1
|
Vermeersch G, Gouwy M, Proost P, Struyf S, Devos T. Neutrophils in BCR::ABL1 negative MPN: Contributors or bystanders of fibrosis? Blood Rev 2025:101285. [PMID: 40133166 DOI: 10.1016/j.blre.2025.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/20/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
BCR::ABL1 negative myeloproliferative neoplasms (MPNs) are a heterogenous group of disorders characterized by clonal proliferation of hematopoietic stem and progenitor cells (HSPCs) within the bone marrow. Although the identification of somatic key driver mutations significantly increased both understanding and diagnostic accuracy of MPNs, many questions about the exact pathophysiology remain unanswered. Increased neutrophil count at diagnosis is a well-recognized predictor of worse disease evolution and survival, nonetheless the exact role of neutrophilic granulocytes within MPN pathophysiology is almost unexplored. As the majority of these cells are residing within the bone marrow, they represent a non-negligible entity within the bone marrow niche and its homeostasis. This review describes how neutrophils might contribute to the development of the inflammatory bone marrow niche, and hereby also fibrosis, associated with MPNs. The versatile functions and effects in different contexts emphasize the necessity for future research oriented to bone marrow in addition to peripheral blood.
Collapse
Affiliation(s)
- Gaël Vermeersch
- Department of Hematology, University Hospitals Leuven, 3000 Leuven, Belgium; Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium.
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| | - Timothy Devos
- Department of Hematology, University Hospitals Leuven, 3000 Leuven, Belgium; Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Hu S, Liu Y, Zhang X, Wang X, Li Y, Chu M, Yin J, Fang Y, Ruan C, Zhu L, Wu D, Xu Y. YAP1 regulates thrombopoiesis by binding to MYH9 in immune thrombocytopenia. Blood 2024; 144:2136-2148. [PMID: 39190466 DOI: 10.1182/blood.2023023601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
ABSTRACT Immune thrombocytopenia (ITP) is a complicated bleeding disease characterized by a sharp platelet reduction. As a dominating element involved in ITP, megakaryocytes (MKs) are responsible for thrombopoiesis. However, the mechanism underlying the dysregulation of thrombopoiesis that occurs in ITP remains unidentified. In this study, we examined the role of Yes-associated protein 1 (YAP1) in thrombopoiesis during ITP. We observed reduced YAP1 expression with cytoskeletal actin misalignment in MKs from patients with ITP. Using an experimental ITP mouse model, we showed that reduced YAP1 expression induced aberrant MK distribution, reduced the percentage of late MKs among the total MKs, and caused submaximal platelet recovery. Mechanistically, YAP1 upregulation by binding of GATA-binding protein 1 to its promoter promoted MK maturation. Phosphorylated YAP1 promoted cytoskeletal activation by binding its WW2 domain to myosin heavy chain 9, thereby facilitating thrombopoiesis. Targeting YAP1 with its activator XMU-MP-1 was sufficient to rescue cytoskeletal defects and thrombopoiesis dysregulation in YAP1+/- mice with ITP and patients. Taken together, these results demonstrate the crucial role of YAP1 in thrombopoiesis, providing potential for the development of diagnostic markers and therapeutic options for ITP.
Collapse
Affiliation(s)
- Shuhong Hu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Yifei Liu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Xiang Zhang
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Xiaoqi Wang
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Yanting Li
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Mengqian Chu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Jie Yin
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Yanglan Fang
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Changgeng Ruan
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Li Zhu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
- Suzhou Key Laboratory of Thrombosis and Vascular Diseases, Cyrus Tang Hematology Center, The Ninth Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Guinard I, Brassard-Jollive N, Ruch L, Weber J, Eckly A, Boscher J, Léon C. Mechanical confinement prevents ectopic platelet release. Proc Natl Acad Sci U S A 2024; 121:e2407829121. [PMID: 39236232 PMCID: PMC11420179 DOI: 10.1073/pnas.2407829121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/03/2024] [Indexed: 09/07/2024] Open
Abstract
Blood platelets are produced by megakaryocytes (MKs), their parent cells, which are in the bone marrow. Once mature, MK pierces through the sinusoid vessel, and the initial protrusion further elongates as proplatelet or buds to release platelets. The mechanisms controlling the decision to initiate proplatelet and platelet formation are unknown. Here, we show that the mechanical properties of the microenvironment prevent proplatelet and platelet release in the marrow stroma while allowing this process in the bloodstream. Loss of marrow confinement following myelosuppression led to inappropriate proplatelet and platelet release into the extravascular space. We further used an inert viscoelastic hydrogel to evaluate the impact of compressive stress. Transcriptional analysis showed that culture in three-dimensional gel induced upregulation of genes related to the Rho-GTPase pathway. We found higher Rho-GTPase activation, myosin light chain phosphorylation and F-actin under mechanical constraints while proplatelet formation was inhibited. The use of latrunculin-A to decrease F-actin promoted microtubule-dependent budding and proplatelet extension inside the gel. Additionally, ex vivo exposure of intact bone marrow to latrunculin-A triggered proplatelet extensions in the interstitial space. In vivo, this confinement-mediated high intracellular tension is responsible for the formation of the peripheral zone, a unique actin-rich structure. Cytoskeleton reorganization induces the disappearance of the peripheral zone upon reaching a liquid milieu to facilitate proplatelet and platelet formation. Hence, our data provide insight into the mechanisms preventing ectopic platelet release in the marrow stroma. Identifying such pathways is especially important for understanding pathologies altering marrow mechanics such as chemotherapy or myelofibrosis.
Collapse
Affiliation(s)
- Ines Guinard
- University of Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, UMR_S1255 Biologie et Pharmacologie des Plaquettes Sanguines (BPPS), FMTS, Strasbourg F-67065, France
| | - Noémie Brassard-Jollive
- University of Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, UMR_S1255 Biologie et Pharmacologie des Plaquettes Sanguines (BPPS), FMTS, Strasbourg F-67065, France
| | - Laurie Ruch
- University of Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, UMR_S1255 Biologie et Pharmacologie des Plaquettes Sanguines (BPPS), FMTS, Strasbourg F-67065, France
| | - Josiane Weber
- University of Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, UMR_S1255 Biologie et Pharmacologie des Plaquettes Sanguines (BPPS), FMTS, Strasbourg F-67065, France
| | - Anita Eckly
- University of Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, UMR_S1255 Biologie et Pharmacologie des Plaquettes Sanguines (BPPS), FMTS, Strasbourg F-67065, France
| | - Julie Boscher
- University of Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, UMR_S1255 Biologie et Pharmacologie des Plaquettes Sanguines (BPPS), FMTS, Strasbourg F-67065, France
| | - Catherine Léon
- University of Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, UMR_S1255 Biologie et Pharmacologie des Plaquettes Sanguines (BPPS), FMTS, Strasbourg F-67065, France
| |
Collapse
|
4
|
Demagny J, Poirault‐Chassac S, Ilsaint DN, Marchelli A, Gomila C, Ouled‐Haddou H, Collet L, Le Guyader M, Gaussem P, Garçon L, Bachelot‐Loza C. Role of the mechanotransductor PIEZO1 in megakaryocyte differentiation. J Cell Mol Med 2024; 28:e70055. [PMID: 39304946 PMCID: PMC11415291 DOI: 10.1111/jcmm.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
From haematopoietic stem cells to megakaryocytes (Mks), cells undergo various mechanical forces that affect Mk differentiation, maturation and proplatelet formation. The mechanotransductor PIEZO1 appears to be a natural candidate for sensing these mechanical forces and regulating megakaryopoiesis and thrombopoiesis. Gain-of-function mutations of PIEZO1 cause hereditary xerocytosis, a haemolytic anaemia associated with thrombotic events. If some functions of PIEZO1 have been reported in platelets, few data exist on PIEZO1 role in megakaryopoiesis. To address this subject, we used an in vitro model of Mk differentiation from CD34+ cells and studied step-by-step the effects of PIEZO1 activation by the chemical activator YODA1 during Mk differentiation and maturation. We report that PIEZO1 activation by 4 μM YODA1 at early stages of culture induced cytosolic calcium ion influx and reduced cell maturation. Indeed, CD41+CD42+ numbers were reduced by around 1.5-fold, with no effects on proliferation. At later stages of Mk differentiation, PIEZO1 activation promoted endomitosis and proplatelet formation that was reversed by PIEZO1 gene invalidation with a shRNA-PIEZO1. Same observations on endomitosis were reproduced in HEL cells induced into Mks by PMA and treated with YODA1. We provide for the first time results suggesting a dual role of PIEZO1 mechanotransductor during megakaryopoiesis.
Collapse
Affiliation(s)
- Julien Demagny
- HEMATIM UE4666, University Picardie Jules VerneAmiensFrance
- Biological Hematology DepartmentCHU Amiens‐PicardieAmiensFrance
| | | | | | - Aurore Marchelli
- Université de Paris Cité, Innovative Therapies in Hemostasis, INSERMParisFrance
| | - Cathy Gomila
- HEMATIM UE4666, University Picardie Jules VerneAmiensFrance
| | | | - Louison Collet
- HEMATIM UE4666, University Picardie Jules VerneAmiensFrance
| | | | - Pascale Gaussem
- Université de Paris Cité, Innovative Therapies in Hemostasis, INSERMParisFrance
- Service d'hématologie biologiqueHôpital Européen Georges Pompidou, Assistance Publique‐Hôpitaux de ParisParisFrance
| | - Loïc Garçon
- HEMATIM UE4666, University Picardie Jules VerneAmiensFrance
- Biological Hematology DepartmentCHU Amiens‐PicardieAmiensFrance
| | | |
Collapse
|
5
|
Di Buduo CA, Lunghi M, Kuzmenko V, Laurent P, Della Rosa G, Del Fante C, Dalle Nogare DE, Jug F, Perotti C, Eto K, Pecci A, Redwan IN, Balduini A. Bioprinting Soft 3D Models of Hematopoiesis using Natural Silk Fibroin-Based Bioink Efficiently Supports Platelet Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308276. [PMID: 38514919 PMCID: PMC11095152 DOI: 10.1002/advs.202308276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/09/2024] [Indexed: 03/23/2024]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) continuously generate platelets throughout one's life. Inherited Platelet Disorders affect ≈ 3 million individuals worldwide and are characterized by defects in platelet formation or function. A critical challenge in the identification of these diseases lies in the absence of models that facilitate the study of hematopoiesis ex vivo. Here, a silk fibroin-based bioink is developed and designed for 3D bioprinting. This bioink replicates a soft and biomimetic environment, enabling the controlled differentiation of HSPCs into platelets. The formulation consisting of silk fibroin, gelatin, and alginate is fine-tuned to obtain a viscoelastic, shear-thinning, thixotropic bioink with the remarkable ability to rapidly recover after bioprinting and provide structural integrity and mechanical stability over long-term culture. Optical transparency allowed for high-resolution imaging of platelet generation, while the incorporation of enzymatic sensors allowed quantitative analysis of glycolytic metabolism during differentiation that is represented through measurable color changes. Bioprinting patient samples revealed a decrease in metabolic activity and platelet production in Inherited Platelet Disorders. These discoveries are instrumental in establishing reference ranges for classification and automating the assessment of treatment responses. This model has far-reaching implications for application in the research of blood-related diseases, prioritizing drug development strategies, and tailoring personalized therapies.
