the disease is highly variable, making it difficult to predict severity and response to therapy. Allogeneic hematopoietic stem cell transplantation potentially provides a cure with a relatively low rate of complications, but few patients have an HLA-identical sibling. The hopes of patients and healthcare providers have been raised after the initial excellent results of gene therapy studies. However, there is a strong contrast between the high expectations of families and patients and the limited availability of the product, which is technically complex and very expensive. In light of this consideration and of the limited data available on the long-term efficacy and toxicity of different gene therapy approaches, the European Hematology Association Red Cell & Iron Specialized Working Group (EHA SWG) and the hemoglobinopathy working part of the European Blood & Marrow Transplant (EBMT) Group have prioritized the development of recommendations for selection of patients with SCD who are good candidates for gene therapy. The decision-making algorithm was developed by a panel of experts in hemoglobinopathies and/or transplantation chosen by EHA SWG and EBMT, to discuss the selection of SCD patients for gene therapy and draw notes on the related clinical problems.
Collapse
Affiliation(s)
- Lucia de Franceschi
- Department of Engineering for Innovative MedicineUniversity of VeronaVeronaItaly
- Azienda Ospedaliera Universitaria integrata di VeronaVeronaItaly
| | - Franco Locatelli
- IRCCS Bambino Gesù Children's HospitalCatholic University of the Sacred HeartRomeItaly
| | - David Rees
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences Medicine, King's College London, and Department of Haematological MedicineKing's College HospitalLondonUK
| | - Christian Chabannon
- Institut Paoli‐Calmettes Comprehensive Cancer Center and Module Biotherapies du Centre d'Investigations Cliniques de Marseille, INSERM‐Aix‐Marseille Université AP‐HM‐IPCCBT‐1409MarseilleFrance
| | - Jean‐Hugues Dalle
- Pediatric Hematology and Immunoloy Department, Robert‐Debré Academic HospitalGHU AP‐HP Nord Université Paris CitéParisFrance
| | - Stefano Rivella
- Department of PediatricsHematology, The Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Penn Institute for RNA InnovationUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Institute for Regenerative Medicine (IRM)University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico IINaplesItaly
- CEINGE Biotecnologie AvanzateNaplesItaly
| | - Stephan Lobitz
- Pediatric Hematology & Oncology, Gemeinschaftsklinikum MittelrheinKoblenzGermany
| | - Miguel R. Abboud
- Department of Pediatrics and Adolescent MedicineAmerican University of BeirutBeirutLebanon
| | - Josu de la Fuente
- Department of Immunology and InflammationCentre for Haematology, Imperial College LondonLondonUK
- Department of PaediatricsImperial College Healthcare NHS TrustLondonUK
| | - Pagona Flevari
- Thalassemia Unit—Center of Expertise in Haemoglobinopathies, Laiko General HospitalAthensGreece
| | - Emanuele Angelucci
- UO Ematologia e Terapie Cellulari, IRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Mariane de Montalembert
- Department of General Pediatrics and Pediatric Infectious Diseases, Sickle Cell Center, Necker‐Enfants Malades Hospital, Assistance Publique—Hôpitaux de Paris (AP‐HP)Université Paris CitéParisFrance
- Laboratory of Excellence GR‐ExParisFrance
| |
Collapse
|
2
|
Wang J, Li X, Liu P, Dai Y, Zhu H, Zhang Y, Wu M, Yao Y, Liu M, Yu S, Jiang F, Wang S, Mu H, Jiao B, Yan H, Wu W, Shen Y, Li J, Wang S, Ren R. A phase 2 pilot study of umbilical cord blood infusion as an adjuvant consolidation therapy in elderly patients with acute myeloid leukemia. Signal Transduct Target Ther 2024; 9:358. [PMID: 39702351 DOI: 10.1038/s41392-024-02065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aging-related malignancy, with patients aged ≥60 years old facing significantly poorer prognosis. Umbilical cord blood (UCB) has emerged as a promising source with effective anti-aging roles. Here, we conducted a prospective, phase 2, single-arm trial of UCB infusion as an adjuvant consolidation therapy in elderly AML patients (ChiCTR-OPC-15006492). A total of 51 patients were enrolled (median age 66 years; range, 60-75) and received two cycles of consolidation chemotherapy combined with UCB infusion. At a median follow-up of 27.3 months (range, 9.3-100), the median overall survival (OS) was not yet reached and the median event-free survival (EFS) was 72.2 months (range, 5.4-100). The 2-year OS and EFS rates were 76.9% and 62.8%, respectively. No acute graft-versus-host disease (aGVHD) or toxicity-related death occurred in any patient. The median times to platelet and neutrophil recovery were 11.5 days (range, 6-17) and 12.2 days (range, 0-21), respectively. Single-cell RNA sequencing (scRNA-seq) identified enhanced anti-tumor and anti-aging properties of UCB, manifested through activation of immune responses and telomere synthesis/maintenance. These findings suggest that UCB infusion is an effective and safe post-remission adjuvant therapy for elderly AML patients. This study provides evidence that anti-aging therapy may serve as a new and promising dimension in combined cancer treatment.
Collapse
Affiliation(s)
- Jinzeng Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoyang Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ping Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yao Dai
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongming Zhu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunxiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Min Wu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunying Yao
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mingzhu Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuting Yu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fangying Jiang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuai Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haoran Mu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bo Jiao
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hua Yan
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wen Wu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang Shen
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junming Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Shengyue Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, Hainan Province, 571199, China.
| |
Collapse
|
3
|
De Avila C, Martinez PA, Sendi P, Galvez Silva JR, Maher OM, Totapally BR. Hematopoietic Stem Cell Transplantation in Children with Sickle Cell Disease and Thalassemia Major: A National Database Study. Pediatr Hematol Oncol 2024; 41:489-503. [PMID: 39007895 DOI: 10.1080/08880018.2024.2378282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/17/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
In patients with sickle cell disease (SCD) and beta-thalassemia major (TM), allogeneic hematopoietic stem cell transplantation (HSCT) was considered the only curative treatment option with a good survival rate. However, with the recent approval of gene therapies, more information is needed to understand the benefits and risks of these interventions. We performed a retrospective analysis of the Kids Inpatient Database to describe demographic features, short-term complications, and hospital charges of patients with SCD and TM treated with HSCT during 2006-2019 in the United States. The database was filtered using the International Classification of Diseases, 9th and 10th edition codes to identify children under 20 years of age with SCD or TM who underwent HSCT. A total of 513 children with SCD or TM who received HSCT were analyzed. The prevalence of HSCT per 1000,000 U.S. population increased from 0.31 in 2006 to 1.99 in 2019 (p < 0.001). The median age of children with SCD who underwent HSCT was 10 (6-15) years, and that for TM was 6 (3-11.5) years (p < 0.001). The combined mortality rate was 4% (2.4%-6.6%) but higher in the TM group. The length-of-stay and total charges were higher in the TM population (p < 0.01). This study provides national data on HSCT among hospitalized children with SCD and TM in the United States, demonstrating an increasing use of HSCT between 2006 and 2019. Although hospital mortality of HSCT in these conditions is low, it still represents a challenge, especially in TM patients.
Collapse
Affiliation(s)
- Camila De Avila
- Division of Critical Care Medicine, Nicklaus Children's Hospital, Miami, FL, USA
| | - Paul A Martinez
- Division of Critical Care Medicine, Nicklaus Children's Hospital, Miami, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Prithvi Sendi
- Division of Critical Care Medicine, Nicklaus Children's Hospital, Miami, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Jorge R Galvez Silva
- Blood and Bone Marrow Transplant Program, Division of Hematology and Oncology, Nicklaus Children's Hospital, Miami, FL, USA
| | - Ossama M Maher
- Blood and Bone Marrow Transplant Program, Division of Hematology and Oncology, Nicklaus Children's Hospital, Miami, FL, USA
| | - Balagangadhar R Totapally
- Division of Critical Care Medicine, Nicklaus Children's Hospital, Miami, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
4
|
Alshahrani NZ, Algethami MR. The effectiveness of hematopoietic stem cell transplantation in treating pediatric sickle cell disease: Systematic review and meta-analysis. Saudi Pharm J 2024; 32:102049. [PMID: 38571765 PMCID: PMC10988128 DOI: 10.1016/j.jsps.2024.102049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Background Patients with sickle cell disease (SCD) have just one recognized curative therapy option: hematopoietic stem cell transplantation (HSCT), which results in a long-lasting improvement in the clinical phenotype. Here, we assessed the effectiveness of HSCT in treating children with SCD by a systematic review and meta-analysis. Methods Up until January 2024, a comprehensive search was done using Web of Science, CINAHL, Embase, Google Scholar, Cochrane Library, PubMed/Medline, and Embase. Two reviewers worked separately to extract the data, and Newcastle-Ottawa Quality Assessment tool was used to assess the research's quality. The outcomes analyzed were Overall survival (OS), event-free survival (EFS), graft failure (GF) and mortality. Results Nineteen papers satisfied our inclusion requirements and were assessed to be of fair quality. The pooled rate of OS was high (92%; 95% CI: 90.3%-93.5%). Similar finding was detected for EFS (85.8%; 95% CI: 83.7%-87.7%). In the other hand, pooled rates of GF and mortality were 6.9% (95% CI: 5.3%-8.9%) and 7.4% (95% CI: 5%-10.7%), respectively. A significant publication bias was detected for OS, EFS and GF outcomes. Subgroups analysis showed that study design was the major source of heterogeneity. Conclusion Our results show that HSCT is effective and safe, with pooled survival rates above 90%. It is important to assess innovative tactics in light of the alarming GF and mortality rates.
Collapse
Affiliation(s)
- Najim Z. Alshahrani
- Department of Family and Community Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammed R. Algethami
- Department of Family and Community Medicine, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Zhang H, Liao Y, Zhu Z, Liu H, Li D, Wang S. Assistance of next-generation sequencing for diagnosis of disseminated Bacillus Calmette-Guerin disease with X-SCID in an infant: a case report and literature review. Front Cell Infect Microbiol 2024; 14:1341236. [PMID: 38410723 PMCID: PMC10894915 DOI: 10.3389/fcimb.2024.1341236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Bacille Calmette-Guérin (BCG) is a live strain of Mycobacterium bovis (M.bovis) for use as an attenuated vaccine to prevent tuberculosis (TB) infection, while it could also lead to an infection in immunodeficient patients. M.bovis could infect patients with immunodeficiency via BCG vaccination. Disseminated BCG disease (BCGosis) is extremely rare and has a high mortality rate. This article presents a case of a 3-month-old patient with disseminated BCG infection who was initially diagnosed with hemophagocytic syndrome (HPS) and eventually found to have X-linked severe combined immunodeficiency (X-SCID). M.bovis and its drug resistance genes were identified by metagenomics next-generation sequencing (mNGS) combined with targeted next-generation sequencing (tNGS) in blood and cerebrospinal fluid. Whole exome sequencing (WES) revealed a pathogenic variant in the common γ-chain gene (IL2RG), confirming X-SCID. Finally, antituberculosis therapy and umbilical cord blood transplantation were given to the patient. He was successfully cured of BCGosis, and his immune function was restored. The mNGS combined with the tNGS provided effective methods for diagnosing rare BCG infections in children. Their combined application significantly improved the sensitivity and specificity of the detection of M.bovis.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yi Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhensheng Zhu
- Depertment of Bioinformation, Hugobiotech Co., Ltd., Beijing, China
| | - Hanmin Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Deyuan Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Sisi Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
6
|
Lugthart S, Ginete C, Kuona P, Brito M, Inusa BPD. An update review of new therapies in sickle cell disease: the prospects for drug combinations. Expert Opin Pharmacother 2024; 25:157-170. [PMID: 38344818 DOI: 10.1080/14656566.2024.2317336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Sickle cell disease (SCD) is an inherited disorder characterised by polymerisation of deoxygenated haemoglobin S and microvascular obstruction. The cardinal feature is generalised pain referred to as vaso-occlusive crises (VOC), multi-organ damage and premature death. SCD is the most prevalent inherited life-threatening disorders in the world and over 85% of world's 400,000 annual births occur low-and-middle-income countries. Hydroxyurea remained the only approved disease modifying therapy (1998) until the FDA approved L-glutamine (2017), Crizanlizumab and Voxelotor (2019) and gene therapies (Exa-cel and Lovo-cel, 2023). AREAS COVERED Clinical trials performed in the last 10 years (November 2013 - November 2023) were selected for the review. They were divided according to the mechanisms of drug action. The following pubmed central search terms [sickle cell disease] or [sickle cell anaemia] Hydroxycarbamide/ Hydroxyurea, L-Glutamine, Voxelotor, Crizanlizumab, Mitapivat, Etavopivat, gene therapy, haematopoietic stem cell transplantation, and combination therapy. EXPERT OPINION We recommend future trials of combination therapies for specific complications such as VOCs, chronic pain and renal impairment as well as personalised medicine approach based on phenotype and patient characteristics. Following recent approval of gene therapy for SCD, the challenge is addressing the role of shared decision-making with families, global access and affordability.
