1
|
Yu H, Zhang G, Ma Y, Ma T, Wang S, Ding J, Liu J, Zhao Z, Zhou Z, Jiao S, Dong G, Cai Z. Single-cell and spatial transcriptomics reveal the pathogenesis of chronic granulomatous disease in a natural model. Cell Rep 2025; 44:115612. [PMID: 40272982 DOI: 10.1016/j.celrep.2025.115612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/20/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
Genetic defects in NADPH oxidase 2 (NOX2) cause chronic granulomatous disease (CGD), which is characterized by increased susceptibility to infections and excessive inflammation leading to granuloma formation. We developed a CGD model using Ncf2-/- mice through controlled environmental exposure. Unlike in specific-pathogen-free environments, these mice spontaneously developed pulmonary granulomas under clean-grade conditions. In the affected lung tissue, significant changes in microbial communities were observed, accompanied by the infiltration of neutrophils and monocyte-derived macrophages (MDMs). Specific nitric oxide synthase 2 (NOS2)high neutrophils with a pro-inflammatory transcriptional profile localize at the granuloma core, while an MDM subpopulation marked by MMP12 at the periphery exhibits a pro-fibrotic signature. Pharmacological inhibition of macrophage migration inhibitory factor (MIF), deletion of the pro-survival gene myeloid RNA regulator of Bim-induced death (Morrbid), and knockout of Il1r1 all suppressed granuloma formation by mitigating inflammation. This study underscores the establishment of a natural CGD model through environmental control, elucidates the mechanisms of granuloma formation, and develops potent therapeutic interventions.
Collapse
Affiliation(s)
- Hanzhi Yu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Guorong Zhang
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yunxi Ma
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Tianrui Ma
- State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; Tianjin Institute of Neurology, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shanshan Wang
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jiayu Ding
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jingjing Liu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Zilong Zhao
- State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; Tianjin Institute of Neurology, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | | | | | - Ge Dong
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China.
| | - Zhigang Cai
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Hematology, Tianjin Medical University Tianjin General Hospital, Tianjin, China; Department of Rheumatology and Immunology, Tianjin Medical University Tianjin General Hospital, Tianjin, China.
| |
Collapse
|
2
|
Xia YQ, Yang Y, Liu Y, Li CH, Liu PF. Investigation of copper-induced intestinal damage and proteome alterations in Takifugu rubripes: Potential health risks and environmental toxicology detection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116718. [PMID: 39024957 DOI: 10.1016/j.ecoenv.2024.116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Copper is one of the predominant water pollutants. Excessive exposure to copper can cause harm to animal health, affecting the central nervous system and causing blood abnormalities. Cuproptosis is a novel form of cell death that differs from previous programmed cell death methods. However, the impact of copper on the intestines remains unclear. Therefore, we investigated the effects of different concentrations of copper exposure on the intestinal proteome of Takifugu rubripes (T. rubripes). Relevant biomarkers were used to detect cuproptosis. We revealed the crosstalk relationship between cuproptosis and self-rescue at different concentrations, and discussed the feasibility of using potential cuproptosis indicators as anti-infection factors. We observed intestinal damage in the three copper exposure groups, especially in T. rubripes treated with 100 and 500 μg/L copper, with shedding and breakage of intestinal villus and fuzzy and loose structure of intestinal mucosa. The presence of copper stress not only causes cuproptosis but also oxidative damage caused by reactive oxygen species (ROS). The results of quantitative proteomics by TMT showed that compared to the 50 and 100 μg/L copper exposure groups, the expression of glutaminase, pyruvate kinase, and skin mucus lectin in the 500 μg/L group was significantly increased. The positive mediators COX5A and CTNNB1, as well as the negative mediators CD4 and FDXR, were found to be differentially expressed. Using the protein expression trends of cuproptosis indicator factors FDX1 and DLAT to indicate the concentration of copper ions in the environment. In addition, we found a new effect of promoting ferroptosis: providing additional copper ions can activate the phenomenon of ferroptosis. Our results expand our understanding of the potential health risks of copper in T. rubripes. At the same time, it is of great significance for the process of copper poisoning and the development of new environmental toxicology detection reagents.
Collapse
Affiliation(s)
- Yu-Qing Xia
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China; Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 52 Heishijiao Street, Dalian 116023, PR China
| | - Yi Yang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 52 Heishijiao Street, Dalian 116023, PR China; College of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, PR China
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 52 Heishijiao Street, Dalian 116023, PR China; College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Cheng-Hua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Peng-Fei Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 52 Heishijiao Street, Dalian 116023, PR China; College of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, PR China.
| |
Collapse
|
3
|
Choi E, Choi HH, Kwon KW, Kim H, Ryu JH, Hong JJ, Shin SJ. Permissive lung neutrophils facilitate tuberculosis immunopathogenesis in male phagocyte NADPH oxidase-deficient mice. PLoS Pathog 2024; 20:e1012500. [PMID: 39178329 PMCID: PMC11376565 DOI: 10.1371/journal.ppat.1012500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/05/2024] [Accepted: 08/12/2024] [Indexed: 08/25/2024] Open
Abstract
NADPH oxidase 2 (NOX2) is an enzyme responsible for generating reactive oxygen species, primarily found in phagocytes. Chronic Granulomatous Disease (CGD), along with bacterial infections such as Mycobacterium tuberculosis (Mtb), is a representative NOX2-deficient X-linked disease characterized by uncontrolled inflammation. However, the precise roles of host-derived factors that induce infection-mediated hyperinflammation in NOX2-deficient condition remain incompletely understood. To address this, we compared Mtb-induced pathogenesis in Nox2-/- and wild type (WT) mice in a sex-dependent manner. Among age- and sex-matched mice subjected to Mtb infection, male Nox2-/- mice exhibited a notable increase in bacterial burden and lung inflammation. This was characterized by significantly elevated pro-inflammatory cytokines such as G-CSF, TNF-α, IL-1α, IL-1β, and IL-6, excessive neutrophil infiltration, and reduced pulmonary lymphocyte levels as tuberculosis (TB) progressed. Notably, lungs of male Nox2-/- mice were predominantly populated with CD11bintLy6GintCXCR2loCD62Llo immature neutrophils which featured mycobacterial permissiveness. By diminishing total lung neutrophils or reducing immature neutrophils, TB immunopathogenesis was notably abrogated in male Nox2-/- mice. Ultimately, we identified G-CSF as the pivotal trigger that exacerbates the generation of immature permissive neutrophils, leading to TB immunopathogenesis in male Nox2-/- mice. In contrast, neutralizing IL-1α and IL-1β, which are previously known factors responsible for TB pathogenesis in Nox2-/- mice, aggravated TB immunopathogenesis. Our study revealed that G-CSF-driven immature and permissive pulmonary neutrophils are the primary cause of TB immunopathogenesis and lung hyperinflammation in male Nox2-/- mice. This highlights the importance of quantitative and qualitative control of pulmonary neutrophils to alleviate TB progression in a phagocyte oxidase-deficient condition.
