1
|
Bagheri NM, Závodszky G, Hoekstra AG. The impact of clot permeability on platelet fluxes toward its surface. PLoS One 2025; 20:e0317828. [PMID: 40132156 PMCID: PMC11936424 DOI: 10.1371/journal.pone.0317828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/06/2025] [Indexed: 03/27/2025] Open
Abstract
Platelet aggregation is regulated by a series of chemical reactions that control platelet adhesion on a thrombogenic surface. These reactions are influenced by the complex interaction between reaction kinetics and hemodynamics. This study systematically investigates the transport of platelets, considering the interaction between flow-mediated mass transfer mechanisms and reaction kinetics as a function of clot permeability. A two-dimensional finite element model is developed to replicate static blood flow, platelet transport, and adhesion on a semi-elliptical and semi-circular structure representing permeable clots. The platelet-clot interface interactions are extensively investigated using a hindered transport model, focusing on clot permeabilities, reaction rates, and flow conditions. In the case of clots with highly reactive surfaces, an increase in clot permeability can lead up to four-fold increase in total platelet flux compared to non-permeable clots due to differences in transport environments.
Collapse
Affiliation(s)
- Niksa Mohammadi Bagheri
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Gabor Závodszky
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Alfons G Hoekstra
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
2
|
House C, Huang Z, Shankar KN, Young SJ, Roberts ME, Diamond SL, Tomaiuolo M, Stalker TJ, Lu L, Sinno T. From imaging to computational domains for physics-driven molecular biology simulations: Hindered diffusion in platelet masses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636817. [PMID: 39975354 PMCID: PMC11839050 DOI: 10.1101/2025.02.06.636817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
When formed in vivo, murine hemostatic thrombi exhibit a heterogeneous architecture comprised of distinct regions of densely and sparsely packed platelets. In this study, we utilize high-resolution electron microscopy alongside machine learning and physics-based simulations to investigate how such clot microstructure impacts molecular diffusivity. We used Serial Block Face - Scanning Electron Microscopy (SBF-SEM) to image select volumes of hemostatic masses formed in a mouse jugular vein, producing large stacks of high-resolution 2D images. Images were segmented using machine learning software (Cellpose), whose training was augmented by manually segmented images. The segmented images were then utilized as a computational domain for Lattice Kinetic Monte-Carlo (LKMC) simulations. This process constitutes a computational pipeline that combines purely data-derived biological domains with physics-driven simulations to estimate how molecular movement is hindered in a hemostatic platelet mass. Using our pipeline, we estimated that the hindered diffusion rates of a globular protein range from 2% to 40% of the unhindered rate, with denser packing regions lending to lower molecular diffusivity. These data suggest that coagulation reactions rates, thrombin generation and activity, as well as platelet releasate activity may be drastically impacted by the internal geometry of a hemostatic thrombus.
Collapse
Affiliation(s)
- Catherine House
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ziyi Huang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kaushik N. Shankar
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sandra J. Young
- Independent Researcher, Philadelphia, Pennsylvania, United States of America
| | - Meghan E. Roberts
- Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Scott L. Diamond
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maurizio Tomaiuolo
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Timothy J. Stalker
- Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Lu Lu
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut, United States of America
| | - Talid Sinno
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Hao Y, Tersteeg C, Hoekstra AG, Závodszky G. The effect of flow-derived mechanical cues on the growth and morphology of platelet aggregates under low, medium, and high shear rates. Comput Biol Med 2024; 180:109010. [PMID: 39159545 DOI: 10.1016/j.compbiomed.2024.109010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024]
Abstract
Platelet aggregation is a dynamic process that can obstruct blood flow, leading to cardiovascular diseases. While many studies have demonstrated clear connections between shear rate and platelet aggregation, the impact of flow-derived mechanical signals on this process is not fully understood. The objective of this work is to investigate the role of flow conditions on platelet aggregation dynamics, including effects on growth, shape, density composition, and their potential correlation with binding processes that are characterised by longer (e.g., via αIIbβ3 integrin) and shorter (e.g., via VWF) initial binding times. In vitro blood perfusion experiments were conducted at wall shear rates of 800, 1600 and 4000 s-1. Detailed analysis of two modalities of experimental images was performed to offer insights into the morphology of platelet aggregates. A consistent structural pattern was observed across all samples: a high-density core enveloped by a low-density outer shell. An image-based 3D computational blood flow model was subsequently employed to study the local flow conditions, including binding availability time and flow-derived mechanical signals via shear rate and rate of elongation. The results show substantial dependence of the aggregation dynamics on these flow parameters. We found that the different binding mechanisms that prefer different flow regimes do not have a monotonic cross-over in efficiency as the flow increases. There is a significant dip in the cumulative aggregation potential in-between the preferred regimes. The results suggest that treatments targeting the biomechanical pathways could benefit from creating conditions that exploit these low-efficiency zones of aggregation.
Collapse
Affiliation(s)
- Yue Hao
- Computational Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Alfons G Hoekstra
- Computational Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Gábor Závodszky
- Computational Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands; Department of Hydrodynamic Systems, Budapest University of Technology and Economics, Budapest, Hungary.
| |
Collapse
|
4
|
Jewell MP, Ashour Z, Baird CH, Manco Johnson M, Warren BB, Wufsus AR, Pallini C, Dockal M, Kjalke M, Neeves KB. Concizumab improves clot formation in hemophilia A under flow. J Thromb Haemost 2024; 22:2438-2448. [PMID: 38815755 PMCID: PMC11343664 DOI: 10.1016/j.jtha.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Inhibition of tissue factor pathway inhibitor (TFPI) is an emerging therapeutic strategy for treatment of hemophilia. Concizumab is a monoclonal antibody that binds TFPI and blocks its inhibition of factor (F)Xa thereby extending the initiation of coagulation and compensating for lack of FVIII or FIX. OBJECTIVES The objective of this in vitro study was to evaluate how concizumab affects clot formation in hemophilia A under flow. METHODS Blood was collected from normal controls or people with hemophilia A. An anti-FVIII antibody was added to normal controls to simulate hemophilia A with inhibitory antibodies to FVIII. Whole blood and recombinant activated FVII (rFVIIa, 25 nM) or concizumab (200, 1000, and 4000 ng/mL) were perfused at 100 s-1 over a surface micropatterned with tissue factor (TF) and collagen-related peptide. Platelet and fibrin(ogen) accumulation were measured by confocal microscopy. Static thrombin generation in plasma was measured in response to rFVIIa and concizumab. RESULTS Concizumab (1000 and 4000 ng/mL) and rFVIIa both rescued (93%-101%) total platelet accumulation, but only partially rescued (53%-63%) fibrin(ogen) incorporation to normal control levels in simulated hemophilia A. Results using congenital hemophilia A blood confirmed effects of rFVIIa and concizumab. While these 2 agents had similar effect on clot formation under flow, concizumab enhanced thrombin generation in plasma under static conditions to a greater extent than rFVIIa. CONCLUSION TFPI inhibition by concizumab enhanced activation and aggregation of platelets and fibrin clot formation in hemophilia A to levels comparable with that of rFVIIa.
Collapse
Affiliation(s)
- Megan P Jewell
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zaina Ashour
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christine H Baird
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Hemophilia and Thrombosis Center, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marilyn Manco Johnson
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Hemophilia and Thrombosis Center, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Beth Boulden Warren
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Hemophilia and Thrombosis Center, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Adam R Wufsus
- Rare Blood Disorders, Medical Affairs Rare Disease, Novo Nordisk Inc, Plainsboro, New Jersey, USA
| | - Chiara Pallini
- Rare Blood Disorders, Rare Disease Research, Novo Nordisk, Måløv, Denmark
| | - Michael Dockal
- Rare Blood Disorders, Rare Disease Research, Novo Nordisk, Måløv, Denmark
| | - Marianne Kjalke
- Rare Blood Disorders, Rare Disease Research, Novo Nordisk, Måløv, Denmark
| | - Keith B Neeves
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Hemophilia and Thrombosis Center, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
5
|
Sveshnikova AN, Shibeko AM, Kovalenko TA, Panteleev MA. Kinetics and regulation of coagulation factor X activation by intrinsic tenase on phospholipid membranes. J Theor Biol 2024; 582:111757. [PMID: 38336240 DOI: 10.1016/j.jtbi.2024.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Factor X activation by the phospholipid-bound intrinsic tenase complex is a critical membrane-dependent reaction of blood coagulation. Its regulation mechanisms are unclear, and a number of questions regarding diffusional limitation, pathways of assembly and substrate delivery remain open. METHODS We develop and analyze here a detailed mechanism-driven computer model of intrinsic tenase on phospholipid surfaces. Three-dimensional reaction-diffusion-advection and stochastic simulations were used where appropriate. RESULTS Dynamics of the system was predominantly non-stationary under physiological conditions. In order to describe experimental data, we had to assume both membrane-dependent and solution-dependent delivery of the substrate. The former pathway dominated at low cofactor concentration, while the latter became important at low phospholipid concentration. Factor VIIIa-factor X complex formation was the major pathway of the complex assembly, and the model predicted high affinity for their lipid-dependent interaction. Although the model predicted formation of the diffusion-limited layer of substrate for some conditions, the effects of this limitation on the fXa production were small. Flow accelerated fXa production in a flow reactor model by bringing in fIXa and fVIIIa rather than fX. CONCLUSIONS This analysis suggests a concept of intrinsic tenase that is non-stationary, employs several pathways of substrate delivery depending on the conditions, and is not particularly limited by diffusion of the substrate.
Collapse
Affiliation(s)
- Anastasia N Sveshnikova
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Faculty of Fundamental Physico-Chemical Engineering, Lomonosov Moscow State University, 1/51 Leninskie Gory, 119991 Moscow, Russia; Department of Normal Physiology, Sechenov First Moscow State Medical University, 8/2 Trubetskaya St., 119991 Moscow, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia
| | - Alexey M Shibeko
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia
| | - Tatiana A Kovalenko
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia
| | - Mikhail A Panteleev
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia; Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie Gory, Moscow, 119991, Russia.
| |
Collapse
|
6
|
Teeraratkul C, Tomaiuolo M, Stalker TJ, Mukherjee D. Investigating clot-flow interactions by integrating intravital imaging with in silico modeling for analysis of flow, transport, and hemodynamic forces. Sci Rep 2024; 14:696. [PMID: 38184693 PMCID: PMC10771506 DOI: 10.1038/s41598-023-49945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024] Open
Abstract
As a blood clot forms, grows, deforms, and embolizes following a vascular injury, local clot-flow interactions lead to a highly dynamic flow environment. The local flow influences transport of biochemical species relevant for clotting, and determines the forces on the clot that in turn lead to clot deformation and embolization. Despite this central role, quantitative characterization of this dynamic clot-flow interaction and flow environment in the clot neighborhood remains a major challenge. Here, we propose an approach that integrates dynamic intravital imaging with computer geometric modeling and computational flow and transport modeling to develop a unified in silico framework to quantify the dynamic clot-flow interactions. We outline the development of the methodology referred to as Intravital Integrated In Silico Modeling or IVISim, and then demonstrate the method on a sample set of simulations comprising clot formation following laser injury in two mouse cremaster arteriole injury model data: one wild-type mouse case, and one diYF knockout mouse case. Simulation predictions are verified against experimental observations of transport of caged fluorescent Albumin (cAlb) in both models. Through these simulations, we illustrate how the IVISim methodology can provide insights into hemostatic processes, the role of flow and clot-flow interactions, and enable further investigations comparing and contrasting different biological model scenarios and parameter variations.