Collapse
Affiliation(s)
- Sanne Lugthart
- Haematology department, University Hospitals of Bristol and Weston Foundation Trust, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Catarina Ginete
- Health and Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Portugal
| | - Patience Kuona
- Child, Adolescent and Women's Health Department, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Miguel Brito
- Health and Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Portugal
| | - Baba Psalm Duniya Inusa
- Paediatric Haematology, Evelina London, Guy's and St Thomas NHS Foundation Trust, London
- Women's and Children Academic health, Life Sciences and Medicine, King's College London, London
| |
Collapse
|
7
|
Rossi M, Szepetowski S, Yakouben K, Paillard C, Sirvent A, Castelle M, Pegon C, Piguet C, Grain A, Angoso M, Robin M, Dhedin N, Pondarré C, Dumesnil de Maricourt C, Berceanu A, Simon P, Marcais A, Poirée M, Gandemer V, Plantaz D, Nguyen S, Michel G, Loundou A, Dalle JH, Thuret I. Recent results of hematopoietic stem cell transplantation for thalassemia with busulfan-based conditioning regimen in France: improved thalassemia free survival despite frequent mixed chimerism. A retrospective study from the Francophone Society of Stem Cell Transplantation and Cellular Therapy (SFGM-TC). Bone Marrow Transplant 2023; 58:1254-1256. [PMID: 37542188 DOI: 10.1038/s41409-023-02079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Affiliation(s)
- Marica Rossi
- Department of Pediatric Hematology, Robert Debré Hospital, GHU APHP Nord, Université Paris Cité, Paris, France.
| | - Sarah Szepetowski
- Department of Pediatric Hematology and Oncology, Rare Disease Center for Thalassemia, La Timone Hospital, Marseille, France
| | - Karima Yakouben
- Department of Pediatric Hematology, Robert Debré Hospital, GHU APHP Nord, Université Paris Cité, Paris, France
| | - Catherine Paillard
- Department of Pediatric Hematology and Oncology, Hautepierre Hospital, Strasbourg, France
| | - Anne Sirvent
- Department of Pediatric Hematology and Oncology, Arnaud de Villeneuve Hospital, Montpellier, France
| | - Martin Castelle
- Department of Pediatric Immunology and Hematology, Necker-Enfants Malades Hospital, Paris, France
| | - Charline Pegon
- Department of Pediatric Hematology and Oncology, Estaing Hospital, Clermont-Ferrand, France
| | - Christophe Piguet
- Department of Pediatric Hematology and Oncology, Mother and Child University Hospital, Limoges, France
| | - Audrey Grain
- Department of Pediatric Hematology and Oncology, University Hospital of Nantes, Nantes, France
| | - Marie Angoso
- Department of Pediatric Hematology and Oncology, Pellegrin Hospital, Bordeaux, France
| | - Marie Robin
- Department of Stem Cell Transplantation, Saint-Louis Hospital, GHU APHP Nord, Université Paris Cité, Paris, France
| | - Nathalie Dhedin
- Unit of Hematology for Adolescents, Saint-Louis Hospital, Paris, France
| | - Corinne Pondarré
- Rare Disease Center for Sickle Cell Disease, Centre Hospitalier Intercommunal de Créteil, Créteil, INSERM U955, Paris Est Créteil University, Créteil, France
| | | | - Ana Berceanu
- Department of Adult Hematology, Jean Minjoz Hospital, Besançon, France
| | - Pauline Simon
- Department of Pediatric Hematology and Oncology, Jean Minjoz Hospital, Besançon, France
| | - Ambroise Marcais
- Department of Adult Hematology, Necker-Enfants Malades Hospital, Paris, France
| | - Maryline Poirée
- Department of Pediatric Hematology and Oncology, University Hospital of Nice, Nice, France
| | - Virginie Gandemer
- Department of Pediatric Hematology and Oncology, University Hospital of Rennes, Rennes, France
| | - Dominique Plantaz
- Department of Pediatric Hematology and Oncology, University Hospital of Grenoble, Grenoble, France
| | - Stéphanie Nguyen
- Department of Hematology, La Pitié-Salpêtrière Hospital, Paris, France
- Francophone Society of Stem Cell Transplantation and Cellular Therapy (SFGM-TC), Paris, France
| | - Gérard Michel
- Department of Pediatric Hematology and Oncology, Rare Disease Center for Thalassemia, La Timone Hospital, Marseille, France
| | - Anderson Loundou
- Unit for Clinical and Epidemiological Research, DRRC/AP-HM Faculté de Médecine de Marseille, Marseille, France
| | - Jean-Hugues Dalle
- Department of Pediatric Hematology, Robert Debré Hospital, GHU APHP Nord, Université Paris Cité, Paris, France
| | - Isabelle Thuret
- Department of Pediatric Hematology and Oncology, Rare Disease Center for Thalassemia, La Timone Hospital, Marseille, France
| |
Collapse
|
8
|
Inam Z, Tisdale JF, Leonard A. Outcomes and long-term effects of hematopoietic stem cell transplant in sickle cell disease. Expert Rev Hematol 2023; 16:879-903. [PMID: 37800996 DOI: 10.1080/17474086.2023.2268271] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Hematopoietic stem cell transplant (HSCT) is the only readily available curative option for sickle cell disease (SCD). Cure rates following human leukocyte antigen (HLA)-matched related donor HSCT with myeloablative or non-myeloablative conditioning are >90%. Alternative donor sources, including haploidentical donor and autologous with gene therapy, expand donor options but are limited by inferior outcomes, limited data, and/or shorter follow-up and therefore remain experimental. AREAS COVERED Outcomes are improving with time, with donor type and conditioning regimens having the greatest impact on long-term complications. Patients with stable donor engraftment do not experience SCD-related symptoms and have stabilization or improvement of end-organ pathology; however, the long-term effects of curative strategies remain to be fully established and have significant implications in a patient's decision to seek therapy. This review covers currently published literature on HSCT outcomes, including organ-specific outcomes implicated in SCD, as well as long-term effects. EXPERT OPINION HSCT, both allogeneic and autologous gene therapy, in the SCD population reverses the sickle phenotype, prevents further organ damage, can resolve prior organ dysfunction in both pediatric and adult patients. Data support greater success with HSCT at a younger age, thus, curative therapies should be discussed early in the patient's life.
Collapse
Affiliation(s)
- Zaina Inam
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexis Leonard
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
9
|
Boontanrart MY, Mächler E, Ponta S, Nelis JC, Preiano VG, Corn JE. Engineering of the endogenous HBD promoter increases HbA2. eLife 2023; 12:e85258. [PMID: 37265399 PMCID: PMC10270685 DOI: 10.7554/elife.85258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/27/2023] [Indexed: 06/03/2023] Open
Abstract
The β-hemoglobinopathies, such as sickle cell disease and β-thalassemia, are one of the most common genetic diseases worldwide and are caused by mutations affecting the structure or production of β-globin subunits in adult hemoglobin. Many gene editing efforts to treat the β-hemoglobinopathies attempt to correct β-globin mutations or increase γ-globin for fetal hemoglobin production. δ-globin, the subunit of adult hemoglobin A2, has high homology to β-globin and is already pan-cellularly expressed at low levels in adult red blood cells. However, upregulation of δ-globin is a relatively unexplored avenue to increase the amount of functional hemoglobin. Here, we use CRISPR-Cas9 to repair non-functional transcriptional elements in the endogenous promoter region of δ-globin to increase overall expression of adult hemoglobin 2 (HbA2). We find that insertion of a KLF1 site alone is insufficient to upregulate δ-globin. Instead, multiple transcription factor elements are necessary for robust upregulation of δ-globin from the endogenous locus. Promoter edited HUDEP-2 immortalized erythroid progenitor cells exhibit striking increases of HBD transcript, from less than 5% to over 20% of total β-like globins in clonal populations. Edited CD34 +hematopoietic stem and progenitors (HSPCs) differentiated to primary human erythroblasts express up to 46% HBD in clonal populations. These findings add mechanistic insight to globin gene regulation and offer a new therapeutic avenue to treat β-hemoglobinopathies.
Collapse
Affiliation(s)
| | - Elia Mächler
- Department of Biology, ETH ZurichZurichSwitzerland
| | - Simone Ponta
- Department of Biology, ETH ZurichZurichSwitzerland
| | - Jan C Nelis
- Department of Biology, ETH ZurichZurichSwitzerland
| | | | - Jacob E Corn
- Department of Biology, ETH ZurichZurichSwitzerland
| |
Collapse
|
10
|
Hussain MS, Chaturvedi V. The Present Condition of Sickle Cell Disease: An Overview of Stem Cell Transplantation as a Cure. PHARMACEUTICAL FRONTS 2023; 05:e57-e63. [DOI: 10.1055/s-0043-1768918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
AbstractTreatment of sickle cell disease (SCD) remains largely palliative. While it can enhance living standards, persons having SCD still suffer from extreme sickling crises, end-organ destruction, and reduced life expectancy. Increasing research has resulted in the recognition and advancement of stem cell transplantation and gene therapy as possible solutions for SCDs. However, there have been various factors that have hindered their clinical application. The more advantageous of the two, stem cell transplantation, is constrained by a small donor pool, transplant difficulties, and eligibility requirements. The current article reviewed the literature on SCDs, current treatment options, and more particularly the progress of stem cell transplants. It outlined various challenges of stem cell transplant and proposed ways to increase the donor pool using alternative strategies and modifications of regimen conditioning with minimal transplant-related toxicities and associated complications.
Collapse
Affiliation(s)
- Md. Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Varunesh Chaturvedi
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| |
Collapse
|
11
|
Algeri M, Lodi M, Locatelli F. Hematopoietic Stem Cell Transplantation in Thalassemia. Hematol Oncol Clin North Am 2023; 37:413-432. [PMID: 36907612 DOI: 10.1016/j.hoc.2022.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only consolidated, potentially curative treatment for patients with transfusion-dependent thalassemia major. In the past few decades, several new approaches have reduced the toxicity of conditioning regimens and decreased the incidence of graft-versus-host disease, improving patients' outcomes and quality of life. In addition, the progressive availability of alternative stem cell sources from unrelated or haploidentical donors or umbilical cord blood has made HSCT a feasible option for an increasing number of subjects lacking an human leukocyte antigen (HLA)-identical sibling. This review provides an overview of allogeneic hematopoietic stem cell transplantation in thalassemia, reassesses current clinical results, and discusses future perspectives.
