1
|
Petty NE, Radtke S, Kanestrom G, Fields E, Humbert O, Fiorenza S, Llewellyn MJ, Laszlo GS, Thomas J, Burger Z, Swing K, Zhu H, Jerome KR, Turtle CJ, Walter RB, Kiem HP. Protection of CD33-modified hematopoietic stem cell progeny from CD33-directed CAR T cells in rhesus macaques. Blood Adv 2025; 9:2367-2378. [PMID: 39928955 DOI: 10.1182/bloodadvances.2024015016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/12/2025] Open
Abstract
ABSTRACT The treatment of monogenetic disorders, such as hemoglobinopathies and lysosomal storage diseases, has markedly improved with the advent of cell and gene therapies, particularly allogeneic or gene-modified autologous stem cell transplantations. However, therapeutic efficacy is reliant on maintaining engraftment above a critical threshold. To maintain such engraftment levels, we and others have pursued approaches to shield edited cells from antibody or chimeric antigen receptor (CAR) T-cell-mediated selection. Here, we focused on CD33, which is expressed early on hematopoietic stem and progenitor cells (HSPCs) as well as on myeloid progenitors. Rhesus macaques were engrafted with HSPCs edited to ablate CD33 using either CRISPR/CRISPR-associated protein 9 or adenine base editor. Both editing strategies showed similar post-transplant recovery kinetics and yielded equivalent levels of engraftment. We then created a V-set domain-specific CAR construct (CAR33), validated its functionality in vitro, and treated both animals with autologous CAR33 T cells. CAR33 T cells expanded after infusion and caused specific depletion of CD33WT but not CD33null progeny, leading to a transient enrichment for gene-edited cells in the blood. No depletion was seen in the bone marrow stem cell compartment with CD34+CD90+ HSCs expressing lower levels of CD33 in comparison to monocytes. Thus, we show proof of concept and safety of an epitope editing-based enrichment/protection strategy in macaques.
Collapse
Affiliation(s)
- Nicholas E Petty
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA
| | - Stefan Radtke
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Greta Kanestrom
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Emily Fields
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Olivier Humbert
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Salvatore Fiorenza
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Mallory J Llewellyn
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - George S Laszlo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Justin Thomas
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA
| | - Zach Burger
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Kyle Swing
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Haiying Zhu
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Keith R Jerome
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Cameron J Turtle
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Roland B Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Hans-Peter Kiem
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
2
|
MacAldaz ME, Shu J, Edin G, Hale M, Eaves CJ. Hematopoietic Stem Cells in Human Fetal Liver Selectively Express CD49f. Exp Hematol 2025:104788. [PMID: 40311859 DOI: 10.1016/j.exphem.2025.104788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/29/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025]
Abstract
Identification of phenotypes of human hematopoietic cells that display long-term mature cell outputs in vitro and repopulating capability in immunodeficient mice has been important to anticipating the therapeutic potential of fresh harvests of bone marrow or cord blood before or after their physical or genetic manipulation. However, characterizing their key properties and strategies for their isolation from multiple sources at increasing cell purities and elucidating the mechanisms that regulate their ability to sustain mature blood cell production continues to be of major interest. Previous studies have shown that fetal and adult human cells with long-term blood cell output potential are highly enriched in their respective GPI80+ and CD49f+ subsets of a developmentally preserved CD45+CD34+CD38-CD45RA-CD90+ population. The so-called "GPI80" hematopoietic cells found in first trimester human fetal liver are of particular interest because of their very high regenerative capability compared to their adult or even neonatal (cord blood) "CD49f" counterparts. Here it was hypothesized that high regenerative activity of the GPI80+ cells could be further enriched within a CD49f+ subset. We now demonstrate that co-expression of CD49f within the GPI80+ population identifies a subset with reduced short-term myeloid colony-forming activity in semi-solid medium, and greater progeny outputs in both 12-week growth factor-supplemented stromal co-cultures, and in transplanted immunodeficient mice. These findings demonstrate CD49f is a pervasive marker of human HSCs throughout ontogeny and aging.
Collapse
Affiliation(s)
| | - Jeremy Shu
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Glenn Edin
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Margaret Hale
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Zeidler A, Borbaran-Bravo N, Dannenmann B, Ritter M, Nasri M, Klimiankou M, Kandabarau S, Zahabi A, König J, Zeidler C, Skokowa J, Welte K. Differential transcriptional control of hematopoiesis in congenital and cyclic neutropenia patients harboring ELANE mutations. Haematologica 2024; 109:1393-1402. [PMID: 37855057 PMCID: PMC11063862 DOI: 10.3324/haematol.2023.284033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Mutations in the ELANE gene, encoding the neutrophil elastase (NE) protein, are responsible for most cyclic neutropenia (CyN) cases and approximately 25% of congenital neutropenia (CN) cases. In CN and in CyN, a median of 2.8% of CD34+ cells were early CD49f+ hematopoietic stem cells (eHSC) that did not express ELANE and thus escape from the unfolded protein response (UPR) caused by mutated NE. In CyN, the CD49f+ cells respond to granulocyte colony-stimulating factor (G-CSF) with a significant upregulation of the hematopoietic stem cell-specific transcription factors, C/EBPα, MLL1, HOXA9, MEIS1, and HLF during the ascending arm of the cycle, resulting in the differentiation of myeloid cells to mature neutrophils at the cycle peak. However, NE protein released by neutrophils at the cycle's peak caused a negative feedback loop on granulopoiesis through the proteolytic digestion of G-CSF. In contrast, in CN patients, CD49f+ cells failed to express mRNA levels of HSC-specific transcription factors mentioned above. Rescue of C/EBPα expression in CN restored granulopoiesis.
Collapse
Affiliation(s)
- Alexander Zeidler
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen
| | - Natalia Borbaran-Bravo
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen
| | - Benjamin Dannenmann
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen
| | - Malte Ritter
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen
| | - Masoud Nasri
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen
| | - Maksim Klimiankou
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen
| | - Sergey Kandabarau
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen
| | - Azadeh Zahabi
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen
| | - Josef König
- Hematology and Oncology, Ordensklinikum Elisabethinen, Linz, Austria
| | - Cornelia Zeidler
- Department of Oncology, Hematology, Immunology and Bone Marrow Transplantation, Hannover Medical School, Hannover
| | - Julia Skokowa
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen
| | - Karl Welte
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany; Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen.
| |
Collapse
|
4
|
Kang JB, Chen L, Leng XJ, Wang JJ, Cheng Y, Wu SH, Ma YY, Yang LJ, Cao YH, Yang X, Tong ZJ, Wu JZ, Wang YB, Zhou H, Liu JC, Ding N, Dai WC, Yu YC, Xue X, Sun SL, Dai XB, Chang L, Wang XL, Li NG, Shi ZH. Synthesis and biological evaluation of 4-(4-aminophenyl)-6-methylisoxazolo[3,4-b] pyridin-3-amine covalent inhibitors as potential agents for the treatment of acute myeloid leukemia. Bioorg Med Chem 2022; 70:116937. [PMID: 35863236 DOI: 10.1016/j.bmc.2022.116937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
Abstract
Fms-like tyrosine kinase 3 (FLT3) mutation has been strongly associated with increased risk of relapse, and the irreversible covalent FLT3 inhibitors had the potential to overcome the drug-resistance. In this study, a series of simplified 4-(4-aminophenyl)-6-methylisoxazolo[3,4-b] pyridin-3-amine derivatives containing two types of Michael acceptors (vinyl sulfonamide, acrylamide) were conveniently synthesized to target FLT3 and its internal tandem duplications (ITD) mutants irreversibly. The kinase inhibitory activities showed that compound C14 displayed potent inhibition activities against FLT3 (IC50 = 256 nM) and FLT3-ITD by 73 % and 25.34 % respectively, at the concentration of 1 μM. The antitumor activities indicated that C14 had strong inhibitory activity against the human acute myeloid leukemia (AML) cell lines MOLM-13 (IC50 = 507 nM) harboring FLT3-ITD mutant, as well as MV4-11 (IC50 = 325 nM) bearing FLT3-ITD mutation. The biochemical analyses showed that these effects were related to the ability of C14 to inhibit FLT3 signal pathways, and C14 could induce apoptosis in MV4-11 cell as demonstrated by flow cytometry. Fortunately, C14 showed very weak potency against FLT3-independent human cervical cancer cell line HL-60 (IC50 > 10 μM), indicating that it might have no off-target toxic effects. In light of these data, compound C14 represents a novel covalent FLT3 kinase inhibitor for targeted therapy of AML.