Collapse
Affiliation(s)
| | - Marco Lunghi
- Department of Molecular MedicineUniversity of PaviaPavia27100Italy
| | | | | | | | - Claudia Del Fante
- Immunohaematology and Transfusion ServiceI.R.C.C.S. Policlinico S. Matteo FoundationPavia27100Italy
| | | | | | - Cesare Perotti
- Immunohaematology and Transfusion ServiceI.R.C.C.S. Policlinico S. Matteo FoundationPavia27100Italy
| | - Koji Eto
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto UniversityKyoto606‐8507Japan
- Department of Regenerative MedicineGraduate School of MedicineChiba UniversityChiba260‐8670Japan
| | - Alessandro Pecci
- Department of Internal MedicineI.R.C.C.S. Policlinico S. Matteo Foundation and University of PaviaPavia27100Italy
| | | | - Alessandra Balduini
- Department of Molecular MedicineUniversity of PaviaPavia27100Italy
- Department of Biomedical EngineeringTufts UniversityMedfordMA02155USA
| |
Collapse
|
6
|
Abbonante V, Karkempetzaki AI, Leon C, Krishnan A, Huang N, Di Buduo CA, Cattaneo D, Ward CMT, Matsuura S, Guinard I, Weber J, De Acutis A, Vozzi G, Iurlo A, Ravid K, Balduini A. Newly identified roles for PIEZO1 mechanosensor in controlling normal megakaryocyte development and in primary myelofibrosis. Am J Hematol 2024; 99:336-349. [PMID: 38165047 PMCID: PMC10922533 DOI: 10.1002/ajh.27184] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Mechanisms through which mature megakaryocytes (Mks) and their progenitors sense the bone marrow extracellular matrix to promote lineage differentiation in health and disease are still partially understood. We found PIEZO1, a mechanosensitive cation channel, to be expressed in mouse and human Mks. Human mutations in PIEZO1 have been described to be associated with blood cell disorders. Yet, a role for PIEZO1 in megakaryopoiesis and proplatelet formation has never been investigated. Here, we show that activation of PIEZO1 increases the number of immature Mks in mice, while the number of mature Mks and Mk ploidy level are reduced. Piezo1/2 knockout mice show an increase in Mk size and platelet count, both at basal state and upon marrow regeneration. Similarly, in human samples, PIEZO1 is expressed during megakaryopoiesis. Its activation reduces Mk size, ploidy, maturation, and proplatelet extension. Resulting effects of PIEZO1 activation on Mks resemble the profile in Primary Myelofibrosis (PMF). Intriguingly, Mks derived from Jak2V617F PMF mice show significantly elevated PIEZO1 expression, compared to wild-type controls. Accordingly, Mks isolated from bone marrow aspirates of JAK2V617F PMF patients show increased PIEZO1 expression compared to Essential Thrombocythemia. Most importantly, PIEZO1 expression in bone marrow Mks is inversely correlated with patient platelet count. The ploidy, maturation, and proplatelet formation of Mks from JAK2V617F PMF patients are rescued upon PIEZO1 inhibition. Together, our data suggest that PIEZO1 places a brake on Mk maturation and platelet formation in physiology, and its upregulation in PMF Mks might contribute to aggravating some hallmarks of the disease.
Collapse
Affiliation(s)
- Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Anastasia Iris Karkempetzaki
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- University of Crete, School of Medicine, Heraklion, Greece
| | - Catherine Leon
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| | - Anandi Krishnan
- Institute of Immunology, Stanford University School of Medicine, Palo Alto, California, United States
| | - Nasi Huang
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | | | - Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Christina Marie Torres Ward
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Shinobu Matsuura
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ines Guinard
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| | - Josiane Weber
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| | - Aurora De Acutis
- Interdepartmental Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Giovanni Vozzi
- Interdepartmental Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Katya Ravid
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
7
|
Guinard I, Nguyen T, Brassard-Jollive N, Weber J, Ruch L, Reininger L, Brouard N, Eckly A, Collin D, Lanza F, Léon C. Matrix stiffness controls megakaryocyte adhesion, fibronectin fibrillogenesis, and proplatelet formation through Itgβ3. Blood Adv 2023; 7:4003-4018. [PMID: 37171626 PMCID: PMC10410137 DOI: 10.1182/bloodadvances.2022008680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023] Open
Abstract
Megakaryocytes (MKs) are the precursor cells of platelets, located in the bone marrow (BM). Once mature, they extend elongated projections named proplatelets through sinusoid vessels, emerging from the marrow stroma into the circulating blood. Not all signals from the microenvironment that regulate proplatelet formation are understood, particularly those from the BM biomechanics. We sought to investigate how MKs perceive and adapt to modifications of the stiffness of their environment. Although the BM is one of the softest tissue of the body, its rigidification results from excess fibronectin (FN), and other matrix protein deposition occur upon myelofibrosis. Here, we have shown that mouse MKs are able to detect the stiffness of a FN-coated substrate and adapt their morphology accordingly. Using a polydimethylsiloxane substrate with stiffness varying from physiological to pathological marrow, we found that a stiff matrix favors spreading, intracellular contractility, and FN fibrils assembly at the expense of proplatelet formation. Itgb3, but not Itgb1, is required for stiffness sensing, whereas both integrins are involved in fibrils assembly. In contrast, soft substrates promote proplatelet formation in an Itgb3-dependent manner, consistent with the ex vivo decrease in proplatelet formation and the in vivo decrease in platelet number in Itgb3-deficient mice. Our findings demonstrate the importance of environmental stiffness for MK functions with potential pathophysiological implications during pathologies that deregulate FN deposition and modulate stiffness in the marrow.
Collapse
Affiliation(s)
- Ines Guinard
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Thao Nguyen
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Noémie Brassard-Jollive
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Josiane Weber
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Laurie Ruch
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Laura Reininger
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Nathalie Brouard
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Anita Eckly
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | | | - François Lanza
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Catherine Léon
- UMR_S1255, INSERM, Etablissement Français du Sang-Grand Est, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Lai J, Li Y, Ran M, Huang Q, Huang F, Zhu L, Wu Y, Zou W, Xie X, Tang Y, Yang F, Wu A, Ge G, Wu J. Xanthotoxin, a novel inducer of platelet formation, promotes thrombocytopoiesis via IL-1R1 and MEK/ERK signaling. Biomed Pharmacother 2023; 163:114811. [PMID: 37156117 DOI: 10.1016/j.biopha.2023.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Thrombocytopenia is a common hematological disease caused by many factors. It usually complicates critical diseases and increases morbidity and mortality. The treatment of thrombocytopenia remains a great challenge in clinical practice, however, its treatment options are limited. In this study, the active monomer xanthotoxin (XAT) was screened out to explore its medicinal value and provide novel therapeutic strategies for the clinical treatment of thrombocytopenia. METHODS The effects of XAT on megakaryocyte differentiation and maturation were detected by flow cytometry, Giemsa and phalloidin staining. RNA-seq identified differentially expressed genes and enriched pathways. The signaling pathway and transcription factors were verified through WB and immunofluorescence staining. Tg (cd41: eGFP) transgenic zebrafish and mice with thrombocytopenia were used to evaluate the biological activity of XAT on platelet formation and the related hematopoietic organ index in vivo. RESULTS XAT promoted the differentiation and maturation of Meg-01 cells in vitro. Meanwhile, XAT could stimulate platelet formation in transgenic zebrafish and recover platelet production and function in irradiation-induced thrombocytopenia mice. Further RNA-seq prediction and WB verification revealed that XAT activates the IL-1R1 target and MEK/ERK signaling pathway, and upregulates the expression of transcription factors related to the hematopoietic lineage to promote megakaryocyte differentiation and platelet formation. CONCLUSION XAT accelerates megakaryocyte differentiation and maturation to promote platelet production and recovery through triggering IL-1R1 and activating the MEK/ERK signaling pathway, providing a new pharmacotherapy strategy for thrombocytopenia.
Collapse
Affiliation(s)
- Jia Lai
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yueyue Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mei Ran
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qianqian Huang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Linjie Zhu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yuesong Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiang Xie
- School of Basic Medical Sciences, Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, China
| | - Yong Tang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fei Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
9
|
Di Buduo CA, Miguel CP, Balduini A. Inside-to-outside and back to the future of megakaryopoiesis. Res Pract Thromb Haemost 2023; 7:100197. [PMID: 37416054 PMCID: PMC10320384 DOI: 10.1016/j.rpth.2023.100197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 07/08/2023] Open
Abstract
A State of the Art lecture titled "Megakaryocytes and different thrombopoietic environments" was presented at the ISTH Congress in 2022. Circulating platelets are specialized cells produced by megakaryocytes. Leading studies point to the bone marrow niche as the core of hematopoietic stem cell differentiation, revealing interesting and complex environmental factors for consideration. Megakaryocytes take cues from the physiochemical bone marrow microenvironment, which includes cell-cell interactions, contact with extracellular matrix components, and flow generated by blood circulation in the sinusoidal lumen. Germinal and acquired mutations in hematopoietic stem cells may manifest in altered megakaryocyte maturation, proliferation, and platelet production. Diseased megakaryopoiesis may also cause modifications of the entire hematopoietic niche, highlighting the central role of megakaryocytes in the control of physiologic bone marrow homeostasis. Tissue-engineering approaches have been developed to translate knowledge from in vivo (inside) to functional mimics of native tissue ex vivo (outside). Reproducing the thrombopoietic environment is instrumental to gain new insight into its activity and answering the growing demand for human platelets for fundamental studies and clinical applications. In this review, we discuss the major achievements on this topic, and finally, we summarize relevant new data presented during the 2022 ISTH Congress that pave the road to the future of megakaryopoiesis.