Collapse
Affiliation(s)
- Mattia Algeri
- Department of Hematology/Oncology, Cell and Gene Therapy - IRCCS, Bambino Gesù Children's Hospital, Rome, Italy.
| | - Mariachiara Lodi
- Department of Hematology/Oncology, Cell and Gene Therapy - IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology, Cell and Gene Therapy - IRCCS, Bambino Gesù Children's Hospital, Rome, Italy; Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
12
|
Hong X, Chen Y, Lu J, Lu Q. Addition of ruxolitinib in Graft-versus-Host disease prophylaxis for pediatric β-Thalassemia major patients after allogeneic stem cell transplantation: A retrospective cohort study. Pediatr Transplant 2023; 27:e14466. [PMID: 36597217 DOI: 10.1111/petr.14466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/15/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND To evaluate the effect of addition of ruxolitinib in Graft-versus-Host Disease (GVHD) prophylaxis on pediatric patients with β-thalassemia major after allogeneic hematopoietic stem cell transplantation(HSCT). METHODS This retrospective study reviewed 49 consecutive β-thalassemia major pediatric patients who underwent HSCT from unrelated or haploidentical donors from February 2018 to October 2022. All transplantation recipients received cyclosporine A (CsA), mycophenolate mofetil (MMF), and short-term methotrexate (MTX) as GVHD prophylaxis; while 27 of them in the ruxolitinib group had added ruxolitinib oral to GVHD prophylaxis regimen at 2.5 mg twice daily once successful engraftment after January 2020. RESULTS The outcome showed that the ruxolitinib group had a lower cumulative incidence than the control group regardless of acute GVHD (22.2% vs.40.9%; p = .153) or chronic GVHD (18.5% vs.40.9%; p = .072); especially, the incidence of grade III-IV acute GVHD was reported significantly less frequently in ruxolitinib group than that of the control group (0 vs. 27.3%, p = .005). No significant difference was detected between the two groups in EBV (Epstein-Barr virus)/CMV (cytomegalovirus) reactivation and BKV (BK virus) infection (p = .703, 1.000, and .436, respectively). Twenty-six patients (96.3%) in the ruxolitinib group were alive, while two patients (9.1%) in the control group died of intestinal acute GVHD. The 2-year overall survival (OS) and thalassemia-free survival (TFS) were both 96.296% in the ruxolitinib group, while both 90.909% in the control group. CONCLUSION This study reveals that ruxolitinib prophylaxis is a promising option to decrease the incidence of grade III-IV acute GVHD in pediatric patients with β-thalassemia major.
Collapse
Affiliation(s)
- Xiuli Hong
- Department of Hematology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Yamei Chen
- Department of Hematology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Jingyuan Lu
- Department of Hematology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Quanyi Lu
- Department of Hematology, Zhongshan Hospital Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Saiyin T, Kirkham AM, Bailey AJM, Shorr R, Pineault N, Maganti HB, Allan DS. Clinical Outcomes of Umbilical Cord Blood Transplantation Using Ex Vivo Expansion: A Systematic Review and Meta-Analysis of Controlled Studies. Transplant Cell Ther 2023; 29:129.e1-129.e9. [PMID: 36396108 DOI: 10.1016/j.jtct.2022.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Greater use of umbilical cord blood (UCB) for hematopoietic cell transplantation (HCT) is limited by the number of cells in banked units. Ex vivo culture strategies have been increasingly evaluated in controlled studies, but their impact on transplantation-related outcomes remains uncertain owing to the small patient numbers in these studies, necessitating an updated systematic review and meta-analysis. A systematic literature search was conducted using the MEDLINE, Embase, and Cochrane databases to March 18, 2022. Nine cohort-controlled phase I to III trials were identified, and data of 1146 patients undergoing umbilical cord blood transplantation (UCBT) were analyzed (308 ex vivo expanded and 838 unmanipulated controls). Expansion strategies involved cytokine cocktails plus the addition of small molecules (UM171, nicotinamide [NiCord], copper chelation, Notch ligand, or Stem regenin-1 [SR-1]) and coculture with mesenchymal stromal cells in a single-unit transplant strategy (5 studies) or a double-unit transplant strategy with 1 unmanipulated unit (4 studies). The included trials reported a median ex vivo expansion of CD34+ cells from 28-fold to 330-fold. Eight of the 9 studies demonstrated a significantly faster time to initial neutrophil and platelet engraftment using expanded cells compared with controls. Studies using UM171 and NiCord in single-unit UCBT and SR-1 or NiCord double-unit UCBT demonstrated long-term donor chimerism of the expanded unit at 100 days to 36 months post-transplantation in all single-unit recipients and in 35% to 78% of double-unit recipients. Our meta-analysis revealed a lower risk of death at the study endpoint in patients who received ex vivo expanded grafts (odds ratio [OR], .66; 95% confidence interval [CI], .47 to .95; P = .02), while the risk of grade II-IV acute graft-versus-host disease was unchanged (OR, .79; 95% CI, .58 to 1.08; P = .14). This review indicates that UCBT following ex vivo expansion can accelerate initial engraftment. Durable donor chimerism can be achieved after transplanting cord blood units expanded using NiCord, UM171, or SR-1; however, long term outcomes remain unclear. Larger studies with longer-term outcomes are needed to better understand the merits of specific expansion strategies on survival.
Collapse
Affiliation(s)
- Tana Saiyin
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Aidan M Kirkham
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Adrian J M Bailey
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Risa Shorr
- Medical Information and Education Services, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Nicolas Pineault
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Innovation and Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Harinad B Maganti
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Innovation and Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
| | - David S Allan
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Innovation and Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada.
| |
Collapse
|
14
|
Klein OR, Bonfim C, Abraham A, Ruggeri A, Purtill D, Cohen S, Wynn R, Russell A, Sharma A, Ciccocioppo R, Prockop S, Boelens JJ, Bertaina A. Transplant for non-malignant disorders: an International Society for Cell & Gene Therapy Stem Cell Engineering Committee report on the role of alternative donors, stem cell sources and graft engineering. Cytotherapy 2023; 25:463-471. [PMID: 36710227 DOI: 10.1016/j.jcyt.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/30/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) is curative for many non-malignant disorders. As HSCT and supportive care technologies improve, this life-saving treatment may be offered to more and more patients. With the development of new preparative regimens, expanded alternative donor availability, and graft manipulation techniques, there are many options when choosing the best regimen for patients. Herein the authors review transplant considerations, transplant goals, conditioning regimens, donor choice, and graft manipulation strategies for patients with non-malignant disorders undergoing HSCT.
Collapse
Affiliation(s)
- Orly R Klein
- Division of Hematology, Oncology and Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA.
| | - Carmem Bonfim
- Pediatric Blood and Marrow Transplantation Division and Pele Pequeno Principe Research Institute, Hospital Pequeno Principe, Curitiba, Brazil
| | - Allistair Abraham
- Center for Cancer and Immunology Research, Cell Enhancement and Technologies for Immunotherapy, Children's National Hospital, Washington, DC, USA
| | - Annalisa Ruggeri
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
| | - Duncan Purtill
- Department of Hematology, Fiona Stanley Hospital, Perth, Australia
| | - Sandra Cohen
- Université de Montréal and Maisonneuve Rosemont Hospital, Montréal, Canada
| | - Robert Wynn
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Athena Russell
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Policlinico G.B. Rossi and University of Verona, Verona, Italy
| | - Susan Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Department of Pediatrics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Alice Bertaina
- Division of Hematology, Oncology and Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
15
|
How I prevent GVHD in high-risk patients: posttransplant cyclophosphamide and beyond. Blood 2023; 141:49-59. [PMID: 35405017 DOI: 10.1182/blood.2021015129] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 01/10/2023] Open
Abstract
Advances in conditioning, graft-versus-host disease (GVHD) prophylaxis and antimicrobial prophylaxis have improved the safety of allogeneic hematopoietic cell transplantation (HCT), leading to a substantial increase in the number of patients transplanted each year. This influx of patients along with progress in remission-inducing and posttransplant maintenance strategies for hematologic malignancies has led to new GVHD risk factors and high-risk groups: HLA-mismatched related (haplo) and unrelated (MMUD) donors; older recipient age; posttransplant maintenance; prior checkpoint inhibitor and autologous HCT exposure; and patients with benign hematologic disorders. Along with the changing transplant population, the field of HCT has dramatically shifted in the past decade because of the widespread adoption of posttransplantation cyclophosphamide (PTCy), which has increased the use of HLA-mismatched related donors to levels comparable to HLA-matched related donors. Its success has led investigators to explore PTCy's utility for HLA-matched HCT, where we predict it will be embraced as well. Additionally, combinations of promising new agents for GVHD prophylaxis such as abatacept and JAK inhibitors with PTCy inspire hope for an even safer transplant platform. Using 3 illustrative cases, we review our current approach to transplantation of patients at high risk of GVHD using our modern armamentarium.
Collapse
|
16
|
Chu Y, Talano JA, Baxter-Lowe LA, Verbsky JW, Morris E, Mahanti H, Ayello J, Keever-Taylor C, Johnson B, Weinberg RS, Shi Q, Moore TB, Fabricatore S, Grossman B, van de Ven C, Shenoy S, Cairo MS. Donor chimerism and immune reconstitution following haploidentical transplantation in sickle cell disease. Front Immunol 2022; 13:1055497. [PMID: 36569951 PMCID: PMC9780682 DOI: 10.3389/fimmu.2022.1055497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction We previously reported the initial results of a phase II multicenter transplant trial using haploidentical parental donors for children and aolescents with high-risk sickle cell disease achieving excellent survival with exceptionally low rates of graft-versus-host disease and resolution of sickle cell disease symptoms. To investigate human leukocyte antigen (HLA) sensitization, graft characteristics, donor chimerism, and immune reconstitution in these recipients. Methods CD34 cells were enriched using the CliniMACS® system with a target dose of 10 x 106 CD34+ cells/kg with a peripheral blood mononuclear cell (PBMNC) addback dose of 2x105 CD3/kg in the final product. Pre-transplant HLA antibodies were characterized. Donor chimerism was monitored 1-24 months post-transplant. Comprehensive assessment of immune reconstitution included lymphocyte subsets, plasma cytokines, complement levels, anti-viral T-cell responses, activation markers, and cytokine production. Infections were monitored. Results HLA antibodies were detected in 7 of 11 (64%) evaluable patients but rarely were against donor antigens. Myeloid engraftment was rapid (100%) at a median of 9 days. At 30 days, donor chimerism was 93-99% and natural killer cell levels were restored. By 60 days, CD19 B cells were normal. CD8 and CD4 T-cells levels were normal by 279 and 365 days, respectively. Activated CD4 and CD8 T-cells were elevated at 100-365 days post-transplant while naïve cells remained below baseline. Tregs were elevated at 100-270 days post-transplant, returning to baseline levels at one year. At one year, C3 and C4 levels were above baseline and CH50 levels were near baseline. At one year, cytokine levels were not significantly different from baseline. Discussion These results suggest that haploidentical transplantation with CD34-enriched cells and peripheral blood mononuclear cell addback results in rapid engraftment, sustained donor chimerism and broad-based immune reconstitution.