Collapse
Affiliation(s)
- Ji-Bo Kang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Lu Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yang Cheng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Shi-Han Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yi-Yuan Ma
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Li-Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yu-Hao Cao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xiao Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yi-Bo Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Hai Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jia-Chuan Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xiao-Bin Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China.
| | - Xiao-Long Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
5
|
Hason M, Mikulasova T, Machonova O, Pombinho A, van Ham TJ, Irion U, Nüsslein-Volhard C, Bartunek P, Svoboda O. M-CSFR/CSF1R signaling regulates myeloid fates in zebrafish via distinct action of its receptors and ligands. Blood Adv 2022; 6:1474-1488. [PMID: 34979548 PMCID: PMC8905693 DOI: 10.1182/bloodadvances.2021005459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Macrophage colony-stimulating factor receptor (M-CSFR/CSF1R) signaling is crucial for the differentiation, proliferation, and survival of myeloid cells. The CSF1R pathway is a promising therapeutic target in many human diseases, including neurological disorders and cancer. Zebrafish are commonly used for human disease modeling and preclinical therapeutic screening. Therefore, it is necessary to understand the proper function of cytokine signaling in zebrafish to reliably model human-related diseases. Here, we investigate the roles of zebrafish Csf1rs and their ligands (Csf1a, Csf1b, and Il34) in embryonic and adult myelopoiesis. The proliferative effect of exogenous Csf1a on embryonic macrophages is connected to both receptors, Csf1ra and Csf1rb, however there is no evident effect of Csf1b in zebrafish embryonic myelopoiesis. Furthermore, we uncover an unknown role of Csf1rb in zebrafish granulopoiesis. Deregulation of Csf1rb signaling leads to failure in myeloid differentiation, resulting in neutropenia throughout the whole lifespan. Surprisingly, Il34 signaling through Csf1rb seems to be of high importance as both csf1rbΔ4bp-deficient and il34Δ5bp-deficient zebrafish larvae lack granulocytes. Our single-cell RNA sequencing analysis of adult whole kidney marrow (WKM) hematopoietic cells suggests that csf1rb is expressed mainly by blood and myeloid progenitors, and the expression of csf1ra and csf1rb is nonoverlapping. We point out differentially expressed genes important in hematopoietic cell differentiation and immune response in selected WKM populations. Our findings could improve the understanding of myeloid cell function and lead to the further study of CSF1R pathway deregulation in disease, mostly in cancerogenesis.
Collapse
Affiliation(s)
- Martina Hason
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Tereza Mikulasova
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Olga Machonova
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Antonio Pombinho
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands; and
| | - Uwe Irion
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Petr Bartunek
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Ondrej Svoboda
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| |
Collapse
|
6
|
Post-natal conservation of human blood and marrow-specific CD34+ hematopoietic phenotypes. Exp Hematol 2022; 109:18-26. [DOI: 10.1016/j.exphem.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/18/2022]
|
7
|
Wang J, Tu C, Zhang H, Huo Y, Menu E, Liu J. Single-cell analysis at the protein level delineates intracellular signaling dynamic during hematopoiesis. BMC Biol 2021; 19:201. [PMID: 34503511 PMCID: PMC8428103 DOI: 10.1186/s12915-021-01138-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Hematopoietic stem and progenitor cell (HSPC) subsets in mice have previously been studied using cell surface markers, and more recently single-cell technologies. The recent revolution of single-cell analysis is substantially transforming our understanding of hematopoiesis, confirming the substantial heterogeneity of cells composing the hematopoietic system. While dynamic molecular changes at the DNA/RNA level underlying hematopoiesis have been extensively explored, a broad understanding of single-cell heterogeneity in hematopoietic signaling programs and landscapes, studied at protein level and reflecting post-transcriptional processing, is still lacking. Here, we accurately quantified the intracellular levels of 9 phosphorylated and 2 functional proteins at the single-cell level to systemically capture the activation dynamics of 8 signaling pathways, including EGFR, Jak/Stat, NF-κB, MAPK/ERK1/2, MAPK/p38, PI3K/Akt, Wnt, and mTOR pathways, during mouse hematopoiesis using mass cytometry. RESULTS With fine-grained analyses of 3.2 million of single hematopoietic stem and progenitor cells (HSPCs), and lineage cells in conjunction with multiparameter cellular phenotyping, we mapped trajectories of signaling programs during HSC differentiation and identified specific signaling biosignatures of cycling HSPC and multiple differentiation routes from stem cells to progenitor and lineage cells. We also investigated the recovery pattern of hematopoietic cell populations, as well as signaling regulation in these populations, during hematopoietic reconstruction. Overall, we found substantial heterogeneity of pathway activation within HSPC subsets, characterized by diverse patterns of signaling. CONCLUSIONS These comprehensive single-cell data provide a powerful insight into the intracellular signaling-regulated hematopoiesis and lay a solid foundation to dissect the nature of HSC fate decision. Future integration of transcriptomics and proteomics data, as well as functional validation, will be required to verify the heterogeneity in HSPC subsets during HSC differentiation and to identify robust markers to phenotype those HSPC subsets.
Collapse
Affiliation(s)
- Jinheng Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Chenggong Tu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hui Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yongliang Huo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
8
|
Cytokine combinations for human blood stem cell expansion induce cell type- and cytokine-specific signaling dynamics. Blood 2021; 138:847-857. [PMID: 33988686 DOI: 10.1182/blood.2020008386] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/23/2021] [Indexed: 11/20/2022] Open
Abstract
How hematopoietic stem cells (HSCs) integrate signals from their environment to make fate decisions remains incompletely understood. Current knowledge is based on either averages of heterogeneous populations or snapshot analyses, both missing important information about the dynamics of intracellular signaling activity. By combining fluorescent biosensors with time-lapse imaging and microfluidics, we measured the activity of the extracellular signal-regulated kinase (ERK) pathway over time (i.e. dynamics) in live single human umbilical cord blood HSCs and multipotent progenitor cells (MPPs). In single cells, ERK signaling dynamics were highly heterogeneous and depended on the cytokines, their combinations, and cell types. ERK signaling was activated by SCF and FLT3L in HSCs, but by SCF, IL3 and GCSF in MPPs. Different cytokines and their combinations led to distinct ERK signaling dynamics frequencies, and ERK dynamics in HSCs were more transient than those in MPPs. A combination of 5 cytokines recently shown to maintain HSCs in long-term culture, had a more-than-additive effect in eliciting sustained ERK dynamics in HSCs. ERK signaling dynamics also predicted future cell fates. E.g. CD45RA expression increased more in HSC daughters with intermediate than with transient or sustained ERK signaling. We demonstrate heterogeneous, cytokine- and cell type- specific ERK signaling dynamics, illustrating their relevance in regulating HSPC fates.
