1
|
Robak T, Robak M, Majchrzak A, Krawczyńska A, Braun M. Atypical Hairy Cell Leukemia-The Current Status and Future Directions. Eur J Haematol 2025; 114:747-762. [PMID: 39930768 DOI: 10.1111/ejh.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 04/09/2025]
Abstract
Hairy cell leukemia (HCL) is a rare, chronic lymphoid leukemia characterized by circulating lymphocytes with pale, hair-like cytoplasmic projections, pancytopenia, marked monocytopenia, and splenomegaly. Classic HCL displays distinct morphological, immunophenotypical, and genetic features. Classic HCL cells exhibit central nuclei, abundant cytoplasm with hair-like projections, and expression of CD20, CD22, CD11c, CD103, CD25, CD123, TBX21, annexin A1 (ANXA1), FMC7, CD200, and weak cyclin D1 (CCND1). While the vast majority of classic HCL cases harbor the BRAF V600E somatic mutation, rare examples have been reported without splenomegaly, with bulky lymphadenopathy, or with an atypical morphology, immunophenotype or genotype. This review analyzes the atypical clinical, morphologic, immunophenotypic, and genetic presentations associated with classic HCL. PubMed, Web of Science, and Google Scholar were searched for articles of hairy cell leukemia, including atypical morphology, atypical immunophenotype, atypical genotype, and rare symptoms. Publications from October 2004 to December 2024 were reviewed, with additional relevant studies obtained by reviewing references from selected articles.
Collapse
Affiliation(s)
- Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, Lodz, Poland
| | - Marta Robak
- Department of General Hematology, Copernicus Memorial Hospital, Lodz, Poland
- Department of Hemostasis Disorders, Medical University of Lodz, Lodz, Poland
| | - Agata Majchrzak
- Department of General Hematology, Copernicus Memorial Hospital, Lodz, Poland
| | - Anna Krawczyńska
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, Lodz, Poland
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Shelley CS, Galiègue-Zouitina S, Andritsos LA, Epperla N, Troussard X. The role of the JunD-RhoH axis in the pathogenesis of hairy cell leukemia and its ability to identify existing therapeutics that could be repurposed to treat relapsed or refractory disease. Leuk Lymphoma 2025; 66:637-655. [PMID: 39689307 DOI: 10.1080/10428194.2024.2438800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/19/2024]
Abstract
Hairy cell leukemia (HCL) is an indolent malignancy of mature B-lymphocytes. While existing front-line therapies achieve excellent initial results, a significant number of patients relapse and become increasingly treatment resistant. A major molecular driver of HCL is aberrant interlocking expression of the transcription factor JunD and the intracellular signaling molecule RhoH. Here we discuss the molecular basis of how the JunD-RhoH axis contributes to HCL pathogenesis. We also discuss how leveraging the JunD-RhoH axis identifies CD23, CD38, CD66a, CD115, CD269, integrin β7, and MET as new potential therapeutic targets. Critically, preclinical studies have already demonstrated that targeting CD38 with isatuximab effectively treats preexisiting HCL. Isatuximab and therapeutics directed against each of the other six new HCL targets are currently in clinical use to treat other disorders. Consequently, leveraging the JunD-RhoH axis has identified a battery of therapies that could be repurposed as new means of treating relapsed or refractory HCL.
Collapse
Affiliation(s)
| | | | - Leslie A Andritsos
- Division of Hematology Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Narendranath Epperla
- Division of Hematology, University of Utah Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Xavier Troussard
- Hematology CHU Caen Normandie, INSERM1245, MICAH, Normandie University of Caen and Rouen, UNIROUEN, UNICAEN, Hematology Institute, University Hospital Caen, Caen, France
| |
Collapse
|
3
|
Bencivenga D, Stampone E, Azhar J, Parente D, Ali W, Del Vecchio V, Della Ragione F, Borriello A. p27 Kip1 and Tumors: Characterization of CDKN1B Variants Identified in MEN4 and Breast Cancer. Cells 2025; 14:188. [PMID: 39936980 PMCID: PMC11817124 DOI: 10.3390/cells14030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/02/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
p27Kip1 is a key cell cycle gatekeeper governing the timing of Cyclin-dependent kinase (CDK) activation/inactivation and, consequently, cell proliferation. Structurally, the protein is largely unfolded, a feature that strongly increases its plasticity and interactors and enhances the number of regulated cellular processes. p27Kip1, like other intrinsically unstructured proteins, is post-translationally modified on several residues. These modifications affect its cellular localization and address p27Kip1 for specific interactions/functions. Several germline or somatic CDKN1B (the p27Kip1 encoding gene) mutations have been demonstrated to be associated with multiple endocrine neoplasia type 4 (MEN4), hairy cell leukemia, small-intestine neuroendocrine tumors, and breast and prostate cancers. Here, we analyzed the effect of four CDKN1B missense and nonsense mutations found in patients affected by MEN4 or cancers, namely, c.349C>T, p.P117S; c.397C>A, p.P133T; c.487C>T, p.Q163*; and c.511G>T, p.E171*. By transfecting breast cancer cell lines, we observed increased growth and cell motility for all the investigated mutants compared to wild-type p27Kip1 transfected cells. Furthermore, we discovered that the mutant forms exhibited altered phosphorylation on key residues and different localization or degradation mechanisms in comparison to the wild-type protein and suggested a possible region as crucial for the lysosome-dependent degradation of the protein. Finally, the loss of p27Kip1 ability in blocking cell proliferation was in part explained through the different binding efficiency that mutant p27Kip1 forms exhibited with Cyclin/Cyclin-dependent Kinase complexes (or proteins involved indirectly in that binding) with respect to the WT.
Collapse
Affiliation(s)
- Debora Bencivenga
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy; (E.S.); (J.A.); (D.P.); (F.D.R.)
| | - Emanuela Stampone
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy; (E.S.); (J.A.); (D.P.); (F.D.R.)
| | - Jahanzaib Azhar
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy; (E.S.); (J.A.); (D.P.); (F.D.R.)
| | - Daniela Parente
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy; (E.S.); (J.A.); (D.P.); (F.D.R.)
| | - Waqar Ali
- Centre National de la Recherche Scientifique, University of Montpellier, UMR9002, 141 rue de la Cardonille, 34396 Montpellier, France;
| | - Vitale Del Vecchio
- Department of Experimental Medicine, Section of Human Histology and Embryology, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80128 Naples, Italy;
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy; (E.S.); (J.A.); (D.P.); (F.D.R.)
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy; (E.S.); (J.A.); (D.P.); (F.D.R.)
| |
Collapse
|
4
|
Zhao H, Park YM, Zheng Y, Mao Q, Collet C, Hu B, Zhou T, Lin L, Wong S, Pan Y, Monreal AV, Sinha UK, Sedghizadeh P, Soragni A, Lin DC. Genetically Defined Organoid Models Reveal Mechanisms Driving Squamous Cell Neoplastic Evolution and Identify Potential Therapeutic Vulnerabilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.18.631624. [PMID: 39896470 PMCID: PMC11785044 DOI: 10.1101/2025.01.18.631624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Upper aerodigestive squamous cell carcinoma (UASCC) is an aggressive and lethal neoplasm, with its early neoplastic transformation mechanisms remaining poorly understood. Here, we characterize over 25 genetically-defined organoid models derived from murine and human oral/esophageal tissues harboring key driver mutations. Double knockout of TP53 and CDKN2A induced morphological dysplasia, hyperproliferation, loss of squamous differentiation, and tumorigenicity, which were further exacerbated by additional driver mutations (e.g., PIK3CA, NOTCH1, KMT2C). Single-cell analysis revealed an expansion of quiescent basal cells and proliferative squamous cells, alongside a loss of differentiated squamous cells during malignant transformation. A distinct senescence program, regulated by ANXA1, was markedly diminished during early neoplastic evolution. Mechanistically, the ANXA1-SMAD3-p27KIP1 pathway was identified as a critical regulator of this senescence program, acting to suppress neoplastic features in organoid models. Lastly, our high-throughput, single-organoid-resolution drug screens unexpectedly revealed PIK3CA-driven organoids exhibited sensitivity to Mitomycin C and Onalespib. This study provides novel mechanistic insights into early neoplastic evolution and underscores the value of genetically-defined organoid models for investigating cancer biology and identifying targeted therapies.
Collapse
Affiliation(s)
- Hua Zhao
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Young Min Park
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Yueyuan Zheng
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, P.R. China
| | - Qiong Mao
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, P.R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, P.R. China
| | - Casey Collet
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Boyan Hu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Tianming Zhou
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Luda Lin
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephanie Wong
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Yuhao Pan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Anette Vistoro Monreal
- Department of Diagnostic Sciences, Anesthesia & Emergency Medicine, Infection and Immunity Laboratory, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, USA
| | - Uttam K. Sinha
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Parish Sedghizadeh
- Department of Diagnostic Sciences, Anesthesia & Emergency Medicine, Infection and Immunity Laboratory, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, USA
| | - Alice Soragni
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - De-Chen Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| |
Collapse
|
5
|
Weniger MA, Seifert M, Küppers R. B Cell Differentiation and the Origin and Pathogenesis of Human B Cell Lymphomas. Methods Mol Biol 2025; 2865:1-30. [PMID: 39424718 DOI: 10.1007/978-1-0716-4188-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Immunoglobulin (IG) gene remodeling by V(D)J recombination plays a central role in the generation of normal B cells, and somatic hypermutation and class switching of IG genes are key processes during antigen-driven B cell differentiation in the germinal center reaction. However, errors of these processes are involved in the development of B cell lymphomas. IG locus-associated translocations of proto-oncogenes are a hallmark of many B cell malignancies. Additional transforming events include inactivating mutations in various tumor suppressor genes and also latent infection of B cells with viruses, such as Epstein-Barr virus. Most B cell lymphomas require B cell antigen receptor expression, and in several instances chronic antigenic stimulation plays a role in lymphoma development and/or sustaining tumor growth. Often, survival and proliferation signals provided by other cells in the microenvironment are a further critical factor in lymphoma development and pathophysiology. Most B cell malignancies derive from germinal center B cells, most likely due to the high proliferative activity of these B cells and aberrant mutations caused by their naturally active mutagenic processes.