Collapse
Affiliation(s)
- Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Julie-An Talano
- Department of Pediatrics, Hematology/Oncology and BMT, Children’s Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lee Ann Baxter-Lowe
- Department of Pathology, Children’s Hospital of Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - James W. Verbsky
- Department of Pediatrics, Hematology/Oncology and BMT, Children’s Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Erin Morris
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Harshini Mahanti
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States,Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - Carolyn Keever-Taylor
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bryon Johnson
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Qiuhu Shi
- Department of Epidemiology and Community Health, New York Medical College, Valhalla, NY, United States
| | - Theodore B. Moore
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Sandra Fabricatore
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Brenda Grossman
- Department of Pathology and Immunology, Washington University, St Louis, MO, United States
| | - Carmella van de Ven
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Shalini Shenoy
- Department of Pediatrics and Transfusion Medicine, Washington University, St Louis, MO, United States
| | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States,Department of Pathology, New York Medical College, Valhalla, NY, United States,Department of Medicine, New York Medical College, Valhalla, NY, United States,Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States,Department of Cell Biology, New York Medical College, Valhalla, NY, United States,Department of Anatomy, New York Medical College, Valhalla, NY, United States,*Correspondence: Mitchell S. Cairo,
| |
Collapse
|
17
|
Huang F, Zeng X, Fan Z, Xu N, Yu S, Xuan L, Liu H, Jin H, Lin R, Shi P, Zhao K, Li X, Wei X, Xu J, Wang Z, Sun J, Chai Y, Liu Q. Haplo-Peripheral Blood Stem Cell Plus Cord Blood Grafts for Hematologic Malignancies Might Lead to Lower Relapse Compared with Haplo-Peripheral Blood Stem Cell Plus Bone Marrow Grafts. Transplant Cell Ther 2022; 28:849.e1-849.e8. [PMID: 36049734 DOI: 10.1016/j.jtct.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/09/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022]
Abstract
To compare the outcomes between peripheral blood stem cell (PBSC)+cord blood and PBSC+bone marrow (BM) grafts in the setting of haploidentical donor (HID) transplantation, 110 patients were enrolled in this retrospective study, including 54 recipients of haplo-PBSC+cord transplants and 56 recipients of haplo-PBSC+BM transplants. Chimerism analyses revealed that by day 30 post-transplantation, 94.3% of surviving patients in the haplo-PBSC+cord group had achieved full haploidentical chimerism and 5.7% had <10% cord chimerism, whereas 100% of surviving patients in the haplo-PBSC+BM group had achieved full donor chimerism. The cumulative incidence of platelet engraftment at 30 days was 92.6% in the haplo-PBSC+cord group versus 89.3% in the haplo-PBSC+BM group (P =.024), that of grade II-IV acute graft-versus-host disease (GVHD) at 100 days was 31.5% versus 48.2% (P =.060), and 1-year relapse was 13.0% versus 25.0% (P =.027), nonrelapse mortality was 9.3% versus 12.5% (P =.76), disease-free survival (DFS) was 77.7% versus 62.5% (P =.028), and overall survival (OS) was 81.4% versus 69.6% (P =.046). Multivariate analysis identified haplo-PBSC+cord transplantation as a protective factor for relapse (hazard ratio [HR], .31; P =.007), DFS (HR, .40; P =.007), and OS (HR, .44; P =.016). Overall, haplo-PBSC+cord transplantation led to faster platelet engraftment, lower relapse, and superior DFS and OS compared with haplo-PBSC+BM transplantation and thus might be a better transplant mode in the setting of HID transplantation.
Collapse
Affiliation(s)
- Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangzong Zeng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Hematology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sijian Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Zhao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaofang Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolei Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanyan Chai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Hou X, Wang YL, Shi W, Hu W, Zeng Z, Liu J, Li L, Cai W, Tang D, Dai Y. Multiplexed analysis of gene expression and chromatin accessibility of human umbilical cord blood using scRNA-Seq and scATAC-Seq. Mol Immunol 2022; 152:207-214. [DOI: 10.1016/j.molimm.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
|
19
|
Alsultan A, Abujoub R, Elbashir E, Essa MF. The effect of intensity of conditioning regimen on the outcome of HSCT in children with sickle cell disease. Clin Transplant 2022; 36:e14787. [PMID: 35929611 DOI: 10.1111/ctr.14787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (HSCT) provides a cure for patients with sickle cell disease (SCD). This study describes the effect of conditioning regimen intensity on HSCT outcomes among children younger than 14 years with SCD. METHODS Transplants from HLA-matched related donors (MRD) and unrelated donors (MUD) using either myeloablative conditioning (MAC) regimens or reduced intensity conditioning (RIC) regimens were considered. Event-free survival (EFS) was the primary endpoint. Secondary endpoints included overall survival (OS) and occurrence of GVHD. RESULTS 48 SCD patients underwent HSCT, 45 (93.8%) patients had MRD, 1 (2.1%) had 9/10 related donor, and 2 (4.1%) had MUD. The median age at transplant was 8.6 years (range, 3.1-13.8). Conditioning regimens were myeloablative (MAC) in 41 (85.4%) patients and of reduced intensity in 7 (14.6%) patients. EFS at 2 years was 100% among MAC group compared to 29% in the RIC group (p < .001). The median follow-up was 43.4 months (range 26.8-134). All events in the RIC group were secondary graft failure. However, OS was 100% in both groups at 2 years. Acute GVHD II-IV was diagnosed in 2 (4.1%) patients. Chronic GVHD occurred in 2 (4.1%) patients. GVHD did not occur in patients who underwent MUD HSCT. CONCLUSIONS MAC in children with SCD is well tolerated and associated with an excellent outcome for HLA-matched HSCT in SCD. There was a high rate of secondary graft failure with the use of RIC. Future studies are needed to optimize RIC regimens in HSCT of children with SCD.
Collapse
Affiliation(s)
- Abdulrahman Alsultan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Oncology Center, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Rodina Abujoub
- Department of Nursing, King Abdullah Specialist Children's Hospital, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Enas Elbashir
- Department of Pediatric Hematology/Oncology, King Abdullah Specialist Children's Hospital, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mohammed F Essa
- Department of Pediatric Hematology/Oncology, King Abdullah Specialist Children's Hospital, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Yao D, Tian Y, Li J, Li B, Lu J, Ling J, Zheng D, Yao Y, Xiao P, Meng L, Hu S. Association between haploidentical hematopoietic stem cell transplantation combined with an umbilical cord blood unit and graft- versus-host disease in pediatric patients with acquired severe aplastic anemia. Ther Adv Hematol 2022; 13:20406207221134409. [PMID: 36324490 PMCID: PMC9619284 DOI: 10.1177/20406207221134409] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Haploidentical hematopoietic stem cell transplantation (haplo-HSCT) based on granulocyte colony-stimulating factor plus anti-thymocyte regimens (‘Beijing Protocol’) provides a salvage treatment for patients of acquired severe aplastic anemia (SAA) in China. However, graft-versus-host disease (GVHD) is a major impediment of haplo-HSCT due to human leukocyte antigen disparity. Recently, haplo-HSCT combined with umbilical cord blood (UCB) (haplo-cord HSCT) is performed in clinical trials to potentially reduce the risk of severe GVHD. Nevertheless, studies comparing GVHD in pediatric patients receiving haplo and haplo-cord HSCT for SAA are limited. Objective: The objective of this study was to investigate the impact of UCB co-infusion on GVHD in pediatric patients receiving haplo-HSCT for SAA. Design: We conducted a retrospective study of 91 consecutive SAA children undergoing haploidentical transplantation based on the ‘Beijing Protocol’ with or without co-infusion of UCB in our center. Methods: All patients received uniform non-myeloablative conditioning and GVHD prophylaxis. We compared baseline characteristics and transplant outcomes between the haplo (n = 35) and haplo-cord (n = 56) recipients. Results: All 91 patients achieved hematopoietic recovery from haploidentical donors, with a higher incidence of peri-engraftment syndrome observed with the haplo-cord group as compared with the haplo group (75.0% versus 48.6%, p = 0.029). Notably, the haplo-cord group showed a lower incidence of II–IV acute GVHD (aGVHD) than the haplo group (16.1% versus 42.9%, p = 0.002). Observed incidences of chronic GVHD (cGVHD) and moderate to severe cGVHD in the haplo-cord group were also lower than that in the haplo group (25.6% versus 51.3%, p = 0.019; 16.2% versus 41.3%, p = 0.016, respectively). Haplo-cord HSCT was identified as the only factor associated with a lower incidence of II–IV aGVHD and cGVHD in multivariate analysis. However, no differences were observed between the two groups for infections and survival outcomes. Conclusion: Our data indicated that co-infusion of UCB in ‘Beijing Protocol’-based haplo-HSCT may be effective for reducing the risk of severe GVHD in SAA children.
Collapse
Affiliation(s)
| | | | | | | | - Jun Lu
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China,Jiangsu Children’s Hematology & Oncology Center, Suzhou, China,Di Yao is also affiliated to Department of Pediatrics, Hangzhou First People’s Hospital, Hangzhou, China
| | - Jing Ling
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China,Jiangsu Children’s Hematology & Oncology Center, Suzhou, China,Di Yao is also affiliated to Department of Pediatrics, Hangzhou First People’s Hospital, Hangzhou, China
| | - Defei Zheng
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China,Jiangsu Children’s Hematology & Oncology Center, Suzhou, China,Di Yao is also affiliated to Department of Pediatrics, Hangzhou First People’s Hospital, Hangzhou, China
| | - Yanhua Yao
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China,Jiangsu Children’s Hematology & Oncology Center, Suzhou, China,Di Yao is also affiliated to Department of Pediatrics, Hangzhou First People’s Hospital, Hangzhou, China
| | - Peifang Xiao
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China,Jiangsu Children’s Hematology & Oncology Center, Suzhou, China,Di Yao is also affiliated to Department of Pediatrics, Hangzhou First People’s Hospital, Hangzhou, China
| | - Lijun Meng
- Department of Hematology, Children’s Hospital of Soochow University, No. 92 Zhongnan Street, Suzhou 215025, Jiangsu, China,Jiangsu Children’s Hematology & Oncology Center, Suzhou, China
| | | |
Collapse
|
21
|
Umbilical Cord Blood as a Hematopoietic Stem Cell Source in Transplantation for Pediatric Sickle Cell Disease: Current Challenges and Strategies. Transfus Apher Sci 2022; 61:103554. [DOI: 10.1016/j.transci.2022.103554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Bruce AAK, Guilcher GMT, Desai S, Truong TH, Leaker M, Alaazi DA, Pedersen SJV, Salami B. ADaPTS "(AD)olescents (P)ath through (T)ransplant (S)ickle cell disease". Health Qual Life Outcomes 2022; 20:118. [PMID: 35907865 PMCID: PMC9338650 DOI: 10.1186/s12955-022-02021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Sickle cell disease is an inherited chronic hematological disorder with an average lifespan of fifty years. The human cost of sickle cell disease includes missed school days, occupational opportunities, social isolation, stigmatization, and psychological sequelae. Hematopoietic cell transplantation (HCT) is the only curative therapy available but comes with potential morbidity and mortality. Our study explores how quality of life (QoL) is affected from the perspective of an adolescent who has undergone a nonmyeloablative matched sibling donor HCT. Methods We employed multiple case study methodology with purposeful sampling by selecting information-rich cases. Data sources: 1) QoL inventories 2) patient interviews 3) parent interview 4) vital support interview 5) medical record analysis. Data analysis: Intra-case analysis by assembling evidence within a single case and then analyzing the differences within cases to create a rich case description. Next, a time series analysis was completed to track changes in patients’ QoL. We used multiple sources of data to compose a timeline and changes across time. Then, we employed pattern matching as an analytical technique allowing for examination of patterns across cases. Finally, we used cross case synthesis to review results of each case. Results Quality of life was reported across the physical, social and psychological domains for 5 participants. All had sickle cell HgSS genotype, 80% were male and 80% were born outside of Canada. Physical domain: pre-transplant, 100% of patients experienced pain, and the majority suffered from fatigue, insomnia, and fevers resulting in hospitalizations. Afterwards, participants reported improved physical wellbeing. Social domain: pre-transplant, QoL was poor characterized by stigma, social isolation, and parental absenteeism. Post-HSCT adolescents gained social acceptance in areas that had stigmatized and excluded them. They were able to participate freely in activities with peers and their social life vastly improved. Psychological pre-transplant life experiences were overshadowed by psychological stress. The majority commented that their future was bleak and may lead to premature death. Afterwards adolescents described a crisis free life with positive psychological outcomes. Conclusions Adolescents with sickle cell disease who undertook HCT demonstrated improved QoL one year post transplant with regard to physical, social and psychological well-being.