Collapse
|
9
|
Hétu-Arbour R, Tlili M, Bandeira Ferreira FL, Abidin BM, Kwarteng EO, Heinonen KM. Cell-intrinsic Wnt4 promotes hematopoietic stem and progenitor cell self-renewal. STEM CELLS (DAYTON, OHIO) 2021; 39:1207-1220. [PMID: 33882146 DOI: 10.1002/stem.3385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 03/25/2021] [Indexed: 11/05/2022]
Abstract
Although intracellular Wnt signaling pathways need to be tightly regulated to promote hematopoietic stem cell self-renewal, the source and identity of important Wnt ligands in the bone marrow is still largely unknown. The noncanonical ligand Wnt4 is expressed in the bone marrow as well as in the stroma, and its overexpression in fetal liver cells facilitates thymic recovery; however, its impact on adult hematopoietic stem cell function remains unclear. Here, we report that the deletion of Wnt4 from hematopoietic cells in mice (Wnt4Δ/Δ ) resulted in decreased lymphopoiesis at steady state. This was likely at least in part due to the increased proinflammatory environment present in the bone marrow of Wnt4Δ/Δ mice. Wnt4Δ/Δ hematopoietic stem cells displayed reduced reconstitution capacity in serial transplants, thus demonstrating defective self-renewal, and they expanded poorly in response to lipopolysaccharide stimulation. This appeared to be the result of the absence of Wnt4 in stem/progenitor cells, as myeloid-restricted Wnt4 deletion had no notable effect. Finally, we observed that Wnt4Δ/Δ stem/progenitor cells were more quiescent, presenting enhanced levels of stress-associated JNK phosphorylation and p16INK4a expression, likely contributing to the reduced expansion observed in transplants. In conclusion, our results identify a new, largely autocrine role for Wnt4 in hematopoietic stem cell self-renewal, suggesting that regulation of Wnt signaling in hematopoiesis may not need Wnt secretion and could be independent of morphogen gradients.
Collapse
Affiliation(s)
- Roxann Hétu-Arbour
- Institut national de la recherche scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Mouna Tlili
- Institut national de la recherche scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Fabio Luiz Bandeira Ferreira
- Institut national de la recherche scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Belma Melda Abidin
- Institut national de la recherche scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Edward O Kwarteng
- Institut national de la recherche scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Krista M Heinonen
- Institut national de la recherche scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| |
Collapse
|
10
|
Grey W, Chauhan R, Piganeau M, Huerga Encabo H, Garcia-Albornoz M, McDonald NQ, Bonnet D. Activation of the receptor tyrosine kinase RET improves long-term hematopoietic stem cell outgrowth and potency. Blood 2020; 136:2535-2547. [PMID: 32589703 PMCID: PMC7714096 DOI: 10.1182/blood.2020006302] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
Expansion of human hematopoietic stem cells (HSCs) is a rapidly advancing field showing great promise for clinical applications. Recent evidence has implicated the nervous system and glial family ligands (GFLs) as potential drivers of hematopoietic survival and self-renewal in the bone marrow niche; how to apply this process to HSC maintenance and expansion has yet to be explored. We show a role for the GFL receptor, RET, at the cell surface of HSCs in mediating sustained cellular growth, resistance to stress, and improved cell survival throughout in vitro expansion. HSCs treated with the key RET ligand/coreceptor complex, glial-derived neurotrophic factor and its coreceptor, exhibit improved progenitor function at primary transplantation and improved long-term HSC function at secondary transplantation. Finally, we show that RET drives a multifaceted intracellular signaling pathway, including key signaling intermediates protein kinase B, extracellular signal-regulated kinase 1/2, NF-κB, and p53, responsible for a wide range of cellular and genetic responses that improve cell growth and survival under culture conditions.
Collapse
Affiliation(s)
- W Grey
- Hematopoietic Stem Cell Laboratory and
| | - R Chauhan
- Signalling and Structural Biology Laboratory, Francis Crick Institute, London, United Kingdom; and
| | | | | | | | - N Q McDonald
- Signalling and Structural Biology Laboratory, Francis Crick Institute, London, United Kingdom; and
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, United Kingdom
| | - D Bonnet
- Hematopoietic Stem Cell Laboratory and
| |
Collapse
|
11
|
Dettinger P, Wang W, Ahmed N, Zhang Y, Loeffler D, Kull T, Etzrodt M, Lengerke C, Schroeder T. An automated microfluidic system for efficient capture of rare cells and rapid flow-free stimulation. LAB ON A CHIP 2020; 20:4246-4254. [PMID: 33063816 DOI: 10.1039/d0lc00687d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell fates are controlled by environmental stimuli that rapidly change the activity of intracellular signaling. Studying these processes requires rapid manipulations of micro-environmental conditions while continuously observing single cells over long periods of time. Current microfluidic devices are unable to simultaneously i) efficiently capture and concentrate rare cells, ii) conduct automated rapid media exchanges via diffusion without displacing non-adherent cells, and iii) allow sensitive high-throughput long-term time-lapse microscopy. Hematopoietic stem and progenitor cells pose a particular challenge for these types of experiments as they are impossible to obtain in very large numbers and are displaced by the fluid flow usually used to change culture media, thus preventing cell tracking. Here, we developed a programmable automated system composed of a novel microfluidic device for efficient capture of rare cells in independently addressable culture chambers, a custom incubation system, and user-friendly control software. The chip's culture chambers are optimized for efficient and sensitive fluorescence microscopy and their media can be individually and quickly changed by diffusion without non-adherent cell displacement. The chip allows efficient capture, stimulation, and sensitive high-frequency time-lapse observation of rare and sensitive murine and human primary hematopoietic stem cells. Our 3D-printed humidification and incubation system minimizes gas consumption, facilitates chip setup, and maintains stable humidity and gas composition during long-term cell culture. This approach now enables the required continuous long-term single-cell quantification of rare non-adherent cells with rapid environmental manipulations, e.g. of rapid signaling dynamics and the later stem cell fate choices they control.
Collapse
Affiliation(s)
- Philip Dettinger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Weijia Wang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Nouraiz Ahmed
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Yang Zhang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Tobias Kull
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Martin Etzrodt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
12
|
Cho HJ, Lee J, Yoon SR, Lee HG, Jung H. Regulation of Hematopoietic Stem Cell Fate and Malignancy. Int J Mol Sci 2020; 21:ijms21134780. [PMID: 32640596 PMCID: PMC7369689 DOI: 10.3390/ijms21134780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The regulation of hematopoietic stem cell (HSC) fate decision, whether they keep quiescence, self-renew, or differentiate into blood lineage cells, is critical for maintaining the immune system throughout one’s lifetime. As HSCs are exposed to age-related stress, they gradually lose their self-renewal and regenerative capacity. Recently, many reports have implicated signaling pathways in the regulation of HSC fate determination and malignancies under aging stress or pathophysiological conditions. In this review, we focus on the current understanding of signaling pathways that regulate HSC fate including quiescence, self-renewal, and differentiation during aging, and additionally introduce pharmacological approaches to rescue defects of HSC fate determination or hematopoietic malignancies by kinase signaling pathways.
Collapse
Affiliation(s)
- Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
| | - Jungwoon Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
- Department of Biomolecular Science, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (H.G.L.); (H.J.)
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
- Correspondence: (H.G.L.); (H.J.)