Collapse
Affiliation(s)
- Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong-Hee Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Hagyu Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji-Hwan Ryu
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
- KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Yang Y, Yang R, Deng F, Yang L, Yang G, Liu Y, Tian Q, Wang Z, Li A, Shang L, Cheng G, Zhang L. Immunoactivation by Cutaneous Blue Light Irradiation Inhibits Remote Tumor Growth and Metastasis. ACS Pharmacol Transl Sci 2024; 7:1055-1068. [PMID: 38633599 PMCID: PMC11019738 DOI: 10.1021/acsptsci.3c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
An improved innate immunity will respond quickly to pathogens and initiate efficient adaptive immune responses. However, up to now, there have been limited clinical ways for effective and rapid consolidation of innate immunity. Here, we report that cutaneous irradiation with blue light of 450 nm rapidly stimulates the innate immunity through cell endogenous reactive oxygen species (ROS) regulation in a noninvasive way. The iron porphyrin-containing proteins, mitochondrial cytochrome c (Cyt-c), and cytochrome p450 (CYP450) can be mobilized by blue light, which boosts electron transport and ROS production in epidermal and dermal tissues. As a messenger of innate immune activation, the increased level of ROS activates the NF-κB signaling pathway and promotes the secretion of immunomodulatory cytokines in skin. Initiated from skin, a regulatory network composed of cytokines and immune cells is established through the circulation system for innate immune activation. The innate immunity activated by whole-body blue light irradiation inhibits tumor growth and metastasis by increasing the infiltration of antitumor neutrophils and tumor-associated macrophages. Our results elucidate the remote immune modulation mechanism of blue light and provide a clinically applicable way for innate immunity activation.
Collapse
Affiliation(s)
- Yingchun Yang
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Rong Yang
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Fangqing Deng
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Luqiu Yang
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Guanghao Yang
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanyan Liu
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qing Tian
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zixi Wang
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Aipeng Li
- School
of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Li Shang
- School
of Materials Science and Engineering, Northwestern
Polytechnical University, Xi’an 710072, China
| | - Genyang Cheng
- Department
of Nephrology, the First Affiliated Hospital
of Zhengzhou University, Zhengzhou 450052, China
| | - Lianbing Zhang
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
5
|
King J, Dambuza IM, Reid DM, Yuecel R, Brown GD, Warris A. Detailed characterisation of invasive aspergillosis in a murine model of X-linked chronic granulomatous disease shows new insights in infections caused by Aspergillus fumigatus versus Aspergillus nidulans. Front Cell Infect Microbiol 2023; 13:1241770. [PMID: 37724291 PMCID: PMC10505440 DOI: 10.3389/fcimb.2023.1241770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023] Open
Abstract
Introduction Invasive aspergillosis (IA) is the most prevalent infectious complication in patients with chronic granulomatous disease (CGD). Yet, understanding of fungal pathogenesis in the CGD host remains limited, particularly with regards to A. nidulans infection. Methods We have used a murine model of X-linked CGD to investigate how the pathogenesis of IA varies between A. fumigatus and A. nidulans, comparing infection in both X-linked CGD (gp91-/-) mice and their parent C57BL/6 (WT) mice. A 14-colour flow cytometry panel was used to assess the cell dynamics over the course of infection, with parallel assessment of pulmonary cytokine production and lung histology. Results We observed a lack of association between pulmonary pathology and infection outcome in gp91-/- mice, with no significant mortality in A. nidulans infected mice. An overwhelming and persistent neutrophil recruitment and IL-1 release in gp91-/- mice following both A. fumigatus and A. nidulans infection was observed, with divergent macrophage, dendritic cell and eosinophil responses and distinct cytokine profiles between the two infections. Conclusion We have provided an in-depth characterisation of the immune response to pulmonary aspergillosis in an X-linked CGD murine model. This provides the first description of distinct pulmonary inflammatory environments in A. fumigatus and A. nidulans infection in X-linked CGD and identifies several new avenues for further research.
Collapse
Affiliation(s)
- Jill King
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of General Paediatrics, Royal Aberdeen Children’s Hospital, Aberdeen, United Kingdom
| | - Ivy M. Dambuza
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Delyth M. Reid
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Raif Yuecel
- Exeter Centre for Cytometrics, University of Exeter, Exeter, United Kingdom
- Iain Fraser Cytometry Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Gordon D. Brown
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Adilia Warris
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
6
|
Song Z, Bhattacharya S, Huang G, Greenberg ZJ, Yang W, Bagaitkar J, Schuettpelz LG, Dinauer MC. NADPH oxidase 2 limits amplification of IL-1β-G-CSF axis and an immature neutrophil subset in murine lung inflammation. Blood Adv 2023; 7:1225-1240. [PMID: 36103336 PMCID: PMC10111367 DOI: 10.1182/bloodadvances.2022007652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
Abstract
The leukocyte NADPH oxidase 2 (NOX2) regulates inflammation independent of its antimicrobial activity. Inherited defects in NOX2 lead to chronic granulomatous disease (CGD), associated with recurrent bacterial and fungal infections, often with excessive neutrophilic inflammation that results in significant inflammatory burden and tissue damage. We previously showed that excessive leukotriene B4 (LTB4) production by NOX2-deficient mouse neutrophils was a key driver of elevated lung neutrophil infiltration in the initial response to pulmonary challenge with the model fungal particle zymosan. We now identify interleukin-1β (IL-1β) and downstream granulocyte colony-stimulating factor (G-CSF) as critical amplifying signals that augment and sustain neutrophil accrual in CGD mice. Neutrophils, delivered into the lung via LTB4, were the primary source of IL-1β within the airways, and their increased numbers in CGD lungs led to significantly elevated local and plasma G-CSF. Elevated G-CSF simultaneously promoted increased granulopoiesis and mobilized the release of higher numbers of an immature CD101- neutrophil subset from the marrow, which trafficked to the lung and acquired a significantly more proinflammatory transcriptome in CGD mice compared with wild-type mice. Thus, neutrophil-produced IL-1β and downstream G-CSF act sequentially but nonredundantly with LTB4 to deploy neutrophils and amplify inflammation in CGD mice after inhalation of zymosan. NOX2 plays a critical role in dampening multiple components of a feed-forward pipeline for neutrophil recruitment, and these findings highlight NOX2 as a key regulator of neutrophil number, subsets, and function at inflamed sites.