Collapse
Affiliation(s)
| | | | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
10
|
Yang S, Wang L, Wu Y, Wu A, Huang F, Tang X, Kantawong F, Anuchapreeda S, Qin D, Mei Q, Chen J, Huang X, Zhang C, Wu J. Apoptosis in megakaryocytes: Safeguard and threat for thrombopoiesis. Front Immunol 2023; 13:1025945. [PMID: 36685543 PMCID: PMC9845629 DOI: 10.3389/fimmu.2022.1025945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Platelets, generated from precursor megakaryocytes (MKs), are central mediators of hemostasis and thrombosis. The process of thrombopoiesis is extremely complex, regulated by multiple factors, and related to many cellular events including apoptosis. However, the role of apoptosis in thrombopoiesis has been controversial for many years. Some researchers believe that apoptosis is an ally of thrombopoiesis and platelets production is apoptosis-dependent, while others have suggested that apoptosis is dispensable for thrombopoiesis, and is even inhibited during this process. In this review, we will focus on this conflict, discuss the relationship between megakaryocytopoiesis, thrombopoiesis and apoptosis. In addition, we also consider why such a vast number of studies draw opposite conclusions of the role of apoptosis in thrombopoiesis, and try to figure out the truth behind the mystery. This review provides more comprehensive insights into the relationship between megakaryocytopoiesis, thrombopoiesis, and apoptosis and finds some clues for the possible pathological mechanisms of platelet disorders caused by abnormal apoptosis.
Collapse
Affiliation(s)
- Shuo Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yuesong Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Xiaoqin Tang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qibing Mei
- School of Pharmacy, Southwest Medical University, Luzhou, China
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xinwu Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chunxiang Zhang
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Gelon L, Fromont L, Lefrançais E. Occurrence and role of lung megakaryocytes in infection and inflammation. Front Immunol 2022; 13:1029223. [PMID: 36524131 PMCID: PMC9745136 DOI: 10.3389/fimmu.2022.1029223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Megakaryocytes (MKs) are large cells giving rise to platelets. It is well established that in adults, MKs develop from hematopoietic stem cells and reside in the bone marrow. MKs are also rare but normal constituents of the venous blood returning to the lungs, and MKs are found in the lung vasculature (MKcirc), suggesting that these cells are migrants from the bone marrow and get trapped in lung capillaries where the final steps of platelet production can occur. An unprecedented increase in the number of lung and circulating MKs was described in coronavirus disease 2019 (COVID-19) patients, suggesting that lung thrombopoiesis may be increased during lung infection and/or thromboinflammation. In addition to the population of platelet-producing intravascular MKs in the lung, a population of lung-resident megakaryocytes (MKL) has been identified and presents a specific immune signature compared to its bone marrow counterparts. Recent single-cell analysis and intravital imaging have helped us gain a better understanding of these populations in mouse and human. This review aims at summarizing the recent data on increased occurrence of lung MKs and discusses their origin, specificities, and potential role in homeostasis and inflammatory and infectious lung diseases. Here, we address remaining questions, controversies, and methodologic challenges for further studies of both MKcirc and MKL.
Collapse
|
12
|
Davenport P, Liu ZJ, Sola-Visner M. Fetal vs adult megakaryopoiesis. Blood 2022; 139:3233-3244. [PMID: 35108353 PMCID: PMC9164738 DOI: 10.1182/blood.2020009301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
Abstract
Fetal and neonatal megakaryocyte progenitors are hyperproliferative compared with adult progenitors and generate a large number of small, low-ploidy megakaryocytes. Historically, these developmental differences have been interpreted as "immaturity." However, more recent studies have demonstrated that the small, low-ploidy fetal and neonatal megakaryocytes have all the characteristics of adult polyploid megakaryocytes, including the presence of granules, a well-developed demarcation membrane system, and proplatelet formation. Thus, rather than immaturity, the features of fetal and neonatal megakaryopoiesis reflect a developmentally unique uncoupling of proliferation, polyploidization, and cytoplasmic maturation, which allows fetuses and neonates to populate their rapidly expanding bone marrow and blood volume. At the molecular level, the features of fetal and neonatal megakaryopoiesis are the result of a complex interplay of developmentally regulated pathways and environmental signals from the different hematopoietic niches. Over the past few years, studies have challenged traditional paradigms about the origin of the megakaryocyte lineage in both fetal and adult life, and the application of single-cell RNA sequencing has led to a better characterization of embryonic, fetal, and adult megakaryocytes. In particular, a growing body of data suggests that at all stages of development, the various functions of megakaryocytes are not fulfilled by the megakaryocyte population as a whole, but rather by distinct megakaryocyte subpopulations with dedicated roles. Finally, recent studies have provided novel insights into the mechanisms underlying developmental disorders of megakaryopoiesis, which either uniquely affect fetuses and neonates or have different clinical presentations in neonatal compared with adult life.
Collapse
Affiliation(s)
- Patricia Davenport
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA; and
- Harvard Medical School, Boston, MA
| | - Zhi-Jian Liu
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA; and
- Harvard Medical School, Boston, MA
| | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA; and
- Harvard Medical School, Boston, MA
| |
Collapse
|
13
|
Deletion of Grin1 in mouse megakaryocytes reveals NMDA receptor role in platelet function and proplatelet formation. Blood 2022; 139:2673-2690. [PMID: 35245376 DOI: 10.1182/blood.2021014000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/18/2022] [Indexed: 11/20/2022] Open
Abstract
The process of proplatelet formation (PPF) requires coordinated interaction between megakaryocytes (MKs) and the extracellular matrix (ECM), followed by a dynamic reorganization of the actin and microtubule cytoskeleton. Localized fluxes of intracellular calcium ions (Ca2+) facilitate MK-ECM interaction and PPF. Glutamate-gated N-methyl-D--aspartate receptor (NMDAR) is highly permeable to Ca2+. NMDAR antagonists inhibit MK maturation ex vivo, however there is no in vivo data. Using the Cre-loxP system, we generated a platelet lineage-specific knockout mouse model of reduced NMDAR function in MKs and platelets (Pf4-Grin1-/- mice). Effects of NMDAR deletion were examined using well-established assays of platelet function and production in vivo and ex vivo. We found that Pf4-Grin1-/- mice had defects in megakaryopoiesis, thrombopoiesis and platelet function, which manifested as reduced platelet counts, lower rates of platelet production in the immune model of thrombocytopenia, and a prolonged tail bleeding time. Platelet activation was impaired to a range of agonists associated with reduced Ca2+ responses, including metabotropic-like, and defective platelet spreading. MKs showed reduced colony and proplatelet formation. Impaired reorganization of intracellular F-actin and α-tubulin was identified as the main cause of reduced platelet function and production. Pf4-Grin1-/- MKs also had lower levels of transcripts encoding crucial ECM elements and enzymes, suggesting NMDAR signaling is involved in ECM remodeling. In summary, we provide the first genetic evidence that NMDAR plays an active role in platelet function and production. NMDARs regulate PPF through the mechanism that involves MK-ECM interaction and cytoskeletal reorganization. Our results suggest that NMDAR helps guide PPF in vivo.
Collapse
|
14
|
Bertović I, Bura A, Jurak Begonja A. Developmental differences of in vitro cultured murine bone marrow- and fetal liver-derived megakaryocytes. Platelets 2021; 33:887-899. [PMID: 34915807 DOI: 10.1080/09537104.2021.2007869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Multiple lines of evidence support differences in the megakaryopoiesis during development. Murine in vitro models to study megakaryopoiesis employ cultured megakaryocytes MKs derived from adult bone marrow (BM) or fetal livers (FL) of mouse embryos. Mouse models allow to study the molecular basis for cellular changes utilizing conditional or knock-out models and permit further in vitro genetic or pharmacological manipulations. Despite being extensively used, MKs cultured from these two sources have not been systematically compared. In the present study, we compared BM- and FL-derived MKs, assessing their size, proplatelet production capacity, expression of common MK markers (αIIb, β3, GPIb α, β) and cytoskeletal proteins (filamin A, β1-tubulin, actin), the subcellular appearance of α-granules (VWF), membranes (GPIbβ) and cytoskeleton (F-actin) throughout in vitro development. We demonstrate that FL MKs although smaller in size, spontaneously produce more proplatelets than BM MKs and at earlier stages express more β1-tubulin. In addition, early FL MKs show increased internal GPIbβ staining and present higher GPIbβ (early and late) and VWF (late stages) total fluorescence intensity (TFI)/cell size than BM MKs. BM MKs have up-regulated TPO signaling corresponding to their bigger size and ploidy, without changes in c-Mpl. Expressing endogenous β1-tubulin or the presence of heparin improves BM MKs ability to produce proplatelets. These data suggest that FL MKs undergo cytoplasmic maturation earlier than BM MKs and that this, in addition to higher β1-tubulin levels and GPIb, supported with an extensive F-actin network, could contribute to more efficient proplatelet formation in vitro.
Collapse
Affiliation(s)
- Ivana Bertović
- Department of Biotechnology, The University of Rijeka, Rijeka, Croatia
| | - Ana Bura
- Department of Biotechnology, The University of Rijeka, Rijeka, Croatia
| | | |
Collapse
|
15
|
3D collagen matrices modulate the transcriptional trajectory of bone marrow hematopoietic progenitors into macrophage lineage commitment. Bioact Mater 2021; 10:255-268. [PMID: 34901544 PMCID: PMC8636680 DOI: 10.1016/j.bioactmat.2021.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 12/23/2022] Open
Abstract
Physical signals provided by the extracellular matrix (ECM) are key microenvironmental parameters for the fate decision of hematopoietic stem and progenitor cells (HSPC) in bone marrow. Insights into cell-ECM interactions are critical for advancing HSC-based tissue engineering. Herein, we employed collagen hydrogels and collagen-alginate hydrogels of defined stiffness to study the behaviors of hematopoietic progenitor cells (HPCs). Three-dimensional (3D) collagen hydrogels with a stiffness of 45 Pa were found to promote HPC maintenance and colony formation of monocyte/macrophage progenitors. Using single-cell RNA sequencing (scRNA-seq), we also characterized the comprehensive transcriptional profiles of cells randomly selected from two-dimensional (2D) and 3D hydrogels. A distinct maturation trajectory from HPCs into macrophages within the 3D microenvironment was revealed by these results. 3D-derived macrophages expressed high levels of various cytokines and chemokines, such as Saa3, Cxcl2, Socs3 and Tnf. Furthermore, enhanced communication between 3D-macrophages and other hematopoietic clusters based on ligand-repair interactions was demonstrated through bioinformatic analyses. Our research underlines the regulatory role of matrix-dimensionality in HPC differentiation and therefore probably be applied to the generation of specialized macrophages. 3D collagen hydrogels influenced the maintenance of hematopoietic progenitor cells. 3D matrices modulated the lineage specification of hematopoietic progenitors and promoted the formation of CFU-M colonies. Single-cell RNA sequencing identified a cluster of specialized macrophages within a 3D microenvironment.