Collapse
Affiliation(s)
- Marc A Weniger
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany
| | - Marc Seifert
- Department of Haematology, Oncology and Clinical Immunology, Heinrich Heine University, Medical School, Düsseldorf, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.
| |
Collapse
|
6
|
Falini B, Tiacci E. Hairy-Cell Leukemia. N Engl J Med 2024; 391:1328-1341. [PMID: 39383460 DOI: 10.1056/nejmra2406376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Affiliation(s)
- Brunangelo Falini
- From the Institute of Hematology and the Center for Hemato-Oncology Research, Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| | - Enrico Tiacci
- From the Institute of Hematology and the Center for Hemato-Oncology Research, Department of Medicine and Surgery, University and Hospital of Perugia, Perugia, Italy
| |
Collapse
|
7
|
Troussard X, Maître E, Paillassa J. Hairy cell leukemia 2024: Update on diagnosis, risk-stratification, and treatment-Annual updates in hematological malignancies. Am J Hematol 2024; 99:679-696. [PMID: 38440808 DOI: 10.1002/ajh.27240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 03/06/2024]
Abstract
DISEASE OVERVIEW Hairy cell leukemia (HCL) and HCL-like disorders, including HCL variant (HCL-V) and splenic diffuse red pulp lymphoma (SDRPL), are a very heterogenous group of mature lymphoid B-cell disorders characterized by the identification of hairy cells, a specific genetic profile, a different clinical course and the need for appropriate treatment. DIAGNOSIS Diagnosis of HCL is based on morphological evidence of hairy cells, an HCL immunologic score of 3 or 4 based on the CD11c, CD103, CD123, and CD25 expression, the trephine biopsy which makes it possible to specify the degree of tumoral bone marrow infiltration and the presence of BRAFV600E somatic mutation. RISK STRATIFICATION Progression of patients with HCL is based on a large splenomegaly, leukocytosis, a high number of hairy cells in the peripheral blood, and the immunoglobulin heavy chain variable region gene mutational status. VH4-34 positive HCL cases are associated with a poor prognosis, as well as HCL with TP53 mutations and HCL-V. TREATMENT Patients should be treated only if HCL is symptomatic. Chemotherapy with risk-adapted therapy purine analogs (PNAs) are indicated in first-line HCL patients. The use of chemo-immunotherapy combining cladribine (CDA) and rituximab (R) represents an increasingly used therapeutic approach. Management of relapsed/refractory disease is based on the use of BRAF inhibitors (BRAFi) plus R, MEK inhibitors (MEKi), recombinant immunoconjugates targeting CD22, Bruton tyrosine kinase inhibitors (BTKi), and Bcl-2 inhibitors (Bcl-2i). However, the optimal sequence of the different treatments remains to be determined.
Collapse
Affiliation(s)
| | - Elsa Maître
- Laboratoire Hématologie, CHU Côte de Nacre, Caen Cedex, France
| | | |
Collapse
|
8
|
Troussard X, Maitre E. Untangling hairy cell leukaemia (HCL) variant and other HCL-like disorders: Diagnosis and treatment. J Cell Mol Med 2024; 28:e18060. [PMID: 38095234 PMCID: PMC10844692 DOI: 10.1111/jcmm.18060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 02/08/2024] Open
Abstract
The variant form of hairy cell leukaemia (HCL-V) is a rare disease very different from hairy cell leukaemia (HCL), which is a very well-defined entity. The 5th WHO edition (Leukemia, 36, 2022 and 1720) classification (WHO-HAEM5) introduced splenic lymphomas/leukaemias including four different entities: (1) HCL, (2) splenic marginal zone lymphoma (SMZL) with circulating villous cells in the peripheral blood, (3) splenic lymphoma with prominent nucleolus (SLPN), which replaced HCL-V and CD5 negative B-prolymphocytic leukaemia (B-PLL), and (4) splenic diffuse red pulp lymphoma (SDRPL). All these entities have to be distinguished because of a different clinical course and the need for a different treatment. The diagnosis can be challenging because of complex cases and overlap and/or grey zones between all the entities and needs integrating clinical, histologic, immunophenotypic, cytogenetic and molecular data. We review the diagnostic criteria including clinical, immunophenotypic and molecular characteristics of patients with HCL-V and other HCL-like disorders including HCL, SDRPL, SMZL, B-PLL and the Japanese form of HCL. We also discuss the different criteria allowing us to separate these different entities and we will update the recent therapeutic options that have emerged, in particular the advances with chemoimmunotherapy and/or targeted therapies.
Collapse
|
9
|
[Chinese guideline for diagnosis and treatment of hairy cell leukemia (2023)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:969-976. [PMID: 38503518 PMCID: PMC10834873 DOI: 10.3760/cma.j.issn.0253-2727.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Indexed: 03/21/2024]
|
10
|
Ruggeri RM, Benevento E, De Cicco F, Grossrubatscher EM, Hasballa I, Tarsitano MG, Centello R, Isidori AM, Colao A, Pellegata NS, Faggiano A. Multiple endocrine neoplasia type 4 (MEN4): a thorough update on the latest and least known men syndrome. Endocrine 2023; 82:480-490. [PMID: 37632635 DOI: 10.1007/s12020-023-03497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
PURPOSE Multiple endocrine neoplasia type 4 (MEN4) is a rare multiglandular endocrine neoplasia syndrome, associated with a wide tumor spectrum but hallmarked by primary hyperparathyroidism, which represents the most common clinical feature, followed by pituitary (functional and non-functional) adenomas, and neuroendocrine tumors. MEN4 clinically overlaps MEN type 1 (MEN1) but differs from it for milder clinical features and an older patient's age at onset. The underlying mutated gene, CDKN1B, encodes the cell cycle regulator p27, implicated in cellular proliferation, motility and apoptosis. Given the paucity of MEN4 cases described in the literature, possible genotype-phenotype correlations have not been thoroughly assessed, and specific clinical recommendations are lacking. The present review provides an extensive overview of molecular genetics and clinical features of MEN4, with the aim of contributing to delineate peculiar strategies for clinical management, screening and follow-up of the last and least known MEN syndrome. METHODS A literature search was performed through online databases like MEDLINE and Scopus. CONCLUSIONS MEN4 is much less common that MEN1, tend to present later in life with a more indolent course, although involving the same primary organs as MEN1. As a consequence, MEN4 patients might need specific diagnostic and therapeutic approaches and a different strategy for screening and follow-up. Further studies are needed to assess the real oncological risk of MEN4 carriers, and to establish a standardized screening protocol. Furthermore, a deeper understanding of molecular genetics of MEN4 is needed in order to explore p27 as a novel therapeutic target.
Collapse
Affiliation(s)
- Rosaria M Ruggeri
- Endocrinology Unit, Department of Human Pathology of Adulthood and Childhood DETEV, University of Messina, 98125, Messina, Italy.
| | - Elio Benevento
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | | | | | - Iderina Hasballa
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genova, Italy
| | | | - Roberta Centello
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Annamaria Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
- UNESCO Chair "Education for Health and Sustainable Development", Federico II University, Naples, Italy
| | | | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of excellence, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Jha S, Simonds WF. Molecular and Clinical Spectrum of Primary Hyperparathyroidism. Endocr Rev 2023; 44:779-818. [PMID: 36961765 PMCID: PMC10502601 DOI: 10.1210/endrev/bnad009] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Recent data suggest an increase in the overall incidence of parathyroid disorders, with primary hyperparathyroidism (PHPT) being the most prevalent parathyroid disorder. PHPT is associated with morbidities (fractures, kidney stones, chronic kidney disease) and increased risk of death. The symptoms of PHPT can be nonspecific, potentially delaying the diagnosis. Approximately 15% of patients with PHPT have an underlying heritable form of PHPT that may be associated with extraparathyroidal manifestations, requiring active surveillance for these manifestations as seen in multiple endocrine neoplasia type 1 and 2A. Genetic testing for heritable forms should be offered to patients with multiglandular disease, recurrent PHPT, young onset PHPT (age ≤40 years), and those with a family history of parathyroid tumors. However, the underlying genetic cause for the majority of patients with heritable forms of PHPT remains unknown. Distinction between sporadic and heritable forms of PHPT is useful in surgical planning for parathyroidectomy and has implications for the family. The genes currently known to be associated with heritable forms of PHPT account for approximately half of sporadic parathyroid tumors. But the genetic cause in approximately half of the sporadic parathyroid tumors remains unknown. Furthermore, there is no systemic therapy for parathyroid carcinoma, a rare but potentially fatal cause of PHPT. Improved understanding of the molecular characteristics of parathyroid tumors will allow us to identify biomarkers for diagnosis and novel targets for therapy.
Collapse
Affiliation(s)
- Smita Jha
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| |
Collapse
|
12
|
Yap J, Yuan J, Ng WH, Chen GB, Sim YRM, Goh KC, Teo J, Lim TYH, Goay SM, Teo JHJ, Lao Z, Lam P, Sabapathy K, Hu J. BRAF(V600E) mutation together with loss of Trp53 or pTEN drives the origination of hairy cell leukemia from B-lymphocytes. Mol Cancer 2023; 22:125. [PMID: 37543582 PMCID: PMC10403926 DOI: 10.1186/s12943-023-01817-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/04/2023] [Indexed: 08/07/2023] Open
Abstract
Hairy cell leukemia (HCL) is a B-lymphoma induced by BRAF(V600E) mutation. However, introducing BRAF(V600E) in B-lymphocytes fails to induce hematological malignancy, suggesting that BRAF(V600E) needs concurrent mutations to drive HCL ontogeny. To resolve this issue, here we surveyed human HCL genomic sequencing data. Together with previous reports, we speculated that the tumor suppressor TP53, P27, or PTEN restrict the oncogenicity of BRAF(V600E) in B-lymphocytes, and therefore that their loss-of-function facilitates BRAF(V600E)-driven HCL ontogeny. Using genetically modified mouse models, we demonstrate that indeed BRAF(V600E)KI together with Trp53KO or pTENKO in B-lymphocytes induces chronic lymphoma with pathological features of human HCL. To further understand the cellular programs essential for HCL ontogeny, we profiled the gene expression of leukemic cells isolated from BRAF(V600E)KI and Trp53KO or pTENKO mice, and found that they had similar but different gene expression signatures that resemble that of M2 or M1 macrophages. In addition, we examined the expression signature of transcription factors/regulators required for germinal center reaction and memory B cell versus plasma cell differentiation in these leukemic cells and found that most transcription factors/regulators essential for these programs were severely inhibited, illustrating why hairy cells are arrested at a transitional stage between activated B cells and memory B cells. Together, our study has uncovered concurrent mutations required for HCL ontogeny, revealed the B cell origin of hairy cells and investigated the molecular basis underlying the unique pathological features of the disease, with important implications for HCL research and treatment.
Collapse
Affiliation(s)
- Jiajun Yap
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Jimin Yuan
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
- Department of Urology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Geriatric Department, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Wan Hwa Ng
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Gao Bin Chen
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Yuen Rong M Sim
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Kah Chun Goh
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Joey Teo
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Trixie Y H Lim
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Shee Min Goay
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Jia Hao Jackie Teo
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Zhentang Lao
- Department of Hematology, Singapore General Hospital, Blk7 Outram Road, 169608, Singapore, Singapore
| | - Paula Lam
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
- Department of Physiology, National University of Singapore, 2 Medical Drive, 117597, Singapore, Singapore
- Cellvec Pte. Ltd, 100 Pasir Panjang Road, 118518, Singapore, Singapore
| | - Kanaga Sabapathy
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore.