Collapse
Affiliation(s)
- Zhimin Song
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Sourav Bhattacharya
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Guangming Huang
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Zev J. Greenberg
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Juhi Bagaitkar
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH
| | - Laura G. Schuettpelz
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Mary C. Dinauer
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
7
|
Noel JG, Ramser SW, Pitstick L, Goetzman HS, Dale EL, Potter A, Adam M, Potter SS, Gardner JC. IL-1/MyD88-Dependent G-CSF and IL-6 Secretion Mediates Postburn Anemia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:972-980. [PMID: 36779805 PMCID: PMC10038902 DOI: 10.4049/jimmunol.2200785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/27/2023] [Indexed: 02/14/2023]
Abstract
The anemia of critical illness (ACI) is a nearly universal pathophysiological consequence of burn injury and a primary reason burn patients require massive quantities of transfused blood. Inflammatory processes are expected to drive postburn ACI and prevent meaningful erythropoietic stimulation through iron or erythropoietin supplementation, but to this day no specific inflammatory pathways have been identified as a critical mechanism. In this study, we examined whether secretion of G-CSF and IL-6 mediates distinct features of postburn ACI and interrogated inflammatory mechanisms that could be responsible for their secretion. Our analysis of mouse and human skin samples identified the burn wound as a primary source of G-CSF and IL-6 secretion. We show that G-CSF and IL-6 are secreted independently through an IL-1/MyD88-dependent mechanism, and we ruled out TLR2 and TLR4 as critical receptors. Our results indicate that IL-1/MyD88-dependent G-CSF secretion plays a key role in impairing medullary erythropoiesis and IL-6 secretion plays a key role in limiting the access of erythroid cells to iron. Importantly, we found that IL-1α/β neutralizing Abs broadly attenuated features of postburn ACI that could be attributed to G-CSF or IL-6 secretion and rescued deficits of circulating RBC counts, hemoglobin, and hematocrit caused by burn injury. We conclude that wound-based IL-1/MyD88 signaling mediates postburn ACI through induction of G-CSF and IL-6 secretion.
Collapse
Affiliation(s)
- John G Noel
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Seth W Ramser
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Lori Pitstick
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Holly S Goetzman
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Elizabeth L Dale
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Andrew Potter
- Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Mike Adam
- Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - S Steven Potter
- Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Jason C Gardner
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
8
|
Idol RA, Bhattacharya S, Huang G, Song Z, Huttenlocher A, Keller NP, Dinauer MC. Neutrophil and Macrophage NADPH Oxidase 2 Differentially Control Responses to Inflammation and to Aspergillus fumigatus in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1960-1972. [PMID: 36426951 PMCID: PMC9643661 DOI: 10.4049/jimmunol.2200543] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022]
Abstract
Aspergillus fumigatus is an important opportunistic fungal pathogen and causes invasive pulmonary aspergillosis in conditions with compromised innate antifungal immunity, including chronic granulomatous disease, which results from inherited deficiency of the superoxide-generating leukocyte NADPH oxidase 2 (NOX2). Derivative oxidants have both antimicrobial and immunoregulatory activity and, in the context of A. fumigatus, contribute to both fungal killing and dampening inflammation induced by fungal cell walls. As the relative roles of macrophage versus neutrophil NOX2 in the host response to A. fumigatus are incompletely understood, we studied mice with conditional deletion of NOX2. When NOX2 was absent in alveolar macrophages as a result of LysM-Cre-mediated deletion, germination of inhaled A. fumigatus conidia was increased. Reducing NOX2 activity specifically in neutrophils via S100a8 (MRP8)-Cre also increased fungal burden, which was inversely proportional to the level of neutrophil NOX2 activity. Moreover, diminished NOX2 in neutrophils synergized with corticosteroid immunosuppression to impair lung clearance of A. fumigatus. Neutrophil-specific reduction in NOX2 activity also enhanced acute inflammation induced by inhaled sterile fungal cell walls. These results advance understanding into cell-specific roles of NOX2 in the host response to A. fumigatus. We show that alveolar macrophage NOX2 is a nonredundant effector that limits germination of inhaled A. fumigatus conidia. In contrast, reducing NOX2 activity only in neutrophils is sufficient to enhance inflammation to fungal cell walls as well as to promote invasive A. fumigatus. This may be relevant in clinical settings with acquired defects in NOX2 activity due to underlying conditions, which overlap risk factors for invasive aspergillosis.
Collapse
Affiliation(s)
- Rachel A. Idol
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Sourav Bhattacharya
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Guangming Huang
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Zhimin Song
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology and Department of Pediatrics, University of Wisconsin, Madison, WI 53706, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology and Department of Bacteriology, University of Wisconsin, Madison, WI 53706
| | - Mary C. Dinauer
- Department of Pediatrics and Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Elmas O, Cenik P, Sirinyildiz F, Elmas S, Sirin F, Cesur G. Relationship between cognitive functions, levels of NR2A
and NR2B subunits of hippocampal NMDA receptors, serum
TGF-β1 level, and oxidative stress in rats fed a high-fat diet. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/152027/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Macrophage NOX2 NADPH oxidase maintains alveolar homeostasis in mice. Blood 2022; 139:2855-2870. [PMID: 35357446 PMCID: PMC9101249 DOI: 10.1182/blood.2021015365] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
The leukocyte NADPH oxidase 2 (NOX2) plays a key role in pathogen killing and immunoregulation. Genetic defects in NOX2 result in chronic granulomatous disease (CGD), associated with microbial infections and inflammatory disorders, often involving the lung. Alveolar macrophages (AMs) are the predominant immune cell in the airways at steady state, and limiting their activation is important, given the constant exposure to inhaled materials, yet the importance of NOX2 in this process is not well understood. In this study, we showed a previously undescribed role for NOX2 in maintaining lung homeostasis by suppressing AM activation, in CGD mice or mice with selective loss of NOX2 preferentially in macrophages. AMs lacking NOX2 had increased cytokine responses to Toll-like receptor-2 (TLR2) and TLR4 stimulation ex vivo. Moreover, between 4 and 12 week of age, mice with global NOX2 deletion developed an activated CD11bhigh subset of AMs with epigenetic and transcriptional profiles reflecting immune activation compared with WT AMs. The presence of CD11bhigh AMs in CGD mice correlated with an increased number of alveolar neutrophils and proinflammatory cytokines at steady state and increased lung inflammation after insults. Moreover, deletion of NOX2 preferentially in macrophages was sufficient for mice to develop an activated CD11bhigh AM subset and accompanying proinflammatory sequelae. In addition, we showed that the altered resident macrophage transcriptional profile in the absence of NOX2 is tissue specific, as those changes were not seen in resident peritoneal macrophages. Thus, these data demonstrate that the absence of NOX2 in alveolar macrophages leads to their proinflammatory remodeling and dysregulates alveolar homeostasis.