Collapse
Affiliation(s)
- Chayut Teeraratkul
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, USA
| | - Maurizio Tomaiuolo
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, USA
| | | | - Debanjan Mukherjee
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, USA.
| |
Collapse
|
7
|
Grande Gutiérrez N, Mukherjee D, Bark D. Decoding thrombosis through code: a review of computational models. J Thromb Haemost 2024; 22:35-47. [PMID: 37657562 PMCID: PMC11064820 DOI: 10.1016/j.jtha.2023.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
From the molecular level up to a blood vessel, thrombosis and hemostasis involves many interconnected biochemical and biophysical processes over a wide range of length and time scales. Computational modeling has gained eminence in offering insights into these processes beyond what can be obtained from in vitro or in vivo experiments, or clinical measurements. The multiscale and multiphysics nature of thrombosis has inspired a wide range of modeling approaches that aim to address how a thrombus forms and dismantles. Here, we review recent advances in computational modeling with a focus on platelet-based thrombosis. We attempt to summarize the diverse range of modeling efforts straddling the wide-spectrum of physical phenomena, length scales, and time scales; highlighting key advancements and insights from existing studies. Potential information gleaned from models is discussed, ranging from identification of thrombus-prone regions in patient-specific vasculature to modeling thrombus deformation and embolization in response to fluid forces. Furthermore, we highlight several limitations of current models, future directions in the field, and opportunities for clinical translation, to illustrate the state-of-the-art. There are a plethora of opportunity areas for which models can be expanded, ranging from topics of thromboinflammation to platelet production and clearance. Through successes demonstrated in existing studies described here, as well as continued advancements in computational methodologies and computer processing speeds and memory, in silico investigations in thrombosis are poised to bring about significant knowledge growth in the years to come.
Collapse
Affiliation(s)
- Noelia Grande Gutiérrez
- Carnegie Mellon University, Department of Mechanical Engineering Pittsburgh, PA, USA. https://twitter.com/ngrandeg
| | - Debanjan Mukherjee
- University of Colorado Boulder, Paul M. Rady Department of Mechanical Engineering Boulder, CO, USA. https://twitter.com/debanjanmukh
| | - David Bark
- Washington University in St Louis, Department of Pediatrics, Division of Hematology and Oncology St Louis, MO, USA; Washington University in St Louis, Department of Biomedical Engineering St Louis, MO, USA.
| |
Collapse
|
8
|
Hao Y, Závodszky G, Tersteeg C, Barzegari M, Hoekstra AG. Image-based flow simulation of platelet aggregates under different shear rates. PLoS Comput Biol 2023; 19:e1010965. [PMID: 37428797 PMCID: PMC10358939 DOI: 10.1371/journal.pcbi.1010965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/10/2023] [Indexed: 07/12/2023] Open
Abstract
Hemodynamics is crucial for the activation and aggregation of platelets in response to flow-induced shear. In this paper, a novel image-based computational model simulating blood flow through and around platelet aggregates is presented. The microstructure of aggregates was captured by two different modalities of microscopy images of in vitro whole blood perfusion experiments in microfluidic chambers coated with collagen. One set of images captured the geometry of the aggregate outline, while the other employed platelet labelling to infer the internal density. The platelet aggregates were modelled as a porous medium, the permeability of which was calculated with the Kozeny-Carman equation. The computational model was subsequently applied to study hemodynamics inside and around the platelet aggregates. The blood flow velocity, shear stress and kinetic force exerted on the aggregates were investigated and compared under 800 s-1, 1600 s-1 and 4000 s-1 wall shear rates. The advection-diffusion balance of agonist transport inside the platelet aggregates was also evaluated by local Péclet number. The findings show that the transport of agonists is not only affected by the shear rate but also significantly influenced by the microstructure of the aggregates. Moreover, large kinetic forces were found at the transition zone from shell to core of the aggregates, which could contribute to identifying the boundary between the shell and the core. The shear rate and the rate of elongation flow were investigated as well. The results imply that the emerging shapes of aggregates are highly correlated to the shear rate and the rate of elongation. The framework provides a way to incorporate the internal microstructure of the aggregates into the computational model and yields a better understanding of the hemodynamics and physiology of platelet aggregates, hence laying the foundation for predicting aggregation and deformation under different flow conditions.
Collapse
Affiliation(s)
- Yue Hao
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Gábor Závodszky
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hydrodynamic Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Mojtaba Barzegari
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Alfons G Hoekstra
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Ravera S, Signorello MG, Panfoli I. Platelet Metabolic Flexibility: A Matter of Substrate and Location. Cells 2023; 12:1802. [PMID: 37443836 PMCID: PMC10340290 DOI: 10.3390/cells12131802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Platelets are cellular elements that are physiologically involved in hemostasis, inflammation, thrombotic events, and various human diseases. There is a link between the activation of platelets and their metabolism. Platelets possess considerable metabolic versatility. Although the role of platelets in hemostasis and inflammation is known, our current understanding of platelet metabolism in terms of substrate preference is limited. Platelet activation triggers an oxidative metabolism increase to sustain energy requirements better than aerobic glycolysis alone. In addition, platelets possess extra-mitochondrial oxidative phosphorylation, which could be one of the sources of chemical energy required for platelet activation. This review aims to provide an overview of flexible platelet metabolism, focusing on the role of metabolic compartmentalization in substrate preference, since the metabolic flexibility of stimulated platelets could depend on subcellular localization and functional timing. Thus, developing a detailed understanding of the link between platelet activation and metabolic changes is crucial for improving human health.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | | | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
10
|
Kulkarni PP, Ekhlak M, Dash D. Energy metabolism in platelets fuels thrombus formation: Halting the thrombosis engine with small-molecule modulators of platelet metabolism. Metabolism 2023:155596. [PMID: 37244415 DOI: 10.1016/j.metabol.2023.155596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Platelets are circulating cells central to haemostasis that follows vessel injury, as well as thrombosis that ensues as a consequence of pathological stasis or plaque rupture. Platelet responses to various stimuli that mediate these processes are all energy-intensive. Hence, platelets need to adapt their energy metabolism to fulfil the requirements of clot formation while overcoming the adversities of the thrombus niche such as restricted access to oxygen and nutrient. In the present review, we describe the changes in energy metabolism of platelets upon agonist challenge and their underlying molecular mechanisms. We briefly discuss the metabolic flexibility and dependency of stimulated platelets in terms of choice of energy substrates. Finally, we discuss how targeting the metabolic vulnerabilities of stimulated platelets such as aerobic glycolysis and/or beta oxidation of fatty acids could forestall platelet activation and thrombus formation. Thus, we present a case for modulating platelet energy metabolism using small-molecules as a novel anti-platelet strategy in the management of vaso-occlusive disorders like acute myocardial infarction, ischemic stroke, deep vein thrombosis and pulmonary embolism.
Collapse
Affiliation(s)
- Paresh P Kulkarni
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India; Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA.
| | - Mohammad Ekhlak
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Debabrata Dash
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
11
|
Reversible Platelet Integrin αIIbβ3 Activation and Thrombus Instability. Int J Mol Sci 2022; 23:ijms232012512. [PMID: 36293367 PMCID: PMC9604507 DOI: 10.3390/ijms232012512] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Integrin αIIbβ3 activation is essential for platelet aggregation and, accordingly, for hemostasis and arterial thrombosis. The αIIbβ3 integrin is highly expressed on platelets and requires an activation step for binding to fibrinogen, fibrin or von Willebrand factor (VWF). A current model assumes that the process of integrin activation relies on actomyosin force-dependent molecular changes from a bent-closed and extended-closed to an extended-open conformation. In this paper we review the pathways that point to a functional reversibility of platelet αIIbβ3 activation and transient aggregation. Furthermore, we refer to mouse models indicating that genetic defects that lead to reversible platelet aggregation can also cause instable thrombus formation. We discuss the platelet agonists and signaling pathways that lead to a transient binding of ligands to integrin αIIbβ3. Our analysis points to the (autocrine) ADP P2Y1 and P2Y12 receptor signaling via phosphoinositide 3-kinases and Akt as principal pathways linked to reversible integrin activation. Downstream signaling events by protein kinase C, CalDAG-GEFI and Rap1b have not been linked to transient integrin activation. Insight into the functional reversibility of integrin activation pathways will help to better understand the effects of antiplatelet agents.
Collapse
|
12
|
Marar TT, Matzko CN, Wu J, Esmon CT, Sinno T, Brass LF, Stalker TJ, Tomaiuolo M. Thrombin spatial distribution determines protein C activation during hemostasis and thrombosis. Blood 2022; 139:1892-1902. [PMID: 34890454 PMCID: PMC8952187 DOI: 10.1182/blood.2021014338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022] Open
Abstract
Rebalancing the hemostatic system by targeting endogenous anticoagulant pathways, like the protein C (PC) system, is being tested as a means of improving hemostasis in patients with hemophilia. Recent intravital studies of hemostasis demonstrated that, in some vascular contexts, thrombin activity is sequestered in the extravascular compartment. These findings raise important questions about the context-dependent contribution of activated PC (APC) to the hemostatic response, because PC activation occurs on the surface of endothelial cells. We used a combination of pharmacologic, genetic, imaging, and computational approaches to examine the relationships among thrombin spatial distribution, PC activation, and APC anticoagulant function. We found that inhibition of APC activity, in mice either harboring the factor V Leiden mutation or infused with an APC-blocking antibody, significantly enhanced fibrin formation and platelet activation in a microvascular injury model, consistent with the role of APC as an anticoagulant. In contrast, inhibition of APC activity had no effect on hemostasis after penetrating injury of the mouse jugular vein. Computational studies showed that differences in blood velocity, injury size, and vessel geometry determine the localization of thrombin generation and, consequently, the extent of PC activation. Computational predictions were tested in vivo and showed that when thrombin generation occurred intravascularly, without penetration of the vessel wall, inhibition of APC significantly increased fibrin formation in the jugular vein. Together, these studies show the importance of thrombin spatial distribution in determining PC activation during hemostasis and thrombosis.