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore.
| |
Collapse
|
13
|
Loss of p53 Concurrent with RAS and TERT Activation Induces Glioma Formation. Mol Neurobiol 2023; 60:3452-3463. [PMID: 36867344 DOI: 10.1007/s12035-023-03288-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
There is an ongoing debate regarding whether gliomas originate due to functional or genetic changes in neural stem cells (NSCs). Genetic engineering has made it possible to use NSCs to establish glioma models with the pathological features of human tumors. Here, we found that RAS, TERT, and p53 mutations or abnormal expression were associated with the occurrence of glioma in the mouse tumor transplantation model. Moreover, EZH2 palmitoylation mediated by ZDHHC5 played a significant role in this malignant transformation. EZH2 palmitoylation activates H3K27me3, which in turn decreases miR-1275, increases glial fibrillary acidic protein (GFAP) expression, and weakens the binding of DNA methyltransferase 3A (DNMT3A) to the OCT4 promoter region. Thus, these findings are significant because RAS, TERT, and p53 oncogenes in human neural stem cells are conducive to a fully malignant and rapid transformation, suggesting that gene changes and specific combinations of susceptible cell types are important factors in determining the occurrence of gliomas.
Collapse
|
14
|
Maitre E, Paillassa J, Troussard X. Novel targeted treatments in hairy cell leukemia and other hairy cell-like disorders. Front Oncol 2022; 12:1068981. [PMID: 36620555 PMCID: PMC9815161 DOI: 10.3389/fonc.2022.1068981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
In the category of mature B-cell neoplasms, splenic B-cell lymphoma and leukemia were clearly identified and include four distinct entities: hairy cell leukemia (HCL), splenic marginal zone lymphoma (SMZL), splenic diffuse red pulp lymphoma (SDRPL) and the new entity named splenic B-cell lymphoma/leukemia with prominent nucleoli (SBLPN). The BRAFV600E mutation is detected in nearly all HCL cases and offers a possibility of targeted therapy. BRAF inhibitors (BRAFi) represent effective and promising therapeutic approaches in patients with relapsed/refractory HCL. Vemurafenib and dabrafenib were assessed in clinical trials. The BRAFV600E mutation is missing in SDRPL and SBLPN: mitogen-activated protein kinase 1 (MAP2K1) mutations were found in 40% of SBLPN and VH4-34+ HCL patients, making possible to use MEK inhibitors (MEKi) such as trametinib, cobimetinib or binimetinib in monotherapy or associated with BRAFi. Other mutations may be associated and other signaling pathways involved, including the B-cell receptor signaling (BCR), cell cycle, epigenetic regulation and/or chromatin remodeling. In SDRPL, cyclin D3 (CCND3) mutations were found in 24% of patients, offering the possibility of using cell cycle inhibitors. Even if new emerging drugs, particularly those involved in the epigenetic regulation, have recently been added to the therapeutic armamentarium in HCL and HCL-like disorders, purine nucleoside analogs more and more associated with anti-CD20 monoclonal antibodies, are still used in the frontline setting. Thanks to the recent discoveries in genetics and signaling pathways in HCL and HCL-like disorders, new targeted therapies have been developed, have proven their efficacy and safety in several clinical trials and become essential in real life: BRAFi, MEKi, Bruton Tyrosine Kinase inhibitors (BTKi) and anti-CD22 immunotoxins. New other drugs emerged and have to be assessed in the future. In this article, we will discuss the main mutations identified in HCL and HCL-like disorders and the signaling pathways potentially involved in the pathogenesis of the different hairy cell disorders. We will discuss the results of the recent clinical trials, which will help us to propose an algorithm useful in clinical practice and we will highlight the different new drugs that may be used in the near future.
Collapse
Affiliation(s)
- Elsa Maitre
- Hématologie, Centre Hospitalier Universitaire Caen Normandie, Avenue Côte de Nacre, Caen, France
| | - Jerome Paillassa
- Service des Maladies du Sang, Centre Hospitalier Universitaire d’Angers, Angers, France
| | - Xavier Troussard
- Hématologie, Centre Hospitalier Universitaire Caen Normandie, Avenue Côte de Nacre, Caen, France,*Correspondence: Xavier Troussard,
| |
Collapse
|
15
|
Hoff FW, Griffen TL, Qiu Y, Kornblau SM. Protein profiling by reverse phase protein array (RPPA) in classical hairy cell leukemia (HCL) and HCL-variant. EJHAEM 2022; 3:1321-1325. [PMID: 36467805 PMCID: PMC9713071 DOI: 10.1002/jha2.558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 06/17/2023]
Abstract
Classical hairy cell leukemia (HCL-c) and HCL variant (HCL-v) are recognized as separate entities with HCL-v having significantly shorter overall survival. Proteomic studies, shown to be prognostic in various forms of leukemia, have not been performed in HCL. We performed reverse phase protein array-based protein profiling with 384 antibodies in HCL-c (n = 12), HCL-v (n = 4), and normal B-cells (n = 5) samples. While HCL could be distinguished from normal based on unsupervised hierarchical clustering, overlap in protein expression patterns was seen between HCL-c and HCL-v, with ∼10% of the proteins being differentially expressed, suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Fieke W. Hoff
- Department of Internal MedicineUT Southwestern Medical CenterDallasTexasUSA
| | - Ti'ara L. Griffen
- Department of Microbiology, Biochemistry, and ImmunologyMorehouse School of MedicineAtlantaGAUSA
| | - Yihua Qiu
- Department of LeukemiaUT MD Anderson Cancer CenterHoustonTexasUSA
| | | |
Collapse
|
16
|
Schirripa A, Sexl V, Kollmann K. Cyclin-dependent kinase inhibitors in malignant hematopoiesis. Front Oncol 2022; 12:916682. [PMID: 36033505 PMCID: PMC9403899 DOI: 10.3389/fonc.2022.916682] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The cell-cycle is a tightly orchestrated process where sequential steps guarantee cellular growth linked to a correct DNA replication. The entire cell division is controlled by cyclin-dependent kinases (CDKs). CDK activation is balanced by the activating cyclins and CDK inhibitors whose correct expression, accumulation and degradation schedule the time-flow through the cell cycle phases. Dysregulation of the cell cycle regulatory proteins causes the loss of a controlled cell division and is inevitably linked to neoplastic transformation. Due to their function as cell-cycle brakes, CDK inhibitors are considered as tumor suppressors. The CDK inhibitors p16INK4a and p15INK4b are among the most frequently altered genes in cancer, including hematopoietic malignancies. Aberrant cell cycle regulation in hematopoietic stem cells (HSCs) bears severe consequences on hematopoiesis and provokes hematological disorders with a broad array of symptoms. In this review, we focus on the importance and prevalence of deregulated CDK inhibitors in hematological malignancies.
Collapse
|
17
|
Bühler MM, Martin‐Subero JI, Pan‐Hammarström Q, Campo E, Rosenquist R. Towards precision medicine in lymphoid malignancies. J Intern Med 2022; 292:221-242. [PMID: 34875132 PMCID: PMC11497354 DOI: 10.1111/joim.13423] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Careful histopathologic examination remains the cornerstone in the diagnosis of the clinically and biologically heterogeneous group of lymphoid malignancies. However, recent advances in genomic and epigenomic characterization using high-throughput technologies have significantly improved our understanding of these tumors. Although no single genomic alteration is completely specific for a lymphoma entity, some alterations are highly recurrent in certain entities and thus can provide complementary diagnostic information when integrated in the hematopathological diagnostic workup. Moreover, other alterations may provide important information regarding the clinical course, that is, prognostic or risk-stratifying markers, or response to treatment, that is, predictive markers, which may allow tailoring of the patient's treatment based on (epi)genetic characteristics. In this review, we will focus on clinically relevant diagnostic, prognostic, and predictive biomarkers identified in more common types of B-cell malignancies, and discuss how diagnostic assays designed for comprehensive molecular profiling may pave the way for the implementation of precision diagnostics/medicine approaches. We will also discuss future directions in this rapidly evolving field, including the application of single-cell sequencing and other omics technologies, to decipher clonal dynamics and evolution in lymphoid malignancies.
Collapse
Affiliation(s)
- Marco M. Bühler
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
| | - José I. Martin‐Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC)MadridSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | | | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC)MadridSpain
| | - Richard Rosenquist
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Clinical GeneticsKarolinska University LaboratoryKarolinska University HospitalSolnaSweden
| |
Collapse
|
18
|
Maitre E, Cornet E, Debliquis A, Drenou B, Gravey F, Chollet D, Cheze S, Docquier M, Troussard X, Matthes T. Hairy cell leukemia: a specific 17-gene expression signature points to new targets for therapy. J Cancer Res Clin Oncol 2022; 148:2013-2022. [PMID: 35476232 PMCID: PMC9293816 DOI: 10.1007/s00432-022-04010-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hairy cell leukemia (HCL) is a rare chronic B cell malignancy, characterized by infiltration of bone marrow, blood and spleen by typical "hairy cells" that bear the BRAFV600E mutation. However, in addition to the intrinsic activation of the MAP kinase pathway as a consequence of the BRAFV600E mutation, the potential participation of other signaling pathways to the pathophysiology of the disease remains unclear as the precise origin of the malignant hairy B cells. MATERIALS AND METHODS Using mRNA gene expression profiling based on the Nanostring technology and the analysis of 290 genes with crucial roles in B cell lymphomas, we defined a 17 gene expression signature specific for HCL. RESULTS Separate analysis of samples from classical and variant forms of hairy cell leukemia showed almost similar mRNA expression profiles apart from overexpression in vHCL of the immune checkpoints CD274 and PDCD1LG2 and underexpression of FAS. Our results point to a post-germinal memory B cell origin and in some samples to the activation of the non-canonical NF-κB pathway. CONCLUSIONS This study provides a better understanding of the pathogenesis of HCL and describes new and potential targets for treatment approaches and guidance for studies in the molecular mechanisms of HCL.