Collapse
|
11
|
Yuan Q, Basit A, Liang W, Qu R, Luan Y, Ren C, Li A, Xu X, Liu X, Yang C, Kuo A, Pierce R, Zhang L, Turk B, Hu X, Li F, Cui W, Li R, Huang D, Mo L, Sessa WC, Lee PJ, Kluger Y, Su B, Tang W, He J, Wu D. Pazopanib ameliorates acute lung injuries via inhibition of MAP3K2 and MAP3K3. Sci Transl Med 2021; 13:13/591/eabc2499. [PMID: 33910977 DOI: 10.1126/scitranslmed.abc2499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 11/02/2022]
Abstract
Acute lung injury (ALI) causes high mortality and lacks any pharmacological intervention. Here, we found that pazopanib ameliorated ALI manifestations and reduced mortality in mouse ALI models and reduced edema in human lung transplantation recipients. Pazopanib inhibits mitogen-activated protein kinase kinase kinase 2 (MAP3K2)- and MAP3K3-mediated phosphorylation of NADPH oxidase 2 subunit p47phox at Ser208 to increase reactive oxygen species (ROS) formation in myeloid cells. Genetic inactivation of MAP3K2 and MAP3K3 in myeloid cells or hematopoietic mutation of p47phox Ser208 to alanine attenuated ALI manifestations and abrogates anti-ALI effects of pazopanib. This myeloid MAP3K2/MAP3K3-p47phox pathway acted via paracrine H2O2 to enhance pulmonary vasculature integrity and promote lung epithelial cell survival and proliferation, leading to increased pulmonary barrier function and resistance to ALI. Thus, pazopanib has the potential to be effective for treating ALI.
Collapse
Affiliation(s)
- Qianying Yuan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Abdul Basit
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Wenhua Liang
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Rihao Qu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yi Luan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chunguang Ren
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ao Li
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xin Xu
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Xiaoqing Liu
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Chun Yang
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Andrew Kuo
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard Pierce
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Longbo Zhang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Benjamin Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xin Hu
- Department of Biostatistics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fangyong Li
- Department of Biostatistics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Weixue Cui
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Run Li
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Danxia Huang
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Lili Mo
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Patty J Lee
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Bing Su
- Shanghai Institute of Immunology, Shanghai Jiaotong University, Shanghai 200025, China.
| | - Wenwen Tang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jianxing He
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China.
| | - Dianqing Wu
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
12
|
Zhang L, Yao J, Wei Y, Zhou Z, Li P, Qu J, Badu-Nkansah A, Yuan X, Huang YW, Fukumura K, Mao X, Chang WC, Saunus J, Lakhani S, Huse JT, Hung MC, Yu D. Blocking immunosuppressive neutrophils deters pY696-EZH2-driven brain metastases. Sci Transl Med 2021; 12:12/545/eaaz5387. [PMID: 32461334 DOI: 10.1126/scitranslmed.aaz5387] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
The functions of immune cells in brain metastases are unclear because the brain has traditionally been considered "immune privileged." However, we found that a subgroup of immunosuppressive neutrophils is recruited into the brain, enabling brain metastasis development. In brain metastatic cells, enhancer of zeste homolog 2 (EZH2) is highly expressed and phosphorylated at tyrosine-696 (pY696)-EZH2 by nuclear-localized Src tyrosine kinase. Phosphorylation of EZH2 at Y696 changes its binding preference from histone H3 to RNA polymerase II, which consequently switches EZH2's function from a methyltransferase to a transcription factor that increases c-JUN expression. c-Jun up-regulates protumorigenic inflammatory cytokines, including granulocyte colony-stimulating factor (G-CSF), which recruits Arg1+- and PD-L1+ immunosuppressive neutrophils into the brain to drive metastasis outgrowth. G-CSF-blocking antibodies or immune checkpoint blockade therapies combined with Src inhibitors impeded brain metastasis in multiple mouse models. These findings indicate that pY696-EZH2 can function as a methyltransferase-independent transcription factor to facilitate the brain infiltration of immunosuppressive neutrophils, which could be clinically targeted for brain metastasis treatment.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhifen Zhou
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jingkun Qu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Akosua Badu-Nkansah
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiangliang Yuan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Wen Huang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
| | - Kazutaka Fukumura
- Department of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xizeng Mao
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
| | - Jodi Saunus
- Faculty of Medicine, University of Queensland, St Lucia, QLD 4072, Australia
| | - Sunil Lakhani
- Faculty of Medicine, University of Queensland, St Lucia, QLD 4072, Australia.,Pathology Queensland, The Royal Brisbane & Women's Hospital, Herston, QLD 4029, Australia
| | - Jason T Huse
- Department of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.,Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
13
|
Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants (Basel) 2021; 10:890. [PMID: 34205998 PMCID: PMC8228183 DOI: 10.3390/antiox10060890] [Citation(s) in RCA: 354] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
The reactive oxygen species (ROS)-producing enzyme NADPH oxidase (NOX) was first identified in the membrane of phagocytic cells. For many years, its only known role was in immune defense, where its ROS production leads to the destruction of pathogens by the immune cells. NOX from phagocytes catalyzes, via one-electron trans-membrane transfer to molecular oxygen, the production of the superoxide anion. Over the years, six human homologs of the catalytic subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the NOX2/gp91phox component present in the phagocyte NADPH oxidase assembly itself, the homologs are now referred to as the NOX family of NADPH oxidases. NOX are complex multidomain proteins with varying requirements for assembly with combinations of other proteins for activity. The recent structural insights acquired on both prokaryotic and eukaryotic NOX open new perspectives for the understanding of the molecular mechanisms inherent to NOX regulation and ROS production (superoxide or hydrogen peroxide). This new structural information will certainly inform new investigations of human disease. As specialized ROS producers, NOX enzymes participate in numerous crucial physiological processes, including host defense, the post-translational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. These diversities of physiological context will be discussed in this review. We also discuss NOX misregulation, which can contribute to a wide range of severe pathologies, such as atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, or neurodegenerative diseases, giving this family of membrane proteins a strong therapeutic interest.
Collapse
Affiliation(s)
- Annelise Vermot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Isabelle Petit-Härtlein
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Susan M. E. Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA;
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| |
Collapse
|
14
|
Dutta O, Espinosa V, Wang K, Avina S, Rivera A. Dectin-1 Promotes Type I and III Interferon Expression to Support Optimal Antifungal Immunity in the Lung. Front Cell Infect Microbiol 2020; 10:321. [PMID: 32733815 PMCID: PMC7360811 DOI: 10.3389/fcimb.2020.00321] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022] Open
Abstract
Pulmonary infections with Aspergillus fumigatus (Af) are a significant cause of invasive fungal disease and lead to high morbidity and mortality in diverse populations throughout the world. Currently available antifungal drugs are often ineffective, thus contributing to unacceptably high mortality rates in patients suffering from invasive fungal infections. The use of cytokines as adjunctive immune therapies holds the promise of significantly improving patient outcomes in the future. In recent studies, we identified an essential role for type I and III interferons as regulators of optimal antifungal responses by pulmonary neutrophils during infection with Af. Although various membrane and cytosolic nucleic acid sensors are known to regulate interferon production in response to viruses, the pathways that regulate the production of these cytokines during fungal infection remain uncovered. In the current study, we demonstrate that dectin-1-mediated recognition of β-glucan on the cell wall of the clinically relevant fungal pathogen Aspergillus fumigatus promotes the activation of a protective cascade of type I and III interferon expression. We further demonstrate that exogenous administration of type I and III interferons can rescue inadequate antifungal responses in dectin-1−/− mice, suggesting the potential therapeutic benefit of these cytokines as activators of antifungal defense in the context of innate defects.