Collapse
|
16
|
Pereira DR, Silva-Correia J, Oliveira JM, Reis RL, Pandit A. Macromolecular modulation of a 3D hydrogel construct differentially regulates human stem cell tissue-to-tissue interface. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112611. [DOI: 10.1016/j.msec.2021.112611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/25/2021] [Accepted: 12/11/2021] [Indexed: 01/21/2023]
|
17
|
Wu Y, Chen F, Huang N, Li J, Wu C, Tan B, Liu Y, Li L, Yang C, Shao D, Liao J. Near-infrared light-responsive hybrid hydrogels for the synergistic chemo-photothermal therapy of oral cancer. NANOSCALE 2021; 13:17168-17182. [PMID: 34636386 DOI: 10.1039/d1nr04625j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Light-stimulus-responsive therapies have been recognized as a promising strategy for the efficient and safe treatment of oral squamous cell carcinoma (OSCC). Hydrogels have emerged as a promising multifunctional platform combining localized drug delivery and sustained drug release with multimodal properties for combined OSCC therapy. However, inaccurate drug release and limited light-absorption efficiency have hindered their on-demand chemo-photothermal applications. To tackle these problems, an injectable and near-infrared (NIR) light-responsive hybrid system was developed by incorporating light-responsive mesoporous silica nanoparticles (MSNs) as doxorubicin (DOX) carriers into the IR820/methylcellulose hydrogel networks for chemophotothermal therapy. Under NIR radiation, the incorporated IR820, a new green cyanine dye, was excited to induce photothermal effects against tumor cells. Meanwhile, MSNs achieved self-degradation-controlled DOX release via the cleavage of diselenide bonds induced by reactive oxygen species. Through the combination of chemotherapy and phototherapy, a long-lasting synergistic anti-tumor effect was achieved in vitro and in vivo with less toxicity. These findings demonstrate the potential of light-responsive hydrogels as a multifunctional platform for accurate synergistic chemophotothermal treatment of OSCC.
Collapse
Affiliation(s)
- Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Fangman Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, China.
| | - Nengwen Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jinjin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Bowen Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yunkun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chao Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, China.
| | - Dan Shao
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
18
|
Abstract
Thrombocytopoiesis is a complex process beginning at the level of hematopoietic stem cells, which ultimately generate megakaryocytes, large marrow cells with a distinctive morphology, and then, through a process of terminal maturation, megakaryocytes shed thousands of platelets into the circulation. This process is controlled by intrinsic and extrinsic factors. Emerging data indicate that an important intrinsic control on the late stages of thrombopoiesis is exerted by integrins, a family of transmembrane receptors composed of one α and one β subunit. One β subunit expressed by megakaryocytes is the β1 integrin, the role of which in the regulation of platelet formation is beginning to be clarified. Here, we review recent data indicating that activation of β1 integrin by outside-in and inside-out signaling regulates the interaction of megakaryocytes with the endosteal niche, which triggers their maturation, while its inactivation by galactosylation determines the migration of these cells to the perivascular niche, where they complete their terminal maturation and release platelets in the bloodstream. Furthermore, β1 integrin mediates the activation of transforming growth factor β (TGF-β), a protein produced by megakaryocytes that may act in an autocrine fashion to halt their maturation and affect the composition of their surrounding extracellular matrix. These findings suggest that β1 integrin could be a therapeutic target for inherited and acquired disorders of platelet production.
Collapse
Affiliation(s)
- Maria Mazzarini
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Italy
| | - Paola Verachi
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Italy
| | - Fabrizio Martelli
- National Center for Preclinical and Clinical Research and Evaluation of Pharmaceutical Drugs, Rome, Italy
| | - Anna Rita Migliaccio
- University Campus Biomedico, Rome, Italy
- Myeloproliferative Neoplasm-Research Consortium, New York, NY, USA
| |
Collapse
|
19
|
Tsai FD, Battinelli EM. Inherited Platelet Disorders. Hematol Oncol Clin North Am 2021; 35:1069-1084. [PMID: 34391603 DOI: 10.1016/j.hoc.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bleeding disorders due to platelet dysfunction are a common hematologic complication affecting patients, and typically present with mucocutaneous bleeding or hemorrhage. An inherited platelet disorder should be suspected in individuals with a suggestive family history and no identified secondary causes of bleeding. Genetic defects have been described at all levels of platelet activation, including receptor binding, signaling, granule release, cytoskeletal remodeling, and platelet hematopoiesis. Management of these disorders is typically supportive, with an emphasis on awareness, patient education, and anticipatory guidance to prevent future episodes of bleeding.
Collapse
Affiliation(s)
- Frederick D Tsai
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA; Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Elisabeth M Battinelli
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Transfer to the clinic: refining forward programming of hPSCs to megakaryocytes for platelet production in bioreactors. Blood Adv 2021; 5:1977-1990. [PMID: 33843988 DOI: 10.1182/bloodadvances.2020003236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/20/2021] [Indexed: 12/29/2022] Open
Abstract
The production of in vitro-derived platelets has great potential for transfusion medicine. Here, we build on our experience in the forward programming (FoP) of human pluripotent stem cells (hPSCs) to megakaryocytes (MKs) and address several aspects of the complex challenges to bring this technology to the bedside. We first identify clinical-grade hPSC lines that generate MKs efficiently. We design a bespoke media to maximize both production and maturity of MKs and improve platelet output. Crucially, we transition the lentiviral-based FoP of hPSCs to a nonviral inducible system. We also show how small molecules promote a definitive hematopoiesis phenotype during the differentiation process, thereby increasing the quality of the final product. Finally, we generate platelets using a bioreactor designed to reproduce the physical cues that promote platelet production in the bone marrow. We show that these platelets are able to contribute to both thrombus formation in vitro and have a hemostatic effect in thrombocytopenic mice in vivo.
Collapse
|
21
|
Di Buduo CA, Aguilar A, Soprano PM, Bocconi A, Miguel CP, Mantica G, Balduini A. Latest culture techniques: cracking the secrets of bone marrow to mass-produce erythrocytes and platelets ex vivo. Haematologica 2021; 106:947-957. [PMID: 33472355 PMCID: PMC8017859 DOI: 10.3324/haematol.2020.262485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Since the dawn of medicine, scientists have carefully observed, modeled and interpreted the human body to improve healthcare. At the beginning there were drawings and paintings, now there is three-dimensional modeling. Moving from two-dimensional cultures and towards complex and relevant biomaterials, tissue-engineering approaches have been developed in order to create three-dimensional functional mimics of native organs. The bone marrow represents a challenging organ to reproduce because of its structure and composition that confer it unique biochemical and mechanical features to control hematopoiesis. Reproducing the human bone marrow niche is instrumental to answer the growing demand for human erythrocytes and platelets for fundamental studies and clinical applications in transfusion medicine. In this review, we discuss the latest culture techniques and technological approaches to obtain functional platelets and erythrocytes ex vivo. This is a rapidly evolving field that will define the future of targeted therapies for thrombocytopenia and anemia, but also a long-term promise for new approaches to the understanding and cure of hematologic diseases.
Collapse
Affiliation(s)
| | - Alicia Aguilar
- Department of Molecular Medicine, University of Pavia, Pavia
| | - Paolo M Soprano
- Department of Molecular Medicine, University of Pavia, Pavia
| | - Alberto Bocconi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano
| | | | | | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Biomedical Engineering, Tufts University, Medford, MA
| |
Collapse
|
22
|
Megakaryocyte migration defects due to nonmuscle myosin IIA mutations underlie thrombocytopenia in MYH9-related disease. Blood 2021; 135:1887-1898. [PMID: 32315395 DOI: 10.1182/blood.2019003064] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Megakaryocytes (MKs), the precursor cells for platelets, migrate from the endosteal niche of the bone marrow (BM) toward the vasculature, extending proplatelets into sinusoids, where circulating blood progressively fragments them into platelets. Nonmuscle myosin IIA (NMIIA) heavy chain gene (MYH9) mutations cause macrothrombocytopenia characterized by fewer platelets with larger sizes leading to clotting disorders termed myosin-9-related disorders (MYH9-RDs). MYH9-RD patient MKs have proplatelets with thicker and fewer branches that produce fewer and larger proplatelets, which is phenocopied in mouse Myh9-RD models. Defective proplatelet formation is considered to be the principal mechanism underlying the macrothrombocytopenia phenotype. However, MYH9-RD patient MKs may have other defects, as NMII interactions with actin filaments regulate physiological processes such as chemotaxis, cell migration, and adhesion. How MYH9-RD mutations affect MK migration and adhesion in BM or NMIIA activity and assembly prior to proplatelet production remain unanswered. NMIIA is the only NMII isoform expressed in mature MKs, permitting exploration of these questions without complicating effects of other NMII isoforms. Using mouse models of MYH9-RD (NMIIAR702C+/-GFP+/-, NMIIAD1424N+/-, and NMIIAE1841K+/-) and in vitro assays, we investigated MK distribution in BM, chemotaxis toward stromal-derived factor 1, NMIIA activity, and bipolar filament assembly. Results indicate that different MYH9-RD mutations suppressed MK migration in the BM without compromising bipolar filament formation but led to divergent adhesion phenotypes and NMIIA contractile activities depending on the mutation. We conclude that MYH9-RD mutations impair MK chemotaxis by multiple mechanisms to disrupt migration toward the vasculature, impairing proplatelet release and causing macrothrombocytopenia.
Collapse
|
23
|
Bergert M, Lembo S, Sharma S, Russo L, Milovanović D, Gretarsson KH, Börmel M, Neveu PA, Hackett JA, Petsalaki E, Diz-Muñoz A. Cell Surface Mechanics Gate Embryonic Stem Cell Differentiation. Cell Stem Cell 2021; 28:209-216.e4. [PMID: 33207217 PMCID: PMC7875094 DOI: 10.1016/j.stem.2020.10.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/24/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Abstract
Cell differentiation typically occurs with concomitant shape transitions to enable specialized functions. To adopt a different shape, cells need to change the mechanical properties of their surface. However, whether cell surface mechanics control the process of differentiation has been relatively unexplored. Here we show that membrane mechanics gate exit from naive pluripotency of mouse embryonic stem cells. By measuring membrane tension during early differentiation, we find that naive stem cells release their plasma membrane from the underlying actin cortex when transitioning to a primed state. By mechanically tethering the plasma membrane to the cortex by enhancing Ezrin activity or expressing a synthetic signaling-inert linker, we demonstrate that preventing this detachment forces stem cells to retain their naive pluripotent identity. We thus identify a decrease in membrane-to-cortex attachment as a new cell-intrinsic mechanism that is essential for stem cells to exit pluripotency.