Collapse
Affiliation(s)
- Elsa Maitre
- Normandie University, UNIROUEN, UNICAEN, INSERM1245, MICAH, Avenue de la côte de Nacre, 14033, Caen, France
- Laboratory Hematology, University Hospital Caen, Avenue de la Côte de Nacre, 14033, Caen cedex, France
| | - Edouard Cornet
- Laboratory Hematology, University Hospital Caen, Avenue de la Côte de Nacre, 14033, Caen cedex, France
| | - Agathe Debliquis
- Department of Haematology, Groupe Hospitalier de la Région Mulhouse Sud Alsace, 20 avenue du docteur René laennec, 68100, Mulhouse, France
| | - Bernard Drenou
- Department of Haematology, Groupe Hospitalier de la Région Mulhouse Sud Alsace, 20 avenue du docteur René laennec, 68100, Mulhouse, France
| | - François Gravey
- Normandie University, UNIROUEN, UNICAEN, GRAM2.0, Avenue de la côte de Nacre, 14033, Caen, France
| | - Didier Chollet
- iGE3 Genomics Platform, University Medical Center, Geneva University, 1211, Geneva, Switzerland
- Department of Genetics and Evolution, Sciences III, Geneva University, 1205, Geneva, Switzerland
| | - Stephane Cheze
- Hematology Institute, University Hospital Caen, Avenue de la Côte de Nacre, 14033, Caen, France
| | - Mylène Docquier
- iGE3 Genomics Platform, University Medical Center, Geneva University, 1211, Geneva, Switzerland
- Department of Genetics and Evolution, Sciences III, Geneva University, 1205, Geneva, Switzerland
| | - Xavier Troussard
- Normandie University, UNIROUEN, UNICAEN, INSERM1245, MICAH, Avenue de la côte de Nacre, 14033, Caen, France
- Laboratory Hematology, University Hospital Caen, Avenue de la Côte de Nacre, 14033, Caen cedex, France
- Hematology Institute, University Hospital Caen, Avenue de la Côte de Nacre, 14033, Caen, France
| | - Thomas Matthes
- Hematology Service, Department of Oncology and Clinical Pathology Service, Department of Diagnostics, University Hospital Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
19
|
Paillassa J, Maitre E, Troussard X. Hairy Cell Leukemia (HCL) and HCL Variant: Updates and Spotlights on Therapeutic Advances. Curr Oncol Rep 2022; 24:1133-1143. [DOI: 10.1007/s11912-022-01285-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/21/2022]
|
20
|
Deciphering Genetic Alterations of Hairy Cell Leukemia and Hairy Cell Leukemia-like Disorders in 98 Patients. Cancers (Basel) 2022; 14:cancers14081904. [PMID: 35454811 PMCID: PMC9028144 DOI: 10.3390/cancers14081904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The diagnosis of hairy cell leukemia (cHCL) and HCL-like disorders, including the variant form of HCL (vHCL) and splenic diffuse red pulp lymphoma (SDRPL) can be challenging, particularly in complex situations. The integration of all data, including molecular data, is essential for distinguishing the different entities. The BRAFV600E mutation is identified in most cHCL cases, whereas it is absent in vHCL and SDRPL. MAP2K1 mutations are observed in half of vHCL cases and in cHCL BRAFWT and they are associated with a worse prognosis. The interest in deep sequencing for the diagnosis and prognosis of hairy cell leukemia and HCL-like disorders is essential. Some KLF2 genetic alterations have been localized on the AID consensus motif, suggesting an AID-induced mutation mechanism. KLF2 is the second most altered gene in HCL, and mutations must be investigated to confirm whether AID could be responsible for the genetic alterations in this gene. Clonal evolution can be observed in half of the cases. Abstract Hairy cell leukemia (cHCL) patients have, in most cases, a specific clinical and biological presentation with splenomegaly, anemia, leukopenia, neutropenia, monocytopenia and/or thrombocytopenia, identification of hairy cells that express CD103, CD123, CD25, CD11c and identification of the V600E mutation in the B-Raf proto-oncogene (BRAF) in 90% of cases. Monocytopenia is absent in vHCL and SDRPL patients and the abnormal cells do not express CD25 or CD123 and do not present the BRAFV600E mutation. Ten percent of cHCL patients are BRAFWT and the distinction between cHCL and HCL-like disorders including the variant form of HCL (vHCL) and splenic diffuse red pulp lymphoma (SDRPL) can be challenging. We performed deep sequencing in a large cohort of 84 cHCL and 16 HCL-like disorders to improve insights into the pathogenesis of the diseases. BRAF mutations were detected in 76/82 patients of cHCL (93%) and additional mutations were identified in Krüppel-like Factor 2 (KLF2) in 19 patients (23%) or CDKN1B in 6 patients (7.5%). Some KLF2 genetic alterations were localized on the cytidine deaminase (AID) consensus motif, suggesting AID-induced mutations. When analyzing sequential samples, a clonal evolution was identified in half of the cHCL patients (6/12 pts). Among the 16 patients with HCL-like disorders, we observed an enrichment of MAP2K1 mutations in vHCL/SDRPL (3/5 pts) and genes involved in the epigenetic regulation (KDM6A, EZH2, CREBBP, ARID1A) (3/5 pts). Furthermore, MAP2K1 mutations were associated with a bad prognosis and a shorter time to next treatment (TTNT) and progression-free survival (PFS), independently of the HCL classification.
Collapse
|
21
|
Troussard X, Maître E, Cornet E. Hairy cell leukemia 2022: Update on diagnosis, risk-stratification, and treatment. Am J Hematol 2022; 97:226-236. [PMID: 34710243 DOI: 10.1002/ajh.26390] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022]
Abstract
DISEASE OVERVIEW Hairy cell leukemia (HCL) and HCL-like disorders, including HCL variant (HCL-V) and splenic diffuse red pulp lymphoma (SDRPL), are a very heterogeneous group of mature lymphoid B-cell disorders characterized by the identification of hairy cells, a specific genetic profile, a different clinical course, and the need for appropriate treatment. DIAGNOSIS Diagnosis of HCL is based on morphological evidence of hairy cells, an HCL immunologic score of 3 or 4 based on the CD11C, CD103, CD123, and CD25 expression, the trephine biopsy which makes it possible to specify the degree of tumoral medullary infiltration and the presence of BRAFV600E somatic mutation. RISK STRATIFICATION Progression of patients with HCL is based on a large splenomegaly, leukocytosis, a high number of hairy cells in the peripheral blood, and the immunoglobulin heavy chain variable region gene mutational status. VH4-34-positive HCL cases are associated with a poor prognosis. TREATMENT Patients should be treated only if HCL is symptomatic. Chemotherapy with risk adapted therapy purine analogs (PNAs) are indicated in first-line HCL patients. The use of chemo-immunotherapy combining PNAs and rituximab (R) represents an increasingly used therapeutic approach. Management of relapsed/refractory disease is based on the use of BRAF inhibitors (BRAFi) plus rituximab or MEK inhibitors (MEKi), recombinant immunoconjugates targeting CD22 or Bruton Tyrosine Kinase inhibitors (BTKi). However, the optimal sequence of the different treatments remains to be determined. The Bcl2-inhibitors (Bcl-2i) can play a major role in the future.
Collapse
Affiliation(s)
- Xavier Troussard
- Laboratoire Hématologie CHU Côte de Nacre Caen Cedex France
- Université Caen Normandie Caen Cedex France
| | - Elsa Maître
- Laboratoire Hématologie CHU Côte de Nacre Caen Cedex France
- Université Caen Normandie Caen Cedex France
| | - Edouard Cornet
- Laboratoire Hématologie CHU Côte de Nacre Caen Cedex France
- Université Caen Normandie Caen Cedex France
| |
Collapse
|
22
|
Oscier D, Stamatopoulos K, Mirandari A, Strefford J. The Genomics of Hairy Cell Leukaemia and Splenic Diffuse Red Pulp Lymphoma. Cancers (Basel) 2022; 14:697. [PMID: 35158965 PMCID: PMC8833447 DOI: 10.3390/cancers14030697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Classical hairy cell leukaemia (HCLc), its variant form (HCLv), and splenic diffuse red pulp lymphoma (SDRPL) constitute a subset of relatively indolent B cell tumours, with low incidence rates of high-grade transformations, which primarily involve the spleen and bone marrow and are usually associated with circulating tumour cells characterised by villous or irregular cytoplasmic borders. The primary aim of this review is to summarise their cytogenetic, genomic, immunogenetic, and epigenetic features, with a particular focus on the clonal BRAFV600E mutation, present in most cases currently diagnosed with HCLc. We then reflect on their cell of origin and pathogenesis as well as present the clinical implications of improved biological understanding, extending from diagnosis to prognosis assessment and therapy response.
Collapse
Affiliation(s)
- David Oscier
- Department of Haematology, Royal Bournemouth and Christchurch NHS Trust, Bournemouth BH7 7DW, UK
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology-Hellas, 57001 Thessaloniki, Greece;
| | - Amatta Mirandari
- Cancer Genomics Group, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; (A.M.); (J.S.)
| | - Jonathan Strefford
- Cancer Genomics Group, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; (A.M.); (J.S.)
| |
Collapse
|
23
|
Vendramini E, Bomben R, Pozzo F, Bittolo T, Tissino E, Gattei V, Zucchetto A. KRAS and RAS-MAPK Pathway Deregulation in Mature B Cell Lymphoproliferative Disorders. Cancers (Basel) 2022; 14:666. [PMID: 35158933 PMCID: PMC8833570 DOI: 10.3390/cancers14030666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS mutations account for the most frequent mutations in human cancers, and are generally correlated with disease aggressiveness, poor prognosis, and poor response to therapies. KRAS is required for adult hematopoiesis and plays a key role in B cell development and mature B cell proliferation and survival, proved to be critical for B cell receptor-induced ERK pathway activation. In mature B cell neoplasms, commonly seen in adults, KRAS and RAS-MAPK pathway aberrations occur in a relevant fraction of patients, reaching high recurrence in some specific subtypes like multiple myeloma and hairy cell leukemia. As inhibitors targeting the RAS-MAPK pathway are being developed and improved, it is of outmost importance to precisely identify all subgroups of patients that could potentially benefit from their use. Herein, we review the role of KRAS and RAS-MAPK signaling in malignant hematopoiesis, focusing on mature B cell lymphoproliferative disorders. We discuss KRAS and RAS-MAPK pathway aberrations describing type, incidence, mutual exclusion with other genetic abnormalities, and association with prognosis. We review the current therapeutic strategies applied in mature B cell neoplasms to counteract RAS-MAPK signaling in pre-clinical and clinical studies, including most promising combination therapies. We finally present an overview of genetically engineered mouse models bearing KRAS and RAS-MAPK pathway aberrations in the hematopoietic compartment, which are valuable tools in the understanding of cancer biology and etiology.