Collapse
Affiliation(s)
- Orchi Dutta
- Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Newark, NJ, United States.,Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Vanessa Espinosa
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Keyi Wang
- Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Newark, NJ, United States.,Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Samantha Avina
- Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Newark, NJ, United States.,Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Amariliz Rivera
- Department of Pediatrics, Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| |
Collapse
|
15
|
Song Z, Huang G, Chiquetto Paracatu L, Grimes D, Gu J, Luke CJ, Clemens RA, Dinauer MC. NADPH oxidase controls pulmonary neutrophil infiltration in the response to fungal cell walls by limiting LTB4. Blood 2020; 135:891-903. [PMID: 31951647 PMCID: PMC7082617 DOI: 10.1182/blood.2019003525] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
Leukocyte reduced NADP (NADPH) oxidase plays a key role in host defense and immune regulation. Genetic defects in NADPH oxidase result in chronic granulomatous disease (CGD), characterized by recurrent bacterial and fungal infections and aberrant inflammation. Key drivers of hyperinflammation induced by fungal cell walls in CGD are still incompletely defined. In this study, we found that CGD (CYBB-) neutrophils produced higher amounts of leukotriene B4 (LTB4) in vitro after activation with zymosan or immune complexes, compared with wild-type (WT) neutrophils. This finding correlated with increased calcium influx in CGD neutrophils, which was restrained in WT neutrophils by the electrogenic activity of NADPH oxidase. Increased LTB4 generation by CGD neutrophils was also augmented by paracrine cross talk with the LTB4 receptor BLT1. CGD neutrophils formed more numerous and larger clusters in the presence of zymosan in vitro compared with WT cells, and the effect was also LTB4- and BLT1-dependent. In zymosan-induced lung inflammation, focal neutrophil infiltrates were increased in CGD compared with WT mice and associated with higher LTB4 levels. Inhibiting LTB4 synthesis or antagonizing the BLT1 receptor after zymosan challenge reduced lung neutrophil recruitment in CGD to WT levels. Thus, LTB4 was the major driver of excessive neutrophilic lung inflammation in CGD mice in the early response to fungal cell walls, likely by a dysregulated feed-forward loop involving amplified neutrophil production of LTB4. This study identifies neutrophil LTB4 generation as a target of NADPH oxidase regulation, which could potentially be exploited therapeutically to reduce excessive inflammation in CGD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mary C Dinauer
- Department of Pediatrics
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO
| |
Collapse
|
16
|
Thimmulappa RK, Chattopadhyay I, Rajasekaran S. Oxidative Stress Mechanisms in the Pathogenesis of Environmental Lung Diseases. OXIDATIVE STRESS IN LUNG DISEASES 2019. [PMCID: PMC7120104 DOI: 10.1007/978-981-32-9366-3_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Globally, respiratory diseases are major cause of disability and mortality, and more alarmingly, it disproportionately affects developing countries, which is largely attributed to poor quality of air. Tobacco smoke and emissions from combustion of fossil fuel and biomass fuel are the major airborne pollutants affecting human lung health. Oxidative stress is the dominant driving force by which the airborne pollutants exert their toxicity in lungs and cause respiratory diseases. Most airborne pollutants are associated with intrinsic oxidative potential and, additionally, stimulate endogenous production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Elevated ROS and RNS in lungs modulate redox signals and cause irreversible damage to critical biomolecules (lipids, proteins and DNA) and initiate various pathogenic cellular process. This chapter provides an insight into oxidative stress-linked pathogenic cellular process such as lipid peroxidation, inflammation, cell death, mitochondrial dysfunction, endoplasmic reticulum stress, epigenetic changes, profibrotic signals and mucus hypersecretion, which drive the development and progression of lung diseases. Lungs are associated with robust enzymatic and non-enzymatic (GSH, ascorbic acid, uric acid, vitamin E) antioxidant defences. However, sustained production of free radicals due to continuous exposures to airborne pollutants overwhelms lung antioxidant defences and causes oxidative injury. Preclinical studies have demonstrated the critical roles and therapeutic potential of upregulating lung antioxidants for intervention of respiratory diseases; however, so far clinical benefits in antioxidant supplementation trials have been minimal and conflicting. Antioxidants alone may not be effective in treatment of respiratory diseases; however it could be a promising adjunctive therapy.
Collapse
|
17
|
Li J, Wang D, Xing X, Cheng TJR, Liang PH, Bulone V, Park JH, Hsieh YS. Structural analysis and biological activity of cell wall polysaccharides extracted from Panax ginseng marc. Int J Biol Macromol 2019; 135:29-37. [DOI: 10.1016/j.ijbiomac.2019.05.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 01/01/2023]
|
18
|
Kawasaki disease and immunodeficiencies in children: case reports and literature review. Rheumatol Int 2019; 39:1829-1838. [PMID: 31312887 DOI: 10.1007/s00296-019-04382-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022]
Abstract
Kawasaki disease (KD) has features that appear supporting an infectious cause with a secondary deranged inflammatory/autoimmune response. The association of KD in adults with human immunodeficiency virus infection and the presence of KD in patients with immunodeficiency disorders support the infectious theory. We present four KD patients associated with immunodeficiencies: one with X-linked agammaglobulinemia, one with HIV infection, and two with leukemia; one of these patients also had Down syndrome. We did a literature search to find out all reported cases of immunodeficiency with KD in children. In immunodeficiency disorders, the inability of the immune system to eradicate the pathogens coupled to an exaggerated inflammatory response, especially in chronic granulomatous disease, may lead to the development of KD. The study of patients with immunodeficiencies complicated with KD may shed light into the etiopathogenesis of the disease.