| |
Collapse
|
13
|
Perry JM, Tao F, Roy A, Lin T, He XC, Chen S, Lu X, Nemechek J, Ruan L, Yu X, Dukes D, Moran A, Pace J, Schroeder K, Zhao M, Venkatraman A, Qian P, Li Z, Hembree M, Paulson A, He Z, Xu D, Tran TH, Deshmukh P, Nguyen CT, Kasi RM, Ryan R, Broward M, Ding S, Guest E, August K, Gamis AS, Godwin A, Sittampalam GS, Weir SJ, Li L. Overcoming Wnt-β-catenin dependent anticancer therapy resistance in leukaemia stem cells. Nat Cell Biol 2020; 22:689-700. [PMID: 32313104 PMCID: PMC8010717 DOI: 10.1038/s41556-020-0507-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
Leukaemia stem cells (LSCs) underlie cancer therapy resistance but targeting these cells remains difficult. The Wnt-β-catenin and PI3K-Akt pathways cooperate to promote tumorigenesis and resistance to therapy. In a mouse model in which both pathways are activated in stem and progenitor cells, LSCs expanded under chemotherapy-induced stress. Since Akt can activate β-catenin, inhibiting this interaction might target therapy-resistant LSCs. High-throughput screening identified doxorubicin (DXR) as an inhibitor of the Akt-β-catenin interaction at low doses. Here we repurposed DXR as a targeted inhibitor rather than a broadly cytotoxic chemotherapy. Targeted DXR reduced Akt-activated β-catenin levels in chemoresistant LSCs and reduced LSC tumorigenic activity. Mechanistically, β-catenin binds multiple immune-checkpoint gene loci, and targeted DXR treatment inhibited expression of multiple immune checkpoints specifically in LSCs, including PD-L1, TIM3 and CD24. Overall, LSCs exhibit distinct properties of immune resistance that are reduced by inhibiting Akt-activated β-catenin. These findings suggest a strategy for overcoming cancer therapy resistance and immune escape.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis
- Cell Proliferation
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm
- Female
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mice, Knockout
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- PTEN Phosphohydrolase/physiology
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Tumor Cells, Cultured
- Wnt Proteins/physiology
- Xenograft Model Antitumor Assays
- beta Catenin/physiology
Collapse
Affiliation(s)
- John M Perry
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Children's Mercy Kansas City, Kansas City, MO, USA
- University of Kansas Medical Center, Kansas City, KS, USA
- University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Fang Tao
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Children's Mercy Kansas City, Kansas City, MO, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS, USA
| | - Tara Lin
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Xi C He
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | | | - Linhao Ruan
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Center for Cell Dynamics, Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xiazhen Yu
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Debra Dukes
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Andrea Moran
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Meng Zhao
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Key Laboratory of Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | - Pengxu Qian
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Center of Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zhenrui Li
- Stowers Institute for Medical Research, Kansas City, MO, USA
- St. Jude, Memphis, TN, USA
| | - Mark Hembree
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Zhiquan He
- Department of Electrical Engineering and Computer Science and C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science and C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Thanh-Huyen Tran
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, US
| | - Prashant Deshmukh
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT, USA
| | - Chi Thanh Nguyen
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Rajeswari M Kasi
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT, USA
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Robin Ryan
- Children's Mercy Kansas City, Kansas City, MO, USA
| | | | - Sheng Ding
- School of Pharmaceutical Science, Tsinghua University, Beijing, China
| | - Erin Guest
- Children's Mercy Kansas City, Kansas City, MO, USA
| | - Keith August
- Children's Mercy Kansas City, Kansas City, MO, USA
| | - Alan S Gamis
- Children's Mercy Kansas City, Kansas City, MO, USA
| | - Andrew Godwin
- University of Kansas Medical Center, Kansas City, KS, USA
| | - G Sitta Sittampalam
- University of Kansas Medical Center, Kansas City, KS, USA
- Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Scott J Weir
- Department of Cancer Biology, The Institute for Advancing Medical Innovation and University of Kansas Cancer Center, Kansas City, Kansas, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Pathology and Laboratory Medicine and Division of Medical Oncology, Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
14
|
Tu C, Zheng Y, Zhang H, Wang J. Exploration of the personalized immune checkpoint atlas of plasma cell dyscrasias patients using high‑dimensional single‑cell analysis. Oncol Rep 2020; 44:224-240. [PMID: 32319658 PMCID: PMC7251663 DOI: 10.3892/or.2020.7587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/01/2020] [Indexed: 01/22/2023] Open
Abstract
Immune checkpoint blockade endows patients with unparalleled success in conquering cancer. Unfortunately, inter-individual heterogeneity causes failure in controlling tumors in many patients. Emerging mass cytometry technology is capable of revealing a multiscale onco-immune landscape that improves the efficacy of cancer immunotherapy. We introduced mass cytometry to determine the personalized immune checkpoint status in bone marrow and peripheral blood samples from 3 patients with multiple myeloma, amyloid light-chain amyloidosis, and solitary bone plasmacytoma and 1 non-hematologic malignancy patient. The expression of 18 immune regulatory receptors and ligands on 17 defined cell populations was simultaneously examined. By single-cell analyses, we identified the T cell clusters that serve as immunosuppressive signal source and revealed integrated immune checkpoint axes of individuals, thereby providing multiple potential immunotherapeutic targets, including programmed cell death protein 1 (PD-1), inducible co-stimulator (ICOS), and cluster of differentiation 28 (CD28), for each patient. Distinguishing the cell populations that function as providers and receivers of the immune checkpoint signals demonstrated a distinct cross-interaction network of immunomodulatory signals in individuals. These in-depth personalized data demonstrate mass cytometry as a powerful innovation to discover the systematical immune status in the primary and peripheral tumor microenvironment.
Collapse
Affiliation(s)
- Chenggong Tu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Yongjiang Zheng
- Department of Hematology, The Third Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Hui Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Jinheng Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| |
Collapse
|
15
|
Singh A, Myklebust NN, Furevik SMV, Haugse R, Herfindal L. Immunoliposomes in Acute Myeloid Leukaemia Therapy: An Overview of Possible Targets and Obstacles. Curr Med Chem 2019; 26:5278-5292. [PMID: 31099318 DOI: 10.2174/0929867326666190517114450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/30/2022]
Abstract
Acute Myeloid Leukaemia (AML) is the neoplastic transformation of Hematopoietic Stem Cells (HSC) and relapsed disease is a major challenge in the treatment. Despite technological advances in the field of medicine and our heightened knowledge regarding the pathogenesis of AML, the initial therapy of "7+3" Cytarabine and Daunorubicin has remained mainly unchanged since 1973. AML is a disease of the elderly, and increased morbidity in this patient group does not allow the full use of the treatment and drug-resistant relapse is common. Nanocarriers are drug-delivery systems that can be used to transport drugs to the bone marrow and target Leukemic Stem Cells (LSC), conferring less side-effects compared to the free-drug alternative. Nanocarriers also can be used to favour the transport of drugs that otherwise would not have been used clinically due to toxicity and poor efficacy. Liposomes are a type of nanocarrier that can be used as a dedicated drug delivery system, which can also have active ligands on the surface in order to interact with antigens on the target cells or tissues. In addition to using small molecules, it is possible to attach antibodies to the liposome surface, generating so-called immunoliposomes. By using immunoliposomes as a drug-delivery system, it is possible to minimize the toxic side effects caused by the chemotherapeutic drug on healthy organs, and at the same time direct the drugs towards the remaining AML blasts and stem cells. This article aims to explore the possibilities of using immunoliposomes as a drug carrier in AML therapy. Emphasis will be on possible target molecules on the AML cells, leukaemic stem cells, as well as bone marrow constituents relevant to AML therapy. Further, some conditions and precautions that must be met for immunoliposomes to be used in AML therapy will be discussed.