Collapse
Affiliation(s)
- Elena Vendramini
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (R.B.); (F.P.); (T.B.); (E.T.); (V.G.); (A.Z.)
| | | | | | | | | | | | | |
Collapse
|
24
|
Diagnosis and treatment of hairy cell leukemia as the COVID-19 pandemic continues. Blood Rev 2022; 51:100888. [PMID: 34535326 PMCID: PMC8418384 DOI: 10.1016/j.blre.2021.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023]
Abstract
Hairy cell leukemia (HCL) is an indolent B-cell malignancy, usually driven by the BRAF V600E mutation. For 30 years, untreated and relapsed HCL was successfully treated with purine analogs, but minimal residual disease (MRD) remained in most patients, eventually causing relapse. Repeated purine analogs achieve decreasing efficacy and increasing toxicity, particularly to normal T-cells. MRD-free complete remissions (CRs) are more common using rituximab with purine analogs in both 1st-line and relapsed settings. BRAF inhibitors and Ibrutinib can achieve remission, but due to persistence of MRD, must be used chronically to prevent relapse. BRAF inhibition combined with Rituximab can achieve high MRD-free CR rates. Anti-CD22 recombinant immunotoxin moxetumomab pasudotox is FDA-approved in the relapsed setting and is unique in achieving high MRD-free CR rates as a single-agent. Avoiding chemotherapy and rituximab may be important in ensuring both recovery from COVID-19 and successful COVID-19 vaccination, an area of continued investigation.
Collapse
|
25
|
Lavezzi E, Brunetti A, Smiroldo V, Nappo G, Pedicini V, Vitali E, Trivellin G, Mazziotti G, Lania A. Case Report: New CDKN1B Mutation in Multiple Endocrine Neoplasia Type 4 and Brief Literature Review on Clinical Management. Front Endocrinol (Lausanne) 2022; 13:773143. [PMID: 35355569 PMCID: PMC8959648 DOI: 10.3389/fendo.2022.773143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/25/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The fourth type of multiple endocrine neoplasia (MEN) is known as a rare variant of MEN presenting a MEN1-like phenotype and originating from a germline mutation in CDKN1B. However, due to the small number of cases documented in the literature, the peculiar clinical features of MEN4 are still largely unknown, and clear indications about the clinical management of these patients are currently lacking. In order to widen our knowledge on MEN4 and to better typify the clinical features of this syndrome, we present two more cases of subjects with MEN4, and through a review of the current literature, we provide some possible indications on these patients' management. CASE PRESENTATION The first report is about a man who was diagnosed with a metastatic ileal G2-NET at the age of 34. Genetic analysis revealed the mutation p.I119T (c.356T>C) of exon 1 of CDKN1B, a mutation already reported in the literature in association with early-onset pituitary adenomas. The second report is about a 76-year-old woman with a multifocal pancreatic G1-NET. Genetic analysis identified the CDKN1B mutation c.482C>G (p.S161C), described here for the first time in association with MEN4 and currently classified as a variant of uncertain significance. Both patients underwent biochemical and imaging screening for MEN1-related diseases without any pathological findings. CONCLUSIONS According to the cases reported in the literature, hyperparathyroidism is the most common clinical feature of MEN4, followed by pituitary adenoma and neuroendocrine tumors. However, MEN4 appears to be a variant of MEN with milder clinical features and later onset. Therefore, these patients might need a different and personalized approach in clinical management and a peculiar screening and follow-up strategy.
Collapse
Affiliation(s)
- Elisabetta Lavezzi
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- *Correspondence: Elisabetta Lavezzi,
| | - Alessandro Brunetti
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Valeria Smiroldo
- Oncology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Gennaro Nappo
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | | | - Eleonora Vitali
- Endocrinology Unit and Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Giampaolo Trivellin
- Endocrinology Unit and Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Gherardo Mazziotti
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Andrea Lania
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
26
|
Puła A, Robak T. Hairy cell leukemia: a brief update on current knowledge and treatment prospects. Curr Opin Oncol 2021; 33:412-419. [PMID: 34264896 DOI: 10.1097/cco.0000000000000771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This article provides a brief update on the recommended diagnosis and treatment strategies for patients with the classic form of hairy cell leukemia (HCL) and HCL variant (HCLv). RECENT FINDINGS HCL is a chronic B-cell malignancy with multiple treatment options. In recent years, many novel drugs have been assessed for HCL treatment with promising results. The investigated nonchemotherapy options include moxetumomab pasudotox, which targets CD22; vemurafenib or dabrafenib, which target the BRAFV600E protein; trametinib, which targets mitogen-activated protein kinase enzyme; and ibrutinib, which targets Bruton tyrosine kinase. SUMMARY Purine analogs significantly improve survival in patients with HCL. However, patients often relapse, require multiple treatments, and may become refractory. The introduction of novel agents has expanded the spectrum of therapy possibilities in those patients. In the coming years, they will assist standard therapy for patients with HCL who may currently have suboptimal results.
Collapse
Affiliation(s)
- Anna Puła
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
27
|
p27 Kip1, an Intrinsically Unstructured Protein with Scaffold Properties. Cells 2021; 10:cells10092254. [PMID: 34571903 PMCID: PMC8465030 DOI: 10.3390/cells10092254] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
The Cyclin-dependent kinase (CDK) regulator p27Kip1 is a gatekeeper of G1/S transition. It also regulates G2/M progression and cytokinesis completion, via CDK-dependent or -independent mechanisms. Recently, other important p27Kip1 functions have been described, including the regulation of cell motility and migration, the control of cell differentiation program and the activation of apoptosis/autophagy. Several factors modulate p27Kip1 activities, including its level, cellular localization and post-translational modifications. As a matter of fact, the protein is phosphorylated, ubiquitinated, SUMOylated, O-linked N-acetylglicosylated and acetylated on different residues. p27Kip1 belongs to the family of the intrinsically unstructured proteins and thus it is endowed with a large flexibility and numerous interactors, only partially identified. In this review, we look at p27Kip1 properties and ascribe part of its heterogeneous functions to the ability to act as an anchor or scaffold capable to participate in the construction of different platforms for modulating cell response to extracellular signals and allowing adaptation to environmental changes.
Collapse
|
28
|
The Biology of Classic Hairy Cell Leukemia. Int J Mol Sci 2021; 22:ijms22157780. [PMID: 34360545 PMCID: PMC8346068 DOI: 10.3390/ijms22157780] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Classic hairy cell leukemia (HCL) is a rare mature B-cell malignancy associated with pancytopenia and infectious complications due to progressive infiltration of the bone marrow and spleen. Despite tremendous therapeutic advances achieved with the implementation of purine analogues such as cladribine into clinical practice, the culprit biologic alterations driving this fascinating hematologic disease have long stayed concealed. Nearly 10 years ago, BRAF V600E was finally identified as a key activating mutation detectable in almost all HCL patients and throughout the entire course of the disease. However, additional oncogenic biologic features seem mandatory to enable HCL transformation, an open issue still under active investigation. This review summarizes the current understanding of key pathogenic mechanisms implicated in HCL and discusses major hurdles to overcome in the context of other BRAF-mutated malignancies.
Collapse
|
29
|
Fabiani E, Cicconi L, Nardozza AM, Cristiano A, Rossi M, Ottone T, Falconi G, Divona M, Testi AM, Annibali O, Castelli R, Lazarevic V, Rego E, Montesinos P, Esteve J, Venditti A, Della Porta M, Arcese W, Lo-Coco F, Voso MT. Mutational profile of ZBTB16-RARA-positive acute myeloid leukemia. Cancer Med 2021; 10:3839-3847. [PMID: 34042280 PMCID: PMC8209618 DOI: 10.1002/cam4.3904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/02/2021] [Accepted: 03/28/2021] [Indexed: 12/31/2022] Open
Abstract
Background The ZBTB16‐RARA fusion gene, resulting from the reciprocal translocation between ZBTB16 on chromosome 11 and RARA genes on chromosome 17 [t(11;17)(q23;q21)], is rarely observed in acute myeloid leukemia (AML), and accounts for about 1% of retinoic acid receptor‐α (RARA) rearrangements. AML with this rare translocation shows unusual bone marrow (BM) morphology, with intermediate aspects between acute promyelocytic leukemia (APL) and AML with maturation. Patients may have a high incidence of disseminated intravascular coagulation at diagnosis, are poorly responsive to all‐trans retinoic acid (ATRA) and arsenic tryoxyde, and are reported to have an overall poor prognosis. Aims The mutational profile of ZBTB16‐RARA rearranged AML has not been described so far. Materials and methods We performed targeted next‐generation sequencing of 24 myeloid genes in BM diagnostic samples from seven ZBTB16‐RARA+AML, 103 non‐RARA rearranged AML, and 46 APL. The seven ZBTB16‐RARA‐positive patients were then screened for additional mutations using whole exome sequencing (n = 3) or an extended cancer panel including 409 genes (n = 4). Results ZBTB16‐RARA+AML showed an intermediate number of mutations per patient and involvement of different genes, as compared to APL and other AMLs. In particular, we found a high incidence of ARID1A mutations in ZBTB16‐RARA+AML (five of seven cases, 71%). Mutations in ARID2 and SMARCA4, other tumor suppressor genes also belonging to SWI/SNF chromatin remodeling complexes, were also identified in one case (14%). Discussion and conclusion Our data suggest the association of mutations of the ARID1A gene and of the other members of the SWI/SNF chromatin remodeling complexes with ZBTB16‐RARA+AMLs, where they may support the peculiar disease phenotype.
Collapse
Affiliation(s)
- Emiliano Fabiani
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy.,UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Laura Cicconi
- Unit of Hematology, Santo Spirito Hospital, Rome, Italy
| | - Anna Maria Nardozza
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Antonio Cristiano
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Marianna Rossi
- Cancer Center - IRCCS Humanitas Clinical & Research Hospital and Humanitas University, Milan, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Giulia Falconi
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Mariadomenica Divona
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Anna Maria Testi
- Department of Translational and Precision Medicine and Hematology, Sapienza University, Rome, Italy
| | - Ombretta Annibali
- Hematology and Stem Cell Transplantation Unit, University Campus Biomedico, Rome, Italy
| | - Roberto Castelli
- Department of Biomedical and Clinical Sciences, Luigi Sacco Hospital, Milan, Italy
| | - Vladimir Lazarevic
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Eduardo Rego
- Department of Internal Medicine, Medical School of Ribeirao Preto, Sau Paulo, Brazil
| | - Pau Montesinos
- Hematology Department, Hospital Universitari i Politècnico la Fe, Valencia, Spain
| | - Jordi Esteve
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Adriano Venditti
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Matteo Della Porta
- Cancer Center - IRCCS Humanitas Clinical & Research Hospital and Humanitas University, Milan, Italy
| | - William Arcese
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University Tor Vergata Rome, Rome, Italy
| |
Collapse
|
30
|
Chakraborty R, Abdel-Wahab O, Durham BH. MAP-Kinase-Driven Hematopoietic Neoplasms: A Decade of Progress in the Molecular Age. Cold Spring Harb Perspect Med 2021; 11:a034892. [PMID: 32601132 PMCID: PMC7770072 DOI: 10.1101/cshperspect.a034892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mutations in members of the mitogen-activated protein kinase (MAPK) pathway are extensively studied in epithelial malignancies, with BRAF mutations being one of the most common alterations activating this pathway. However, BRAF mutations are overall quite rare in hematological malignancies. Studies over the past decade have identified high-frequency BRAF V600E, MAP2K1, and other kinase alterations in two groups of MAPK-driven hematopoietic neoplasms: hairy cell leukemia (HCL) and the systemic histiocytoses. Despite HCL and histiocytoses sharing common molecular alterations, these are phenotypically distinct malignancies that differ in respect to clinical presentation and suspected cell of origin. The purpose of this review is to highlight the molecular advancements over the last decade in the histiocytic neoplasms and HCL and discuss the impact these insights have had on our understanding of the molecular pathophysiology, cellular origins, and therapy of these enigmatic diseases as well as perspectives for future research directions.