Collapse
|
19
|
Metal Nanoparticles Released from Dental Implant Surfaces: Potential Contribution to Chronic Inflammation and Peri-Implant Bone Loss. MATERIALS 2019; 12:ma12122036. [PMID: 31242601 PMCID: PMC6630980 DOI: 10.3390/ma12122036] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Peri-implantitis is an inflammatory disease affecting tissues surrounding dental implants. Although it represents a common complication of dental implant treatments, the underlying mechanisms have not yet been fully described. The aim of this study is to identify the role of titanium nanoparticles released form the implants on the chronic inflammation and bone lysis in the surrounding tissue. We analyzed the in vitro effect of titanium (Ti) particle exposure on mesenchymal stem cells (MSCs) and fibroblasts (FU), evaluating cell proliferation by MTT test and the generation of reactive oxygen species (ROS). Subsequently, in vivo analysis of peri-implant Ti particle distribution, histological, and molecular analyses were performed. Ti particles led to a time-dependent decrease in cell viability and increase in ROS production in both MSCs and FU. Tissue analyses revealed presence of oxidative stress, high extracellular and intracellular Ti levels and imbalanced bone turnover. High expression of ZFP467 and the presence of adipose-like tissue suggested dysregulation of the MSC population; alterations in vessel morphology were identified. The results suggest that Ti particles may induce the production of high ROS levels, recruiting abnormal quantity of neutrophils able to produce high level of metalloproteinase. This induces the degradation of collagen fibers. These events may influence MSC commitment, with an imbalance of bone regeneration.
Collapse
|
20
|
Fuchs A, Monlish DA, Ghosh S, Chang SW, Bochicchio GV, Schuettpelz LG, Turnbull IR. Trauma Induces Emergency Hematopoiesis through IL-1/MyD88-Dependent Production of G-CSF. THE JOURNAL OF IMMUNOLOGY 2019; 202:3020-3032. [PMID: 30988118 DOI: 10.4049/jimmunol.1801456] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/14/2019] [Indexed: 12/24/2022]
Abstract
The inflammatory response to infection or injury dramatically increases the hematopoietic demand on the bone marrow to replace effector leukocytes consumed in the inflammatory response. In the setting of infection, pathogen-associated molecular patterns induce emergency hematopoiesis, activating hematopoietic stem and progenitor cells to proliferate and produce progeny for accelerated myelopoiesis. Sterile tissue injury due to trauma also increases leukocyte demand; however, the effect of sterile tissue injury on hematopoiesis is not well described. We find that tissue injury alone induces emergency hematopoiesis in mice subjected to polytrauma. This process is driven by IL-1/MyD88-dependent production of G-CSF. G-CSF induces the expansion of hematopoietic progenitors, including hematopoietic stem cells and multipotent progenitors, and increases the frequency of myeloid-skewed progenitors. To our knowledge, these data provide the first comprehensive description of injury-induced emergency hematopoiesis and identify an IL-1/MyD88/G-CSF-dependent pathway as the key regulator of emergency hematopoiesis after injury.
Collapse
Affiliation(s)
- Anja Fuchs
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and
| | - Darlene A Monlish
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Sarbani Ghosh
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and
| | - Shin-Wen Chang
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and
| | - Grant V Bochicchio
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and
| | - Laura G Schuettpelz
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Isaiah R Turnbull
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and
| |
Collapse
|
21
|
Zeng MY, Miralda I, Armstrong CL, Uriarte SM, Bagaitkar J. The roles of NADPH oxidase in modulating neutrophil effector responses. Mol Oral Microbiol 2019; 34:27-38. [PMID: 30632295 DOI: 10.1111/omi.12252] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Neutrophils are phagocytic innate immune cells essential for killing bacteria via activation of a wide variety of effector responses and generation of large amounts of reactive oxygen species (ROS). Majority of the ROS in neutrophils is generated by activation of the superoxide-generating enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Independent of their anti-microbial function, NADPH oxidase-derived ROS have emerged as key regulators of host immune responses and neutrophilic inflammation. Data from patients with inherited defects in the NADPH oxidase subunit alleles that ablate its enzyme function as well as mouse models demonstrate profound dysregulation of host inflammatory responses, neutrophil hyper-activation and tissue damage in response to microbial ligands or tissue trauma. A large body of literature now demonstrates how oxidants function as essential signaling molecules that are essential for the regulation of neutrophil responses during priming, degranulation, neutrophil extracellular trap formation, and apoptosis, independent of their role in microbial killing. In this review we summarize how NADPH oxidase-derived oxidants modulate neutrophil function in a cell intrinsic manner and regulate host inflammatory responses. In addition, we summarize studies that have elucidated possible roles of oxidants in neutrophilic responses within the oral mucosa and periodontal disease.
Collapse
Affiliation(s)
- Melody Y Zeng
- Department of Pediatrics and Drukier Institute for Children's Health, Weill Cornell Medical College, New York City, New York
| | - Irina Miralda
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Cortney L Armstrong
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Silvia M Uriarte
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky.,Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Juhi Bagaitkar
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky.,Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky
| |
Collapse
|
22
|
A Metabolism-Based Quorum Sensing Mechanism Contributes to Termination of Inflammatory Responses. Immunity 2018; 49:654-665.e5. [DOI: 10.1016/j.immuni.2018.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/26/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022]
|
23
|
Zhong J, Scholz T, Yau ACY, Guerard S, Hüffmeier U, Burkhardt H, Holmdahl R. Mannan-induced Nos2 in macrophages enhances IL-17-driven psoriatic arthritis by innate lymphocytes. SCIENCE ADVANCES 2018; 4:eaas9864. [PMID: 29774240 PMCID: PMC5955621 DOI: 10.1126/sciadv.aas9864] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/06/2018] [Indexed: 05/29/2023]
Abstract
Previous identification of the inducible nitric oxide synthase (NOS2) gene as a risk allele for psoriasis (Ps) and psoriatic arthritis (PsA) suggests a possible pathogenic role of nitric oxide (NO). Using a mouse model of mannan-induced Ps and PsA (MIP), where macrophages play a regulatory role by releasing reactive oxygen species (ROS), we found that NO was detectable before disease onset in mice, independent of a functional nicotinamide adenine dinucleotide phosphate oxidase 2 complex. MIP was suppressed by either deletion of Nos2 or inhibition of NO synthases with NG-nitro-l-arginine methyl ester, demonstrating that Nos2-derived NO is pathogenic. NOS2 expression was also up-regulated in lipopolysaccharide- and interferon-γ-stimulated monocyte subsets from patients with PsA compared to healthy controls. Nos2-dependent interleukin-1α (IL-1α) release from skin macrophages was essential for arthritis development by promoting IL-17 production of innate lymphoid cells. We conclude that Nos2-derived NO by tissue macrophages promotes MIP, in contrast to the protective effect by ROS.