Collapse
Affiliation(s)
- Aisha A K Bruce
- Division of Pediatric Hematology and Oncology, 3-467 Edmonton Clinic Health Academy (ECHA), Department of Pediatrics, Faculty of Medicine, University of Alberta, 11405 - 87 Avenue, Edmonton, AB, T6G 1C9, Canada. .,Stollery Children's Hospital, Alberta Health Services, Edmonton, AB, Canada.
| | - Gregory M T Guilcher
- Section of Pediatric Oncology/Cellular Therapy, Alberta Children's Hospital, Departments of Oncology and Pediatrics, Cumming School of Medicine, Calgary, AB, Canada
| | - Sunil Desai
- Division of Pediatric Hematology and Oncology, 3-467 Edmonton Clinic Health Academy (ECHA), Department of Pediatrics, Faculty of Medicine, University of Alberta, 11405 - 87 Avenue, Edmonton, AB, T6G 1C9, Canada.,Stollery Children's Hospital, Alberta Health Services, Edmonton, AB, Canada
| | - Tony H Truong
- Section of Pediatric Oncology/Cellular Therapy, Alberta Children's Hospital, Departments of Oncology and Pediatrics, Cumming School of Medicine, Calgary, AB, Canada
| | - Michael Leaker
- Section of Pediatric Oncology/Cellular Therapy, Alberta Children's Hospital, Departments of Oncology and Pediatrics, Cumming School of Medicine, Calgary, AB, Canada
| | | | - Sasia J V Pedersen
- Division of Pediatric Hematology and Oncology, 3-467 Edmonton Clinic Health Academy (ECHA), Department of Pediatrics, Faculty of Medicine, University of Alberta, 11405 - 87 Avenue, Edmonton, AB, T6G 1C9, Canada
| | - Bukola Salami
- Faculty of Nursing, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
23
|
Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2022. Bone Marrow Transplant 2022; 57:1217-1239. [PMID: 35589997 PMCID: PMC9119216 DOI: 10.1038/s41409-022-01691-w] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/17/2022]
|
24
|
Wynn R, Nataraj R, Nadaf R, Poulton K, Logan A. Strategies for Success With Umbilical Cord Haematopoietic Stem Cell Transplantation in Children With Malignant and Non-Malignant Disease Indications. Front Cell Dev Biol 2022; 10:836594. [PMID: 35465327 PMCID: PMC9020792 DOI: 10.3389/fcell.2022.836594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Umbilical Cord blood is an intuitively attractive stem cell source, but its use has declined since it is associated with an increased procedure-related morbidity and transplant related mortality. Some of this reflects that cord blood transplants are more often HLA-mismatched compared to other unrelated donor transplants. The ability to transplant in such a setting, indeed without high rates of chronic Graft versus Host Disease (GVHD), constitutes an advantage compared to other unrelated donor cell sources and there are other advantages specifically associated with cord blood as a donor cell source. These advantages must be weighed against its disadvantage, and we have utilised cord blood preferentially as a donor cell source in certain clinical situations in paediatric medicine. In non-malignant diseases, outcomes in metabolic disease are critically dependent on age at transplant and the enzyme delivered by that transplant, and in cord blood transplantation then the time to transplant can be minimised and the engrafted recipients have higher chimerism that delivers higher enzyme levels. In malignant diseases, studies have described reduced relapse rate and better GVHD-free survival, and so we have prioritised cord as a donor cell source where the risk of relapse is highest, and the effects of higher transplant related mortality is most clearly offset by the reduced relapse rates.
Collapse
Affiliation(s)
- Rob Wynn
- Royal Manchester Children’s Hospital, Manchester, United Kingdom
- Paediatric Blood and Marrow Transplant Programme, Manchester, United Kingdom
- *Correspondence: Rob Wynn,
| | - Ramya Nataraj
- Royal Manchester Children’s Hospital, Manchester, United Kingdom
- Paediatric Blood and Marrow Transplant Programme, Manchester, United Kingdom
| | - Rubiya Nadaf
- Royal Manchester Children’s Hospital, Manchester, United Kingdom
- Paediatric Blood and Marrow Transplant Programme, Manchester, United Kingdom
| | - Kay Poulton
- Transplantation Laboratory, Manchester University NHS Foundation Trust (MFT), Manchester, United Kingdom
- Manchester University NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Alison Logan
- Transplantation Laboratory, Manchester University NHS Foundation Trust (MFT), Manchester, United Kingdom
- Manchester University NHS Foundation Trust (MFT), Manchester, United Kingdom
| |
Collapse
|
25
|
Parsons SK, Rodday AM, Weidner RA, Morris E, Braniecki S, Shenoy S, Talano JA, Moore TB, Panarella A, Flower A, Milner J, Fabricatore S, Mahanti H, van de Ven C, Shi Q, Cairo MS. Significant improvement of child physical and emotional functioning after familial haploidentical stem cell transplant. Bone Marrow Transplant 2022; 57:586-592. [PMID: 35110690 DOI: 10.1038/s41409-022-01584-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 11/08/2022]
Abstract
Allogeneic stem cell transplantation (AlloSCT) represents the only curative therapy for sickle cell disease (SCD). However, limited availability of matched related donors and suboptimal outcomes following AlloSCT with unrelated donors has led to investigation of alternative donors. Among children with high-risk SCD, we evaluated health-related quality of life (HRQoL) impact in the two years following familial haploidentical SCT. HRQoL was collected from parent and child raters, using the Child Health Ratings Inventories Generic measure and haploidentical SCT-specific module. Repeated measures models were fit to assess HRQoL changes over time and by rater. Nineteen children (mean age 12.9 yrs [standard deviation, 5.3]; 63% male) and their parents were included. There were no differences in the 2-yr trajectories of child physical or emotional functioning (EF) by rater. Child physical functioning and EF scores were significantly lower at day +45 than baseline, but scores recovered by day +180. There was significant improvement in EF (p = 0.03) at 2 yrs vs baseline. A similar pattern of scores over time was seen for parent ratings of child's global HRQoL. Despite treatment intensity in the initial months following AlloSCT, patient scores recovered or exceeded baseline scores at two years. This trial is registered at clinicaltrials.gov (NCT01461837).
Collapse
Affiliation(s)
- Susan K Parsons
- Department of Medicine and Pediatrics, Tufts Medical Center, Boston, MA, USA
| | - Angie Mae Rodday
- Department of Medicine and Pediatrics, Tufts Medical Center, Boston, MA, USA
| | - Ruth Ann Weidner
- Department of Medicine and Pediatrics, Tufts Medical Center, Boston, MA, USA
| | - Erin Morris
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Suzanne Braniecki
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Shalini Shenoy
- Department of Pediatrics, Washington University, St Louis, MO, USA
| | - Julie-An Talano
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Theodore B Moore
- Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - Anne Panarella
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Allyson Flower
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Jordan Milner
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | | | - Harshini Mahanti
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | | | - Qiuhu Shi
- Department of Biostatistics, New York Medical College, Valhalla, NY, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.
- Department of Medicine, New York Medical College, Valhalla, NY, USA.
- Department of Pathology, New York Medical College, Valhalla, NY, USA.
- Microbiology & Immunology, New York Medical College, Valhalla, NY, USA.
- Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
26
|
CAR19/22 T cell cocktail therapy for B-ALL relapsed after allogeneic hematopoietic stem cell transplantation. Cytotherapy 2022; 24:841-849. [DOI: 10.1016/j.jcyt.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/23/2022]
|
27
|
Wen J, Wang X, Chen L, He Y, Feng X, Li C, Ruan Y, Liu S, Wu X. Encouraging the outcomes of children with beta-thalassaemia major who underwent fresh cord blood transplantation from an HLA-matched sibling donor. Hematology 2022; 27:310-317. [PMID: 35220923 DOI: 10.1080/16078454.2022.2038402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Jianyun Wen
- Department of Pediatrics, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xiaodong Wang
- Department of Hematology & Oncology, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China
| | - Libai Chen
- Department of Pediatrics, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yuelin He
- Nanfang-Chunfu Children's Institute of Hematology & Oncology, Dongguan, People’s Republic of China
| | - Xiaoqin Feng
- Department of Pediatrics, Southern Medical University, Guangzhou, People’s Republic of China
| | - Chunfu Li
- Nanfang-Chunfu Children's Institute of Hematology & Oncology, Dongguan, People’s Republic of China
| | - Yongshen Ruan
- Department of Pediatrics, Southern Medical University, Guangzhou, People’s Republic of China
| | - Sixi Liu
- Department of Hematology & Oncology, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China
| | - Xuedong Wu
- Department of Pediatrics, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
28
|
Al-Jefri A, Siddiqui K, Al-Oraibi A, Al-Seraihy A, Al Ahmari A, Ghemlas I, Al Anazi A, Al Saedi H, Ayas M. Hematopoietic Stem Cell Transplantation Stabilizes Cerebral Vasculopathy in High-Risk Pediatric Sickle Cell Disease Patients: Evidence From a Referral Transplant Center. J Hematol 2022; 11:8-14. [PMID: 35356638 PMCID: PMC8929199 DOI: 10.14740/jh949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/28/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Severe sickle cell disease (SCD) can present with different vaso-occlusive manifestations with cerebral vasculopathy (CV) as one of the most serious complications. Hematopoietic stem cell transplant (HSCT) is the ultimate therapy for this complication. The aim of this study was to assess the outcome and impact of HSCT on severe SCD patients with CV complications. METHODS Twenty-five consecutive transplants-naive pediatric SCD patients with CV complications underwent HSCT at our institution between 1993 and 2015, using bone marrow as stem cells source from fully match related donors were included. Neurologic evaluation was done both clinically and radiologically before transplantation and regularly following the HSCT. RESULTS With a median follow-up of 52.2 ± 5.8 months, the cumulative probability of overall survival (OS) at 3 years was 92.0% and event-free survival (EFS) was 88%. Significant neurologic improvements were observed in most of the patients clinically. Different neurologic complications were assessed. The neurologic manifestations before and after HSCT were hemiparesis (11, 1), seizures (13, 8), focal neurologic deficit (4, 2), loss of conscious (2, 1) headache (6, 1), and psychological symptoms (5, 2). Post-HSCT radiological imaging was done in 15 patients, which showed stabilization of CV among all. CONCLUSIONS Allogeneic HSCT in patients with severe SCD presenting with CV complications including moyamoya vasculopathy showed favorable outcome with significant clinical neurologic improvement and stabilization of the disease. None of the patients with severe vasculopathy underwent neurological vascular by-pass surgery prior to HSCT.
Collapse
Affiliation(s)
- Abdullah Al-Jefri
- Department of Pediatric Hematology/Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khawar Siddiqui
- Department of Pediatric Hematology/Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amira Al-Oraibi
- Department of Pediatric Hematology/Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Al-Seraihy
- Department of Pediatric Hematology/Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ali Al Ahmari
- Department of Pediatric Hematology/Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ibrahim Ghemlas
- Department of Pediatric Hematology/Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Awatif Al Anazi
- Department of Pediatric Hematology/Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hawazen Al Saedi
- Department of Pediatric Hematology/Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mouhab Ayas
- Department of Pediatric Hematology/Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Thuret I, Ruggeri A, Angelucci E, Chabannon C. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:407-414. [PMID: 35267028 PMCID: PMC9052404 DOI: 10.1093/stcltm/szac007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/13/2021] [Indexed: 01/19/2023] Open
Abstract
Beta-thalassemia is one of the most common monogenic disorders. Standard treatment of the most severe forms, i.e., transfusion-dependent thalassemia (TDT) with long-term transfusion and iron chelation, represents a considerable medical, psychological, and economic burden. Allogeneic hematopoietic stem cell transplantation from an HLA-identical donor is a curative treatment with excellent results in children. Recently, several gene therapy approaches were evaluated in academia or industry-sponsored clinical trials as alternative curative options for children and young adults without an HLA-identical donor. Gene therapy by addition of a functional beta-globin gene using self-inactivating lentiviral vectors in autologous stem cells resulted in transfusion independence for a majority of TDT patients across different age groups and genotypes, with a current follow-up of multiple years. More recently, promising results were reported in TDT patients treated with autologous hematopoietic stem cells edited with the clustered regularly interspaced short palindromic repeats-Cas9 technology targeting erythroid BCL11A expression, a key regulator of the normal switch from fetal to adult globin production. Patients achieved high levels of fetal hemoglobin allowing for discontinuation of transfusions. Despite remarkable clinical efficacy, 2 major hurdles to gene therapy access for TDT patients materialized in 2021: (1) a risk of secondary hematological malignancies that is complex and multifactorial in origin and not limited to the risk of insertional mutagenesis, (2) the cost—even in high-income countries—is leading to the arrest of commercialization in Europe of the first gene therapy medicinal product indicated for TDT despite conditional approval by the European Medicines Agency.