Collapse
Affiliation(s)
- Rikhia Chakraborty
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Benjamin H Durham
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
31
|
Matutes E. Diagnostic and therapeutic challenges in hairy cell leukemia-variant: where are we in 2021? Expert Rev Hematol 2021; 14:355-363. [PMID: 33759673 DOI: 10.1080/17474086.2021.1908121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hairy cell leukemia-variant (HCL-V) is a rare B-cell neoplasm arising or homing primarily in the spleen. It has been considered in the WHO classification of Hemopoietic and Lymphoid Tumors as a provisional entity since 2008 and included under the umbrella of unclassifiable splenomegalic B-cell leukemia/lymphomas. The diagnosis is a challenge to hematopathologists and management of these patients by the clinicians is difficult due to the lack of diagnostic and therapeutic guidelines and prospective studies. AREAS COVERED This manuscript is a comprehensive review of the clinical features, pathology, immunophenotypic profile, genomic alterations and therapeutic options of HCL-V. Diagnostic and therapeutic dilemmas are extensively outlined considering the information derived from a literature search covering from 1980 to 2019. Integration of all the data is needed and recommended for establishing the diagnosis of this leukemia. EXPERT OPINION More extensive information of genomic aberrations underlying the pathogenesis of the disease would be a solid stone for the diagnosis. To this end, a collaborative work among scientists and pathologists from different centers is required and expected. In turn, this might have a relevant clinical translation by allowing to identify putative targets for therapy and to improve the outlook of these patients.
Collapse
|
32
|
Bencivenga D, Stampone E, Aulitto A, Tramontano A, Barone C, Negri A, Roberti D, Perrotta S, Della Ragione F, Borriello A. A cancer-associated CDKN1B mutation induces p27 phosphorylation on a novel residue: a new mechanism for tumor suppressor loss-of-function. Mol Oncol 2021; 15:915-941. [PMID: 33316141 PMCID: PMC8024736 DOI: 10.1002/1878-0261.12881] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 01/12/2023] Open
Abstract
CDKN1B haploinsufficiency promotes the development of several human cancers. The gene encodes p27Kip1, a protein playing pivotal roles in the control of growth, differentiation, cytoskeleton dynamics, and cytokinesis. CDKN1B haploinsufficiency has been associated with chromosomal or gene aberrations. However, very few data exist on the mechanisms by which CDKN1B missense mutations facilitate carcinogenesis. Here, we report a functional study on a cancer‐associated germinal p27Kip1 variant, namely glycine9‐>arginine‐p27Kip1 (G9R‐p27Kip1) identified in a parathyroid adenoma. We unexpectedly found that G9R‐p27Kip1 lacks the major tumor suppressor activities of p27Kip1 including its antiproliferative and pro‐apoptotic functions. In addition, G9R‐p27Kip1 transfection in cell lines induces the formation of more numerous and larger spheres when compared to wild‐type p27Kip1‐transfected cells. We demonstrated that the mutation creates a consensus sequence for basophilic kinases causing a massive phosphorylation of G9R‐p27Kip1 on S12, a residue normally never found modified in p27Kip1. The novel S12 phosphorylation appears responsible for the loss of function of G9R‐p27Kip1 since S12AG9R‐p27Kip1 recovers most of the p27Kip1 tumor suppressor activities. In addition, the expression of the phosphomimetic S12D‐p27Kip1 recapitulates G9R‐p27Kip1 properties. Mechanistically, S12 phosphorylation enhances the nuclear localization of the mutant protein and also reduces its cyclin‐dependent kinase (CDK)2/CDK1 inhibition activity. To our knowledge, this is the first reported case of quantitative phosphorylation of a p27Kip1 variant on a physiologically unmodified residue associated with the loss of several tumor suppressor activities. In addition, our findings demonstrate that haploinsufficiency might be due to unpredictable post‐translational modifications due to generation of novel consensus sequences by cancer‐associated missense mutations.
Collapse
Affiliation(s)
- Debora Bencivenga
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emanuela Stampone
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Arianna Aulitto
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annunziata Tramontano
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Clementina Barone
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Aide Negri
- Department of Medicine and Surgery, University of Parma, Italy
| | - Domenico Roberti
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Silverio Perrotta
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
33
|
Parry-Jones N, Joshi A, Forconi F, Dearden C. Guideline for diagnosis and management of hairy cell leukaemia (HCL) and hairy cell variant (HCL-V). Br J Haematol 2020; 191:730-737. [PMID: 33053222 DOI: 10.1111/bjh.17055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nilima Parry-Jones
- Department of Haematology, Aneurin Bevan University Health Board, Abergavenny, UK
| | - Anurag Joshi
- Department of Cellular Pathology and All Wales Lymphoma Panel, University Hospital of Wales, Cardiff, UK
| | - Francesco Forconi
- Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, UK.,Department of Haematology, University Hospital Southampton NHS Trust, Southampton, UK
| | - Claire Dearden
- Department of Haematology, Royal Marsden NHS Trust, London, UK
| | | |
Collapse
|
34
|
Li X, Tang M. Exosomes released from M2 macrophages transfer miR-221-3p contributed to EOC progression through targeting CDKN1B. Cancer Med 2020; 9:5976-5988. [PMID: 32590883 PMCID: PMC7433826 DOI: 10.1002/cam4.3252] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022] Open
Abstract
In contrast to other solid tumors within the abdominal cavity, epithelial ovarian cancers (EOCs) tend to undergo peritoneal metastasis. Thus, the peritoneal immune microenvironment is crucial for EOC progression. Previous reports indicate that the main immune cells within the peritoneum are M2 macrophages, specifically tumor‐associated macrophages (TAMs). The communication between TAMs and tumor cells plays an important role in EOC development, and exosomes, acting as micro–message carriers, occupy an essential position in this process. Microarray analyses of exosomes revealed that miR‐221‐3p was enriched in M2 exosomes. Furthermore, miR‐221‐3p suppressed cyclin‐dependent kinase inhibitor 1B (CDKN1B) directly. Thus, miR‐221‐3p contributed to the proliferation and G1/S transition of EOC cells. Additionally, low levels of CDKN1B were associated with EOC progression and poor prognosis. These observations suggest that TAMs‐derived exosomal miR‐221‐3p acts as a regulator of EOC progression by targeting CDKN1B. The results of this study confirm that certain exosomal microRNAs may provide novel diagnostic biomarkers and therapeutic targets for EOC.
Collapse
Affiliation(s)
- Xiaoduan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meiling Tang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Abstract
OPINION STATEMENT Despite its rarity, hairy cell leukemia (HCL) remains a fascinating disease and the physiopathology is becoming more and more understood. The accurate diagnosis of HCL relies on the recognition of hairy cells by morphology and flow cytometry (FCM) in the blood and/or bone marrow (BM). The BRAF V600E mutation, an HCL-defining mutation, represents a novel diagnostic parameter and a potential therapeutic target. The precise cellular origin of HCL is a late-activated postgerminal center memory B cell. BRAF mutations were detected in hematopoietic stem cells (HSCs) of patients with HCL, suggesting that this is an early HCL-defining event. Watch-and-wait strategy is necessary in approximately 10% of asymptomatic HCL patients, sometimes for several years. Purine analogs (PNAs) are the established first-line options for symptomatic HCL patients. In second-line treatment, chemoimmunotherapy combining PNA plus rituximab should be considered in high-risk HCL patients. The three options for relapsed/refractory HCL patients include recombinant immunoconjugates targeting CD22, BRAF inhibitors, and BCR inhibitors. The clinical interest to investigate blood minimal residual disease (MRD) was recently demonstrated, with a high risk of relapse in patients with positive testing for MRD and a low risk in patients with negative testing. However, efforts must be made to standardize MRD analyses in the near future. Patients with HCL are at risk of second malignancies. The increased risk could be related to the disease and/or the treatment, and the respective role of PNAs in the development of secondary malignancies remains a topic of debate.
Collapse
Affiliation(s)
- Jérôme Paillassa
- Department of Hematology, Academic Hospital of Angers, Angers, Pays de la Loire, France
| | - Xavier Troussard
- Laboratory of Hematology, Academic Hospital of Caen, Caen, Normandy, France.
- Laboratoire d'Hématologie Biologique, CHU de Caen, Avenue de la Côte de Nacre, 14 033, Caen Cedex, France.
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW To summarise diagnostic clinical/laboratory findings and highlight differences between classical hairy cell leukaemia (HCLc) and hairy cell leukaemia variant (HCLv). Discussion of prognosis and current treatment indications including novel therapies, linked to understanding of the underlying molecular pathogenesis. RECENT FINDINGS Improved understanding of the underlying pathogenesis of HCLc, particularly the causative mutation BRAF V600E, leading to constitutive activation of the MEK/ERK signalling pathway and increased cell proliferation. HCLc is caused by BRAF V600E mutation in most cases. Purine nucleoside analogue (PNA) therapy is the mainstay of treatment, with the addition of rituximab, improving response and minimal residual disease (MRD) clearance. Despite excellent responses to PNAs, many patients will eventually relapse, requiring further therapy. Rarely, patients are refractory to PNA therapy. In relapsed/refractory patients, novel targeted therapies include BRAF inhibitors (BRAFi), anti-CD22 immunoconjugate moxetumomab and Bruton tyrosine kinase inhibitors (BTKi). HCLv has a worse prognosis with median overall survival (OS), only 7-9 years, despite the combination of PNA/rituximab improving front-line response. Moxetumomab or ibrutinib may be a viable treatment but lacks substantial evidence.