Collapse
Affiliation(s)
- Martin Bergert
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sergio Lembo
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sumana Sharma
- European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton CB10 1SD, UK
| | - Luigi Russo
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Danica Milovanović
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Kristjan H Gretarsson
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Mandy Börmel
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Pierre A Neveu
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Jamie A Hackett
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Evangelia Petsalaki
- European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton CB10 1SD, UK
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
24
|
Zingariello M, Rosti V, Vannucchi AM, Guglielmelli P, Mazzarini M, Barosi G, Genova ML, Migliaccio AR. Shared and Distinctive Ultrastructural Abnormalities Expressed by Megakaryocytes in Bone Marrow and Spleen From Patients With Myelofibrosis. Front Oncol 2020; 10:584541. [PMID: 33312951 PMCID: PMC7701330 DOI: 10.3389/fonc.2020.584541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Numerous studies have documented ultrastructural abnormalities in malignant megakaryocytes from bone marrow (BM) of myelofibrosis patients but the morphology of these cells in spleen, an important extramedullary site in this disease, was not investigated as yet. By transmission-electron microscopy, we compared the ultrastructural features of megakaryocytes from BM and spleen of myelofibrosis patients and healthy controls. The number of megakaryocytes was markedly increased in both BM and spleen. However, while most of BM megakaryocytes are immature, those from spleen appear mature with well-developed demarcation membrane systems (DMS) and platelet territories and are surrounded by platelets. In BM megakaryocytes, paucity of DMS is associated with plasma (thick with protrusions) and nuclear (dilated with large pores) membrane abnormalities and presence of numerous glycosomes, suggesting a skewed metabolism toward insoluble polyglucosan accumulation. By contrast, the membranes of the megakaryocytes from the spleen were normal but these cells show mitochondria with reduced crests, suggesting deficient aerobic energy-metabolism. These distinctive morphological features suggest that malignant megakaryocytes from BM and spleen express distinctive metabolic impairments that may play different roles in the pathogenesis of myelofibrosis.
Collapse
Affiliation(s)
- Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandro M Vannucchi
- CRIMM; Center Research and Innovation of Myeloproliferative Neoplasms, AOUC, University of Florence, Florence, Italy
| | - Paola Guglielmelli
- CRIMM; Center Research and Innovation of Myeloproliferative Neoplasms, AOUC, University of Florence, Florence, Italy
| | - Maria Mazzarini
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Bologna, Italy
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maria Luisa Genova
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Bologna, Italy
| | - Anna Rita Migliaccio
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Bologna, Italy.,Myeloproliferative Neoplasm-Research Consortium, New York, NY, United States
| |
Collapse
|
25
|
Cullmann K, Jahn M, Spindler M, Schenk F, Manukjan G, Mucci A, Steinemann D, Boller K, Schulze H, Bender M, Moritz T, Modlich U. Forming megakaryocytes from murine-induced pluripotent stem cells by the inducible overexpression of supporting factors. Res Pract Thromb Haemost 2020; 5:111-124. [PMID: 33537535 PMCID: PMC7845061 DOI: 10.1002/rth2.12453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 01/19/2023] Open
Abstract
Background Platelets are small anucleate cells that circulate in the blood in a resting state but can be activated by external cues. In case of need, platelets from blood donors can be transfused. As an alternative source, platelets can be produced from induced pluripotent stem cells (iPSCs); however, recovered numbers are low. Objectives To optimize megakaryocyte (MK) and platelet output from murine iPSCs, we investigated overexpression of the transcription factors GATA‐binding factor 1 (GATA1); nuclear factor, erythroid 2; and pre–B‐cell leukemia transcription factor 1 (Pbx1) and a hyperactive variant of the small guanosine triphosphatase RhoA (RhoAhc). Methods To avoid off‐target effects, we generated iPSCs carrying the reverse tetracycline‐responsive transactivator M2 (rtTA‐M2) in the Rosa26 locus and expressed the factors from Tet‐inducible gammaretroviral vectors. Differentiation of iPSCs was initiated by embryoid body (EB) formation. After EB dissociation, early hematopoietic progenitors were enriched and cocultivated on OP9 feeder cells with thrombopoietin and stem cell factor to induce megakaryocyte (MK) differentiation. Results Overexpression of GATA1 and Pbx1 increased MK output 2‐ to 2.5‐fold and allowed prolonged collection of MK. Cytologic and ultrastructural analyses identified typical MK with enlarged cells, multilobulated nuclei, granule structures, and an internal membrane system. However, GATA1 and Pbx1 expression did not improve MK maturation or platelet release, although in vitro–generated platelets were functional in spreading on fibrinogen or collagen‐related peptide. Conclusion We demonstrate that the use of rtTA‐M2 transgenic iPSCs transduced with Tet‐inducible retroviral vectors allowed for gene expression at later time points during differentiation. With this strategy we could identify factors that increased in vitro MK production. ![]()
Collapse
Affiliation(s)
- Katharina Cullmann
- RG Gene Modification in Stem Cells, Division of Veterinary Medicine Paul-Ehrlich-Institut Langen Germany
| | - Magdalena Jahn
- RG Gene Modification in Stem Cells, Division of Veterinary Medicine Paul-Ehrlich-Institut Langen Germany
| | - Markus Spindler
- Institute of Experimental Biomedicine I University Hospital and Rudolf Virchow Center University of Würzburg Würzburg Germany
| | - Franziska Schenk
- RG Gene Modification in Stem Cells, Division of Veterinary Medicine Paul-Ehrlich-Institut Langen Germany
| | - Georgi Manukjan
- Institute of Experimental Biomedicine I University Hospital and Rudolf Virchow Center University of Würzburg Würzburg Germany
| | - Adele Mucci
- RG Reprogramming and Gene Therapy, Institute of Experimental Hematology, Hannover Medical School Hannover Germany.,Present address: San Raffaele Telethon Institute for Gene Therapy Milano Italy
| | - Doris Steinemann
- Department of Human Genetics Hannover Medical School Hannover Germany
| | - Klaus Boller
- Morphology, Division of Immunology Paul-Ehrlich-Institut Langen Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine I University Hospital and Rudolf Virchow Center University of Würzburg Würzburg Germany
| | - Markus Bender
- Institute of Experimental Biomedicine I University Hospital and Rudolf Virchow Center University of Würzburg Würzburg Germany
| | - Thomas Moritz
- RG Reprogramming and Gene Therapy, Institute of Experimental Hematology, Hannover Medical School Hannover Germany
| | - Ute Modlich
- RG Gene Modification in Stem Cells, Division of Veterinary Medicine Paul-Ehrlich-Institut Langen Germany
| |
Collapse
|
26
|
Martínez-Botía P, Acebes-Huerta A, Seghatchian J, Gutiérrez L. On the Quest for In Vitro Platelet Production by Re-Tailoring the Concepts of Megakaryocyte Differentiation. ACTA ACUST UNITED AC 2020; 56:medicina56120671. [PMID: 33287459 PMCID: PMC7761839 DOI: 10.3390/medicina56120671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
The demand of platelet transfusions is steadily growing worldwide, inter-donor variation, donor dependency, or storability/viability being the main contributing factors to the current global, donor-dependent platelet concentrate shortage concern. In vitro platelet production has been proposed as a plausible alternative to cover, at least partially, the increasing demand. However, in practice, such a logical production strategy does not lack complexity, and hence, efforts are focused internationally on developing large scale industrial methods and technologies to provide efficient, viable, and functional platelet production. This would allow obtaining not only sufficient numbers of platelets but also functional ones fit for all clinical purposes and civil scenarios. In this review, we cover the evolution around the in vitro culture and differentiation of megakaryocytes into platelets, the progress made thus far to bring the culture concept from basic research towards good manufacturing practices certified production, and subsequent clinical trial studies. However, little is known about how these in vitro products should be stored or whether any safety measure should be implemented (e.g., pathogen reduction technology), as well as their quality assessment (how to isolate platelets from the rest of the culture cells, debris, microvesicles, or what their molecular and functional profile is). Importantly, we highlight how the scientific community has overcome the old dogmas and how the new perspectives influence the future of platelet-based therapy for transfusion purposes.
Collapse
Affiliation(s)
- Patricia Martínez-Botía
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (P.M.-B.); (A.A.-H.)
- Department of Medicine, University of Oviedo, 33003 Oviedo, Spain
| | - Andrea Acebes-Huerta
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (P.M.-B.); (A.A.-H.)
| | - Jerard Seghatchian
- International Consultancy in Strategic Safety/Quality Improvements of Blood-Derived Bioproducts and Suppliers Quality Audit/Inspection, London NW3 3AA, UK;
| | - Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (P.M.-B.); (A.A.-H.)
- Department of Medicine, University of Oviedo, 33003 Oviedo, Spain
- Correspondence:
| |
Collapse
|
27
|
Strassel C, Lanza F, Gachet C. Plaquettes sanguines de culture : état de l’art. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2020; 204:971-980. [PMID: 33078027 PMCID: PMC7556249 DOI: 10.1016/j.banm.2020.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/03/2020] [Indexed: 11/09/2022]
Abstract
Les plaquettes sanguines sont des éléments anucléés du sang. D’un diamètre de 2 à 3 μm, ce sont les plus petits éléments figurés du sang. Alors que leur rôle principal est d’arrêter ou prévenir les saignements, elles sont également impliquées dans d’autres fonctions, comme l’immunité, l’inflammation ou la progression tumorale. L’essor des biotechnologies et les connaissances acquises sur les mécanismes qui régulent la biogénèse des plaquettes permettent aujourd’hui d’envisager la production de plaquettes de culture. Dès lors, ce type de produit pourrait avoir sa place pour relever un certain nombre de défis transfusionnels comme l’allo-immunisation ou les états réfractaires. Cependant les rendements de culture restent faibles et de nombreux obstacles doivent encore être franchis avant d’envisager une application en transfusion. Cet article recense les arguments qui motivent la production de plaquettes de culture à visée transfusionnelle et récapitule les principales avancées dans le domaine tout en soulignant ses limites.