Collapse
Affiliation(s)
- Tanya T Marar
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA
| | - Chelsea N Matzko
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jie Wu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Talid Sinno
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA; and
| | - Lawrence F Brass
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Timothy J Stalker
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA
| | - Maurizio Tomaiuolo
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, PA
| |
Collapse
|
13
|
Veuthey L, Aliotta A, Bertaggia Calderara D, Pereira Portela C, Alberio L. Mechanisms Underlying Dichotomous Procoagulant COAT Platelet Generation-A Conceptual Review Summarizing Current Knowledge. Int J Mol Sci 2022; 23:2536. [PMID: 35269679 PMCID: PMC8910683 DOI: 10.3390/ijms23052536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Procoagulant platelets are a subtype of activated platelets that sustains thrombin generation in order to consolidate the clot and stop bleeding. This aspect of platelet activation is gaining more and more recognition and interest. In fact, next to aggregating platelets, procoagulant platelets are key regulators of thrombus formation. Imbalance of both subpopulations can lead to undesired thrombotic or bleeding events. COAT platelets derive from a common pro-aggregatory phenotype in cells capable of accumulating enough cytosolic calcium to trigger specific pathways that mediate the loss of their aggregating properties and the development of new adhesive and procoagulant characteristics. Complex cascades of signaling events are involved and this may explain why an inter-individual variability exists in procoagulant potential. Nowadays, we know the key agonists and mediators underlying the generation of a procoagulant platelet response. However, we still lack insight into the actual mechanisms controlling this dichotomous pattern (i.e., procoagulant versus aggregating phenotype). In this review, we describe the phenotypic characteristics of procoagulant COAT platelets, we detail the current knowledge on the mechanisms of the procoagulant response, and discuss possible drivers of this dichotomous diversification, in particular addressing the impact of the platelet environment during in vivo thrombus formation.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (L.V.); (A.A.); (D.B.C.); (C.P.P.)
| |
Collapse
|
14
|
Sanrattana W, Smits S, Barendrecht AD, van Kleef ND, El Otmani H, Zivkovic M, Roest M, Renné T, Clark CC, de Maat S, Maas C. Targeted SERPIN (TaSER): A dual-action antithrombotic agent that targets platelets for SERPIN delivery. J Thromb Haemost 2022; 20:353-365. [PMID: 34653316 PMCID: PMC9298318 DOI: 10.1111/jth.15554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/22/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Occlusive thrombi are not homogeneous in composition. The core of a thrombus is rich in activated platelets and fibrin while the outer shell contains resting platelets. This core is inaccessible to plasma proteins. We produced a fusion protein (targeted SERPIN-TaSER), consisting of a function-blocking VH H against glycoprotein Ibα (GPIbα) and a thrombin-inhibiting serine protease inhibitor (SERPIN; α1-antitrypsin 355 AIAR358 ) to interfere with platelet-driven thrombin formation. AIM To evaluate the antithrombotic properties of TaSER. METHODS Besides TaSER, we generated three analogous control variants with either a wild-type antitrypsin subunit, a non-targeting control VH H, or their combination. We investigated TaSER and controls in protease activity assays, (platelet-dependent) thrombin generation assays, and by western blotting. The effects of TaSER on platelet activation and von Willebrand factor (VWF) binding were studied by fluorescence-activated cell sorting, in agglutination studies, and in ATP secretion experiments. We studied the influence of TaSER in whole blood (1) on platelet adhesion on VWF, (2) aggregate formation on collagen, and (3) thrombus formation (after recalcification) on collagen and tissue factor. RESULTS TaSER binds platelets and inhibits thrombin activity on the platelet surface. It blocks VWF binding and disassembles platelet agglutinates. TaSER delays tissue factor-triggered thrombin generation and ATP secretion in platelet-rich plasma in a targeted manner. In flow studies, TaSER interferes with platelet adhesion and aggregate formation due to GPIbα blockade and limits thrombus formation due to targeted inhibition of platelet-dependent thrombin activity. CONCLUSION The synergy between the individual properties of TaSER makes it a highly effective antithrombotic agent with possible clinical implications.
Collapse
Affiliation(s)
- Wariya Sanrattana
- CDL ResearchUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Simone Smits
- CDL ResearchUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Arjan D. Barendrecht
- CDL ResearchUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Nadine D. van Kleef
- CDL ResearchUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Hinde El Otmani
- CDL ResearchUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Minka Zivkovic
- Van CreveldkliniekUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Mark Roest
- Synapse Research InstituteMaastrichtThe Netherlands
- Department of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Center for Thrombosis and Hemostasis (CTH)Johannes Gutenberg University Medical CenterMainzGermany
| | - Chantal C. Clark
- CDL ResearchUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Steven de Maat
- CDL ResearchUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Coen Maas
- CDL ResearchUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
15
|
Perrella G, Montague SJ, Brown HC, Garcia Quintanilla L, Slater A, Stegner D, Thomas M, Heemskerk JWM, Watson SP. Role of Tyrosine Kinase Syk in Thrombus Stabilisation at High Shear. Int J Mol Sci 2022; 23:ijms23010493. [PMID: 35008919 PMCID: PMC8745592 DOI: 10.3390/ijms23010493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022] Open
Abstract
Understanding the pathways involved in the formation and stability of the core and shell regions of a platelet-rich arterial thrombus may result in new ways to treat arterial thrombosis. The distinguishing feature between these two regions is the absence of fibrin in the shell which indicates that in vitro flow-based assays over thrombogenic surfaces, in the absence of coagulation, can be used to resemble this region. In this study, we have investigated the contribution of Syk tyrosine kinase in the stability of platelet aggregates (or thrombi) formed on collagen or atherosclerotic plaque homogenate at arterial shear (1000 s-1). We show that post-perfusion of the Syk inhibitor PRT-060318 over preformed thrombi on both surfaces enhances thrombus breakdown and platelet detachment. The resulting loss of thrombus stability led to a reduction in thrombus contractile score which could be detected as early as 3 min after perfusion of the Syk inhibitor. A similar loss of thrombus stability was observed with ticagrelor and indomethacin, inhibitors of platelet adenosine diphosphate (ADP) receptor and thromboxane A2 (TxA2), respectively, and in the presence of the Src inhibitor, dasatinib. In contrast, the Btk inhibitor, ibrutinib, causes only a minor decrease in thrombus contractile score. Weak thrombus breakdown is also seen with the blocking GPVI nanobody, Nb21, which indicates, at best, a minor contribution of collagen to the stability of the platelet aggregate. These results show that Syk regulates thrombus stability in the absence of fibrin in human platelets under flow and provide evidence that this involves pathways additional to activation of GPVI by collagen.
Collapse
Affiliation(s)
- Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
- Department of Biochemistry, CARIM, Maastricht University, 6200 AC Maastricht, The Netherlands;
| | - Samantha J. Montague
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
| | - Helena C. Brown
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, 97080 Würzburg, Germany;
| | - Lourdes Garcia Quintanilla
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
| | - David Stegner
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, 97080 Würzburg, Germany;
| | - Mark Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
| | - Johan W. M. Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, 6200 AC Maastricht, The Netherlands;
- Department Synapse Research Institute, 6214 AC Maastricht, The Netherlands
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (G.P.); (S.J.M.); (H.C.B.); (L.G.Q.); (A.S.); (M.T.)
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham, Birmingham B15 2TT, UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Nottingham, Nottingham NG7 2RD, UK
- Correspondence: ; Tel.: +44-0121-4146514
| |
Collapse
|
16
|
Navarro S, Stegner D, Nieswandt B, Heemskerk JWM, Kuijpers MJE. Temporal Roles of Platelet and Coagulation Pathways in Collagen- and Tissue Factor-Induced Thrombus Formation. Int J Mol Sci 2021; 23:ijms23010358. [PMID: 35008781 PMCID: PMC8745329 DOI: 10.3390/ijms23010358] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/31/2022] Open
Abstract
In hemostasis and thrombosis, the complex process of thrombus formation involves different molecular pathways of platelet and coagulation activation. These pathways are considered as operating together at the same time, but this has not been investigated. The objective of our study was to elucidate the time-dependency of key pathways of thrombus and clot formation, initiated by collagen and tissue factor surfaces, where coagulation is triggered via the extrinsic route. Therefore, we adapted a microfluidics whole-blood assay with the Maastricht flow chamber to acutely block molecular pathways by pharmacological intervention at desired time points. Application of the technique revealed crucial roles of glycoprotein VI (GPVI)-induced platelet signaling via Syk kinase as well as factor VIIa-induced thrombin generation, which were confined to the first minutes of thrombus buildup. A novel anti-GPVI Fab EMF-1 was used for this purpose. In addition, platelet activation with the protease-activating receptors 1/4 (PAR1/4) and integrin αIIbβ3 appeared to be prolongedly active and extended to later stages of thrombus and clot formation. This work thereby revealed a more persistent contribution of thrombin receptor-induced platelet activation than of collagen receptor-induced platelet activation to the thrombotic process.
Collapse
Affiliation(s)
- Stefano Navarro
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg Josef-Schneider-Straße 2, 97080 Wurzburg, Germany; (S.N.); (D.S.); (B.N.)
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Wurzburg, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - David Stegner
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg Josef-Schneider-Straße 2, 97080 Wurzburg, Germany; (S.N.); (D.S.); (B.N.)
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Wurzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg Josef-Schneider-Straße 2, 97080 Wurzburg, Germany; (S.N.); (D.S.); (B.N.)