Collapse
Affiliation(s)
- Isabelle Thuret
- Department of Pediatric Onco-Hematology, Center for Hemoglobinopathies, La Timone Hospital, Marseille University, Marseille, France
| | - Annalisa Ruggeri
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Eurocord, Hopital Saint Louis, Paris, France
- EBMT Cellular Therapy and Immunobiology Working Party, Leiden, the Netherlands
| | - Emanuele Angelucci
- Hematology and Cellular Therapy, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Christian Chabannon
- Corresponding author: Christian Chabannon, MD, PhD, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France. Tel: +33 491 223 441;
| |
Collapse
|
30
|
de Azevedo JTC, Costa TCDM, Lima KC, Maciel TT, Palma PVB, Darrigo-Júnior LG, Setanni Grecco CE, Stracieri ABPL, Elias JB, Pieroni F, Guerino-Cunha RL, Pinto ACS, De Santis GC, Covas DT, Hermine O, Simões BP, Oliveira MC, Malmegrim KCR. Long-Term Effects of Allogeneic Hematopoietic Stem Cell Transplantation on Systemic Inflammation in Sickle Cell Disease Patients. Front Immunol 2021; 12:774442. [PMID: 34956203 PMCID: PMC8696202 DOI: 10.3389/fimmu.2021.774442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only currently available curative treatment for sickle cell disease (SCD). However, the effects of HSCT on SCD pathophysiology are poorly elucidated. Here, we assessed red blood cell (RBC) adhesiveness, intensity of hemolysis, vascular tone markers and systemic inflammation, in SCD patients treated with allogeneic HSCT. Thirty-two SCD patients were evaluated before and on long-term follow-up after HSCT. Overall survival was 94% with no severe (grade III-IV) graft-vs-host disease and a 22% rejection rate (graft failure). Hematological parameters, reticulocyte counts, and levels of lactate dehydrogenase (LDH), endothelin-1 and VCAM-1 normalized in SCD patients post-HSCT. Expression of adhesion molecules on reticulocytes and RBC was lower in patients with sustained engraftment. Levels of IL-18, IL-15 and LDH were higher in patients that developed graft failure. Increased levels of plasma pro-inflammatory cytokines, mainly TNF-α, were found in SCD patients long-term after transplantation. SCD patients with sustained engraftment after allo-HSCT showed decreased reticulocyte counts and adhesiveness, diminished hemolysis, and lower levels of vascular tonus markers. Nevertheless, systemic inflammation persists for at least five years after transplantation, indicating that allo-HSCT does not equally affect all aspects of SCD pathophysiology.
Collapse
Affiliation(s)
- Júlia Teixeira Cottas de Azevedo
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program in Basic and Applied Immunology of the Ribeirão Preto Medicinal School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thalita Cristina de Mello Costa
- Bone Marrow Transplantation and Cellular Therapy Unit, University Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Keli Cristina Lima
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program in Bioscience and Biotechnology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago Trovati Maciel
- Institut national de la santé et de la recherche médicale (INSERM) Unité mixte de recherche (UMR) 1163, Centre national de la recherche scientifique (CNRS) Equipe de Recherche Labellisée (ERL) 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Imagine Institute, Paris, France.,Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Patrícia Vianna Bonini Palma
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Guilherme Darrigo-Júnior
- Bone Marrow Transplantation and Cellular Therapy Unit, University Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Ana Beatriz P L Stracieri
- Bone Marrow Transplantation and Cellular Therapy Unit, University Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Juliana Bernardes Elias
- Bone Marrow Transplantation and Cellular Therapy Unit, University Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fabiano Pieroni
- Bone Marrow Transplantation and Cellular Therapy Unit, University Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Renato Luiz Guerino-Cunha
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Cristina Silva Pinto
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gil Cunha De Santis
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Olivier Hermine
- Institut national de la santé et de la recherche médicale (INSERM) Unité mixte de recherche (UMR) 1163, Centre national de la recherche scientifique (CNRS) Equipe de Recherche Labellisée (ERL) 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Imagine Institute, Paris, France.,Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Belinda Pinto Simões
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Carolina Oliveira
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Internal Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
31
|
Krishnamurti L. Hematopoietic cell transplantation for sickle cell disease: updates and future directions. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:181-189. [PMID: 34889368 PMCID: PMC8791142 DOI: 10.1182/hematology.2021000251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Excellent outcomes in hematopoietic cell transplantation (HCT) from HLA-identical siblings, improvements in conditioning regimens, novel graft-versus-host disease prophylaxis, and the availability of alternative donors have all contributed to the increased applicability and acceptability of HCT for sickle cell disease (SCD). In young children with symptomatic SCD with an available HLA-identical related donor, HCT should be carefully considered. HCT from alternative donors is typically undertaken only in patients with severe symptoms, causing or likely to cause organ damage, and in the context of clinical trials. Patients undergoing HCT for SCD require careful counseling and preparation. They require careful monitoring of unique organ toxicities and complications during HCT. Patients must be prospectively followed for a prolonged time to determine the long-term outcomes and late effects of HCT for SCD. Thus, there is a need for a universal, longitudinal clinical registry to follow patients after HCT for SCD in conjunction with individuals who do not receive HCT to compare outcomes. Antibody-based conditioning and ex-vivo umbilical cord blood expansion are likely to improve the availability and acceptability of HCT. In addition, new disease-modifying drugs and the emerging option of the autologous transplantation of gene-modified hematopoietic progenitor cells are likely to expand the available therapeutic options and make decision-making by patients, physicians, and caregivers even more complicated. Future efforts must also focus on determining the impact of socioeconomic status on access to and outcomes of HCT and the long-term impact of HCT on patients, families, and society.
Collapse
Affiliation(s)
- Lakshmanan Krishnamurti
- Correspondence Lakshmanan Krishnamurti, Children's Healthcare of Atlanta-Egleston, 1405 Clifton Road NE, Atlanta, GA 30322; e-mail:
| |
Collapse
|
32
|
Leonard A, Bertaina A, Bonfim C, Cohen S, Prockop S, Purtill D, Russell A, Boelens JJ, Wynn R, Ruggeri A, Abraham A. Curative therapy for hemoglobinopathies: an International Society for Cell & Gene Therapy Stem Cell Engineering Committee review comparing outcomes, accessibility and cost of ex vivo stem cell gene therapy versus allogeneic hematopoietic stem cell transplantation. Cytotherapy 2021; 24:249-261. [PMID: 34879990 DOI: 10.1016/j.jcyt.2021.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/23/2021] [Accepted: 09/04/2021] [Indexed: 12/17/2022]
Abstract
Thalassemia and sickle cell disease (SCD) are the most common monogenic diseases in the world and represent a growing global health burden. Management is limited by a paucity of disease-modifying therapies; however, allogeneic hematopoietic stem cell transplantation (HSCT) and autologous HSCT after genetic modification offer patients a curative option. Allogeneic HSCT is limited by donor selection, morbidity and mortality from transplant conditioning, graft-versus-host disease and graft rejection, whereas significant concerns regarding long-term safety, efficacy and cost limit the broad applicability of gene therapy. Here the authors review current outcomes in allogeneic and autologous HSCT for transfusion-dependent thalassemia and SCD and provide our perspective on issues surrounding accessibility and costs as barriers to offering curative therapy to patients with hereditary hemoglobinopathies.
Collapse
Affiliation(s)
- Alexis Leonard
- Division of Hematology, Children's National Hospital, Washington, DC, USA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Carmem Bonfim
- Pediatric Bone Marrow Transplantation Division, Hospital Pequeno Principe, Curitiba, Brazil
| | - Sandra Cohen
- Université de Montréal and Maisonneuve Rosemont Hospital, Montréal, Canada
| | - Susan Prockop
- Stem Cell Transplantation and Cellular Therapies, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital, Perth, Australia
| | - Athena Russell
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Department of Pediatrics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Robert Wynn
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Annalisa Ruggeri
- Department of Hematology and bone marrow transplantation, IRCCS Ospedale San Raffaele, Segrate, Milan, Italy
| | - Allistair Abraham
- Center for Cancer and Immunology Research, CETI, Children's National Hospital, Washington, DC, USA.
| |
Collapse
|
33
|
American Society of Hematology 2021 guidelines for sickle cell disease: stem cell transplantation. Blood Adv 2021; 5:3668-3689. [PMID: 34581773 DOI: 10.1182/bloodadvances.2021004394c] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/23/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Sickle cell disease (SCD) is a life-limiting inherited hemoglobinopathy that results in significant complications and affects quality of life. Hematopoietic stem cell transplantation (HSCT) is currently the only curative intervention for SCD; however, guidelines are needed to inform how to apply HSCT in clinical practice. OBJECTIVE These evidence-based guidelines of the American Society of Hematology (ASH) are intended to support patients, clinicians, and health professionals in their decisions about HSCT for SCD. METHODS The multidisciplinary guideline panel formed by ASH included 2 patient representatives and was balanced to minimize potential bias from conflicts of interest. The Mayo Evidence-Based Practice Research Program supported the guideline development process, including performing systematic evidence reviews (through 2019). The panel prioritized clinical questions and outcomes according to their importance for clinicians and patients. The panel used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach, including GRADE Evidence-to-Decision frameworks, to assess evidence and make recommendations, which were subject to public comment. RESULTS The panel agreed on 8 recommendations to help patients and providers assess how individuals with SCD should consider the timing and type of HSCT. CONCLUSIONS The evidence review yielded no randomized controlled clinical trials for HSCT in SCD; therefore, all recommendations are based on very low certainty in the evidence. Key recommendations include considering HSCT for those with neurologic injury or recurrent acute chest syndrome at an early age and to improve nonmyeloablative regimens. Future research should include the development of a robust SCD registry to serve as a comparator for HSCT studies.
Collapse
|
34
|
Treosulfan-induced myalgia in pediatric hematopoietic stem cell transplantation identified by an electronic health record text mining tool. Sci Rep 2021; 11:19084. [PMID: 34580398 PMCID: PMC8476488 DOI: 10.1038/s41598-021-98669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022] Open
Abstract
Treosulfan is increasingly used as myeloablative agent in conditioning regimen prior to allogeneic hematopoietic stem cell transplantation (HSCT). In our pediatric HSCT program, myalgia was regularly observed after treosulfan-based conditioning, which is a relatively unknown side effect. Using a natural language processing and text-mining tool (CDC), we investigated whether treosulfan compared with busulfan was associated with an increased risk of myalgia. Furthermore, among treosulfan users, we studied the characteristics of given treatment of myalgia, and studied prognostic factors for developing myalgia during treosulfan use. Electronic Health Records (EHRs) until 28 days after HSCT were screened using the CDC for myalgia and 22 synonyms. Time to myalgia, location of pain, duration, severity and drug treatment were collected. Pain severity was classified according to the WHO pain relief ladder. Logistic regression was performed to assess prognostic factors. 114 patients received treosulfan and 92 busulfan. Myalgia was reported in 37 patients; 34 patients in the treosulfan group and 3 patients in the busulfan group (p = 0.01). In the treosulfan group, median time to myalgia was 7 days (0–12) and median duration of pain was 19 days (4–73). 44% of patients needed strong acting opiates and adjuvant medicines (e.g. ketamine). Hemoglobinopathy was a significant risk factor, as compared to other underlying diseases (OR 7.16 95% CI 2.09–30.03, p = 0.003). Myalgia appears to be a common adverse effect of treosulfan in pediatric HSCT, especially in hemoglobinopathy. Using the CDC, EHRs were easily screened to detect this previously unknown side effect, proving the effectiveness of the tool. Recognition of treosulfan-induced myalgia is important for adequate pain management strategies and thereby for improving the quality of hospital stay.