Collapse
|
28
|
Boscher J, Guinard I, Eckly A, Lanza F, Léon C. Blood platelet formation at a glance. J Cell Sci 2020; 133:133/20/jcs244731. [DOI: 10.1242/jcs.244731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
The main function of blood platelets is to ensure hemostasis and prevent hemorrhages. The 1011 platelets needed daily are produced in a well-orchestrated process. However, this process is not yet fully understood and in vitro platelet production is still inefficient. Platelets are produced in the bone marrow by megakaryocytes, highly specialized precursor cells that extend cytoplasmic projections called proplatelets (PPTs) through the endothelial barrier of sinusoid vessels. In this Cell Science at a Glance article and the accompanying poster we discuss the mechanisms and pathways involved in megakaryopoiesis and platelet formation processes. We especially address the – still underestimated – role of the microenvironment of the bone marrow, and present recent findings on how PPT extension in vivo differs from that in vitro and entails different mechanisms. Finally, we recapitulate old but recently revisited evidence that – although bone marrow does produce megakaryocytes and PPTs – remodeling and the release of bona fide platelets, mainly occur in the downstream microcirculation.
Collapse
Affiliation(s)
- Julie Boscher
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| | - Ines Guinard
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| | - Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| | - François Lanza
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| | - Catherine Léon
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| |
Collapse
|
29
|
Crispin P, Gardiner EE. Platelets and cancer… the plot doesn't always thicken. J Thromb Haemost 2020; 18:2482-2485. [PMID: 33460258 DOI: 10.1111/jth.14944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Platelets have critical roles in preventing blood loss following injury, promoting wound healing, and in fighting infection through innate immune defense strategies. KEY RESULTS Deficiencies in platelet number or function either as a result of disease, as a consequence of therapy, or both can lead to dramatic and potentially fatal consequences. CONCLUSIONS AND INFERENCES With the advent of new therapeutics targeting pathways within hematological malignant cells that are also important for platelet function, monitoring the state of a patient's haemostasis system is now an important clinical consideration.
Collapse
Affiliation(s)
- Philip Crispin
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Department of Clinical Haematology, The Canberra Hospital, Garran, Australia
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
30
|
Abbonante V, Di Buduo CA, Malara A, Laurent PA, Balduini A. Mechanisms of platelet release: in vivo studies and in vitro modeling. Platelets 2020; 31:717-723. [PMID: 32522064 DOI: 10.1080/09537104.2020.1774532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mechanisms related to platelet release in the context of the bone marrow niche are not completely known. In this review we discuss what has been discovered about four critical aspects of this process: 1) the bone marrow niche organization, 2) the role of the extracellular matrix components, 3) the mechanisms by which megakaryocytes release platelets and 4) the novel approaches to mimic the bone marrow environment and produce platelets ex vivo.
Collapse
Affiliation(s)
| | | | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia , Pavia, Italy
| | | | | |
Collapse
|
31
|
Abstract
Recent advances in super-resolution (sub-diffraction limited) microscopy have yielded remarkable insights into the nanoscale architecture and behavior of cells. In addition to the capacity to provide sub 100 nm resolution, these technologies offer unique quantitative opportunities with particular relevance to platelet and megakaryocyte biology. In this review, we provide a short introduction to modern super-resolution microscopy, its applications in the field of platelet and megakaryocyte biology, and emerging quantitative approaches which will allow for unprecedented insights into the biology of these unique cell types.
Collapse
Affiliation(s)
- Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham , Birmingham, UK
| | - Jeremy A Pike
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham , Birmingham, UK.,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham , UK
| |
Collapse
|
32
|
Nurden AT, Nurden P. Inherited thrombocytopenias: history, advances and perspectives. Haematologica 2020; 105:2004-2019. [PMID: 32527953 PMCID: PMC7395261 DOI: 10.3324/haematol.2019.233197] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Over the last 100 years the role of platelets in hemostatic events and their production by megakaryocytes have gradually been defined. Progressively, thrombocytopenia was recognized as a cause of bleeding, first through an acquired immune disorder; then, since 1948, when Bernard-Soulier syndrome was first described, inherited thrombocytopenia became a fascinating example of Mendelian disease. The platelet count is often severely decreased and platelet size variable; associated platelet function defects frequently aggravate bleeding. Macrothrombocytopenia with variable proportions of enlarged platelets is common. The number of circulating platelets will depend on platelet production, consumption and lifespan. The bulk of macrothrombocytopenias arise from defects in megakaryopoiesis with causal variants in transcription factor genes giving rise to altered stem cell differentiation and changes in early megakaryocyte development and maturation. Genes encoding surface receptors, cytoskeletal and signaling proteins also feature prominently and Sanger sequencing associated with careful phenotyping has allowed their early classification. It quickly became apparent that many inherited thrombocytopenias are syndromic while others are linked to an increased risk of hematologic malignancies. In the last decade, the application of next-generation sequencing, including whole exome sequencing, and the use of gene platforms for rapid testing have greatly accelerated the discovery of causal genes and extended the list of variants in more common disorders. Genes linked to an increased platelet turnover and apoptosis have also been identified. The current challenges are now to use next-generation sequencing in first-step screening and to define bleeding risk and treatment better.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Pessac, France
| | | |
Collapse
|
33
|
Matrix Mechanosensation in the Erythroid and Megakaryocytic Lineages. Cells 2020; 9:cells9040894. [PMID: 32268541 PMCID: PMC7226728 DOI: 10.3390/cells9040894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022] Open
Abstract
The biomechanical properties of the bone marrow microenvironment emerge from a combination of interactions between various extracellular matrix (ECM) structural proteins and soluble factors. Matrix stiffness directs stem cell fate, and both bone marrow stromal and hematopoietic cells respond to biophysical cues. Within the bone marrow, the megakaryoblasts and erythroblasts are thought to originate from a common progenitor, giving rise to fully mature magakaryocytes (the platelet precursors) and erythrocytes. Erythroid and megakaryocytic progenitors sense and respond to the ECM through cell surface adhesion receptors such as integrins and mechanosensitive ion channels. While hematopoietic stem progenitor cells remain quiescent on stiffer ECM substrates, the maturation of the erythroid and megakaryocytic lineages occurs on softer ECM substrates. This review surveys the major matrix structural proteins that contribute to the overall biomechanical tone of the bone marrow, as well as key integrins and mechanosensitive ion channels identified as ECM sensors in context of megakaryocytosis or erythropoiesis.
Collapse
|
34
|
Argentati C, Morena F, Tortorella I, Bazzucchi M, Porcellati S, Emiliani C, Martino S. Insight into Mechanobiology: How Stem Cells Feel Mechanical Forces and Orchestrate Biological Functions. Int J Mol Sci 2019; 20:E5337. [PMID: 31717803 PMCID: PMC6862138 DOI: 10.3390/ijms20215337] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
The cross-talk between stem cells and their microenvironment has been shown to have a direct impact on stem cells' decisions about proliferation, growth, migration, and differentiation. It is well known that stem cells, tissues, organs, and whole organisms change their internal architecture and composition in response to external physical stimuli, thanks to cells' ability to sense mechanical signals and elicit selected biological functions. Likewise, stem cells play an active role in governing the composition and the architecture of their microenvironment. Is now being documented that, thanks to this dynamic relationship, stemness identity and stem cell functions are maintained. In this work, we review the current knowledge in mechanobiology on stem cells. We start with the description of theoretical basis of mechanobiology, continue with the effects of mechanical cues on stem cells, development, pathology, and regenerative medicine, and emphasize the contribution in the field of the development of ex-vivo mechanobiology modelling and computational tools, which allow for evaluating the role of forces on stem cell biology.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Serena Porcellati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| |
Collapse
|
35
|
Ingavle G, Shabrani N, Vaidya A, Kale V. Mimicking megakaryopoiesis in vitro using biomaterials: Recent advances and future opportunities. Acta Biomater 2019; 96:99-110. [PMID: 31319203 DOI: 10.1016/j.actbio.2019.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
Abstract
Presently donor-derived platelets used in the clinic are associated with concerns about adequate availability, expense, risk of bacterial contamination and complications due to immunological reaction. To prevail over our dependence on transfusion of donor-derived platelets, efforts are being made to generate them in vitro. Development of biomaterials that support or mimic bone marrow niche micro-environmental cues could improve the in vitro production of platelets from megakaryocytes (MKs) derived from various stem cell sources. In spite of significant advances in the production of MKs from various stem cell sources using 2D as well as 3D culture approaches in vitro and the development of biomaterials-based platelet systems, yield and quality of these platelets remains unsuitable for clinical use. Thus, in vitro production of clinically useful platelets on a large scale remains an unmet target to date. This review summarizes the most frequently used 2D and 3D approaches to generate MKs and platelets in vitro, emphasizing the importance of mimicking in vivo micro-environment. Further, this review proposes the use of interpenetrating network (IPN) biomaterial-based approach as a promising strategy for improving the generation of MK and platelets in sufficient numbers in vitro. STATEMENT OF SIGNIFICANCE: Thrombocytopenia is one of the major global health and socio-economic problems. Transfusion with donor-derived platelets (PLTs) is the only effective treatment for this condition. However, this approach is limited by factors like short shelf-life of PLTs, PLT activation, alloimmunization, risk of bacterial contamination, infection etc. In vitro generated MKs and PLTs derived from non-donor-dependent sources may help to overcome the platelet transfusion concerns. Here we have reviewed various 2D and 3D strategies used for in vitro generation of MKs and PLTs, with special emphasis on various biomaterial platforms and different physico/chemical cues being used for the purpose. We have also proposed a biomaterial-based approach of using interpenetrating network (IPN) for generating clinically relevant numbers of MKs and PLTs.