Collapse
Affiliation(s)
- Aditi Singh
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Sarah Marie Vie Furevik
- Hospital pharmacies enterprise, Western Norway, Bergen, Norway.,Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ragnhild Haugse
- Hospital pharmacies enterprise, Western Norway, Bergen, Norway.,Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
16
|
Pan Z, Zhou Z, Zhang H, Zhao H, Song P, Wang D, Yin J, Zhao W, Xie Z, Wang F, Li Y, Guo C, Zhu F, Zhang L, Wang Q. CD90 serves as differential modulator of subcutaneous and visceral adipose-derived stem cells by regulating AKT activation that influences adipose tissue and metabolic homeostasis. Stem Cell Res Ther 2019; 10:355. [PMID: 31779686 PMCID: PMC6883612 DOI: 10.1186/s13287-019-1459-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND White adipose tissue includes subcutaneous and visceral adipose tissue (SAT and VAT) with different metabolic features. SAT protects from metabolic disorders, while VAT promotes them. The proliferative and adipogenic potentials of adipose-derived stem cells (ADSCs) are critical for maintaining adipose tissue homeostasis through driving adipocyte hyperplasia and inhibiting pathological hypertrophy. However, it remains to be elucidated the critical molecules that regulate different potentials of subcutaneous and visceral ADSCs (S-ADSCs, V-ADSCs) and mediate distinct metabolic properties of SAT and VAT. CD90 is a glycosylphosphatidylinositol-anchored protein on various cells, which is also expressed on ADSCs. However, its expression patterns and differential regulation on S-ADSCs and V-ADSCs remain unclear. METHODS S-ADSCs and V-ADSCs were detected for CD90 expression. Proliferation, colony formation, cell cycle, mitotic clonal expansion, and adipogenic differentiation were assayed in S-ADSCs, V-ADSCs, or CD90-silenced S-ADSCs. Glucose tolerance test and adipocyte hypertrophy were examined in mice after silencing of CD90 in SAT. CD90 expression and its association with CyclinD1 and Leptin were analyzed in adipose tissue from mice and humans. Regulation of AKT by CD90 was detected using a co-transfection system. RESULTS Compared with V-ADSCs, S-ADSCs expressed high level of CD90 and showed increases in proliferation, mitotic clonal expansion, and adipogenic differentiation, together with AKT activation and G1-S phase transition. CD90 silencing inhibited AKT activation and S phase entry, thereby curbing proliferation and mitotic clonal expansion of S-ADSCs. In vivo CD90 silencing in SAT inhibited S-ADSC proliferation, which caused adipocyte hypertrophy and glucose intolerance in mice. Furthermore, CD90 was highly expressed in SAT rather than in VAT in human and mouse, which had positive correlation with CyclinD1 but negative correlation with Leptin. CD90 promoted AKT activation through recruiting its pleckstrin homology domain to plasma membrane. CONCLUSIONS CD90 is differentially expressed on S-ADSCs and V-ADSCs, and plays critical roles in ADSC proliferation, mitotic clonal expansion, and hemostasis of adipose tissue and metabolism. These findings identify CD90 as a crucial modulator of S-ADSCs and V-ADSCs to mediate distinct metabolic features of SAT and VAT, thus proposing CD90 as a valuable biomarker or target for evaluating ADSC potentials, monitoring or treating obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Zhenzhen Pan
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Zixin Zhou
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Huiying Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Hui Zhao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, Shandong, People's Republic of China
| | - Peixuan Song
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Di Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Jilong Yin
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Wanyi Zhao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Zhaoxiang Xie
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Fuwu Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Science, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medical Science, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Chun Guo
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Faliang Zhu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Lining Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
17
|
Bourgine PE, Fritsch K, Pigeot S, Takizawa H, Kunz L, Kokkaliaris KD, Coutu DL, Manz MG, Martin I, Schroeder T. Fate Distribution and Regulatory Role of Human Mesenchymal Stromal Cells in Engineered Hematopoietic Bone Organs. iScience 2019; 19:504-513. [PMID: 31442666 PMCID: PMC6710718 DOI: 10.1016/j.isci.2019.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 07/01/2019] [Accepted: 08/02/2019] [Indexed: 12/21/2022] Open
Abstract
The generation of humanized ectopic ossicles (hOss) in mice has been proposed as an advanced translational and fundamental model to study the human hematopoietic system. The approach relies on the presence of human bone marrow-derived mesenchymal stromal cells (hMSCs) supporting the engraftment of transplanted human hematopoietic stem and progenitor cells (HSPCs). However, the functional distribution of hMSCs within the humanized microenvironment remains to be investigated. Here, we combined genetic tools and quantitative confocal microscopy to engineer and subsequently analyze hMSCs′ fate and distribution in hOss. Implanted hMSCs reconstituted a humanized environment including osteocytes, osteoblasts, adipocytes, and stromal cells associated with vessels. By imaging full hOss, we identified rare physical interactions between hMSCs and human CD45+/CD34+/CD90+ cells, supporting a functional contact-triggered regulatory role of hMSCs. Our study highlights the importance of compiling quantitative information from humanized organs, to decode the interactions between the hematopoietic and the stromal compartments. Mesenchymal cells can generate human bone organs with tailored molecular signature Mesenchymal cells reconstitute a human niche environment capable of regulating HSPCs
Collapse
Affiliation(s)
- Paul E Bourgine
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Tissue Engineering, Department of Biomedicine, University of Basel and University Hospital Basel, 4056 Basel, Switzerland; Department of Clinical Sciences, Lund Stem Cell Center, Lund University, BMC B11, 221 84 Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Kristin Fritsch
- Department of Hematology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Sebastien Pigeot
- Tissue Engineering, Department of Biomedicine, University of Basel and University Hospital Basel, 4056 Basel, Switzerland
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Leo Kunz
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Konstantinos D Kokkaliaris
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Daniel L Coutu
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Markus G Manz
- Tissue Engineering, Department of Biomedicine, University of Basel and University Hospital Basel, 4056 Basel, Switzerland.
| | - Ivan Martin
- Tissue Engineering, Department of Biomedicine, University of Basel and University Hospital Basel, 4056 Basel, Switzerland.
| | - Timm Schroeder
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
18
|
Sundaravel S, Kuo WL, Jeong JJ, Choudhary GS, Gordon-Mitchell S, Liu H, Bhagat TD, McGraw KL, Gurbuxani S, List AF, Verma A, Wickrema A. Loss of Function of DOCK4 in Myelodysplastic Syndromes Stem Cells is Restored by Inhibitors of DOCK4 Signaling Networks. Clin Cancer Res 2019; 25:5638-5649. [PMID: 31308061 DOI: 10.1158/1078-0432.ccr-19-0924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/13/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Myelodysplastic syndromes (MDS) with deletion of chromosome 7q/7 [-7/(del)7q MDS] is associated with worse outcomes and needs novel insights into pathogenesis. Reduced expression of signaling protein dedicator of cytokinesis 4 (DOCK4) in patients with -7/(del)7q MDS leads to a block in hematopoietic stem cell (HSC) differentiation. Identification of targetable signaling networks downstream of DOCK4 will provide means to restore hematopoietic differentiation in MDS.Experimental Design: We utilized phosphoproteomics approaches to identify signaling proteins perturbed as a result of reduced expression of DOCK4 in human HSCs and tested their functional significance in primary model systems. RESULTS We demonstrate that reduced levels of DOCK4 lead to increased global tyrosine phosphorylation of proteins in primary human HSCs. LYN kinase and phosphatases INPP5D (SHIP1) and PTPN6 (SHP1) displayed greatest levels of tyrosine phosphorylation when DOCK4 expression levels were reduced using DOCK4-specific siRNA. Our data also found that increased phosphorylation of SHIP1 and SHP1 phosphatases were due to LYN kinase targeting these phosphatases as substrates. Increased migration and impediment of HSC differentiation were consequences of these signaling alterations. Pharmacologic inhibition of SHP1 reversed these functional aberrations in HSCs expressing low DOCK4 levels. In addition, differentiation block seen in DOCK4 haplo-insufficient [-7/(del)7q] MDS was rescued by inhibition of SHP1 phosphatase. CONCLUSIONS LYN kinase and phosphatases SHP1 and SHIP1 are perturbed when DOCK4 expression levels are low. Inhibition of SHP1 promotes erythroid differentiation in healthy HSCs and in -7/(del)7q MDS samples with low DOCK4 expression. Inhibitors of LYN, SHP1 and SHIP1 also abrogated increased migratory properties in HSCs expressing reduced levels of DOCK4.
Collapse
Affiliation(s)
- Sriram Sundaravel
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Wen-Liang Kuo
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Jong Jin Jeong
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Gaurav S Choudhary
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | | | - Hui Liu
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Tushar D Bhagat
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | | | - Sandeep Gurbuxani
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | | | - Amit Verma
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Amittha Wickrema
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
19
|
A topological view of human CD34 + cell state trajectories from integrated single-cell output and proteomic data. Blood 2019; 133:927-939. [PMID: 30622121 DOI: 10.1182/blood-2018-10-878025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/23/2018] [Indexed: 12/11/2022] Open
Abstract
Recent advances in single-cell molecular analytical methods and clonal growth assays are enabling more refined models of human hematopoietic lineage restriction processes to be conceptualized. Here, we report the results of integrating single-cell proteome measurements with clonally determined lymphoid, neutrophilic/monocytic, and/or erythroid progeny outputs from >1000 index-sorted CD34+ human cord blood cells in short-term cultures with and without stromal cells. Surface phenotypes of functionally examined cells were individually mapped onto a molecular landscape of the entire CD34+ compartment constructed from single-cell mass cytometric measurements of 14 cell surface markers, 20 signaling/cell cycle proteins, and 6 transcription factors in ∼300 000 cells. This analysis showed that conventionally defined subsets of CD34+ cord blood cells are heterogeneous in their functional properties, transcription factor content, and signaling activities. Importantly, this molecular heterogeneity was reduced but not eliminated in phenotypes that were found to display highly restricted lineage outputs. Integration of the complete proteomic and functional data sets obtained revealed a continuous probabilistic topology of change that includes a multiplicity of lineage restriction trajectories. Each of these reflects progressive but variable changes in the levels of specific signaling intermediates and transcription factors but shared features of decreasing quiescence. Taken together, our results suggest a model in which increasingly narrowed hematopoietic output capabilities in neonatal CD34+ cord blood cells are determined by a history of external stimulation in combination with innately programmed cell state changes.