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Wurzburg, Germany
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Synapse Research Institute, Kon. Emmaplein 7, 6214 KD Maastricht, The Netherlands
- Correspondence: (J.W.M.H.); (M.J.E.K.); Tel.: +31-43-3881674 (M.J.E.K.)
| | - Marijke J. E. Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, Professor Debyelaan 25, 6229 HX Maastricht, The Netherlands
- Correspondence: (J.W.M.H.); (M.J.E.K.); Tel.: +31-43-3881674 (M.J.E.K.)
| |
Collapse
|
17
|
Teeraratkul C, Mukherjee D. Microstructure aware modeling of biochemical transport in arterial blood clots. J Biomech 2021; 127:110692. [PMID: 34479090 DOI: 10.1016/j.jbiomech.2021.110692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 01/29/2023]
Abstract
Flow-mediated transport of biochemical species is central to thrombotic phenomena. Comprehensive three-dimensional modeling of flow-mediated transport around realistic macroscale thrombi poses challenges owing to their arbitrary heterogeneous microstructure. Here, we develop a microstructure aware model for species transport within and around a macroscale thrombus by devising a custom preconditioned fictitious domain formulation for thrombus-hemodynamics interactions, and coupling it with a fictitious domain advection-diffusion formulation for transport. Microstructural heterogeneities are accounted through a hybrid discrete particle-continuum approach for the thrombus interior. We present systematic numerical investigations on unsteady arterial flow within and around a three-dimensional macroscale thrombus; demonstrate the formation of coherent flow structures around the thrombus which organize advective transport; illustrate the role of the permeation processes at the thrombus boundary and subsequent intra-thrombus transport; and characterize species transport from bulk flow to the thrombus boundary and vice versa.
Collapse
Affiliation(s)
- Chayut Teeraratkul
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, United States of America.
| | - Debanjan Mukherjee
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, United States of America.
| |
Collapse
|
18
|
Masalceva AA, Kaneva VN, Panteleev MA, Ataullakhanov F, Volpert V, Afanasyev I, Nechipurenko DY. Analysis of microvascular thrombus mechanobiology with a novel particle-based model. J Biomech 2021; 130:110801. [PMID: 34768079 DOI: 10.1016/j.jbiomech.2021.110801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/20/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022]
Abstract
Platelet accumulation at the site of a vascular injury is regulated by soluble platelet agonists, which induce various types of platelet responses, including integrin activation and granule secretion. The interplay between local biochemical cues, mechanical interactions between platelets and macroscopic thrombus dynamics is poorly understood. Here we describe a novel computational model of microvascular clot formation for the detailed analysis of thrombus mechanics. We adopt a previously developed two-dimensional particle-based model focused on the thrombus shell formation and revise it to introduce the platelet agonists. Blood flow is simulated via a computational fluid dynamics approach. In order to model soluble platelet activators, we apply Langevin dynamics to a large number of non-dimensional virtual particles. Taking advantage of the available data on platelet dense granule secretion kinetics, we model platelet degranulation as a stochastic agonist-dependent process. The new model qualitatively reproduces the enhanced thrombus formation due to dense granule secretion, in line with in vivo findings, and provides a mechanism for the thrombin confinement at the early stages of clot formation. Our calculations also predict that the release of platelet dense granules results in the additional mechanical stabilization of the inner layers of thrombus. Distribution of the inter-platelet forces throughout the aggregate reveals multiple weak spots in the outer regions of a thrombus, which are expected to result in the mechanical disruptions at the later stages of clot formation.
Collapse
Affiliation(s)
- Anastasia A Masalceva
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Science, Moscow, Russia
| | - Valeriia N Kaneva
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Science, Moscow, Russia; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Mikhail A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Science, Moscow, Russia; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Fazoil Ataullakhanov
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Science, Moscow, Russia; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Vitaly Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France; INRIA Team Dracula, INRIA Lyon La Doua, 69603 Villeurbanne, France; Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russia
| | - Ilya Afanasyev
- Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia; Research Computing Center of Moscow State University, Moscow, Russia
| | - Dmitry Yu Nechipurenko
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Science, Moscow, Russia; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
| |
Collapse
|
19
|
Marar TT, Martinez ND, Maroney SA, Siebert AE, Wu J, Stalker TJ, Tomaiuolo M, Delacroix S, Simari RD, Mast AE, Brass LF. The contribution of TFPIα to the hemostatic response to injury in mice. J Thromb Haemost 2021; 19:2182-2192. [PMID: 34160126 PMCID: PMC8571650 DOI: 10.1111/jth.15430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Tissue factor pathway inhibitor (TFPI) is an essential regulator of coagulation, limiting thrombin generation and preventing thrombosis. In humans and mice, TFPIα is the sole isoform present in platelets. OBJECTIVE Here, we asked whether TFPIα, because of its release from platelets at sites of injury, has a unique role in limiting the hemostatic response. METHODS TFPIα-mutant (TfpiΔα/Δα ) mice were generated by introducing a stop codon in the C-terminus. Platelet accumulation, platelet activation, and fibrin accumulation were measured following penetrating injuries in the jugular vein and cremaster muscle arterioles, and imaged by fluorescence and scanning electron microscopy. Time to bleeding cessation was recorded in the jugular vein studies. RESULTS TfpiΔα/Δα mice were viable and fertile. Plasma TFPI levels were normal in the TfpiΔα/Δα mice, no TFPI protein or activity was present in their platelets and thrombin-antithrombin complex levels were indistinguishable from Tfpi+/+ littermates. There was a small, but statistically significant reduction in the time to bleeding cessation following jugular vein puncture injury in the TfpiΔα/Δα mice, but no measurable changes in platelet or fibrin accumulation or in hemostatic plug architecture following injury of the micro- or macrovasculature. CONCLUSION Loss of TFPIα expression does not produce a global prothrombotic state in mice. Platelet TFPIα is expected to be released or displayed in a focal manner at the site of injury, potentially accumulating to high concentrations in the narrow gaps between platelets. If so, the data from the vascular injury models studied here indicate this is not essential for a normal hemostatic response in mice.
Collapse
Affiliation(s)
- Tanya T. Marar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Jie Wu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy J. Stalker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maurizio Tomaiuolo
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sinny Delacroix
- Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Robert D. Simari
- Department of Cardiovascular Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Alan E. Mast
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lawrence F. Brass
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Kaneva VN, Dunster JL, Volpert V, Ataullahanov F, Panteleev MA, Nechipurenko DY. Modeling Thrombus Shell: Linking Adhesion Receptor Properties and Macroscopic Dynamics. Biophys J 2021; 120:334-351. [PMID: 33472026 DOI: 10.1016/j.bpj.2020.10.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/10/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Damage to arterial vessel walls leads to the formation of platelet aggregate, which acts as a physical obstacle for bleeding. An arterial thrombus is heterogeneous; it has a dense inner part (core) and an unstable outer part (shell). The thrombus shell is very dynamic, being composed of loosely connected discoid platelets. The mechanisms underlying the observed mobility of the shell and its (patho)physiological implications are unclear. To investigate arterial thrombus mechanics, we developed a novel, to our knowledge, two-dimensional particle-based computational model of microvessel thrombosis. The model considers two types of interplatelet interactions: primary reversible (glycoprotein Ib (GPIb)-mediated) and stronger integrin-mediated interaction, which intensifies with platelet activation. At high shear rates, the former interaction leads to adhesion, and the latter is primarily responsible for stable platelet aggregation. Using a stochastic model of GPIb-mediated interaction, we initially reproduced experimental curves that characterize individual platelet interactions with a von Willebrand factor-coated surface. The addition of the second stabilizing interaction results in thrombus formation. The comparison of thrombus dynamics with experimental data allowed us to estimate the magnitude of critical interplatelet forces in the thrombus shell and the characteristic time of platelet activation. The model predicts moderate dependence of maximal thrombus height on the injury size in the absence of thrombin activity. We demonstrate that the developed stochastic model reproduces the observed highly dynamic behavior of the thrombus shell. The presence of primary stochastic interaction between platelets leads to the properties of thrombus consistent with in vivo findings; it does not grow upstream of the injury site and covers the whole injury from the first seconds of the formation. А simplified model, in which GPIb-mediated interaction is deterministic, does not reproduce these features. Thus, the stochasticity of platelet interactions is critical for thrombus plasticity, suggesting that interaction via a small number of bonds drives the dynamics of arterial thrombus shell.
Collapse
Affiliation(s)
- Valeriia N Kaneva
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Joanne L Dunster
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Vitaly Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne, France; INRIA Team Dracula, INRIA Lyon La Doua, Villeurbanne, France; Peoples Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Fazoil Ataullahanov
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Dmitry Yu Nechipurenko
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
21
|
Du J, Aspray E, Fogelson A. Computational investigation of platelet thrombus mechanics and stability in stenotic channels. J Biomech 2021; 122:110398. [PMID: 33933859 DOI: 10.1016/j.jbiomech.2021.110398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The stability of a platelet thrombus under flow is believed to depend strongly on the local hemodynamics and on the thrombus' porosity, permeability, and elasticity. A two-phase continuum model is used to investigate the biomechanics of thrombus stability in stenotic channels. It treats the thrombus as a porous, viscoelastic material moving differently than the background fluid. The dynamic clot-flow interaction is modeled through a frictional drag term. The model explicitly tracks the formation and breaking of interplatelet molecular bonds, which directly determine the viscoelastic property of the thrombus and govern its ability to resist fluid drag. We characterize the stability/fragility of thrombi for various flow speeds, porosities, bond concentrations, and bond types.
Collapse
Affiliation(s)
- Jian Du
- Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32940, United States
| | - Elise Aspray
- Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32940, United States
| | - Aaron Fogelson
- Departments of Mathematics and Biomedical Engineering, University of Utah, Salt Lake City, UT 84102, United States.
| |
Collapse
|
22
|
Poventud-Fuentes I, Kwon KW, Seo J, Tomaiuolo M, Stalker TJ, Brass LF, Huh D. A Human Vascular Injury-on-a-Chip Model of Hemostasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004889. [PMID: 33150735 PMCID: PMC8049960 DOI: 10.1002/smll.202004889] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/28/2020] [Indexed: 05/02/2023]
Abstract
Hemostasis is an innate protective mechanism that plays a central role in maintaining the homeostasis of the vascular system during vascular injury. Studying this essential physiological process is often challenged by the difficulty of modeling and probing the complex dynamics of hemostatic responses in the native context of human blood vessels. To address this major challenge, this paper describes a microengineering approach for in vitro modeling of hemostasis. This microphysiological model replicates the living endothelium, multilayered microarchitecture, and procoagulant activity of human blood vessels, and is also equipped with a microneedle that is actuated with spatial precision to simulate penetrating vascular injuries. The system recapitulates key features of the hemostatic response to acute vascular injury as observed in vivo, including i) thrombin-driven accumulation of platelets and fibrin, ii) formation of a platelet- and fibrin-rich hemostatic plug that halts blood loss, and iii) matrix deformation driven by platelet contraction for wound closure. Moreover, the potential use of this model for drug testing applications is demonstrated by evaluating the effects of anticoagulants and antiplatelet agents that are in current clinical use. The vascular injury-on-a-chip may serve as an enabling platform for preclinical investigation of hematological disorders and emerging therapeutic approaches against them.