Collapse
Affiliation(s)
- Jianghong Zhong
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Tatjana Scholz
- Project Group Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology and Division of Rheumatology, University Hospital Frankfurt, Goethe University, Frankfurt am Main 605 90, Germany
| | - Anthony C. Y. Yau
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Simon Guerard
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Ulrike Hüffmeier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 910 54, Germany
| | - Harald Burkhardt
- Project Group Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology and Division of Rheumatology, University Hospital Frankfurt, Goethe University, Frankfurt am Main 605 90, Germany
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 77, Sweden
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
NADPH oxidase activation regulates apoptotic neutrophil clearance by murine macrophages. Blood 2018; 131:2367-2378. [PMID: 29618478 DOI: 10.1182/blood-2017-09-809004] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
The phagocyte reduced NAD phosphate (NADPH) oxidase generates superoxide, the precursor to reactive oxygen species (ROS) that has both antimicrobial and immunoregulatory functions. Inactivating mutations in NADPH oxidase alleles cause chronic granulomatous disease (CGD), characterized by enhanced susceptibility to life-threatening microbial infections and inflammatory disorders; hypomorphic NADPH oxidase alleles are associated with autoimmunity. Impaired apoptotic cell (AC) clearance is implicated as an important contributing factor in chronic inflammation and autoimmunity, but the role of NADPH oxidase-derived ROS in this process is incompletely understood. Here, we demonstrate that phagocytosis of AC (efferocytosis) potently activated NADPH oxidase in mouse peritoneal exudate macrophages (PEMs). ROS generation was dependent on macrophage CD11b, Toll-like receptor 2 (TLR2), TLR4, and myeloid differentiation primary response 88 (MyD88), and was also regulated by phosphatidylinositol 3-phosphate binding to the p40 phox oxidase subunit. Maturation of efferosomes containing apoptotic neutrophils was significantly delayed in CGD PEMs, including acidification and acquisition of proteolytic activity, and was associated with slower digestion of apoptotic neutrophil proteins. Treatment of wild-type macrophages with the vacuolar-type H+ ATPase inhibitor bafilomycin also delayed proteolysis within efferosomes, showing that luminal acidification was essential for efficient digestion of efferosome proteins. Finally, cross-presentation of AC-associated antigens by CGD PEMs to CD8 T cells was increased. These studies unravel a key role for the NADPH oxidase in the disposal of ACs by inflammatory macrophages. The oxidants generated promote efferosome maturation and acidification that facilitate the degradation of ingested ACs.
Collapse
|
25
|
Abstract
The balance between reactive oxygen species and reactive nitrogen species production by the host and stress response by fungi is a key axis of the host-pathogen interaction. This review will describe emerging themes in fungal pathogenesis underpinning this axis.
Collapse
Affiliation(s)
- Adilia Warris
- Medical Research Centre for Medical Mycology, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, UK
| | - Elizabeth R Ballou
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
26
|
Rider P, Voronov E, Dinarello CA, Apte RN, Cohen I. Alarmins: Feel the Stress. THE JOURNAL OF IMMUNOLOGY 2017; 198:1395-1402. [PMID: 28167650 DOI: 10.4049/jimmunol.1601342] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
Abstract
Over the last decade, danger-associated molecular pattern molecules, or alarmins, have been recognized as signaling mediators of sterile inflammatory responses after trauma and injury. In contrast with the accepted passive release models suggested by the "danger hypothesis," it was recently shown that alarmins can also directly sense and report damage by signaling to the environment when released from live cells undergoing physiological stress, even without loss of subcellular compartmentalization. In this article, we review the involvement of alarmins such as IL-1α, IL-33, IL-16, and high-mobility group box 1 in cellular and physiological stress, and suggest a novel activity of these molecules as central initiators of sterile inflammation in response to nonlethal stress, a function we denote "stressorins." We highlight the role of posttranslational modifications of stressorins as key regulators of their activity and propose that targeted inhibition of stressorins or their modifiers could serve as attractive new anti-inflammatory treatments for a broad range of diseases.
Collapse
Affiliation(s)
- Peleg Rider
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | | | - Ron N Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Idan Cohen
- Faculty of Medicine, Galilee Medical Center, Nahariya Hospital, 22100 Nahariya, Israel
| |
Collapse
|
27
|
Jacob CO, Yu N, Yoo DG, Perez-Zapata LJ, Barbu EA, Kaplan MJ, Purmalek M, Pingel JT, Idol RA, Dinauer MC. Haploinsufficiency of NADPH Oxidase Subunit Neutrophil Cytosolic Factor 2 Is Sufficient to Accelerate Full-Blown Lupus in NZM 2328 Mice. Arthritis Rheumatol 2017; 69:1647-1660. [DOI: 10.1002/art.40141] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Chaim O. Jacob
- University of Southern California School of Medicine; Los Angeles
| | - Ning Yu
- University of Southern California School of Medicine; Los Angeles
| | - Dae-Goon Yoo
- Washington University School of Medicine in St. Louis; St. Louis Missouri
| | | | - Emilia Alina Barbu
- Washington University School of Medicine in St. Louis; St. Louis Missouri
| | - Mariana J. Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH; Bethesda Maryland
| | - Monica Purmalek
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH; Bethesda Maryland
| | - Jeanette T. Pingel
- Washington University School of Medicine in St. Louis; St. Louis Missouri
| | - Rachel A. Idol
- Washington University School of Medicine in St. Louis; St. Louis Missouri
| | - Mary C. Dinauer
- Washington University School of Medicine in St. Louis; St. Louis Missouri
| |
Collapse
|
28
|
Warnatsch A, Tsourouktsoglou TD, Branzk N, Wang Q, Reincke S, Herbst S, Gutierrez M, Papayannopoulos V. Reactive Oxygen Species Localization Programs Inflammation to Clear Microbes of Different Size. Immunity 2017; 46:421-432. [PMID: 28314592 PMCID: PMC5965455 DOI: 10.1016/j.immuni.2017.02.013] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/22/2016] [Accepted: 01/13/2017] [Indexed: 12/12/2022]
Abstract
How the number of immune cells recruited to sites of infection is determined and adjusted to differences in the cellular stoichiometry between host and pathogen is unknown. Here, we have uncovered a role for reactive oxygen species (ROS) as sensors of microbe size. By sensing the differential localization of ROS generated in response to microbes of different size, neutrophils tuned their interleukin (IL)-1β expression via the selective oxidation of NF-κB, in order to implement distinct inflammatory programs. Small microbes triggered ROS intracellularly, suppressing IL-1β expression to limit neutrophil recruitment as each phagocyte eliminated numerous pathogens. In contrast, large microbes triggered ROS extracellularly, amplifying IL-1β expression to recruit numerous neutrophils forming cooperative clusters. Defects in ROS-mediated microbe size sensing resulted in large neutrophil infiltrates and clusters in response to small microbes that contribute to inflammatory disease. These findings highlight the impact of ROS localization on signal transduction.