Collapse
|
35
|
Stable to improved cardiac and pulmonary function in children with high-risk sickle cell disease following haploidentical stem cell transplantation. Bone Marrow Transplant 2021; 56:2221-2230. [PMID: 33958740 PMCID: PMC8416746 DOI: 10.1038/s41409-021-01298-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Children with sickle cell disease (SCD) are at high-risk of progressive, chronic pulmonary and cardiac dysfunction. In this prospective multicenter Phase II trial of myeloimmunoablative conditioning followed by haploidentical stem cell transplantation in children with high-risk SCD, 19 patients, 2.0-21.0 years of age, were enrolled with one or more of the following: history of (1) overt stroke; (2) silent stroke; (3) elevated transcranial Doppler velocity; (4) multiple vaso-occlusive crises; and/or (5) two or more acute chest syndromes and received haploidentical transplants from 18 parental donors. Cardiac and pulmonary centralized cores were established. Pulmonary function results were expressed as percent of the median of healthy reference cohorts, matched for age, sex, height and race. At 2 years, pulmonary functions including forced expiratory volume (FEV), FEV1/ forced vital capacity (FVC), total lung capacity (TLC), diffusing capacity of lung for carbon monoxide (DLCO) were stable to improved compared to baseline values. Importantly, specific airway conductance was significantly improved at 2 years (p < 0.004). Left ventricular systolic function (fractional shortening) and tricuspid regurgitant velocity were stable at 2 years. These results demonstrate that haploidentical stem cell transplantation can stabilize or improve cardiopulmonary function in patients with SCD.
Collapse
|
36
|
Chan WYK, Kwok JSY, Chiang AKS, Chan GCF, Lee PPW, Ha SY, Cheuk DKL. Repeated CD45RA-depleted DLI successfully increases donor chimerism in a patient with beta-thalassemia major after haploidentical stem cell transplant. Pediatr Transplant 2021; 25:e13945. [PMID: 33314508 DOI: 10.1111/petr.13945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 01/10/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is curative for transfusion-dependent thalassemia, but mixed chimerism (MC) may herald graft rejection. We report a child who failed bone marrow transplant (BMT) from matched unrelated donor (MUD) successfully salvaged with haploidentical peripheral blood stem cell transplant (PBSCT), but had MC in T-lymphocyte compartment despite near-complete donor chimerism in myeloid compartment. MC was successfully improved by repeated CD45RA-depleted donor lymphocyte infusion (DLI). A 2-year-old Chinese girl with beta-thalassemia major underwent 12/12-MUD BMT with HU/AZA/Cy/Flu/Bu/TT conditioning resulted in graft rejection. As donor refused second donation, rescue haploidentical PBSCT was performed with alemtuzumab/fludarabine/treosulfan conditioning. Harvest product was CD3/CD45RA depleted with extra products cryopreserved. Split cell chimerism performed 1-month after haplo-transplant showed 97% mother, 3% MUD, and 0% host for granulocytes but 38% mother, 62% MUD, and 0% host for CD3 + T cells. In view of low haploidentical donor chimerism in T-lymphocyte compartment, CD45RA-depleted DLI using cryopreserved product was performed on day + 38, after thymoglobulin 3 mg/kg given as T-cell depletion 3 days beforehand. T-cell chimerism improved to 51% mother and 49% MUD post-DLI. Second cryopreserved CD45RA-depleted DLI was given 17 days after the first DLI (day + 55), and 100% full chimerism of mother's T cells was gradually established without significant graft-versus-host disease (GVHD) or viral reactivation. To conclude, split lineage chimerism determination is beneficial to guide management strategy. For MC in T-cell compartment, CD45RA-depleted DLI is a potential alternative to unselected T cells as it carries lower risk of GVHD and infection.
Collapse
Affiliation(s)
- Wilson Y K Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong and Queen Mary Hospital, Hong Kong, China
| | - Janette S Y Kwok
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong, China
| | - Alan K S Chiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong and Queen Mary Hospital, Hong Kong, China
| | - Godfrey C F Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong and Queen Mary Hospital, Hong Kong, China
| | - Pamela P W Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong and Queen Mary Hospital, Hong Kong, China
| | - Shau-Yin Ha
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong and Queen Mary Hospital, Hong Kong, China
| | - Daniel K L Cheuk
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong and Queen Mary Hospital, Hong Kong, China
| |
Collapse
|
37
|
Lattanzi A, Camarena J, Lahiri P, Segal H, Srifa W, Vakulskas CA, Frock RL, Kenrick J, Lee C, Talbott N, Skowronski J, Cromer MK, Charlesworth CT, Bak RO, Mantri S, Bao G, DiGiusto D, Tisdale J, Wright JF, Bhatia N, Roncarolo MG, Dever DP, Porteus MH. Development of β-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease. Sci Transl Med 2021; 13:13/598/eabf2444. [PMID: 34135108 DOI: 10.1126/scitranslmed.abf2444] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
Sickle cell disease (SCD) is the most common serious monogenic disease with 300,000 births annually worldwide. SCD is an autosomal recessive disease resulting from a single point mutation in codon six of the β-globin gene (HBB). Ex vivo β-globin gene correction in autologous patient-derived hematopoietic stem and progenitor cells (HSPCs) may potentially provide a curative treatment for SCD. We previously developed a CRISPR-Cas9 gene targeting strategy that uses high-fidelity Cas9 precomplexed with chemically modified guide RNAs to induce recombinant adeno-associated virus serotype 6 (rAAV6)-mediated HBB gene correction of the SCD-causing mutation in HSPCs. Here, we demonstrate the preclinical feasibility, efficacy, and toxicology of HBB gene correction in plerixafor-mobilized CD34+ cells from healthy and SCD patient donors (gcHBB-SCD). We achieved up to 60% HBB allelic correction in clinical-scale gcHBB-SCD manufacturing. After transplant into immunodeficient NSG mice, 20% gene correction was achieved with multilineage engraftment. The long-term safety, tumorigenicity, and toxicology study demonstrated no evidence of abnormal hematopoiesis, genotoxicity, or tumorigenicity from the engrafted gcHBB-SCD drug product. Together, these preclinical data support the safety, efficacy, and reproducibility of this gene correction strategy for initiation of a phase 1/2 clinical trial in patients with SCD.
Collapse
Affiliation(s)
- Annalisa Lattanzi
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Center for Definitive and Curative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Premanjali Lahiri
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - Helen Segal
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - Waracharee Srifa
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Richard L Frock
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Josefin Kenrick
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Ciaran Lee
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland
| | - Narae Talbott
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - Jason Skowronski
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - M Kyle Cromer
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000 Aarhus, Denmark
| | - Sruthi Mantri
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77006, USA
| | - David DiGiusto
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - John Tisdale
- Molecular and Clinical Hematology Branch, NHLBI, Bethesda, MD 20814, USA
| | - J Fraser Wright
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Center for Definitive and Curative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Neehar Bhatia
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA.,Deceased
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Center for Definitive and Curative Medicine, Stanford University, Stanford, CA 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Daniel P Dever
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA. .,Center for Definitive and Curative Medicine, Stanford University, Stanford, CA 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
38
|
Gene Therapies for Transfusion-Dependent β-Thalassemia. Indian Pediatr 2021. [DOI: 10.1007/s13312-021-2263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Abatacept is effective as GVHD prophylaxis in unrelated donor stem cell transplantation for children with severe sickle cell disease. Blood Adv 2021; 4:3894-3899. [PMID: 32813873 DOI: 10.1182/bloodadvances.2020002236] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
We report results of a phase 1 multicenter stem cell transplantation (SCT) trial from HLA-matched (n = 7) or one-antigen-mismatched (n = 7) unrelated donors (URD) using bone marrow or cord blood as stem cell source, following reduced-intensity conditioning (RIC) in severe sickle cell disease (SCD). Conditioning included distal alemtuzumab, fludarabine, and melphalan (matched donors), with thiotepa (mismatched donors). Abatacept, a selective inhibitor of T cell costimulation, was added to tacrolimus and methotrexate as graft-versus-host disease (GVHD) prophylaxis to offset GVHD risks, and was administered for longer duration in bone marrow recipients than in cord blood recipients because of increased incidence of chronic GVHD with bone marrow. Median age at transplant was 13 years (range, 7-21 years). The incidence of grades II to IV and grades III to IV acute GVHD at day +100 was 28.6% and 7%, respectively. One-year incidence of chronic GVHD was 57% and mild/limited in all but 1 patient who received abatacept for a longer duration. Only 1 patient developed reversible posterior encephalopathy syndrome and recovered. With a median follow-up of 1.6 years (range, 1-5.5 years), the 2-year overall and disease-free survival was 100% and 92.9%, respectively. The encouraging results from the phase 1 portion of this RIC SCT trial, despite risk factors such as older age, URD, and HLA-mismatch, support further evaluation of URD SCT in clinical trial settings. The phase 2 portion of the trial is in progress. This trial was registered at www.clinicaltrials.gov as NCT03128996.
Collapse
|
40
|
Abstract
BACKGROUND Thalassaemia is an autosomal recessive blood disorder, caused by mutations in globin genes or their regulatory regions, resulting in a reduced rate of synthesis of one of the globin chains that make up haemoglobin. In β-thalassaemia there is an underproduction of β-globin chains combined with excess of free α-globin chains. The excess free α-globin chains precipitate in red blood cells, leading to their increased destruction (haemolysis) and ineffective erythropoiesis. The conventional treatment is based on the correction of haemoglobin through regular red blood cell transfusions and treating the iron overload that develops subsequently with iron chelation therapy. Although, early detection and initiations of such supportive treatment has improved the quality of life for people with transfusion-dependent thalassaemia, allogeneic hematopoietic stem cell transplantation is the only widely available therapy with a curative potential. Gene therapy for β-thalassaemia has recently received conditional authorisation for marketing in Europe, and may soon become widely available as another alternative therapy with curative potential for people with transfusion-dependent thalassaemia. This is an update of a previously published Cochrane Review. OBJECTIVES To evaluate the effectiveness and safety of different types of hematopoietic stem cell transplantation, in people with transfusion-dependent β-thalassaemia. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Haemoglobinopathies Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. We also searched online trial registries. Date of the most recent search: 07 April 2021. SELECTION CRITERIA Randomised controlled trials and quasi-randomised controlled trials comparing hematopoietic stem cell transplantation with each other or with standard therapy (regular transfusion and chelation regimen). DATA COLLECTION AND ANALYSIS Two review authors independently screened trials and had planned to extract data and assess risk of bias using standard Cochrane methodologies and assess the quality using GRADE approach, but no trials were identified for inclusion in the current review. MAIN RESULTS No relevant trials were retrieved after a comprehensive search of the literature. AUTHORS' CONCLUSIONS We were unable to identify any randomised controlled trials or quasi-randomised controlled trials on the effectiveness and safety of different types of hematopoietic stem cell transplantation in people with transfusion-dependent β-thalassaemia. The absence of high-level evidence for the effectiveness of these interventions emphasises the need for well-designed, adequately-powered, randomised controlled clinical trials.
Collapse
Affiliation(s)
- Akshay Sharma
- Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Latika Puri
- St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
41
|
Intrabone infusion for allogeneic umbilical cord blood transplantation in children. Bone Marrow Transplant 2021; 56:1937-1943. [PMID: 33824433 DOI: 10.1038/s41409-021-01275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 02/10/2021] [Accepted: 03/18/2021] [Indexed: 11/09/2022]
Abstract
Umbilical cord blood transplantation (UCBT) has been used to treat malignant and non-malignant diseases. UCBT offers the advantages of easy procurement and acceptable partial HLA mismatches, but also shows delayed hematopoietic and immunological recoveries. We postulated that an intrabone (IB) infusion of cord blood could provide a faster short- and long-term engraftment in a pediatric population with malignant and non-malignant hematologic diseases. We conducted this phase I-II single arm, exploratory clinical trial (NCT01711788) from 2012 to 2016 in a single center. Fifteen patients aged from 1.9 to 16.4 years received an IB UCBT. Median time to neutrophils and platelet recoveries were 18 days (range: 13-36 days) and 42 days (range: 26-107 days), respectively. Rate of severe acute GVH grade was low, with only one patient with grade III aGVH. Relapse occurred in 5 patients (38.5%) and TRM occurred in 1 patient. This leads to 6 years EFS and OS of 66.7% and 80% respectively. In conclusion, IB UCBT is safe and well-tolerated in children and hematological recovery compared similarly to the results obtained with IV UCBT.