Collapse
Affiliation(s)
| | - Keon Woo Kwon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jeongyun Seo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maurizio Tomaiuolo
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Timothy J Stalker
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lawrence F Brass
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute of Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
23
|
Whyte CS, Mutch NJ. uPA-mediated plasminogen activation is enhanced by polyphosphate. Haematologica 2021; 106:522-531. [PMID: 32029503 PMCID: PMC7849561 DOI: 10.3324/haematol.2019.237966] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/31/2020] [Indexed: 11/09/2022] Open
Abstract
Tissue plasminogen activator (tPA) and urokinase (uPA) differ in their modes of action. Efficient tPA-mediated plasminogen activation requires binding to fibrin. In contrast, uPA is fibrin independent and activates plasminogen in solution or when associated with its cellular receptor uPAR. We have previously shown that polyphosphate (polyP), alters fibrin structure and attenuates tPA and plasminogen binding to fibrin, thereby down-regulating fibrinolysis. Here we investigate the impact of polyP on uPA-mediated fibrinolysis. As previously reported polyP of an average chain length of 65 (polyP65) delays tPA-mediated fibrinolysis. The rate of plasmin generation was also delayed and reduced 1.6-fold in polyP65-containing clots (0.74 ± 0.06 vs. 1.17 ± 0.14 pM/s in P < 0.05). Analysis of tPA-mediated fibrinolysis in real-time by confocal microscopy was significantly slower in polyP65-containing clots. In marked contrast, polyP65 augmented the rate of uPA-mediated plasmin generation 4.7-fold (3.96 ± 0.34 vs. 0.84 ± 0.08 pM/s; P < 0.001) and accelerated fibrinolysis (t1/2 64.5 ± 1.7 min vs. 108.2 ± 3.8 min; P < 0.001). Analysis of lysis in real-time confirmed that polyP65 enhanced uPA-mediated fibrinolysis. Varying the plasminogen concentration (0.125 to 1 μM) in clots dose-dependently enhanced uPA-mediated fibrinolysis, while negligible changes were observed on tPA-mediated fibrinolysis. The accelerating effect of polyP65 on uPA-mediated fibrinolysis was overcome by additional plasminogen, while the down-regulation of tPA-mediated lysis and plasmin generation was largely unaffected. PolyP65 exerts opposing effects on tPA- and uPA-mediated fibrinolysis, attenuating the fibrin cofactor function in tPA-mediated plasminogen activation. In contrast, polyP may facilitate the interaction between fibrin-independent uPA and plasminogen thereby accelerating plasmin generation and downstream fibrinolysis.
Collapse
|
24
|
Whyte CS, Morrow GB, Baik N, Booth NA, Jalal MM, Parmer RJ, Miles LA, Mutch NJ. Exposure of plasminogen and a novel plasminogen receptor, Plg-RKT, on activated human and murine platelets. Blood 2021; 137:248-257. [PMID: 32842150 PMCID: PMC7820873 DOI: 10.1182/blood.2020007263] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/15/2020] [Indexed: 11/20/2022] Open
Abstract
Plasminogen activation rates are enhanced by cell surface binding. We previously demonstrated that exogenous plasminogen binds to phosphatidylserine-exposing and spread platelets. Platelets contain plasminogen in their α-granules, but secretion of plasminogen from platelets has not been studied. Recently, a novel transmembrane lysine-dependent plasminogen receptor, Plg-RKT, has been described on macrophages. Here, we analyzed the pool of plasminogen in platelets and examined whether platelets express Plg-RKT. Plasminogen content of the supernatant of resting and collagen/thrombin-stimulated platelets was similar. Pretreatment with the lysine analog, ε-aminocaproic acid, significantly increased platelet-derived plasminogen (0.33 vs 0.08 nmol/108 platelets) in the stimulated supernatant, indicating a lysine-dependent mechanism of membrane retention. Lysine-dependent, platelet-derived plasminogen retention on thrombin and convulxin activated human platelets was confirmed by flow cytometry. Platelets initiated fibrinolytic activity in fluorescently labeled plasminogen-deficient clots and in turbidimetric clot lysis assays. A 17-kDa band, consistent with Plg-RKT, was detected in the platelet membrane fraction by western blotting. Confocal microscopy of stimulated platelets revealed Plg-RKT colocalized with platelet-derived plasminogen on the activated platelet membrane. Plasminogen exposure was significantly attenuated in thrombin- and convulxin-stimulated platelets from Plg-RKT-/- mice compared with Plg-RKT+/+ littermates. Membrane exposure of Plg-RKT was not dependent on plasminogen, as similar levels of the receptor were detected in plasminogen-/- platelets. These data highlight Plg-RKT as a novel plasminogen receptor in human and murine platelets. We show for the first time that platelet-derived plasminogen is retained on the activated platelet membrane and drives local fibrinolysis by enhancing cell surface-mediated plasminogen activation.
Collapse
Affiliation(s)
- Claire S Whyte
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Gael B Morrow
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Nagyung Baik
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Nuala A Booth
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Mohammed M Jalal
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Robert J Parmer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medicine, University of California San Diego, San Diego, CA; and
| | - Lindsey A Miles
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Nicola J Mutch
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
25
|
Teeraratkul C, Irwin Z, Shadden SC, Mukherjee D. Computational investigation of blood flow and flow-mediated transport in arterial thrombus neighborhood. Biomech Model Mechanobiol 2021; 20:701-715. [PMID: 33438148 DOI: 10.1007/s10237-020-01411-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022]
Abstract
A pathologically formed blood clot or thrombus is central to major cardiovascular diseases like heart attack and stroke. Detailed quantitative evaluation of flow and flow-mediated transport processes in the thrombus neighborhood within large artery hemodynamics is crucial for understanding disease progression and assessing treatment efficacy. This, however, remains a challenging task owing to the complexity of pulsatile viscous flow interactions with arbitrary shape and heterogeneous microstructure of realistic thrombi. Here, we address this challenge by conducting a systematic parametric simulation-based study on characterizing unsteady hemodynamics and flow-mediated transport in the neighborhood of an arterial thrombus. We use a hybrid particle-continuum-based finite element approach to handle arbitrary thrombus shape and microstructural variations. Results from a cohort of 50 different unsteady flow scenarios are presented, including unsteady vortical structures, pressure gradient across the thrombus boundary, finite time Lyapunov exponents, and dynamic coherent structures that organize advective transport. We clearly illustrate the combined influence of three key parameters-thrombus shape, microstructure, and extent of wall disease-in terms of: (a) determining hemodynamic features in the thrombus neighborhood and (b) governing the balance between advection, permeation, and diffusion to regulate transport processes in the thrombus neighborhood.
Collapse
Affiliation(s)
- Chayut Teeraratkul
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, United States of America
| | - Zachariah Irwin
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, United States of America
| | - Shawn C Shadden
- Department of Mechanical Engineering, University of California, Berkeley, United States of America
| | - Debanjan Mukherjee
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, United States of America.
| |
Collapse
|
26
|
Du J, Kim D, Alhawael G, Ku DN, Fogelson AL. Clot Permeability, Agonist Transport, and Platelet Binding Kinetics in Arterial Thrombosis. Biophys J 2020; 119:2102-2115. [PMID: 33147477 DOI: 10.1016/j.bpj.2020.08.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/15/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
The formation of wall-adherent platelet aggregates is a critical process in arterial thrombosis. A growing aggregate experiences frictional drag forces exerted on it by fluid moving over or through the aggregate. The magnitude of these forces is strongly influenced by the permeability of the developing aggregate; the permeability depends on the aggregate's porosity. Aggregation is mediated by formation of ensembles of molecular bonds; each bond involves a plasma protein bridging the gap between specific receptors on the surfaces of two different platelets. The ability of the bonds existing at any time to sustain the drag forces on the aggregate determines whether it remains intact or sheds individual platelets or larger fragments (emboli). We investigate platelet aggregation in coronary-sized arteries using both computational simulations and in vitro experiments. The computational model tracks the formation and breaking of bonds between platelets and treats the thrombus as an evolving porous, viscoelastic material, which moves differently from the background fluid. This relative motion generates drag forces which the fluid and thrombus exert on one another. These forces are computed from a permeability-porosity relation parameterized from experimental measurements. Basing this relation on measurements from occlusive thrombi formed in our flow chamber experiments, along with other physiological parameter values, the model produced stable dense thrombi on a similar timescale to the experiments. When we parameterized the permeability-porosity relation using lower permeabilities reported by others, bond formation was insufficient to balance drag forces on an early thrombus and keep it intact. Under high shear flow, soluble agonist released by platelets was limited to the thrombus and a boundary layer downstream, thus restricting thrombus growth into the vessel lumen. Adding to the model binding and activation of unactivated platelets through von Willebrand-factor-mediated processes allowed greater growth and made agonist-induced activation more effective.
Collapse
Affiliation(s)
- Jian Du
- Department of Mathematics, Florida Institute of Technology, Melbourne, Florida
| | - Dongjune Kim
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Ghadah Alhawael
- Department of Mathematics, Florida Institute of Technology, Melbourne, Florida
| | - David N Ku
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Aaron L Fogelson
- Departments of Mathematics and Biomedical Engineering, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
27
|
Nechipurenko DY, Shibeko AM, Sveshnikova AN, Panteleev MA. In Silico Hemostasis Modeling and Prediction. Hamostaseologie 2020; 40:524-535. [PMID: 32916753 DOI: 10.1055/a-1213-2117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Computational physiology, i.e., reproduction of physiological (and, by extension, pathophysiological) processes in silico, could be considered one of the major goals in computational biology. One might use computers to simulate molecular interactions, enzyme kinetics, gene expression, or whole networks of biochemical reactions, but it is (patho)physiological meaning that is usually the meaningful goal of the research even when a single enzyme is its subject. Although exponential rise in the use of computational and mathematical models in the field of hemostasis and thrombosis began in the 1980s (first for blood coagulation, then for platelet adhesion, and finally for platelet signal transduction), the majority of their successful applications are still focused on simulating the elements of the hemostatic system rather than the total (patho)physiological response in situ. Here we discuss the state of the art, the state of the progress toward the efficient "virtual thrombus formation," and what one can already get from the existing models.