Collapse
|
20
|
Fluorescent genetic barcoding for cellular multiplex analyses. Exp Hematol 2018; 67:10-17. [DOI: 10.1016/j.exphem.2018.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
|
21
|
Single-cell analysis identifies a CD33 + subset of human cord blood cells with high regenerative potential. Nat Cell Biol 2018; 20:710-720. [PMID: 29802403 DOI: 10.1038/s41556-018-0104-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 04/13/2018] [Indexed: 12/15/2022]
Abstract
Elucidation of the identity and diversity of mechanisms that sustain long-term human blood cell production remains an important challenge. Previous studies indicate that, in adult mice, this property is vested in cells identified uniquely by their ability to clonally regenerate detectable, albeit highly variable levels and types, of mature blood cells in serially transplanted recipients. From a multi-parameter analysis of the molecular features of very primitive human cord blood cells that display long-term cell outputs in vitro and in immunodeficient mice, we identified a prospectively separable CD33+CD34+CD38-CD45RA-CD90+CD49f+ phenotype with serially transplantable, but diverse, cell output profiles. Single-cell measurements of the mitogenic response, and the transcriptional, DNA methylation and 40-protein content of this and closely related phenotypes revealed subtle but consistent differences both within and between each subset. These results suggest that multiple regulatory mechanisms combine to maintain different cell output activities of human blood cell precursors with high regenerative potential.
Collapse
|
22
|
Zhang ZX, Zhang WN, Sun YY, Li YH, Xu ZM, Fu WN. CREB promotes laryngeal cancer cell migration via MYCT1/NAT10 axis. Onco Targets Ther 2018; 11:1323-1331. [PMID: 29563811 PMCID: PMC5848665 DOI: 10.2147/ott.s156582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose CREB, MYCY1 and NAT10 are involved in cancer cell migration. However, the relationship between these three proteins and their role in laryngeal cancer cell migration remains unknown. Methods Transient gene transfection was performed in laryngeal cancer cells. Bioinformatics analysis was used to predict the binding of CREB to MYCT1 promoter. Binding of CREB to the promoter of MYCT1 was monitored by luciferase reporter assay and chromatin immuno-precipitation method in vitro and in vivo, respectively. Real-time RT-PCR and Western bolt were applied to detect gene transcription and translation levels, respectively. Laryngeal cancer cell migration was assayed by transwell chamber experiment. Results CREB protein expression was significantly up-regulated in laryngeal cancer tissues and associated with cancer differentiation, tumor stage, and lymphatic metastasis. CREB inhibits MYCT1 expression by direct binding to its promoter. Meanwhile, MYCT1 has a negative impact on the NAT10 gene expression. Furthermore, CREB promotes NAT10 expression via down-regulating the MYCT1 gene expression. In addition, contrary to MYCT1, CREB and NAT10 enhanced laryngeal cancer cell migration. MYCT1 and NAT10 significantly rescued the effects of CREB and MYCT1 on Hep2 cell migration, respectively. Conclusion CREB promotes laryngeal cancer cell migration via MYCT1/NAT10 axis, suggesting that CREB might be a potential prognostic marker in laryngeal cancer.
Collapse
Affiliation(s)
- Zhao-Xiong Zhang
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| | - Wan-Ni Zhang
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| | - Yuan-Yuan Sun
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| | - Yun-Hui Li
- Department of Laboratory Medicine, No 202 Hospital of PLA, Shenyang, People's Republic of China
| | - Zhen-Ming Xu
- Department of Otolaryngology, No 463 Hospital of PLA, Shenyang, People's Republic of China
| | - Wei-Neng Fu
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
23
|
Chandramoorthy HC, Bajunaid AM, Kariri HN, Al-Hakami A, Sham AA, Al-Shahrani MBS, Al-Humayed SM, Rajagopalan P. Feasibility of cord blood bank in high altitude Abha: preclinical impacts. Cell Tissue Bank 2018; 19:413-422. [PMID: 29460118 DOI: 10.1007/s10561-018-9687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
We explored the possibility of the cryo-storage of cord blood hematopoietic stem cells (CBHPSC) with respect to the quantity, quality and biologic efficacy of high altitude (HA) region Abha against sea level (SL) region. The results of the post-processed total nucleated cell count was 8.03 ± 0.31 × 107 and 8.44 ± 0.23 × 107 cells in the HA and SL regions respectively. The mean post processing viability of the nucleated cells was about 87.03 ± 1.39 (HA) and 88.33 ± 1.55% (SL) while post thaw cells were 85.61 ± 1.44 (HA) and 86.58 ± 1.61% (SL) after transient cryo-storage. The proliferation of CBHSCs after thawing were comparable between the HA and SL regions. The results of the colony forming unit (CFU) assays of CFU-E, CFU-GEMM, CFU-GM and BFU-E were comparable between HA and SL in both fresh and post thaw, while a declining trend with viability was significant. The differentiation capability of post thaw samples into adipocytes and osteocytes were comparable between HA and SL regions. Overall from the results, it can be evidenced that HA cord blood collection, processing or storage does not hinder the quality or biological efficacy of the CBHPSC.
Collapse
Affiliation(s)
- Harish C Chandramoorthy
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia. .,Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.
| | | | - Hussian Nasser Kariri
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Ahmed Al-Hakami
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.,Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Abdullah Abu Sham
- Department of Obstetrics and Gynecology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Misfer Bin Safer Al-Shahrani
- Department of Obstetrics and Gynecology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Suliman M Al-Humayed
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| |
Collapse
|
24
|
Dharampuriya PR, Scapin G, Wong C, John Wagner K, Cillis JL, Shah DI. Tracking the origin, development, and differentiation of hematopoietic stem cells. Curr Opin Cell Biol 2018; 49:108-115. [PMID: 29413969 DOI: 10.1016/j.ceb.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/26/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The hierarchical nature of the hematopoietic system provides an ideal model system to illustrate the features of lineage tracing. We have outlined the utility of lineage tracing methods in establishing the origin and development of hematopoietic cells. RECENT FINDINGS Methods such as CRISPR/Cas9, Polylox barcoding, and single-cell RNA-sequencing have improved our understanding of hematopoiesis. SUMMARY This review chronicles the fate of the hematopoietic cells emerging from the mesoderm that subsequently develops into the adult blood lineages. Specifically, we explain classic techniques utilized in lineage tracing for the hematopoietic system, as well as novel state-of-the-art methods to elucidate clonal hematopoiesis and cell fate mapping at a single-cell level.
Collapse
Affiliation(s)
- Priyanka R Dharampuriya
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Giorgia Scapin
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02138, USA
| | - Colline Wong
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Boston College, Chestnut Hill, MA 02467, USA
| | - K John Wagner
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Boston College, Chestnut Hill, MA 02467, USA
| | - Jennifer L Cillis
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02138, USA
| | - Dhvanit I Shah
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02138, USA; Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Povinelli BJ, Rodriguez-Meira A, Mead AJ. Single cell analysis of normal and leukemic hematopoiesis. Mol Aspects Med 2018; 59:85-94. [PMID: 28863981 PMCID: PMC5771467 DOI: 10.1016/j.mam.2017.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/17/2017] [Accepted: 08/28/2017] [Indexed: 01/06/2023]
Abstract
The hematopoietic system is well established as a paradigm for the study of cellular hierarchies, their disruption in disease and therapeutic use in regenerative medicine. Traditional approaches to study hematopoiesis involve purification of cell populations based on a small number of surface markers. However, such population-based analysis obscures underlying heterogeneity contained within any phenotypically defined cell population. This heterogeneity can only be resolved through single cell analysis. Recent advances in single cell techniques allow analysis of the genome, transcriptome, epigenome and proteome in single cells at an unprecedented scale. The application of these new single cell methods to investigate the hematopoietic system has led to paradigm shifts in our understanding of cellular heterogeneity in hematopoiesis and how this is disrupted in disease. In this review, we summarize how single cell techniques have been applied to the analysis of hematopoietic stem/progenitor cells in normal and malignant hematopoiesis, with a particular focus on recent advances in single-cell genomics, including how these might be utilized for clinical application.