Collapse
|
36
|
Noetzli LJ, French SL, Machlus KR. New Insights Into the Differentiation of Megakaryocytes From Hematopoietic Progenitors. Arterioscler Thromb Vasc Biol 2019; 39:1288-1300. [PMID: 31043076 PMCID: PMC6594866 DOI: 10.1161/atvbaha.119.312129] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
Abstract
Megakaryocytes are hematopoietic cells, which are responsible for the production of blood platelets. The traditional view of megakaryopoiesis describes the cellular journey from hematopoietic stem cells, through a hierarchical series of progenitor cells, ultimately to a mature megakaryocyte. Once mature, the megakaryocyte then undergoes a terminal maturation process involving multiple rounds of endomitosis and cytoplasmic restructuring to allow platelet formation. However, recent studies have begun to redefine this hierarchy and shed new light on alternative routes by which hematopoietic stem cells are differentiated into megakaryocytes. In particular, the origin of megakaryocytes, including the existence and hierarchy of megakaryocyte progenitors, has been redefined, as new studies are suggesting that hematopoietic stem cells originate as megakaryocyte-primed and can bypass traditional lineage checkpoints. Overall, it is becoming evident that megakaryopoiesis does not only occur as a stepwise process, but is dynamic and adaptive to biological needs. In this review, we will reexamine the canonical dogmas of megakaryopoiesis and provide an updated framework for interpreting the roles of traditional pathways in the context of new megakaryocyte biology. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Leila J Noetzli
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Shauna L French
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Kellie R Machlus
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
37
|
Platelet communication with the vascular wall: role of platelet-derived microparticles and non-coding RNAs. Clin Sci (Lond) 2018; 132:1875-1888. [PMID: 30185611 DOI: 10.1042/cs20180580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 12/24/2022]
Abstract
Platelets play an important role in vascular homeostasis through their interaction with circulating blood cells as well as the vascular wall. Platelet-mediated communication with other cells can take the form of direct cell-cell interactions via membrane receptors or indirectly through the release of different soluble factors stored in their granules as well as through the release of microparticles. The latter carry different proteins and RNAs which are transferred to the target cells. The aim of this review is to discuss the role of platelet-derived factors, adhesion molecules as well as RNAs as mediators of the cross-talk between platelets and the vessel wall.
Collapse
|
38
|
Strassel C, Gachet C, Lanza F. On the Way to in vitro Platelet Production. Front Med (Lausanne) 2018; 5:239. [PMID: 30211166 PMCID: PMC6120994 DOI: 10.3389/fmed.2018.00239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
The severely decreased platelet counts (10–30. 103 platelets/μL) frequently observed in patients undergoing chemotherapy, radiation treatment, or organ transplantation are associated with life-threatening increased bleeding risks. To circumvent these risks, platelet transfusion remains the treatment of choice, despite some limitations which include a limited shelf-life, storage-related deterioration, the development of alloantibodies in recipients and the transmission of infectious diseases. A sustained demand has evolved in recent years for controlled blood products, free of infectious, inflammatory, and immune risks. As a consequence, the challenge for blood centers in the near future will be to ensure an adequate supply of blood platelets, which calls for a reassessment of our transfusion models. To meet this challenge, many laboratories are now turning their research efforts toward the in vitro and customized production of blood platelets. In recent years, there has been a major enthusiasm for the cultured platelet production, as illustrated by the number of reviews that have appeared in recent years. The focus of the present review is to critically asses the arguments put forward in support of the culture of platelets for transfusion purposes. In light of this, we will recapitulate the main advances in this quickly evolving field, while noting the technical limitations to overcome to make cultured platelet a transfusional alternative.
Collapse
Affiliation(s)
- Catherine Strassel
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Christian Gachet
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - François Lanza
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| |
Collapse
|
39
|
Strassel C, Gachet C, Lanza F. On the way to in vitro platelet production. Transfus Clin Biol 2018; 25:220-227. [PMID: 30150135 DOI: 10.1016/j.tracli.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023]
Abstract
The severely decreased platelet counts (10-30.103 platelets/μL) frequently observed in patients undergoing chemotherapy, radiation treatment or organ transplantation are associated with life-threatening increased bleeding risks. To circumvent these risks, platelet transfusion remains the treatment of choice, despite some limitations which include a limited shelf-life, storage-related deterioration, the development of alloantibodies in recipients and the transmission of infectious diseases. A sustained demand has evolved in recent years for controlled blood products, free of infectious, inflammatory and immune risks. As a consequence, the challenge for blood centers in the near future will be to ensure an adequate supply of blood platelets, which calls for a reassessment of our transfusion models. To meet this challenge, many laboratories are now turning their research efforts towards the in vitro and customized production of blood platelets.
Collapse
Affiliation(s)
- Catherine Strassel
- Université de Strasbourg, Inserm, EFS Grand Est, BPPS UMR-S 1255, FMTS, 67000 Strasbourg, France
| | - Christian Gachet
- Université de Strasbourg, Inserm, EFS Grand Est, BPPS UMR-S 1255, FMTS, 67000 Strasbourg, France.
| | - François Lanza
- Université de Strasbourg, Inserm, EFS Grand Est, BPPS UMR-S 1255, FMTS, 67000 Strasbourg, France
| |
Collapse
|
40
|
Bai M, Xie J, Liu X, Chen X, Liu W, Wu F, Chen D, Sun Y, Li X, Wang C, Ye L. Microenvironmental Stiffness Regulates Dental Papilla Cell Differentiation: Implications for the Importance of Fibronectin-Paxillin-β-Catenin Axis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26917-26927. [PMID: 30004214 DOI: 10.1021/acsami.8b08450] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mechanical stiffness of substrates is recognized to be an important physical cue in the microenvironment of local cellular residents in mammalian species due to their great capacity in regulating cell behavior. Dental papilla cells (DPCs) play an important role in the field of dental tissue engineering for their stem cell-like properties. Therefore, it is essential to provide the suitable microenvironment by combining with the physical cues of biomaterials for DPCs to carry out the function of effective tissue regeneration. However, how the substrate stiffness influences the odontogenic differentiation of DPCs is still unclear. Thus, we fabricated poly(dimethylsiloxane) substrates with varied stiffness for cell behavior. Both cell morphology and focal adhesion were shown to have significant changes in response to varied stiffness. Paxillin, an important protein adapter of focal adhesion kinase protein, was shown to interact with both ectoplasmic fibronectin and cytoplasmic β-catenin by coimmunoprecipitation. The resultant changes of β-catenin by varied stiffness were confirmed by immunofluorescent stain and western blotting. Further, the higher quantity nuclear translocation of β-catenin and the less phospho-β-catenin on the stiff substrate were detected. This nuclear translocation in the stiff substrate finally led to an increased mineralization of DPCs relative to the soft substrate detected by Von Kossa and Alizarin Red stain. Taken together, this work not only points out that the substrate stiffness can regulate the odontogenic differentiation potential of DPCs via fibronectin/paxillin/β-catenin pathway but also provides significant consequence for biomechanical control of cell behavior in cell-based tooth tissue regeneration.
Collapse
Affiliation(s)
- Mingru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Xiaoyu Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Xia Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Wenjing Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Dian Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Yimin Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Xin Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| |
Collapse
|
41
|
Pleines I, Cherpokova D, Bender M. Rho GTPases and their downstream effectors in megakaryocyte biology. Platelets 2018; 30:9-16. [DOI: 10.1080/09537104.2018.1478071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Irina Pleines
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Deya Cherpokova
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Markus Bender
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
42
|
Zuidscherwoude M, Green HLH, Thomas SG. Formin proteins in megakaryocytes and platelets: regulation of actin and microtubule dynamics. Platelets 2018; 30:23-30. [PMID: 29913076 PMCID: PMC6406210 DOI: 10.1080/09537104.2018.1481937] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The platelet and megakaryocyte cytoskeletons are essential for formation and function of these cells. A dynamic, properly organised tubulin and actin cytoskeleton is critical for the development of the megakaryocyte and the extension of proplatelets. Tubulin in particular plays a pivotal role in the extension of these proplatelets and the release of platelets from them. Tubulin is further required for the maintenance of platelet size, and actin is the driving force for shape change, spreading and platelet contraction during platelet activation. Whilst several key proteins which regulate these cytoskeletons have been described in detail, the formin family of proteins has received less attention. Formins are intriguing as, although they were initially believed to simply be a nucleator of actin polymerisation, increasing evidence shows they are important regulators of the crosstalk between the actin and microtubule cytoskeletons. In this review, we will introduce the formin proteins and consider the recent evidence that they play an important role in platelets and megakaryocytes in mediating both the actin and tubulin cytoskeletons.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK.,b Centre of Membrane Proteins and Receptors (COMPARE) , University of Birmingham and University of Nottingham , Midlands , UK
| | - Hannah L H Green
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK
| | - Steven G Thomas
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK.,b Centre of Membrane Proteins and Receptors (COMPARE) , University of Birmingham and University of Nottingham , Midlands , UK
| |
Collapse
|
43
|
Multi-channel silk sponge mimicking bone marrow vascular niche for platelet production. Biomaterials 2018; 178:122-133. [PMID: 29920404 DOI: 10.1016/j.biomaterials.2018.06.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 01/09/2023]
Abstract
In the bone marrow, the interaction of progenitor cells with the vasculature is fundamental for the release of blood cells into circulation. Silk fibroin, derived from Bombyx mori silkworm cocoons, is a promising protein biomaterial for bone marrow tissue engineering, because of its tunable architecture and mechanical properties, the capacity to incorporate labile compounds without loss of bioactivity and the demonstrated ability to support blood cell formation without premature activation. In this study, we fabricated a custom perfusion chamber to contain a multi-channel lyophilized silk sponge mimicking the vascular network in the bone marrow niche. The perfusion system consisted in an inlet and an outlet and 2 splitters that allowed funneling flow in each single channel of the silk sponge. Computational Fluid Dynamic analysis demonstrated that this design permitted confined flow inside the vascular channels. The silk channeled sponge supported efficient platelet release from megakaryocytes (Mks). After seeding, the Mks localized along SDF-1α functionalized vascular channels in the sponge. Perfusion of the channels allowed the recovery of functional platelets as demonstrated by increased PAC-1 binding upon thrombin stimulation. Further, increasing the number of channels in the silk sponge resulted in a proportional increase in the numbers of platelets recovered, suggesting applicability to scale-up for platelet production. In conclusion, we have developed a scalable system consisting of a multi-channeled silk sponge incorporated in a perfusion chamber that can provide useful technology for functional platelet production ex vivo.
Collapse
|
44
|
Leiva O, Leon C, Kah Ng S, Mangin P, Gachet C, Ravid K. The role of extracellular matrix stiffness in megakaryocyte and platelet development and function. Am J Hematol 2018; 93:430-441. [PMID: 29247535 DOI: 10.1002/ajh.25008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) is a key acellular structure in constant remodeling to provide tissue cohesion and rigidity. Deregulation of the balance between matrix deposition, degradation, and crosslinking results in fibrosis. Bone marrow fibrosis (BMF) is associated with several malignant and nonmalignant pathologies severely affecting blood cell production. BMF results from abnormal deposition of collagen fibers and enhanced lysyl oxidase-mediated ECM crosslinking within the marrow, thereby increasing marrow stiffness. Bone marrow stiffness has been recently recognized as an important regulator of blood cell development, notably by modifying the fate and differentiation process of hematopoietic or mesenchymal stem cells. This review surveys the different components of the ECM and their influence on stem cell development, with a focus on the impact of the ECM composition and stiffness on the megakaryocytic lineage in health and disease. Megakaryocyte maturation and the biogenesis of their progeny, the platelets, are thought to respond to environmental mechanical forces through a number of mechanosensors, including integrins and mechanosensitive ion channels, reviewed here.