Collapse
Affiliation(s)
- Matthew Cross
- The Royal Marsden Hospital and the Institute of Cancer Research, Sutton, UK
| | - Claire Dearden
- The Royal Marsden Hospital and the Institute of Cancer Research, Sutton, UK.
| |
Collapse
|
37
|
Genome-wide promoter methylation of hairy cell leukemia. Blood Adv 2020; 3:384-396. [PMID: 30723113 DOI: 10.1182/bloodadvances.2018024059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
Classic hairy cell leukemia (HCL) is a tumor of mature clonal B cells with unique genetic, morphologic, and phenotypic features. DNA methylation profiling has provided a new tier of investigation to gain insight into the origin and behavior of B-cell malignancies; however, the methylation profile of HCL has not been specifically investigated. DNA methylation profiling was analyzed with the Infinium HumanMethylation27 array in 41 mature B-cell tumors, including 11 HCL, 7 splenic marginal zone lymphomas (SMZLs), and chronic lymphocytic leukemia with an unmutated (n = 7) or mutated (n = 6) immunoglobulin gene heavy chain variable (IGHV) region or using IGHV3-21 (n = 10). Methylation profiles of nontumor B-cell subsets and gene expression profiling data were obtained from public databases. HCL had a methylation signature distinct from each B-cell tumor entity, including the closest entity, SMZL. Comparison with normal B-cell subsets revealed the strongest similarity with postgerminal center (GC) B cells and a clear separation from pre-GC and GC cellular programs. Comparison of the integrated analysis with post-GC B cells revealed significant hypomethylation and overexpression of BCR-TLR-NF-κB and BRAF-MAPK signaling pathways and cell adhesion, as well as hypermethylation and underexpression of cell-differentiation markers and methylated genes in cancer, suggesting regulation of the transformed hairy cells through specific components of the B-cell receptor and the BRAF signaling pathways. Our data identify a specific methylation profile of HCL, which may help to distinguish it from other mature B-cell tumors.
Collapse
|
38
|
Kreitman RJ. Hairy cell leukemia: present and future directions. Leuk Lymphoma 2019; 60:2869-2879. [PMID: 31068044 PMCID: PMC7435069 DOI: 10.1080/10428194.2019.1608536] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023]
Abstract
Hairy cell leukemia (HCL) is an indolent B-cell malignancy, with long-term responses to purine analogs, but with decreasing efficacy and increasing toxicity with repeated courses. Leukemic cells express CD22, CD20, CD25, tartrate-resistant acid phosphatase (TRAP), annexin 1A (Anxa1), and BRAF V600E mutation. HCLv, lacking CD25, Anxa1, TRAP, and BRAF V600E, is more aggressive and less purine analog-sensitive. A molecularly defined IGHV4-34+ variant is also resistant whether HCL or HCLv immunophenotypically. Traces of HCL cells, termed minimal residual disease (MRD), accompany most with complete remission (CR) and may cause relapse. Rituximab has limited single-agent activity, but frequent CR without MRD when combined with purine analog, albeit with chemotherapy toxicities. The anti-CD22 recombinant immunotoxin Moxetumomab Pasudotox can achieve MRD-negative CR in multiply relapsed HCL without chemotherapy toxicities and was FDA approved in 2018 as Lumoxiti. Investigational oral non-chemotherapy options also include Vemurafenib or Dabrafenib/Trametinib targeting BRAF V600E ± MEK, and Ibrutinib targeting Bruton's tyrosine kinase.
Collapse
|
39
|
Maitre E, Cornet E, Troussard X. Hairy cell leukemia: 2020 update on diagnosis, risk stratification, and treatment. Am J Hematol 2019; 94:1413-1422. [PMID: 31591741 DOI: 10.1002/ajh.25653] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022]
Abstract
DISEASE OVERVIEW Hairy cell leukemia (HCL) and HCL-like disorders, including HCL variant (HCL-V) and splenic diffuse red pulp lymphoma (SDRPL), are a very heterogeneous group of mature lymphoid B-cell disorders. They are characterized by the identification of hairy cells, a specific genetic profile, a different clinical course and the need for appropriate treatment. DIAGNOSIS Diagnosis of HCL is based on morphological evidence of hairy cells, an HCL immunologic score of three or four based on the CD11C, CD103, CD123, and CD25 expression. Also, the trephine biopsy which makes it possible to specify the degree of tumoral medullary infiltration and the presence of BRAF V600E somatic mutation. RISK STRATIFICATION Progression of patients with HCL is based on a large splenomegaly, leukocytosis, a high number of hairy cells in the peripheral blood and the immunoglobulin heavy chain variable region gene mutational status. The VH4-34 positive HCL cases are associated with poor prognosis. TREATMENT Risk adapted therapy with purine nucleoside analogs (PNA) are indicated in symptomatic first line HCL patients. The use of PNA followed by rituximab represents an alternative option. Management of progressive or refractory disease is based on the use of BRAF inhibitors associated or not with MEK inhibitors, recombinant immunoconjugates targeting CD22 or BCR inhibitors.
Collapse
Affiliation(s)
- Elsa Maitre
- Laboratoire Hématologie CHU Côte de Nacre Caen Cedex France
| | - Edouard Cornet
- Laboratoire Hématologie CHU Côte de Nacre Caen Cedex France
| | | |
Collapse
|
40
|
Maitre E, Wiber M, Cornet E, Troussard X. [Hairy cell leukemia]. Presse Med 2019; 48:842-849. [PMID: 31447330 DOI: 10.1016/j.lpm.2019.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/18/2019] [Indexed: 11/19/2022] Open
Abstract
Hairy cell leukemia (HCL) is a well-defined entity. Proliferation with hair cells, morphological aspects of hairy cells are easy to identify. Hairy cells express markers CD11c, CD25, CD103 and CD123. In 80% of cases, a BRAFV600E mutation is highlighted. In the absence of a BRAFV600E mutation, the differential diagnosis with other hair cell proliferations can be difficult, especially with the variant form of hairy leukemia, diffuse lymphoma of the red pulp of the spleen or splenic lymphoma of the marginal zone. Purine analogues (PNA) with or without anti-CD20 antibodies remain the first-line reference treatment. In case of relapse or resistance to PNA, BRAF inhibitors, with or without MEK inhibitors, are proposed in patients with the mutation. In the absence of BRAFV600E mutation, moxetumomab-pasudotox represents an interesting alternative. A multidisciplinary discussion is always necessary. In complex cases, expert advice is desirable.
Collapse
Affiliation(s)
- Elsa Maitre
- CHU de Caen, laboratoire d'hématologie, 14000 Caen, France
| | - Margaux Wiber
- CHU de Caen, laboratoire d'hématologie, 14000 Caen, France
| | - Edouard Cornet
- CHU de Caen, laboratoire d'hématologie, 14000 Caen, France
| | | |
Collapse
|
41
|
Polderdijk MCE, Heron M, Kuipers S, Rijkers GT. Deciphering the genotype and phenotype of hairy cell leukemia: clues for diagnosis and treatment. Expert Rev Clin Immunol 2019; 15:857-867. [PMID: 31282776 DOI: 10.1080/1744666x.2019.1641405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Hairy cell leukemia (HCL) is a rare, indolent B-cell neoplasm. The classical variant of the disease is characterized by the BRAF V600E mutation, which is present in virtually all cases. How this mutation leads to the signs and symptoms of the disease is currently not known. Areas covered: This review explores the genetic background of HCL, especially the BRAF V600E driver mutation, but passenger mutations and their effects are also included. The clinical significance of BRAF mutations in other cancer types is discussed, as well as BRAF- induced senescence. An overview of the major forms of treatment of HCL (cytostatic drugs, specific BRAF inhibitors, B cell-specific antibodies) is given. Finally, possible mechanisms of the monocytopenia and hairy morphology so typical of this disease are discussed. Expert opinion: Although being a rare disease, HCL and its pathogenesis can yield important information about BRAF-related cancer metabolism. Many aspects of the disease are still unclear, but with the right resources, this could change. This can lead to a more efficient and specific treatment, thus leading to decreased morbidity.
Collapse
Affiliation(s)
- Margot C E Polderdijk
- a Department of Sciences, University College Roosevelt , Middelburg , The Netherlands.,b Laboratory for Medical Microbiology and Immunology, Admiral de Ruyter Hospital , Goes , The Netherlands
| | - Michiel Heron
- b Laboratory for Medical Microbiology and Immunology, Admiral de Ruyter Hospital , Goes , The Netherlands.,c Laboratory for Medical Microbiology and Immunology, St Elisabeth Hospital , Tilburg , The Netherlands
| | - Saskia Kuipers
- d Department of Hematology, Admiral de Ruyter Hospital , Goes , The Netherlands
| | - Ger T Rijkers
- a Department of Sciences, University College Roosevelt , Middelburg , The Netherlands.,b Laboratory for Medical Microbiology and Immunology, Admiral de Ruyter Hospital , Goes , The Netherlands.,c Laboratory for Medical Microbiology and Immunology, St Elisabeth Hospital , Tilburg , The Netherlands
| |
Collapse
|
42
|
Han L, Madan V, Mayakonda A, Dakle P, Woon TW, Shyamsunder P, Nordin HBM, Cao Z, Sundaresan J, Lei I, Wang Z, Koeffler HP. Chromatin remodeling mediated by ARID1A is indispensable for normal hematopoiesis in mice. Leukemia 2019; 33:2291-2305. [PMID: 30858552 PMCID: PMC6756219 DOI: 10.1038/s41375-019-0438-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 11/17/2022]
Abstract
Precise regulation of chromatin architecture is vital to physiological processes including hematopoiesis. ARID1A is a core component of the mammalian SWI/SNF complex, which is one of the ATP-dependent chromatin remodeling complexes. To uncover the role of ARID1A in hematopoietic development, we utilized hematopoietic cell-specific deletion of Arid1a in mice. We demonstrate that ARID1A is essential for maintaining the frequency and function of hematopoietic stem cells and its loss impairs the differentiation of both myeloid and lymphoid lineages. ARID1A deficiency led to a global reduction in open chromatin and ensuing transcriptional changes affected key genes involved in hematopoietic development. We also observed that silencing of ARID1A affected ATRA-induced differentiation of NB4 cells, suggesting its role in granulocytic differentiation of human leukemic cells. Overall, our study provides a comprehensive elucidation of the function of ARID1A in hematopoiesis and highlights the central role of ARID1A-containing SWI/SNF complex in maintaining chromatin dynamics in hematopoietic cells.