Collapse
Affiliation(s)
- Benjamin J Povinelli
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Alba Rodriguez-Meira
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Adam J Mead
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; NIHR Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom.
| |
Collapse
|
26
|
Wei B, Duan Z, Zhu C, Deng J, Fan D. Anti-anemia effects of ginsenoside Rk3 and ginsenoside Rh4 on mice with ribavirin-induced anemia. Food Funct 2018; 9:2447-2455. [DOI: 10.1039/c8fo00368h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ginsenoside Rk3 and ginsenoside Rh4 stimulate hematopoiesis and show excellent anti-anemia effectsviathe combined effects of different related cytokines.
Collapse
Affiliation(s)
- Bo Wei
- Shaanxi Key Laboratory of Degradable Biomedical Materials
- School of Chemical Engineering
- Northwest University
- Xi'an
- China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials
- School of Chemical Engineering
- Northwest University
- Xi'an
- China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials
- School of Chemical Engineering
- Northwest University
- Xi'an
- China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials
- School of Chemical Engineering
- Northwest University
- Xi'an
- China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials
- School of Chemical Engineering
- Northwest University
- Xi'an
- China
| |
Collapse
|
27
|
Knapp DJHF, Hammond CA, Miller PH, Rabu GM, Beer PA, Ricicova M, Lecault V, Da Costa D, VanInsberghe M, Cheung AM, Pellacani D, Piret J, Hansen C, Eaves CJ. Dissociation of Survival, Proliferation, and State Control in Human Hematopoietic Stem Cells. Stem Cell Reports 2017; 8:152-162. [PMID: 28076756 PMCID: PMC5233451 DOI: 10.1016/j.stemcr.2016.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 12/28/2022] Open
Abstract
The role of growth factors (GFs) in controlling the biology of human hematopoietic stem cells (HSCs) remains limited by a lack of information concerning the individual and combined effects of GFs directly on the survival, Mitogenesis, and regenerative activity of highly purified human HSCs. We show that the initial input HSC activity of such a purified starting population of human cord blood cells can be fully maintained over a 21-day period in serum-free medium containing five GFs alone. HSC survival was partially supported by any one of these GFs, but none were essential, and different combinations of GFs variably stimulated HSC proliferation. However, serial transplantability was not detectably compromised by many conditions that reduced human HSC proliferation and/or survival. These results demonstrate the dissociated control of these three human HSC bio-responses, and set the stage for future improvements in strategies to modify and expand human HSCs ex vivo. Growth factors alone can maintain serially transplantable human cord blood HSCs Growth factors tunably and combinatorially control HSC survival and proliferation SCF is a critical factor for stimulating human HSC proliferation HSC regenerative activity is regulated independent of HSC survival or proliferation
Collapse
Affiliation(s)
- David J H F Knapp
- Terry Fox Laboratory, British Columbia Cancer Agency, BC Cancer Research Centre, 675 West 10(th) Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Colin A Hammond
- Terry Fox Laboratory, British Columbia Cancer Agency, BC Cancer Research Centre, 675 West 10(th) Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Paul H Miller
- Terry Fox Laboratory, British Columbia Cancer Agency, BC Cancer Research Centre, 675 West 10(th) Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Gabrielle M Rabu
- Terry Fox Laboratory, British Columbia Cancer Agency, BC Cancer Research Centre, 675 West 10(th) Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Philip A Beer
- Terry Fox Laboratory, British Columbia Cancer Agency, BC Cancer Research Centre, 675 West 10(th) Avenue, Vancouver, BC V5Z 1L3, Canada
| | | | - Véronique Lecault
- AbCellera Biologics Inc, Vancouver, BC V6T 1Z4, Canada; Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Da Costa
- AbCellera Biologics Inc, Vancouver, BC V6T 1Z4, Canada; Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Michael VanInsberghe
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Alice M Cheung
- Terry Fox Laboratory, British Columbia Cancer Agency, BC Cancer Research Centre, 675 West 10(th) Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Davide Pellacani
- Terry Fox Laboratory, British Columbia Cancer Agency, BC Cancer Research Centre, 675 West 10(th) Avenue, Vancouver, BC V5Z 1L3, Canada
| | - James Piret
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Carl Hansen
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, BC Cancer Research Centre, 675 West 10(th) Avenue, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
28
|
Mediator Kinase Phosphorylation of STAT1 S727 Promotes Growth of Neoplasms With JAK-STAT Activation. EBioMedicine 2017; 26:112-125. [PMID: 29239838 PMCID: PMC5832629 DOI: 10.1016/j.ebiom.2017.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 01/01/2023] Open
Abstract
Constitutive JAK-STAT signaling drives the proliferation of most myeloproliferative neoplasms (MPN) and a subset of acute myeloid leukemia (AML), but persistence emerges with chronic exposure to JAK inhibitors. MPN and post-MPN AML are dependent on tyrosine phosphorylation of STATs, but the role of serine STAT1 phosphorylation remains unclear. We previously demonstrated that Mediator kinase inhibitor cortistatin A (CA) reduced proliferation of JAK2-mutant AML in vitro and in vivo and also suppressed CDK8-dependent phosphorylation of STAT1 at serine 727. Here we report that phosphorylation of STAT1 S727 promotes the proliferation of AML cells with JAK-STAT pathway activation. Inhibition of serine phosphorylation by CA promotes growth arrest and differentiation, inhibits colony formation in MPN patient samples and reduces allele burden in MPN mouse models. These results reveal that STAT1 pS727 regulates growth and differentiation in JAK-STAT activated neoplasms and suggest that Mediator kinase inhibition represents a therapeutic strategy to regulate JAK-STAT signaling. CDK8/19 inhibitor cortistatin A synergizes with FDA-approved JAK1/2 ruxolitinib and inhibits ruxolitinib-persistent cells. CDK8/19 phosphorylation of STAT1 S727 promotes growth and suppresses differentiation. Cortistatin A upregulates expression of STAT1 pS727- and SE-associated genes.
Previously, it was known that cancer cells with activated JAK-STAT signaling are driven by oncogenic actions of JAK2 and tyrosine-phosphorylated STAT3 and STAT5. The FDA-approved JAK inhibitor ruxolitinib targets these dependencies, but significant challenges remain in the clinic, especially for leukemia patients. We show here that JAK2-mutant leukemia cells that become resistant to ruxolitinib are sensitive to CDK8/19 inhibitor CA and that CA synergizes with ruxolitinib, indicating that CDK8/19 inhibitors may be an effective therapeutic strategy for these cancers. Further, our studies provide insights into the mechanistic role of STAT1 serine phosphorylation by CDK8/19 in JAK2-activated leukemia.