Collapse
Affiliation(s)
- Dmitry Y Nechipurenko
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.,Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, Russia.,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Aleksey M Shibeko
- Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, Russia.,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anastasia N Sveshnikova
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.,Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, Russia.,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Mikhail A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.,Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, Russia.,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
28
|
Mitrophanov AY, Merrill-Skoloff G, Grover SP, Govindarajan V, Kolanjiyil A, Hariprasad DS, Unnikrishnan G, Flaumenhaft R, Reifman J. Injury Length and Arteriole Constriction Shape Clot Growth and Blood-Flow Acceleration in a Mouse Model of Thrombosis. Arterioscler Thromb Vasc Biol 2020; 40:2114-2126. [PMID: 32640902 DOI: 10.1161/atvbaha.120.314786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Quantitative relationships between the extent of injury and thrombus formation in vivo are not well understood. Moreover, it has not been investigated how increased injury severity translates to blood-flow modulation. Here, we investigated interconnections between injury length, clot growth, and blood flow in a mouse model of laser-induced thrombosis. Approach and Results: Using intravital microscopy, we analyzed 59 clotting events collected from the cremaster arteriole of 14 adult mice. We regarded injury length as a measure of injury severity. The injury caused transient constriction upstream and downstream of the injury site resulting in a 50% reduction in arteriole diameter. The amount of platelet accumulation and fibrin formation did not depend on arteriole diameter or deformation but displayed an exponentially increasing dependence on injury length. The height of the platelet clot depended linearly on injury length and the arteriole diameter. Upstream arteriolar constriction correlated with delayed upstream velocity increase, which, in turn, determined downstream velocity. Before clot formation, flow velocity positively correlated with the arteriole diameter. After the onset of thrombus growth, flow velocity at the injury site negatively correlated with the arteriole diameter and with the size of the above-clot lumen. CONCLUSIONS Injury severity increased platelet accumulation and fibrin formation in a persistently steep fashion and, together with arteriole diameter, defined clot height. Arterial constriction and clot formation were characterized by a dynamic change in the blood flow, associated with increased flow velocity.
Collapse
Affiliation(s)
- Alexander Y Mitrophanov
- From the DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Development Command, Ft. Detrick, MD (A.Y.M., V.G., A.K., D.S.H., G.U., J.R.).,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD (A.Y.M., V.G., A.K., D.S.H., G.U.)
| | - Glenn Merrill-Skoloff
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (G.M.-S., S.P.G., R.F.)
| | - Steven P Grover
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (G.M.-S., S.P.G., R.F.)
| | - Vijay Govindarajan
- From the DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Development Command, Ft. Detrick, MD (A.Y.M., V.G., A.K., D.S.H., G.U., J.R.).,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD (A.Y.M., V.G., A.K., D.S.H., G.U.)
| | - Arun Kolanjiyil
- From the DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Development Command, Ft. Detrick, MD (A.Y.M., V.G., A.K., D.S.H., G.U., J.R.).,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD (A.Y.M., V.G., A.K., D.S.H., G.U.)
| | - Daniel S Hariprasad
- From the DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Development Command, Ft. Detrick, MD (A.Y.M., V.G., A.K., D.S.H., G.U., J.R.).,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD (A.Y.M., V.G., A.K., D.S.H., G.U.)
| | - Ginu Unnikrishnan
- From the DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Development Command, Ft. Detrick, MD (A.Y.M., V.G., A.K., D.S.H., G.U., J.R.).,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD (A.Y.M., V.G., A.K., D.S.H., G.U.)
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (G.M.-S., S.P.G., R.F.)
| | - Jaques Reifman
- From the DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Development Command, Ft. Detrick, MD (A.Y.M., V.G., A.K., D.S.H., G.U., J.R.)
| |
Collapse
|
29
|
Abstract
A confluence of technological advances in genetic manipulation and molecular-based fluorescence imaging has led to the widespread adoption of laser injury models to study hemostasis and thrombosis in mice. In all animal models of hemostasis and thrombosis, detailing the nature of experimentally induced vascular injury is paramount in enabling appropriate interpretation of experimental results. A careful appraisal of the literature shows that direct laser-induced injury can result in variable degrees of vascular damage. This review will compare and contrast models of laser injury utilized in the field, with an emphasis on the mechanism and extent of injury, the use of laser injury in different vascular beds and the molecular mechanisms regulating the response to injury. All of these topics will be discussed in the context of how distinct applications of laser injury models may be viewed as representing thrombosis and/or hemostasis.
Collapse
Affiliation(s)
- Timothy J Stalker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| |
Collapse
|
30
|
Zheng X, Yazdani A, Li H, Humphrey JD, Karniadakis GE. A three-dimensional phase-field model for multiscale modeling of thrombus biomechanics in blood vessels. PLoS Comput Biol 2020; 16:e1007709. [PMID: 32343724 PMCID: PMC7224566 DOI: 10.1371/journal.pcbi.1007709] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 05/14/2020] [Accepted: 02/03/2020] [Indexed: 01/10/2023] Open
Abstract
Mechanical interactions between flowing and coagulated blood (thrombus) are crucial in dictating the deformation and remodeling of a thrombus after its formation in hemostasis. We propose a fully-Eulerian, three-dimensional, phase-field model of thrombus that is calibrated with existing in vitro experimental data. This phase-field model considers spatial variations in permeability and material properties within a single unified mathematical framework derived from an energy perspective, thereby allowing us to study effects of thrombus microstructure and properties on its deformation and possible release of emboli under different hemodynamic conditions. Moreover, we combine this proposed thrombus model with a particle-based model which simulates the initiation of the thrombus. The volume fraction of a thrombus obtained from the particle simulation is mapped to an input variable in the proposed phase-field thrombus model. The present work is thus the first computational study to integrate the initiation of a thrombus through platelet aggregation with its subsequent viscoelastic responses to various shear flows. This framework can be informed by clinical data and potentially be used to predict the risk of diverse thromboembolic events under physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaoning Zheng
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| | - George E. Karniadakis
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
31
|
Wu WT, Zhussupbekov M, Aubry N, Antaki JF, Massoudi M. Simulation of thrombosis in a stenotic microchannel: The effects of vWF-enhanced shear activation of platelets. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE 2020; 147:103206. [PMID: 34565829 PMCID: PMC8462794 DOI: 10.1016/j.ijengsci.2019.103206] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study was undertaken to develop a numerical/computational simulation of von Willebrand Factor (vWF) - mediated platelet shear activation and deposition in an idealized stenosis. Blood is treated as a multi-constituent mixture comprised of a linear fluid component and a porous solid component (thrombus). Chemical and biological species involved in coagulation are modeled using a system of coupled convection-reaction-diffusion (CRD) equations. This study considers the cumulative effect of shear stress (history) on platelet activation. The vWF activity is modeled as an enhancement function for the shear stress accumulation and is related to the experimentally-observed unfolding rate of vWF. A series of simulations were performed in an idealized stenosis in which the predicted platelets deposition agreed well with previous experimental observations spatially and temporally, including the reduction of platelet deposition with decreasing expansion angle. Further simulation indicated a direct relationship between vWF-mediated platelet deposition and degree of stenosis. Based on the success with these benchmark simulations, it is hoped that the model presented here may provide additional insight into vWF-mediated thrombosis and prove useful for the development of more hemo-compatible blood-wetted devices in the future.
Collapse
Affiliation(s)
- Wei-Tao Wu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, J.S., 210094, China
| | - Mansur Zhussupbekov
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Nadine Aubry
- Department of Mechanical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - James F Antaki
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Mehrdad Massoudi
- U. S. Department of Energy, National Energy Technology Laboratory (NETL), Pittsburgh, PA, 15236, USA
| |
Collapse
|
32
|
Sefton MV, Gorbet MB. Nonthrombogenic Treatments and Strategies. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Nechipurenko DY, Mangin PH, Panteleev MA. Response by Nechipurenko et al to Letter Regarding Article, "Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface". Arterioscler Thromb Vasc Biol 2019; 39:e290-e291. [PMID: 31770029 DOI: 10.1161/atvbaha.119.313479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dmitry Y Nechipurenko
- From the Department of Physics, Lomonosov Moscow State University, Russia (D.Y.N., M.A.P.).,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia (D.Y.N., M.A.P.).,Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., M.A.P.)
| | - Pierre H Mangin
- Université de Strasbourg, INSERM, Etablissement Français du Sang-Grand Est, UMR_S1255, FMTS, France (P.H.M.)
| | - Mikhail A Panteleev
- From the Department of Physics, Lomonosov Moscow State University, Russia (D.Y.N., M.A.P.).,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia (D.Y.N., M.A.P.).,Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., M.A.P.).,Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia (M.A.P.)
| |
Collapse
|
34
|
Agbani EO, Hers I, Poole AW. Letter by Agbani et al Regarding Article, "Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface". Arterioscler Thromb Vasc Biol 2019; 39:e287-e289. [PMID: 31770030 DOI: 10.1161/atvbaha.119.313468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ejaife O Agbani
- From the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada (E.O.A.)
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, England, United Kingdom (I.H., A.W.P.)
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, England, United Kingdom (I.H., A.W.P.)
| |
Collapse
|
35
|
Alterations in platelet secretion differentially affect thrombosis and hemostasis. Blood Adv 2019; 2:2187-2198. [PMID: 30185436 DOI: 10.1182/bloodadvances.2018019166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/12/2018] [Indexed: 11/20/2022] Open
Abstract
We genetically manipulated the major platelet vesicle-associated membrane proteins (VAMP2, VAMP3, and VAMP8) to create mice with varying degrees of disrupted platelet secretion. As previously shown, loss of VAMP8 reduced granule secretion, and this defect was exacerbated by further deletion of VAMP2 and VAMP3. VAMP2Δ3Δ8-/- platelets also had reduced VAMP7. Loss of VAMP2 and VAMP3 (VAMP2Δ3Δ) had a minimal impact on secretion when VAMP7 and VAMP8 were present. Integrin αIIbβ3 activation and aggregation were not affected, although spreading was reduced in VAMP2Δ3Δ8-/- platelets. Using these mice as tools, we asked how much secretion is needed for proper thrombosis and hemostasis in vivo. VAMP2Δ3Δ mice showed no deficiency, whereas VAMP8-/- mice had attenuated formation of occlusive thrombi upon FeCl3-induced arterial injury but no excessive bleeding upon tail transection. VAMP2Δ3Δ8-/- mice bled profusely and failed to form occlusive thrombi. Plasma-coagulation factors were normal in all of the strains, but phosphatidylserine exposure was reduced in VAMP2Δ3Δ and VAMP2Δ3Δ8-/- platelets. From our data, an ∼40% to 50% reduction in platelet secretion in vitro (dense and α granule) correlated with reduced occlusive thrombosis but no compromise in hemostasis. At a >50% reduction, thrombosis and hemostasis were defective in vivo. Our studies are the first systematic manipulation of platelet exocytic machinery to demonstrate a quantitative linkage between in vitro platelet secretion and hemostasis and thrombosis in vivo. The animals described will be invaluable tools for future investigations into how platelet secretion affects other vascular processes.