Collapse
|
42
|
Gbotosho OT, Taylor M, Malik P. Cardiac pathophysiology in sickle cell disease. J Thromb Thrombolysis 2021; 52:248-259. [PMID: 33677791 DOI: 10.1007/s11239-021-02414-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Oluwabukola Temitope Gbotosho
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | - Michael Taylor
- Division of Cardiology, Heart Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA. .,Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.
| |
Collapse
|
43
|
Kogel F, Hakimeh D, Sodani P, Lang P, Kühl JS, Hundsdoerfer P, Künkele A, Eggert A, Oevermann L, Schulte JH. Allogeneic hematopoietic stem cell transplantation from sibling and unrelated donors in pediatric patients with sickle cell disease-A single center experience. Pediatr Transplant 2021; 25:e13892. [PMID: 33098344 DOI: 10.1111/petr.13892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 11/27/2022]
Abstract
HSCT is curative in SCD. Patients with HLA-identical sibling donor have an excellent outcome ranging from 90%-100% overall and event-free survival. However, due to the lack of matched sibling donors this option is out of reach for 70% of patients with SCD. The pool of potential donors needs to be extended. Transplantations from HLA-matched unrelated donors were reported to be less successful with shorter event-free survival and higher incidences of complications including graft-vs-host disease, especially in patients with advanced stage SCD. Here we report transplantation outcomes for 25 children with SCD transplanted using HLA-matched grafts from related or unrelated donors. Overall survival was 100% with no severe (grade III-IV) graft-vs-host disease and a 12% rejection rate. Mixed donor chimerisms only occurred in transplantations from siblings, while transplantations from unrelated donors resulted in either complete donor chimerism or rejection. Despite the small patient number, overall and disease-free survival for unrelated donor transplantations is excellent in this cohort. The advanced disease state, higher alloreactive effect and stronger immunosuppression in unrelated donor transplantations raises patient risk, for which possible solutions could be found in optimization of transplant preparation, graft manipulation or haploidentical transplantation using T cell receptor α/β-depleted grafts.
Collapse
Affiliation(s)
- Friederike Kogel
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dani Hakimeh
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pietro Sodani
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Lang
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Pediatric Hematology and Oncology, University Hospital, Tübingen, Germany
| | - Jörn-Sven Kühl
- Department of Pediatric Oncology, Hematology, and Hemostaseology, University Hospital Leipzig, Leipzig, Germany
| | - Patrick Hundsdoerfer
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Department of Pediatrics, Helios-Klinikum Berlin-Buch, Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angelika Eggert
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena Oevermann
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes H Schulte
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
44
|
Furstenau DK, Tisdale JF. Allogenic hematopoietic stem cell transplantation in sickle cell disease. Transfus Apher Sci 2021; 60:103057. [PMID: 33485798 DOI: 10.1016/j.transci.2021.103057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sickle cell disease (SCD) is one of the most common monogenic disorders worldwide and affects approximately 100,000 people in the United States alone. SCD can cause numerous complications, including anemia, pain, stroke, and organ failure, which can lead to death. Although there are a few disease-modifying treatments available to patients with SCD, the only current curative option is a hematopoietic stem cell transplant (HSCT). In this review, we will discuss the different approaches to allogeneic HSCT in the treatment of SCD and the outcomes of these approaches.
Collapse
Affiliation(s)
- Dana K Furstenau
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, 9N112, Bethesda, MD 20892, United States; Department of Pediatric Oncology, Johns Hopkins University School of Medicine, 1800 Orleans Street, Room 11379, Baltimore, MD, 21287, United States.
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, 9N112, Bethesda, MD 20892, United States.
| |
Collapse
|
45
|
Cairo MS, Savani BN. Haematopoietic progenitor cell transplantation in adults with symptomatic sickle cell disease: the time has arrived. Br J Haematol 2021; 192:678-680. [PMID: 33482009 DOI: 10.1111/bjh.17309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Mitchell S Cairo
- Maria Fareri Children's Hospital, Westchester Medical Center (WMC), New York Medical College, New York, NY, USA
| | - Bipin N Savani
- Division of Hematology and Oncology, Vanderbilt University Medical Center and Veterans Affairs Medical Center, Nashville, TN, USA
| |
Collapse
|
46
|
Krishnamurti L. Hematopoietic Cell Transplantation for Sickle Cell Disease. Front Pediatr 2021; 8:551170. [PMID: 33469520 PMCID: PMC7813811 DOI: 10.3389/fped.2020.551170] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Sickle cell disease (SCD) is a severe autosomal recessively inherited disorder of the red blood cell characterized by erythrocyte deformation caused by the polymerization of the abnormal hemoglobin, which leads to erythrocyte deformation and triggers downstream pathological changes. These include abnormal rheology, vaso-occlusion, ischemic tissue damage, and hemolysis-associated endothelial dysfunction. These acute and chronic physiologic disturbances contribute to morbidity, organ dysfunction, and diminished survival. Hematopoietic cell transplantation (HCT) from HLA-matched or unrelated donors or haploidentical related donors or genetically modified autologous hematopoietic progenitor cells is performed with the intent of cure or long-term amelioration of disease manifestations. Excellent outcomes have been observed following HLA-identical matched related donor HCT. The majority of SCD patients do not have an available HLA-identical sibling donor. Increasingly, however, they have the option of undergoing HCT from unrelated HLA matched or related haploidentical donors. The preliminary results of transplantation of autologous hematopoietic progenitor cells genetically modified by adding a non-sickling gene or by genomic editing to increase expression of fetal hemoglobin are encouraging. These approaches are being evaluated in early-phase clinical trials. In performing HCT in patients with SCD, careful consideration must be given to patient and donor selection, conditioning and graft-vs.-host disease regimen, and pre-HCT evaluation and management during and after HCT. Sociodemographic factors may also impact awareness of and access to HCT. Further, there is a substantial decisional dilemma in HCT with complex tradeoffs between the possibility of amelioration of disease manifestations and early or late complications of HCT. The performance of HCT for SCD requires careful multidisciplinary collaboration and shared decision making between the physician and informed patients and caregivers.
Collapse
Affiliation(s)
- Lakshmanan Krishnamurti
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| |
Collapse
|
47
|
Benítez-Carabante MI, Beléndez C, González-Vicent M, Alonso L, Uría-Oficialdegui ML, Torrent M, Pérez-Hurtado JM, Fuster JL, Cela E, Díaz-de-Heredia C. Matched sibling donor stem cell transplantation for sickle cell disease: Results from the Spanish group for bone marrow transplantation in children. Eur J Haematol 2021; 106:408-416. [PMID: 33296531 DOI: 10.1111/ejh.13566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/07/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The prevalence of sickle cell disease (SCD) in Spain is markedly inferior compared with other European and Mediterranean countries. However, the diagnosis of new patients with SCD is expected to increase. In this multicenter retrospective study, we analyze the hematopoietic stem cell transplantation (HSCT) results obtained in Spain. METHODS Forty-five patients who underwent a matched sibling donor (MSD) HSCT between 1999 and 2018 were included. Primary endpoint was event-free survival (EFS), and secondary endpoints included acute and chronic graft-versus-host disease (GvHD) and overall survival (OS). RESULTS Bone marrow was the most frequent stem cell source (93.3%). Most patients received a conditioning regimen based on busulfan and cyclophosphamide (69%). Cumulative incidence of grade III-IV acute GvHD and chronic GvHD was 6.8% (95% CI: 2.3%-20.1%) and 5.4% (95% CI: 1.38%-19.9%), respectively. EFS and overall survival (OS) at 3 years post-HSCT were 89.4% (95% CI: 73.9%-95.9%) and 92.1% (95% CI: 77.2%-97.4%), respectively. All patients aged ≤ 5 presented 100% EFS and OS. CONCLUSIONS An early referral to HSCT centers should be proposed early in life, before severe complications occur. MSD HSCT should be considered a curative option for all patients aged ≤ 5 years and for older pediatric patients who present complications derived from the disease.
Collapse
Affiliation(s)
- María Isabel Benítez-Carabante
- Department of Pediatric Hematology and Oncology, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Cristina Beléndez
- Department of Pediatric Hematology and Oncology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Marta González-Vicent
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Laura Alonso
- Department of Pediatric Hematology and Oncology, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - María Luz Uría-Oficialdegui
- Department of Pediatric Hematology and Oncology, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Monserrat Torrent
- Department of Pediatric Hematology and Oncology, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | | | - José Luis Fuster
- Department of Pediatric Hematology and Oncology, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Elena Cela
- Department of Pediatric Hematology and Oncology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Cristina Díaz-de-Heredia
- Department of Pediatric Hematology and Oncology, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | | |
Collapse
|
48
|
Goal-Oriented Monitoring of Cyclosporine Is Effective for Graft-versus-Host Disease Prevention after Hematopoietic Stem Cell Transplantation in Sickle Cell Disease and Thalassemia Major. Biol Blood Marrow Transplant 2020; 26:2285-2291. [DOI: 10.1016/j.bbmt.2020.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 11/21/2022]
|
49
|
Abstract
Sickle cell disease and the ß-thalassemias are caused by mutations of the ß-globin gene and represent the most frequent single gene disorders worldwide. Even in European countries with a previous low frequency of these conditions the prevalence has substantially increased following large scale migration from Africa and the Middle East to Europe. The hemoglobin diseases severely limit both, life expectancy and quality of life and require either life-long supportive therapy if cure cannot be achieved by allogeneic stem cell transplantation. Strategies for ex vivo gene therapy aiming at either re-establishing normal ß-globin chain synthesis or at re-activating fetal γ-globin chain and HbF expression are currently in clinical development. The European Medicine Agency (EMA) conditionally licensed gene addition therapy based on lentiviral transduction of hematopoietic stem cells in 2019 for a selected group of patients with transfusion dependent non-ß° thalassemia major without a suitable stem cell donor. Gene therapy thus offers a relevant chance to this group of patients for whom cure has previously not been on the horizon. In this review, we discuss the potential and the challenges of gene addition and gene editing strategies for the hemoglobin diseases.
Collapse
|
50
|
Soni S. Gene therapies for transfusion dependent β-thalassemia: Current status and critical criteria for success. Am J Hematol 2020; 95:1099-1112. [PMID: 32562290 DOI: 10.1002/ajh.25909] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/30/2020] [Accepted: 06/16/2020] [Indexed: 01/19/2023]
Abstract
Thalassemia is one of the most prevalent monogenic diseases usually caused by quantitative defects in the production of β-globin leading to severe anemia. Technological advances in genome sequencing, stem cell selection, viral vector development, transduction and gene editing strategies now allow for efficient exvivo genetic manipulation of human stem cells that can lead to production of hemoglobin, leading to a meaningful clinical benefit in thalassemia patients. In this review, the status of the gene-therapy approaches available for transfusion dependent thalassemia are discussed, along with the critical criteria that affect efficacy and lessons that have been learned from the early phase clinical trials. Salient steps necessary for the clinical development, manufacturing, and regulatory approvals of gene therapies for thalassemia are also highlighted, so that the potential of these therapies can be realized. It is highly anticipated that gene therapies will soon become a treatment option for patients lacking compatible donors for hematopoietic stem cell transplant and will offer an alternative for definitive treatment of β-thalassemia.
Collapse
Affiliation(s)
- Sandeep Soni
- Division of Pediatric Stem Cell Transplant and RM Lucile Packard Children's Hospital, Stanford University Palo Alto California
| |
Collapse
|