Collapse
|
29
|
Psatha N, Georgolopoulos G, Phelps S, Papayannopoulou T. Brief Report: A Differential Transcriptomic Profile of Ex Vivo Expanded Adult Human Hematopoietic Stem Cells Empowers Them for Engraftment Better than Their Surface Phenotype. Stem Cells Transl Med 2017; 6:1852-1858. [PMID: 28801972 PMCID: PMC6430062 DOI: 10.1002/sctm.17-0048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/22/2017] [Indexed: 12/22/2022] Open
Abstract
Transplantation of small cord blood (CB) units, or of autologous ex vivo‐genetically modified adult hematopoietic stem cells (HSC), face the common challenge of suboptimal HSC doses for infusion and impaired engraftment of the transplanted cells. Ex vivo expansion of HSCs, using either cell‐based coculture approaches or especially small molecules have been successfully tested mainly in CB and in prolonged cultures. Here, we explored whether innovative combinations of small molecules can sufficiently, after short culture, expand adult HSCs while retaining their functionality in vivo. We found that 5‐day cultured cells, in the presence of the small molecule combinations tested, achieved higher engraftment levels in NSG mice than both their uncultured and their cytokine only‐cultured counterparts. Surprisingly, the engraftment levels were neither concordant to the numbers of phenotypically similar HSCs expanded under different small molecule combinations, nor explained by their distinct companion cells present. Transcriptomic comparative analysis of sorted, phenotypically similar, ex vivo generated HSCs transplanted in equal numbers, suggested that HSCs generated under expansion conditions that maintain low expression of the Rap1/Ras/PI3K‐AKT pathway exhibit a superior functional profile in vivo. Stem Cells Translational Medicine2017;6:1852–1858
Collapse
Affiliation(s)
- Nikoletta Psatha
- Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | | | - Susan Phelps
- Division of Hematology, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
30
|
Picot T, Aanei CM, Fayard A, Flandrin-Gresta P, Tondeur S, Gouttenoire M, Tavernier-Tardy E, Wattel E, Guyotat D, Campos L. Expression of embryonic stem cell markers in acute myeloid leukemia. Tumour Biol 2017; 39:1010428317716629. [PMID: 28718379 DOI: 10.1177/1010428317716629] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Acute myeloid leukemia is driven by leukemic stem cells which can be identified by cross lineage expression or arrest of differentiation compared to normal hematopoietic stem cells. Self-renewal and lack of differentiation are also features of stem cells and have been associated with the expression of embryonic genes. The aim of our study was to evaluate the expression of embryonic antigens (OCT4, NANOG, SOX2, SSEA1, SSEA3) in hematopoietic stem cell subsets (CD34+CD38- and CD34+CD38+) from normal bone marrows and in samples from acute myeloid leukemia patients. We observed an upregulation of the transcription factors OCT4 and SOX2 in leukemic cells as compared to normal cells. Conversely, SSEA1 protein was downregulated in leukemic cells. The expression of OCT4, SOX2, and SSEA3 was higher in CD34+CD38- than in CD34+CD38+ subsets in leukemic cells. There was no correlation with biological characteristics of the leukemia. We evaluated the prognostic value of marker expression in 69 patients who received an intensive treatment. The rate of complete remission was not influenced by the level of expression of markers. Overall survival was significantly better for patients with high SOX2 levels, which was unexpected because of the inverse correlation with favorable genetic subtypes. These results prompt us to evaluate the potential role of these markers in leukemogenesis and to test their relevance for better leukemic stem cell identification.
Collapse
Affiliation(s)
- Tiphanie Picot
- 1 Laboratoire d'Hématologie, CHU de Saint-Etienne, Saint-Etienne, France.,2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| | - Carmen Mariana Aanei
- 1 Laboratoire d'Hématologie, CHU de Saint-Etienne, Saint-Etienne, France.,2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| | - Amandine Fayard
- 3 Département d'Hématologie, Institut de Cancérologie Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Pascale Flandrin-Gresta
- 1 Laboratoire d'Hématologie, CHU de Saint-Etienne, Saint-Etienne, France.,2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| | - Sylvie Tondeur
- 1 Laboratoire d'Hématologie, CHU de Saint-Etienne, Saint-Etienne, France.,2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| | - Marina Gouttenoire
- 3 Département d'Hématologie, Institut de Cancérologie Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Emmanuelle Tavernier-Tardy
- 2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France.,3 Département d'Hématologie, Institut de Cancérologie Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Eric Wattel
- 2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| | - Denis Guyotat
- 2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France.,3 Département d'Hématologie, Institut de Cancérologie Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Lydia Campos
- 1 Laboratoire d'Hématologie, CHU de Saint-Etienne, Saint-Etienne, France.,2 UMR 5239, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| |
Collapse
|
31
|
Lunger I, Fawaz M, Rieger MA. Single-cell analyses to reveal hematopoietic stem cell fate decisions. FEBS Lett 2017; 591:2195-2212. [PMID: 28600837 DOI: 10.1002/1873-3468.12712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/19/2017] [Accepted: 06/02/2017] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are the best studied adult stem cells with enormous clinical value. Most of our knowledge about their biology relies on assays at the single HSC level. However, only the recent advances in developing new single cell technologies allowed the elucidation of the complex regulation of HSC fate decision control. This Review will focus on current attempts to investigate individual HSCs at molecular and functional levels. The advantages of these technologies leading to groundbreaking insights into hematopoiesis will be highlighted, and the challenges facing these technologies will be discussed. The importance of combining molecular and functional assays to enlighten regulatory networks of HSC fate decision control, ideally at high temporal resolution, becomes apparent for future studies.
Collapse
Affiliation(s)
- Ilaria Lunger
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Malak Fawaz
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
32
|
Functional Selectivity in Cytokine Signaling Revealed Through a Pathogenic EPO Mutation. Cell 2017; 168:1053-1064.e15. [PMID: 28283061 DOI: 10.1016/j.cell.2017.02.026] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/30/2016] [Accepted: 02/15/2017] [Indexed: 12/16/2022]
Abstract
Cytokines are classically thought to stimulate downstream signaling pathways through monotonic activation of receptors. We describe a severe anemia resulting from a homozygous mutation (R150Q) in the cytokine erythropoietin (EPO). Surprisingly, the EPO R150Q mutant shows only a mild reduction in affinity for its receptor but has altered binding kinetics. The EPO mutant is less effective at stimulating erythroid cell proliferation and differentiation, even at maximally potent concentrations. While the EPO mutant can stimulate effectors such as STAT5 to a similar extent as the wild-type ligand, there is reduced JAK2-mediated phosphorylation of select downstream targets. This impairment in downstream signaling mechanistically arises from altered receptor dimerization dynamics due to extracellular binding changes. These results demonstrate how variation in a single cytokine can lead to biased downstream signaling and can thereby cause human disease. Moreover, we have defined a distinct treatable form of anemia through mutation identification and functional studies.
Collapse
|
33
|
Kim AR, Ulirsch JC, Wilmes S, Unal E, Moraga I, Karakukcu M, Yuan D, Kazerounian S, Abdulhay NJ, King DS, Gupta N, Gabriel SB, Lander ES, Patiroglu T, Ozcan A, Ozdemir MA, Garcia KC, Piehler J, Gazda HT, Klein DE, Sankaran VG. Functional Selectivity in Cytokine Signaling Revealed Through a Pathogenic EPO Mutation. Cell 2017. [PMID: 28283061 DOI: 10.1016/j.cell.2017.02.026.functional] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cytokines are classically thought to stimulate downstream signaling pathways through monotonic activation of receptors. We describe a severe anemia resulting from a homozygous mutation (R150Q) in the cytokine erythropoietin (EPO). Surprisingly, the EPO R150Q mutant shows only a mild reduction in affinity for its receptor but has altered binding kinetics. The EPO mutant is less effective at stimulating erythroid cell proliferation and differentiation, even at maximally potent concentrations. While the EPO mutant can stimulate effectors such as STAT5 to a similar extent as the wild-type ligand, there is reduced JAK2-mediated phosphorylation of select downstream targets. This impairment in downstream signaling mechanistically arises from altered receptor dimerization dynamics due to extracellular binding changes. These results demonstrate how variation in a single cytokine can lead to biased downstream signaling and can thereby cause human disease. Moreover, we have defined a distinct treatable form of anemia through mutation identification and functional studies.
Collapse
Affiliation(s)
- Ah Ram Kim
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jacob C Ulirsch
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Stephan Wilmes
- Department of Biology, Division of Biophysics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Ekrem Unal
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| | - Ignacio Moraga
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Musa Karakukcu
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| | - Daniel Yuan
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shideh Kazerounian
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nour J Abdulhay
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David S King
- Howard Hughes Medical Institute Mass Spectrometry Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Namrata Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Turkan Patiroglu
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| | - Alper Ozcan
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| | - Mehmet Akif Ozdemir
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jacob Piehler
- Department of Biology, Division of Biophysics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Hanna T Gazda
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daryl E Klein
- Department of Pharmacology, Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA.
| | - Vijay G Sankaran
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|