Collapse
|
36
|
Is the endothelial cell responsible for the thrombus core and shell architecture? Med Hypotheses 2019; 129:109244. [PMID: 31371073 DOI: 10.1016/j.mehy.2019.109244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/12/2019] [Accepted: 05/22/2019] [Indexed: 11/24/2022]
Abstract
Ischemia leading to heart attacks and strokes is the major cause of deaths in the world. This report explores the possibility that intracellular material from ruptured endothelial cells is partially responsible for the heterogeneous core-and-shell blood clot architecture, typically observed using intravital microscopy. As evidence, we present a fluid dynamic argument that platelet agonists emanating from the injury cannot activate platelets in the thrombus core, given that they would have to travel against flow of blood escaping into the extravascular. Furthermore, we demonstrate visual evidence that the core material appears to be continuous and originating from the damaged endothelium. Finally, we present a mechanism, illustrating the steps of platelet recruitment into the thrombus and sealing of the injury. If correct, the model presented herein will be beneficial to the understanding and treatment of heart attacks, strokes and hemophilia.
Collapse
|
37
|
Microfluidic and computational study of structural properties and resistance to flow of blood clots under arterial shear. Biomech Model Mechanobiol 2019; 18:1461-1474. [PMID: 31055691 PMCID: PMC6748893 DOI: 10.1007/s10237-019-01154-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 04/20/2019] [Indexed: 01/01/2023]
Abstract
The ability of a blood clot to modulate blood flow is determined by the clot’s resistance, which depends on its structural features. For a flow with arterial shear, we investigated the characteristic patterns relating to clot shape, size, and composition on the one hand, and its viscous resistance, intraclot axial flow velocity, and shear distributions on the other. We used microfluidic technology to measure the kinetics of platelet, thrombin, and fibrin accumulation at a thrombogenic surface coated with collagen and tissue factor (TF), the key clot-formation trigger. We subsequently utilized the obtained data to perform additional calibration and validation of a detailed computational fluid dynamics model of spatial clot growth under flow. We then ran model simulations to gain insights into the resistance of clots formed under our experimental conditions. We found that increased thrombogenic surface length and TF surface density enhanced the bulk thrombin and fibrin generation in a nonadditive, synergistic way. The height of the platelet deposition domain—and, therefore, clot occlusivity—was rather robust to thrombogenic surface length and TF density variations, but consistently increased with time. Clot viscous resistance was non-uniform and tended to be higher in the fibrin-rich, inner “core” region of the clot. Interestingly, despite intraclot structure and viscous resistance variations, intraclot flow velocity variations were minor compared to the abrupt decrease in flow velocity around the platelet deposition region. Our results shed new light on the connection between the structure of clots under arterial shear and spatiotemporal variations in their resistance to flow.
Collapse
|
38
|
Qiu Y, Myers DR, Lam WA. The biophysics and mechanics of blood from a materials perspective. NATURE REVIEWS. MATERIALS 2019; 4:294-311. [PMID: 32435512 PMCID: PMC7238390 DOI: 10.1038/s41578-019-0099-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cells actively interact with their microenvironment, constantly sensing and modulating biochemical and biophysical signals. Blood comprises a variety of non-adherent cells that interact with each other and with endothelial and vascular smooth muscle cells of the blood vessel walls. Blood cells are further experiencing a range of external forces by the hemodynamic environment and they also exert forces to remodel their local environment. Therefore, the biophysics and material properties of blood cells and blood play an important role in determining blood behaviour in health and disease. In this Review, we discuss blood cells and tissues from a materials perspective, considering the mechanical properties and biophysics of individual blood cells and endothelial cells as well as blood cell collectives. We highlight how blood vessels provide a mechanosensitive barrier between blood and tissues and how changes in vessel stiffness and flow shear stress can be correlated to plaque formation and exploited for the design of vascular grafts. We discuss the effect of the properties of fibrin on blood clotting, and investigate how forces exerted by platelets are correlated to disease. Finally, we hypothesize that blood and vascular cells are constantly establishing a mechanical homeostasis, which, when imbalanced, can lead to hematologic and vascular diseases.
Collapse
Affiliation(s)
- Yongzhi Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - David R. Myers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Corresponding author,
| |
Collapse
|
39
|
RGS10 shapes the hemostatic response to injury through its differential effects on intracellular signaling by platelet agonists. Blood Adv 2019; 2:2145-2155. [PMID: 30150297 DOI: 10.1182/bloodadvances.2017008508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/27/2018] [Indexed: 11/20/2022] Open
Abstract
Platelets express ≥2 members of the regulators of G protein signaling (RGS) family. Here, we have focused on the most abundant, RGS10, examining its impact on the hemostatic response in vivo and the mechanisms involved. We have previously shown that the hemostatic thrombi formed in response to penetrating injuries consist of a core of fully activated densely packed platelets overlaid by a shell of less-activated platelets responding to adenosine 5'-diphosphate (ADP) and thromboxane A2 (TxA2). Hemostatic thrombi formed in RGS10-/- mice were larger than in controls, with the increase due to expansion of the shell but not the core. Clot retraction was slower, and average packing density was reduced. Deleting RGS10 had agonist-specific effects on signaling. There was a leftward shift in the dose/response curve for the thrombin receptor (PAR4) agonist peptide AYPGKF but no increase in the maximum response. This contrasted with ADP and TxA2, both of which evoked considerably greater maximum responses in RGS10-/- platelets with enhanced Gq- and Gi-mediated signaling. Shape change, which is G13-mediated, was unaffected. Finally, we found that free RGS10 levels in platelets are actively regulated. In resting platelets, RGS10 was bound to 2 scaffold proteins: spinophilin and 14-3-3γ. Platelet activation caused an increase in free RGS10, as did the endothelium-derived platelet antagonist prostacyclin. Collectively, these observations show that RGS10 serves as an actively regulated node on the platelet signaling network, helping to produce smaller and more densely packed hemostatic thrombi with a greater proportion of fully activated platelets.
Collapse
|
40
|
Kaneva VN, Martyanov AA, Morozova DS, Panteleev MA, Sveshnikova AN. Platelet Integrin αIIbβ3: Mechanisms of Activation and Clustering; Involvement into the Formation of the Thrombus Heterogeneous Structure. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2019. [DOI: 10.1134/s1990747819010033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Sotiri I, Robichaud M, Lee D, Braune S, Gorbet M, Ratner BD, Brash JL, Latour RA, Reviakine I. BloodSurf 2017: News from the blood-biomaterial frontier. Acta Biomater 2019; 87:55-60. [PMID: 30660001 DOI: 10.1016/j.actbio.2019.01.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 12/26/2022]
Abstract
From stents and large-diameter vascular grafts, to mechanical heart valves and blood pumps, blood-contacting devices are enjoying significant clinical success owing to the application of systemic antiplatelet and anticoagulation therapies. On the contrary, research into material and device hemocompatibility aimed at alleviating the need for systemic therapies has suffered a decline. This research area is undergoing a renaissance fueled by recent fundamental insights into coagulation and inflammation that are offering new avenues of investigation, the growing recognition of the limitations facing existing therapeutic approaches, and the severity of the cardiovascular disorders epidemic. This Opinion article discusses clinical needs for hemocompatible materials and the emerging research directions for fulfilling those needs. Based on the 2017 BloodSurf conference that brought together clinicians, scientists, and engineers from academia, industry, and regulatory bodies, its purpose is to draw the attention of the wider clinical and scientific community to stimulate further growth. STATEMENT OF SIGNIFICANCE: The article highlights recent fundamental insights into coagulation, inflammation, and blood-biomaterial interactions that are fueling a renaissance in the field of material hemocompatibility. It will be useful for clinicians, scientists, engineers, representatives of industry and regulatory bodies working on the problem of developing hemocompatible materials and devices for treating cardiovascular disorders.
Collapse
|
42
|
Interrelationships between structure and function during the hemostatic response to injury. Proc Natl Acad Sci U S A 2019; 116:2243-2252. [PMID: 30674670 DOI: 10.1073/pnas.1813642116] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Extensive studies have detailed the molecular regulation of individual components of the hemostatic system, including platelets, coagulation factors, and regulatory proteins. Questions remain, however, about how these elements are integrated at the systems level within a rapidly changing physical environment. To answer some of these questions, we developed a puncture injury model in mouse jugular veins that combines high-resolution, multimodal imaging with functional readouts in vivo. The results reveal striking spatial regulation of platelet activation and fibrin formation that could not be inferred from studies performed ex vivo. As in the microcirculation, where previous studies have been performed, gradients of platelet activation are readily apparent, as is an asymmetrical distribution of fibrin deposition and thrombin activity. Both are oriented from the outer to the inner surface of the damaged vessel wall, with a greater extent of platelet activation and fibrin accumulation on the outside than the inside. Further, we show that the importance of P2Y12 signaling in establishing a competent hemostatic plug is related to the size of the injury, thus limiting its contribution to hemostasis to specific physiologic contexts. Taken together, these studies offer insights into the organization of hemostatic plugs, provide a detailed understanding of the adverse bleeding associated with a widely prescribed class of antiplatelet agents, and highlight differences between hemostasis and thrombosis that may suggest alternative therapeutic approaches.
Collapse
|
43
|
Mutch NJ. Regulation of Fibrinolysis by Platelets. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Brass LF, Tomaiuolo M, Welsh J, Poventud-Fuentes I, Zhu L, Diamond SL, Stalker TJ. Hemostatic Thrombus Formation in Flowing Blood. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00020-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Enhancement of hemostatic property of plant derived oxidized nanocellulose-silk fibroin based scaffolds by thrombin loading. Carbohydr Polym 2018; 208:168-179. [PMID: 30658788 DOI: 10.1016/j.carbpol.2018.12.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 11/15/2018] [Accepted: 12/18/2018] [Indexed: 01/04/2023]
Abstract
To combat post-surgical and traumatic bleeding conditions effective hemostasis is of great importance. The study was designed to investigate the effect of thrombin (Th) loading on hemostatic performance of TEMPO-oxidized cellulose nanofiber (TOCN)-silk fibroin (SF) scaffolds. Addition of SF with TOCN significantly (***P < 0.001) increased blood absorption capacity and improved biocompatibility of TOCN. Thrombin loading potentiated platelet activation and hemostatic property of scaffolds (TOCN-SF-Th) compared to samples without thrombin (TOCN-SF). The hemostatic time of TOCN-SF5-Th in rabbit ear artery bleeding model was reduced (*** P < 0.001) to 114 s from 220 s of TOCN-SF5. Reduction in bleeding time and blood loss of TOCN-SF5-Th in rat tail amputation and liver avulsion model was comparable to commercial hemostat (Floseal). Surface morphology (SEM) of samples applied on bleeding site showed that RBCs and fibrin fiber could strongly interact with TOCN-SF and TOCN-SF-Th scaffolds. The result suggests that TOCN-SF-Th can be a promising candidate for designing hemostatic agents.