Collapse
Affiliation(s)
- Lin Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vikas Madan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Teoh Weoi Woon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Pavithra Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Zeya Cao
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Janani Sundaresan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ienglam Lei
- Department of Cardiac Surgery, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, USA
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA, USA.,Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Hospital, Singapore, Singapore
| |
Collapse
|
43
|
Geyer MB, Abdel-Wahab O, Tallman MS. BRAF in the cross-hairs. Expert Rev Hematol 2019; 12:183-193. [PMID: 30782032 PMCID: PMC6614740 DOI: 10.1080/17474086.2019.1583553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Hairy cell leukemia (HCL) is a rare, chronic B-cell lymphoproliferative disorder characterized by distinctive morphologic features and an indolent clinical course. The discovery of a recurrent activating mutation in BRAF (BRAF V600E) as a disease-defining genetic event in HCL has substantial diagnostic and therapeutic implications. Areas covered: Herein the authors review the role of BRAF V600E and RAF-MEK-ERK signaling in the pathogenesis of HCL, anecdotal clinical reports of BRAF inhibitor monotherapy in management of relapsed or refractory HCL, larger phase 2 trials investigating efficacy of BRAF inhibitor therapy for HCL, adverse effects commonly associated with BRAF inhibitor therapy, including cutaneous toxicity, and mechanisms of therapeutic resistance. Expert opinion: Ongoing and planned studies will help to optimize the use of BRAF inhibitor therapy for HCL by determining the efficacy of BRAF inhibition in combination with other antigen targeted or molecularly targeted therapies, and more broadly, to determine how hematologists can best utilize and sequence emerging diagnostic and therapeutic modalities in the care of patients with newly diagnosed and relapsed or refractory HCL.
Collapse
Affiliation(s)
- Mark B. Geyer
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Cellular Therapeutics Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Omar Abdel-Wahab
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Martin S. Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
44
|
Abstract
Immunoglobulin (IG) gene remodeling by V(D)J recombination plays a central role in the generation of normal B cells, and somatic hypermutation and class switching of IG genes are key processes during antigen-driven B cell differentiation. However, errors of these processes are involved in the development of B cell lymphomas. IG locus-associated translocations of proto-oncogenes are a hallmark of many B cell malignancies. Additional transforming events include inactivating mutations in various tumor suppressor genes and also latent infection of B cells with viruses, such as Epstein-Barr virus. Many B cell lymphomas require B cell antigen receptor expression, and in several instances, chronic antigenic stimulation plays a role in lymphoma development and/or sustaining tumor growth. Often, survival and proliferation signals provided by other cells in the microenvironment are a further critical factor in lymphoma development and pathophysiology. Many B cell malignancies derive from germinal center B cells, most likely because of the high proliferation rate of these cells and the high activity of mutagenic processes.
Collapse
|
45
|
Marx SJ, Goltzman D. Evolution of Our Understanding of the Hyperparathyroid Syndromes: A Historical Perspective. J Bone Miner Res 2019; 34:22-37. [PMID: 30536424 PMCID: PMC6396287 DOI: 10.1002/jbmr.3650] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022]
Abstract
We review advancing and overlapping stages for our understanding of the expressions of six hyperparathyroid (HPT) syndromes: multiple endocrine neoplasia type 1 (MEN1) or type 4, multiple endocrine neoplasia type 2A (MEN2A), hyperparathyroidism-jaw tumor syndrome, familial hypocalciuric hypercalcemia, neonatal severe primary hyperparathyroidism, and familial isolated hyperparathyroidism. During stage 1 (1903 to 1967), the introduction of robust measurement of serum calcium was a milestone that uncovered hypercalcemia as the first sign of dysfunction in many HPT subjects, and inheritability was reported in each syndrome. The earliest reports of HPT syndromes were biased toward severe or striking manifestations. During stage 2 (1959 to 1985), the early formulations of a syndrome were improved. Radioimmunoassays (parathyroid hormone [PTH], gastrin, insulin, prolactin, calcitonin) were breakthroughs. They could identify a syndrome carrier, indicate an emerging tumor, characterize a tumor, or monitor a tumor. During stage 3 (1981 to 2006), the assembly of many cases enabled recognition of further details. For example, hormone non-secreting skin lesions were discovered in MEN1 and MEN2A. During stage 4 (1985 to the present), new genomic tools were a revolution for gene identification. Four principal genes ("principal" implies mutated or deleted in 50% or more probands for its syndrome) (MEN1, RET, CASR, CDC73) were identified for five syndromes. During stage 5 (1993 to the present), seven syndromal genes other than a principal gene were identified (CDKN1B, CDKN2B, CDKN2C, CDKN1A, GNA11, AP2S1, GCM2). Identification of AP2S1 and GCM2 became possible because of whole-exome sequencing. During stages 4 and 5, the newly identified genes enabled many studies, including robust assignment of the carriers and non-carriers of a mutation. Furthermore, molecular pathways of RET and the calcium-sensing receptor were elaborated, thereby facilitating developments in pharmacotherapy. Current findings hold the promise that more genes for HPT syndromes will be identified and studied in the near future. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Stephen J Marx
- Office of the Scientific Director, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - David Goltzman
- Calcium Research Laboratory, Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
46
|
Maitre E, Bertrand P, Maingonnat C, Viailly PJ, Wiber M, Naguib D, Salaün V, Cornet E, Damaj G, Sola B, Jardin F, Troussard X. New generation sequencing of targeted genes in the classical and the variant form of hairy cell leukemia highlights mutations in epigenetic regulation genes. Oncotarget 2018; 9:28866-28876. [PMID: 29989027 PMCID: PMC6034755 DOI: 10.18632/oncotarget.25601] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/24/2018] [Indexed: 11/25/2022] Open
Abstract
Classical hairy cell leukemia (HCL-c) is a rare lymphoid neoplasm. BRAFV600E mutation, detected in more than 80% of the cases, is described as a driver mutation, but additional genetic abnormalities appear to be necessary for the disease progression. For cases of HCL-c harboring a wild-type BRAF gene, the differential diagnosis of the variant form of HCL (HCL-v) or splenic diffuse red pulp lymphoma (SDRPL) is complex. We selected a panel of 21 relevant genes based on a literature review of whole exome sequencing studies (BRAF, MAP2K1, DUSP2, MAPK15, ARID1A, ARID1B, EZH2, KDM6A, CREBBP, TP53, CDKN1B, XPO1, KLF2, CXCR4, NOTH1, NOTCH2, MYD88, ANXA1, U2AF1, BCOR, and ABCA8). We analyzed 20 HCL-c and 4 HCL-v patients. The analysis of diagnostic samples mutations in BRAF (n = 18), KLF2 (n = 4), MAP2K1 (n = 3), KDM6A (n = 2), CDKN1B (n = 2), ARID1A (n = 2), CREBBP (n = 2) NOTCH1 (n = 1) and ARID1B (n = 1). BRAFV600E was found in 90% (18/20) of HCL-c patients. In HCL-c patients with BRAFV600E, other mutations were found in 33% (6/18) of cases. All 4 HCL-v patients had mutations in epigenetic regulatory genes: KDM6A (n = 2), CREBBP (n = 1) or ARID1A (n = 1). The analysis of sequential samples (at diagnosis and relapse) from 5 patients (2 HCL-c and 3 HCL-v), showed the presence of 2 new subclonal mutations (BCORE1430X and XPO1E571K) in one patient and variations of the mutated allele frequency in 2 other cases. In the HCL-v disease, we described new mutations targeting KDM6A that encode a lysine demethylase protein. This opens new perspectives for personalized medicine for this group of patients.
Collapse
Affiliation(s)
- Elsa Maitre
- Normandie Univ, INSERM U1245, Université de Caen, Caen, France
| | | | | | | | | | - Dina Naguib
- Laboratoire d'hématologie, CHU Caen, Caen, France
| | | | - Edouard Cornet
- Normandie Univ, INSERM U1245, Université de Caen, Caen, France.,Laboratoire d'hématologie, CHU Caen, Caen, France
| | - Gandhi Damaj
- Normandie Univ, INSERM U1245, Université de Caen, Caen, France.,Institut d'Hématologie de Basse-Normandie, CHU Caen, Caen, France
| | - Brigitte Sola
- Normandie Univ, INSERM U1245, Université de Caen, Caen, France
| | - Fabrice Jardin
- Normandie Univ, INSERM U1245, Université de Rouen, Rouen, France.,Service d'hématologie, Centre Henri Becquerel, Rouen, France
| | - Xavier Troussard
- Normandie Univ, INSERM U1245, Université de Caen, Caen, France.,Laboratoire d'hématologie, CHU Caen, Caen, France.,Institut d'Hématologie de Basse-Normandie, CHU Caen, Caen, France
| |
Collapse
|
47
|
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
48
|
Roider T, Falini B, Dietrich S. Recent advances in understanding and managing hairy cell leukemia. F1000Res 2018; 7:F1000 Faculty Rev-509. [PMID: 29770206 PMCID: PMC5931274 DOI: 10.12688/f1000research.13265.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2018] [Indexed: 01/15/2023] Open
Abstract
Hairy cell leukemia is a rare B-cell malignancy that is characterized by an indolent course. It was initially described as a distinct entity in 1958. Before the establishment of modern treatment, median survival was only 4 years. Since then, major advances in the treatment and understanding of the biology and genomic landscape of hairy cell leukemia have been made. This review summarizes the present understanding of hairy cell leukemia with particular focus on the development of novel and targeted approaches to treatment.
Collapse
Affiliation(s)
- Tobias Roider
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncology Research (CREO), University and Hospital of Perugia, Perugia, Italy
| | - Sascha Dietrich
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
49
|
Primary lymphomatous presentation of hairy cell leukemia as osteolytic vertebral lesions: a case report. J Hematop 2018. [DOI: 10.1007/s12308-017-0315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
50
|
Troussard X, Cornet E. Hairy cell leukemia 2018: Update on diagnosis, risk-stratification, and treatment. Am J Hematol 2017; 92:1382-1390. [PMID: 29110361 PMCID: PMC5698705 DOI: 10.1002/ajh.24936] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/15/2023]
Abstract
Disease overview Hairy cell leukemia (HCL) and HCL‐like disorders, including HCL variant (HCL‐V) and splenic diffuse red pulp lymphoma (SDRPL), are a very heterogeneous group of mature lymphoid B‐cell disorders, characterized by the identification of hairy cells, a specific genetic profile, a different clinical course and the need for appropriate treatment. Diagnosis Diagnosis of HCL is based on morphological evidence of hairy cells, an HCL immunologic score of 3 or 4 based on the CD11C, CD103, CD123, and CD25 expression, the trephine biopsy which makes it possible to specify the degree of tumoral medullary infiltration and the presence of BRAF V600E somatic mutation. Risk stratification Progression of patients with HCL is based on a large splenomegaly, leukocytosis, a high number of hairy cells in the peripheral blood and the immunoglobulin heavy chain variable region gene mutational status. VH4‐34 positive HCL cases are associated with poor prognosis Risk adapted therapy Purine analogs (PNA) are indicated in symptomatic first line HCL patients. The use of PNA followed by rituximab represents an alternative option. Management of progressive or refractory disease It is based on the use of BRAF inhibitors associated or not with MEK inhibitors, recombinant immunoconjugates targeting CD22 or BCR inhibitors.
Collapse
Affiliation(s)
| | - Edouard Cornet
- Laboratoire Hématologie, CHU Caen, 14 033; Caen Cedex France
| |
Collapse
|