Collapse
Affiliation(s)
- Annika Warnatsch
- Antimicrobial Defence Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | | | - Nora Branzk
- Antimicrobial Defence Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Qian Wang
- Antimicrobial Defence Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Susanna Reincke
- Antimicrobial Defence Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Susanne Herbst
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Maximiliano Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | | |
Collapse
|
29
|
Anti-colony-stimulating factor therapies for inflammatory and autoimmune diseases. Nat Rev Drug Discov 2016; 16:53-70. [PMID: 28031576 DOI: 10.1038/nrd.2016.231] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Dupont M, Ouachée A, Royer J, Dupuy C. [NADPH oxidase: double agent during inflammation?]. Med Sci (Paris) 2016; 32:833-835. [PMID: 27758745 DOI: 10.1051/medsci/20163210014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Magali Dupont
- M1 Biologie Santé, Université Paris-Saclay, 91405 Orsay, France
| | - Alice Ouachée
- M1 Biologie Santé, Université Paris-Saclay, 91405 Orsay, France
| | - Juliette Royer
- M1 Biologie Santé, Université Paris-Saclay, 91405 Orsay, France
| | - Corinne Dupuy
- UMR8200 CNRS, pavillon de recherche 2, Institut Gustave Roussy, 114, rue Édouard Vaillant, 94805 Villejuif, France
| |
Collapse
|
31
|
Farinelli G, Jofra Hernandez R, Rossi A, Ranucci S, Sanvito F, Migliavacca M, Brombin C, Pramov A, Di Serio C, Bovolenta C, Gentner B, Bragonzi A, Aiuti A. Lentiviral Vector Gene Therapy Protects XCGD Mice From Acute Staphylococcus aureus Pneumonia and Inflammatory Response. Mol Ther 2016; 24:1873-1880. [PMID: 27456061 DOI: 10.1038/mt.2016.150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/17/2016] [Indexed: 12/27/2022] Open
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency due to a deficiency in one of the subunits of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. CGD patients are characterized by an increased susceptibility to bacterial and fungal infections, and to granuloma formation due to the excessive inflammatory responses. Several gene therapy approaches with lentiviral vectors have been proposed but there is a lack of in vivo data on the ability to control infections and inflammation. We set up a mouse model of acute infection that closely mimic the airway infection in CGD patients. It involved an intratracheal injection of a methicillin-sensitive reference strain of S. aureus. Gene therapy, with hematopoietic stem cells transduced with regulated lentiviral vectors, restored the functional activity of NADPH oxidase complex (with 20-98% of dihydrorhodamine positive granulocytes and monocytes) and saved mice from death caused by S. aureus, significantly reducing the bacterial load and lung damage, similarly to WT mice even at low vector copy number. When challenged, gene therapy-treated XCGD mice showed correction of proinflammatory cytokines and chemokine imbalance at levels that were comparable to WT. Examined together, our results support the clinical development of gene therapy protocols using lentiviral vectors for the protection against infections and inflammation.
Collapse
Affiliation(s)
- Giada Farinelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Raisa Jofra Hernandez
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Alice Rossi
- Infection and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Serena Ranucci
- Infection and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milan, Italy
| | | | - Maddalena Migliavacca
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Brombin
- CUSSB-University Center Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Aleksandar Pramov
- CUSSB-University Center Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Clelia Di Serio
- CUSSB-University Center Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy.,Haematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Bragonzi
- Infection and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy, Italy
| |
Collapse
|
32
|
Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution. Nat Commun 2016; 7:12177. [PMID: 27397585 PMCID: PMC4942576 DOI: 10.1038/ncomms12177] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 06/08/2016] [Indexed: 12/12/2022] Open
Abstract
Inflammation resolution is an active process, the failure of which causes uncontrolled inflammation which underlies many chronic diseases. Therefore, endogenous pathways that regulate inflammation resolution are fundamental and of wide interest. Here, we demonstrate that phagocyte respiratory burst-induced hypoxia activates macrophage erythropoietin signalling to promote acute inflammation resolution. This signalling is activated following acute but not chronic inflammation. Pharmacological or genetical inhibition of the respiratory burst suppresses hypoxia and macrophage erythropoietin signalling. Macrophage-specific erythropoietin receptor-deficient mice and chronic granulomatous disease (CGD) mice, which lack the capacity for respiratory burst, display impaired inflammation resolution, and exogenous erythropoietin enhances this resolution in WT and CGD mice. Mechanistically, erythropoietin increases macrophage engulfment of apoptotic neutrophils via PPARγ, promotes macrophage removal of debris and enhances macrophage migration to draining lymph nodes. Together, our results provide evidences of an endogenous pathway that regulates inflammation resolution, with important implications for treating inflammatory conditions.
Collapse
|
33
|
Caffrey AK, Obar JJ. Alarmin(g) the innate immune system to invasive fungal infections. Curr Opin Microbiol 2016; 32:135-143. [PMID: 27351354 DOI: 10.1016/j.mib.2016.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/04/2016] [Accepted: 06/07/2016] [Indexed: 11/24/2022]
Abstract
Fungi encounter numerous stresses in a mammalian host, including the immune system, which they must adapt to in order to grow and cause disease. The host immune system tunes its response to the threat level posed by the invading pathogen. We discuss recent findings on how interleukin (IL)-1 signaling is central to tuning the immune response to the virulence potential of invasive fungi, as well as other pathogens. Moreover, we discuss fungal factors that may drive tissue invasion and destruction that regulate IL-1 cytokine release. Moving forward understanding the mechanisms of fungal adaption to the host, together with understanding how the host innate immune system recognizes invading fungal pathogens will increase our therapeutic options for treatment of invasive fungal infections.
Collapse
Affiliation(s)
- Alayna K Caffrey
- Montana State University, Department of Microbiology & Immunology, Bozeman, MT 59718, United States; Geisel School of Medicine at Dartmouth, Department of Microbiology & Immunology, Lebanon, NH 03756, United States
| | - Joshua J Obar
- Geisel School of Medicine at Dartmouth, Department of Microbiology & Immunology, Lebanon, NH 03756, United States.
| |
Collapse
|
34
|
King J, Henriet SSV, Warris A. Aspergillosis in Chronic Granulomatous Disease. J Fungi (Basel) 2016; 2:jof2020015. [PMID: 29376932 PMCID: PMC5753077 DOI: 10.3390/jof2020015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022] Open
Abstract
Patients with chronic granulomatous disease (CGD) have the highest life-time incidence of invasive aspergillosis and despite the availability of antifungal prophylaxis, infections by Aspergillus species remain the single most common infectious cause of death in CGD. Recent developments in curative treatment options, such as haematopoietic stem cell transplantation, will change the prevalence of infectious complications including invasive aspergillosis in CGD patients. However, invasive aspergillosis in a previously healthy host is often the first presenting feature of this primary immunodeficiency. Recognizing the characteristic clinical presentation and understanding how to diagnose and treat invasive aspergillosis in CGD is of utmost relevance to improve clinical outcomes. Significant differences exist in fungal epidemiology, clinical signs and symptoms, and the usefulness of non-culture based diagnostic tools between the CGD host and neutropenic patients, reflecting underlying differences in the pathogenesis of invasive aspergillosis shaped by the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase deficiency.
Collapse
Affiliation(s)
- Jill King
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| | - Stefanie S V Henriet
- Radboud University Medical Center, Amalia Children's Hospital, Nijmegen 6500 HB, The Netherlands.
| | - Adilia Warris
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
35
|
|