Collapse
|
46
|
Mechanisms of receptor shedding in platelets. Blood 2018; 132:2535-2545. [DOI: 10.1182/blood-2018-03-742668] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Abstract
The ability to upregulate and downregulate surface-exposed proteins and receptors is a powerful process that allows a cell to instantly respond to its microenvironment. In particular, mobile cells in the bloodstream must rapidly react to conditions where infection or inflammation are detected, and become proadhesive, phagocytic, and/or procoagulant. Platelets are one such blood cell that must rapidly acquire and manage proadhesive and procoagulant properties in order to execute their primary function in hemostasis. The regulation of platelet membrane properties is achieved via several mechanisms, one of which involves the controlled metalloproteolytic release of adhesion receptors and other proteins from the platelet surface. Proteolysis effectively lowers receptor density and reduces the reactivity of platelets, and is a mechanism to control robust platelet activation. Recent research has also established clear links between levels of platelet receptors and platelet lifespan. In this review, we will discuss the current knowledge of metalloproteolytic receptor regulation in the vasculature with emphasis on the platelet receptor system to highlight how receptor density can influence both platelet function and platelet survival.
Collapse
|
47
|
Whitley MJ, Henke D, Ghazi A, Nieman M, Stoller M, Simon LM, Chen E, Vesci J, Holinstat M, McKenzie S, Shaw C, Edelstein L, Bray PF. The protease-activated receptor 4 Ala120Thr variant alters platelet responsiveness to low-dose thrombin and protease-activated receptor 4 desensitization, and is blocked by non-competitive P2Y 12 inhibition. J Thromb Haemost 2018; 16:2501-2514. [PMID: 30347494 PMCID: PMC6289679 DOI: 10.1111/jth.14318] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Indexed: 01/07/2023]
Abstract
Essentials The rs773902 SNP results in differences in platelet protease-activated receptor (PAR4) function. The functional consequences of rs773902 were analyzed in human platelets and stroke patients. rs773902 affects thrombin-induced platelet function, PAR4 desensitization, stroke association. Enhanced PAR4 Thr120 effects on platelet function are blocked by ticagrelor. SUMMARY: Background F2RL3 encodes protease-activated receptor (PAR) 4 and harbors an A/G single-nucleotide polymorphism (SNP) (rs773902) with racially dimorphic allelic frequencies. This SNP mediates an alanine to threonine substitution at residue 120 that alters platelet PAR4 activation by the artificial PAR4-activation peptide (PAR4-AP) AYPGKF. Objectives To determine the functional effects of rs773902 on stimulation by a physiological agonist, thrombin, and on antiplatelet antagonist activity. Methods Healthy human donors were screened and genotyped for rs773902. Platelet function in response to thrombin was assessed without and with antiplatelet antagonists. The association of rs773902 alleles with stroke was assessed in the Stroke Genetics Network study. Results As compared with rs773902 GG donors, platelets from rs773902 AA donors had increased aggregation in response to subnanomolar concentrations of thrombin, increased granule secretion, and decreased sensitivity to PAR4 desensitization. In the presence of PAR1 blockade, this genotype effect was abolished by higher concentrations of or longer exposure to thrombin. We were unable to detect a genotype effect on thrombin-induced PAR4 cleavage, dimerization, and lipid raft localization; however, rs773902 AA platelets required a three-fold higher level of PAR4-AP for receptor desensitization. Ticagrelor, but not vorapaxar, abolished the PAR4 variant effect on thrombin-induced platelet aggregation. A significant association of modest effect was detected between the rs773902 A allele and stroke. Conclusion The F2RL3 rs773902 SNP alters platelet reactivity to thrombin; the allelic effect requires P2Y12 , and is not affected by gender. Ticagrelor blocks the enhanced reactivity of rs773902 A platelets. PAR4 encoded by the rs773902 A allele is relatively resistant to desensitization and may contribute to stroke risk.
Collapse
Affiliation(s)
- M. J. Whitley
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - D.M. Henke
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - A. Ghazi
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - M. Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Michelle Stoller
- Program in Molecular Medicine and the Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - L. M. Simon
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - E. Chen
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - J. Vesci
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - M. Holinstat
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - S.E. McKenzie
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - C.A. Shaw
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
- Department of Statistics, Rice University, Houston, TX
| | - L.C. Edelstein
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - Paul F. Bray
- Program in Molecular Medicine and the Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
48
|
Tomaiuolo M, Brass LF, Stalker TJ. Regulation of Platelet Activation and Coagulation and Its Role in Vascular Injury and Arterial Thrombosis. Interv Cardiol Clin 2018; 6:1-12. [PMID: 27886814 DOI: 10.1016/j.iccl.2016.08.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hemostasis requires tightly regulated interaction of the coagulation system, platelets, blood cells, and vessel wall components at a site of vascular injury. Dysregulation of this response may result in excessive bleeding if the response is impaired, and pathologic thrombosis with vessel occlusion and tissue ischemia if the response is robust. Studies have elucidated the major molecular signaling pathways responsible for platelet activation and aggregation. Antithrombotic agents targeting these pathways are in clinical use. This review summarizes research examining mechanisms by which these multiple platelet signaling pathways are integrated at a site of vascular injury to produce an optimal hemostatic response.
Collapse
Affiliation(s)
- Maurizio Tomaiuolo
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Lawrence F Brass
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Timothy J Stalker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
49
|
Lu Y, Lee MY, Zhu S, Sinno T, Diamond SL. Multiscale simulation of thrombus growth and vessel occlusion triggered by collagen/tissue factor using a data-driven model of combinatorial platelet signalling. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2018; 34:523-546. [PMID: 27672182 PMCID: PMC5798174 DOI: 10.1093/imammb/dqw015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/23/2016] [Indexed: 12/23/2022]
Abstract
During clotting under flow, platelets bind and activate on collagen and release autocrinic factors such as ADP and thromboxane, while tissue factor (TF) on the damaged wall leads to localized thrombin generation. Towards patient-specific simulation of thrombosis, a multiscale approach was developed to account for: platelet signalling [neural network (NN) trained by pairwise agonist scanning (PAS), PAS-NN], platelet positions (lattice kinetic Monte Carlo, LKMC), wall-generated thrombin and platelet-released ADP/thromboxane convection–diffusion (partial differential equation, PDE) and flow over a growing clot (lattice Boltzmann). LKMC included shear-driven platelet aggregate restructuring. The PDEs for thrombin, ADP and thromboxane were solved by finite element method using cell activation-driven adaptive triangular meshing. At all times, intracellular calcium was known for each platelet by PAS-NN in response to its unique exposure to local collagen, ADP, thromboxane and thrombin. When compared with microfluidic experiments of human blood clotting on collagen/TF driven by constant pressure drop, the model accurately predicted clot morphology and growth with time. In experiments and simulations at TF at 0.1 and 10 molecule-TF/\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\mu$\end{document}m\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$^{2}$\end{document} and initial wall shear rate of 200 s\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$^{-1}$\end{document}, the occlusive blockade of flow for a 60-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\mu$\end{document}m channel occurred relatively abruptly at 600 and 400 s, respectively (with no occlusion at zero TF). Prior to occlusion, intrathrombus concentrations reached 50 nM thrombin, ~ 1 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\mu$\end{document}M thromboxane and ~ 10 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\mu$\end{document}M ADP, while the wall shear rate on the rough clot peaked at ~ 1000–2000 s\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$^{-1}$\end{document}. Additionally, clotting on TF/collagen was accurately simulated for modulators of platelet cyclooxygenase-1, P2Y\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{1}$\end{document} and IP-receptor. This multiscale approach facilitates patient-specific simulation of thrombosis under hemodynamic and pharmacological conditions.
Collapse
Affiliation(s)
- Yichen Lu
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Mei Yan Lee
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Shu Zhu
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Talid Sinno
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Scott L Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia PA 19104, USA
| |
Collapse
|
50
|
Smolensky Koganov E, Michelson AD, Yanachkov IB, Yanachkova MI, Wright GE, Przyklenk K, Frelinger AL. GLS-409, an Antagonist of Both P2Y 1 and P2Y 12, Potently Inhibits Canine Coronary Artery Thrombosis and Reversibly Inhibits Human Platelet Activation. Sci Rep 2018; 8:14529. [PMID: 30266987 PMCID: PMC6162268 DOI: 10.1038/s41598-018-32797-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/31/2018] [Indexed: 01/19/2023] Open
Abstract
Dual antiplatelet therapy with aspirin and an adenosine diphosphate (ADP) P2Y12 receptor antagonist reduces ischemic events in patients with acute coronary syndrome. Previous evidence from our group, obtained in a preclinical model of recurrent platelet-mediated thrombosis, demonstrated that GLS-409, a diadenosine tetraphosphate derivative that inhibits both P2Y1 and P2Y12 ADP receptors, may be a novel and promising antiplatelet drug candidate. However, the salutary antiplatelet effects of GLS-409 were accompanied by a trend toward an unfavorable increase in bleeding. The goals of this study were to: 1) provide proof-of-concept that the efficacy of GLS-409 may be maintained at lower dose(s), not accompanied by an increased propensity to bleeding; and 2) establish the extent and kinetics of the reversibility of human platelet inhibition by the agent. Lower doses of GLS-409 were identified that inhibited in vivo recurrent coronary thrombosis with no increase in bleeding time. Human platelet inhibition by GLS-409 was reversible, with rapid recovery of platelet reactivity to ADP, as measured by platelet surface activated GPIIb-IIIa and platelet surface P-selectin. These data support the concept that GLS-409 warrants further, larger-scale investigation as a novel, potential therapy in acute coronary syndromes.
Collapse
Affiliation(s)
- Elena Smolensky Koganov
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Alan D Michelson
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Karin Przyklenk
- Cardiovascular Research Institute and Departments of Physiology and Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Andrew L Frelinger
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|