Collapse
Affiliation(s)
- Orly Leiva
- Department of Medicine; Whitaker Cardiovascular Institute, Boston University School of Medicine; Boston Massachusetts
| | - Catherine Leon
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 949, FMTS; Strasbourg F-67000 France
| | - Seng Kah Ng
- Department of Medicine; Whitaker Cardiovascular Institute, Boston University School of Medicine; Boston Massachusetts
| | - Pierre Mangin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 949, FMTS; Strasbourg F-67000 France
| | - Christian Gachet
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 949, FMTS; Strasbourg F-67000 France
| | - Katya Ravid
- Department of Medicine; Whitaker Cardiovascular Institute, Boston University School of Medicine; Boston Massachusetts
| |
Collapse
|
45
|
Salzmann M, Hoesel B, Haase M, Mussbacher M, Schrottmaier WC, Kral-Pointner JB, Finsterbusch M, Mazharian A, Assinger A, Schmid JA. A novel method for automated assessment of megakaryocyte differentiation and proplatelet formation. Platelets 2018; 29:357-364. [PMID: 29461915 DOI: 10.1080/09537104.2018.1430359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transfusion of platelet concentrates represents an important treatment for various bleeding complications. However, the short half-life and frequent contaminations with bacteria restrict the availability of platelet concentrates and raise a clear demand for platelets generated ex vivo. Therefore, in vitro platelet generation from megakaryocytes represents an important research topic. A vital step for this process represents accurate analysis of thrombopoiesis and proplatelet formation, which is usually conducted manually. We aimed to develop a novel method for automated classification and analysis of proplatelet-forming megakaryocytes in vitro. After fluorescent labelling of surface and nucleus, MKs were automatically categorized and analysed with a novel pipeline of the open source software CellProfiler. Our new workflow is able to detect and quantify four subtypes of megakaryocytes undergoing thrombopoiesis: proplatelet-forming, spreading, pseudopodia-forming and terminally differentiated, anucleated megakaryocytes. Furthermore, we were able to characterize the inhibitory effect of dasatinib on thrombopoiesis in more detail. Our new workflow enabled rapid, unbiased, quantitative and qualitative in-depth analysis of proplatelet formation based on morphological characteristics. Clinicians and basic researchers alike will benefit from this novel technique that allows reliable and unbiased quantification of proplatelet formation. It thereby provides a valuable tool for the development of methods to generate platelets ex vivo and to detect effects of drugs on megakaryocyte differentiation.
Collapse
Affiliation(s)
- M Salzmann
- a Institute of Vascular Biology and Thrombosis Research , Medical University of Vienna , Vienna , Austria
| | - B Hoesel
- a Institute of Vascular Biology and Thrombosis Research , Medical University of Vienna , Vienna , Austria
| | - M Haase
- a Institute of Vascular Biology and Thrombosis Research , Medical University of Vienna , Vienna , Austria
| | - M Mussbacher
- a Institute of Vascular Biology and Thrombosis Research , Medical University of Vienna , Vienna , Austria
| | - W C Schrottmaier
- a Institute of Vascular Biology and Thrombosis Research , Medical University of Vienna , Vienna , Austria
| | - J B Kral-Pointner
- a Institute of Vascular Biology and Thrombosis Research , Medical University of Vienna , Vienna , Austria
| | - M Finsterbusch
- a Institute of Vascular Biology and Thrombosis Research , Medical University of Vienna , Vienna , Austria
| | - A Mazharian
- b Institute of Cardiovascular Sciences, College of Medical and Dental Sciences , University of Birmingham , Birmingham , UK
| | - A Assinger
- a Institute of Vascular Biology and Thrombosis Research , Medical University of Vienna , Vienna , Austria
| | - J A Schmid
- a Institute of Vascular Biology and Thrombosis Research , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
46
|
Li J, Wang Z, Chu Q, Jiang K, Li J, Tang N. The Strength of Mechanical Forces Determines the Differentiation of Alveolar Epithelial Cells. Dev Cell 2018; 44:297-312.e5. [PMID: 29408236 DOI: 10.1016/j.devcel.2018.01.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 11/17/2022]
Abstract
The differentiation of alveolar epithelial type I (AT1) and type II (AT2) cells is essential for the lung gas exchange function. Disruption of this process results in neonatal death or in severe lung diseases that last into adulthood. We developed live imaging techniques to characterize the mechanisms that control alveolar epithelial cell differentiation. We discovered that mechanical forces generated from the inhalation of amniotic fluid by fetal breathing movements are essential for AT1 cell differentiation. We found that a large subset of alveolar progenitor cells is able to protrude from the airway epithelium toward the mesenchyme in an FGF10/FGFR2 signaling-dependent manner. The cell protrusion process results in enrichment of myosin in the apical region of protruded cells; this myosin prevents these cells from being flattened by mechanical forces, thereby ensuring their AT2 cell fate. Our study demonstrates that mechanical forces and local growth factors synergistically control alveolar epithelial cell differentiation.
Collapse
Affiliation(s)
- Jiao Li
- China Agricultural University, Beijing 100083, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Zheng Wang
- National Institute of Biological Sciences, Beijing 102206, China; Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Qiqi Chu
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875 China
| | - Kewu Jiang
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875 China
| | - Juan Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Nan Tang
- National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
47
|
Di Buduo CA, Abbonante V, Tozzi L, Kaplan DL, Balduini A. Three-Dimensional Tissue Models for Studying Ex Vivo Megakaryocytopoiesis and Platelet Production. Methods Mol Biol 2018; 1812:177-193. [PMID: 30171579 DOI: 10.1007/978-1-4939-8585-2_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Three-dimensional (3D) tissue cultures in vitro enable a more physiological reconstruction of native tissues and organs. The bone marrow environment, structure and composition regulate megakaryocyte function and platelet production. Here, we describe the use of silk fibroin protein biomaterials to assemble 3D scaffolds mimicking the bone marrow niche architecture and extracellular matrix composition to support platelet release from human megakaryocytes. Additionally, we also propose the use of hyaluronan hydrogels, functionalized with extracellular matrix components, to reproduce the 3D matrix structure of the bone marrow environment for studying human megakaryocyte function.
Collapse
Affiliation(s)
| | | | - Lorenzo Tozzi
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
48
|
Aguilar A, Boscher J, Pertuy F, Gachet C, Léon C. Three-Dimensional Culture in a Methylcellulose-Based Hydrogel to Study the Impact of Stiffness on Megakaryocyte Differentiation. Methods Mol Biol 2018; 1812:139-153. [PMID: 30171577 DOI: 10.1007/978-1-4939-8585-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The differentiation and maturation of megakaryocytes (MKs) occurs in a 3D environment where the cells must constantly adapt to the external physical and mechanical constraints during their development and migration to sinusoid vessels. In this chapter, we present a method for culture of mouse MKs from bone marrow hematopoietic progenitor cells in a methylcellulose 3D medium with a stiffness mimicking that of bone marrow. In addition, we describe how the MKs can be recovered to allow for analysis of their differentiation and maturation state by transmission electron microscopy, immunofluorescence or flow cytometry techniques and to evaluate their ability to form proplatelets. This approach allows (1) generation of MKs with a morphology that more closely resembles the MKs that differentiate in vivo, (2) recovery of megakaryocyte phenotypes sometimes observed in vivo but not found in classical liquid cultures, and (3) study of mechanotransduction pathways induced by the stiffness of the medium.
Collapse
Affiliation(s)
- Alicia Aguilar
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, F-67000, Strasbourg, France
| | - Julie Boscher
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, F-67000, Strasbourg, France
| | - Fabien Pertuy
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, F-67000, Strasbourg, France
| | - Christian Gachet
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, F-67000, Strasbourg, France
| | - Catherine Léon
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, F-67000, Strasbourg, France.
| |
Collapse
|
49
|
Gorelashvili MG, Heinze KG, Stegner D. Optical Clearing of Murine Bones to Study Megakaryocytes in Intact Bone Marrow Using Light-Sheet Fluorescence Microscopy. Methods Mol Biol 2018; 1812:233-253. [PMID: 30171582 DOI: 10.1007/978-1-4939-8585-2_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In mammals, the differentiation and maturation of megakaryocytes (MKs) occurs in the bone marrow (BM). The three-dimensional environment influences megakaryopoiesis and platelet release. Thus, imaging MKs within the intact BM is important to understand megakaryopoiesis. Here, we present an optical clearing protocol for intact bones and the subsequent microscopic analysis including image processing to quantitatively assess MK size and distribution. This technique overcomes the limitations of classical sectioning methods as the entire bone can be imaged.
Collapse
Affiliation(s)
| | - Katrin G Heinze
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - David Stegner
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
50
|
Osman S, Dalmay D, Mahaut-Smith M. Fluorescence Approaches to Image and Quantify the Demarcation Membrane System in Living Megakaryocytes. Methods Mol Biol 2018; 1812:195-215. [PMID: 30171580 DOI: 10.1007/978-1-4939-8585-2_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The demarcation membrane system (DMS) develops to provide additional surface membrane for the process of platelet production. The DMS is an invagination of the plasma membrane that can extend throughout the extranuclear volume of mature megakaryocytes and its lumen is continuous with the extracellular solution. DMS ultrastructure in fixed samples has been extensively studied using transmission electron microscopy (TEM) and more recently with focused ion beam scanning EM. In addition, whole cell patch clamp membrane capacitance provides a direct measurement of DMS content in living megakaryocytes. However, fluorescence methods to image and quantify the DMS in living megakaryocytes provide several advantages. For example, confocal fluorescence microscopy is easier to use compared to EM or electrophysiological methods and the required equipment is more readily available. In addition, use of living cells avoids artifacts known to occur during the fixation, dehydration, or embedding steps used to prepare EM samples. Here we describe the use of styryl dyes such as FM 1-43 or di-8-ANEPPS and impermeant fluorescent indicators of the extracellular space as simple approaches for imaging and quantification of the DMS.
Collapse
Affiliation(s)
- Sangar Osman
- Department of Molecular and Cell Biology, Lancaster Road, University of Leicester, Leicester, UK
| | - Daniel Dalmay
- Department of Molecular and Cell Biology, Lancaster Road, University of Leicester, Leicester, UK
| | - Martyn Mahaut-Smith
- Department of Molecular and Cell Biology, Lancaster Road, University of Leicester, Leicester, UK.
| |
Collapse
|