1
|
Hsieh HC, Young MJ, Chen KY, Su WC, Lin CC, Yen YT, Hung JJ, Wang YC. Deubiquitinase USP24 activated by IL-6/STAT3 enhances PD-1 protein stability and suppresses T cell antitumor response. SCIENCE ADVANCES 2025; 11:eadt4258. [PMID: 40238877 PMCID: PMC12002121 DOI: 10.1126/sciadv.adt4258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
Persisting programmed cell death-1 (PD-1) signaling impairs T cell effector function, which is highly associated with T cell exhaustion and immunotherapy failure. However, the mechanism responsible for PD-1 deubiquitination and T cell dysfunction remains unclear. Here, we show that ubiquitin-specific peptidase 24 (USP24) promotes PD-1 protein stability by removing K48-linked polyubiquitin. Increased interleukin-6 level transcriptionally activates the USP24 expression, which leads to PD-1 stabilization. Furthermore, USP24 deficiency reduces PD-1 levels in CD8+ T cells and attenuates EgfrL858R-driven lung tumorigenesis in Usp24C1695A catalytic deficient mice. Targeting PD-1 stability with the USP24-specific inhibitor USP24-i-101 boosts cytotoxic T cell activity, restrains lung tumor growth, and achieves superior therapeutic effects when combined with anti-CTLA4 immunotherapy. Clinically, patients with lung cancer exhibiting high USP24 expression in tumor-infiltrating CD8+ T cells display exhausted features and show unfavorable responses to immunotherapy. Our findings dissect the mechanism for regulating enhanced PD-1 stability in tumor-infiltrating CD8+ T cells and reveal USP24 as a potential target of antitumor immunotherapy.
Collapse
Affiliation(s)
- Hung-Chia Hsieh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kuan-Yu Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wu-Chou Su
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chien-Chung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Ting Yen
- Department of Surgery, National Cheng Kung University Hospital, College of Medical College, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
2
|
Liu K, Chen B, Lin X, Zhou Q, Ben T, Xu J, Zhang Y, Zhang X, Chen Y, Li S, Zhu F, Ren Y, Zhi F, Tan G. α1,3 Fucosyltransferase VII Improves Intestinal Immune Homeostasis in Inflammatory Bowel Disease by Enhancing Regulatory T-Cell Intestinal Homing and Immunosuppression. Gastroenterology 2025:S0016-5085(25)00586-4. [PMID: 40180293 DOI: 10.1053/j.gastro.2025.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/16/2025] [Accepted: 02/21/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND & AIMS Regulatory T cells (Tregs) play a critical role in maintaining tissue immune homeostasis, but they are relatively insufficient at inflammatory intestinal sites in patients with inflammatory bowel disease (IBD). However, what controls Treg homing to the intestine in IBD is unknown. METHODS α1,3 Fucosyltransferase VII (FUT7) expression in Tregs from patients with active IBD was detected by RNA sequencing. To determine whether FUT7 controls Treg intestinal homing in IBD, Treg-specific Fut7 conditional knockout (CKO) mice were constructed and used in an IBD model induced by dextran sulfate sodium. To investigate whether up-regulating FUT7 expression in Tregs plays a therapeutic role in IBD, the nanocarrier CD4-LDP-Fut7, which specifically targets Tregs to express Fut7, was constructed and used in the IBD model. In addition, whether Fut7 regulates other Treg functions was explored by mass cytometry. RESULTS Compared with healthy controls, patients with active IBD had significantly decreased FUT7 expression in Tregs. In the IBD model, CKO mice had a lower frequency of colonic Tregs among CD4+ T cells and a lower ratio of colonic to splenic Tregs from the same mouse than their littermate controls did, indicating that Fut7 deficiency impaired the ability of Tregs to home to the intestine. Consistently, CKO mice had severe colitis, and CD4-LDP-Fut7 alleviated it in the IBD model. Mass cytometry analysis revealed that Fut7 down-regulated PD1 expression in Tregs via competition with Fut8 for the substrate GDP-fucose, thereby increasing the immunosuppressive capacity of Tregs. CONCLUSIONS FUT7 enhances Treg intestinal homing and immunosuppression. Thus, up-regulating FUT7 expression in Tregs could be a novel therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Ke Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingxia Chen
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xinlong Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Zhou
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Teng Ben
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiahui Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyue Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yeling Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fangqing Zhu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuexin Ren
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Gastroenterology, Ganzhou Hospital Affiliated to Nanfang Hospital, Southern Medical University, Ganzhou, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Gao Tan
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Zhang H, Zheng H, Wang Y, Chen C, Tong Y, Xie S, Ma X, Guo L, Lu R. PD-1 suppresses human CD38 + circulating Tfr cells and regulates humoral immunity. J Immunother Cancer 2025; 13:e010026. [PMID: 39800377 PMCID: PMC11748770 DOI: 10.1136/jitc-2024-010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/15/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Anti-programmed cell death protein 1 (anti-PD-1) antibodies have achieved revolutionary success in cancer therapy. However, the impact of anti-PD-1 therapy on host humoral immunity in humans during cancer immunotherapy requires further investigation. METHODS We evaluated immunoglobulin titers by ELISA and screened the immune landscape of immune cells from 25 healthy donors and 50 cases including 25 new-onset hepatocellular carcinoma (HCC) patients prior to systemic treatment and 25 HCC patients undergoing anti-PD-1 therapy by multicolor flow cytometry. Flow or beads sorted cells were cultured ex vivo for proliferation and functional analysis. RESULTS Anti-PD-1 therapy significantly increased the levels of IgG and IgA in the periphery of HCC patients. Anti-PD-1 treatment led to an increase in plasmablasts and a notable rise in circulating T follicular regulatory (cTfr) cells, while changes in circulating B cells, T follicular helper cells, or regulatory T cells were not significant. Anti-PD-1 therapy also influenced the proliferation and function of cTfr cells, promoting the differentiation of CD38+ cTfr cells. We observed that the CD38+ Tfr cell subset in the peripheral blood can promote plasmablast differentiation, associated with altered antibody production. CONCLUSIONS Together, these data demonstrate the immunomodulatory role of PD-1 in restricting the differentiation and function of human cTfr cells and in regulating humoral immunity.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hui Zheng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yanchun Wang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cuncun Chen
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ying Tong
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Suhong Xie
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaolu Ma
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical School,Fudan University, Shanghai, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical School,Fudan University, Shanghai, China
| |
Collapse
|
4
|
Zych M, Kniotek M, Roszczyk A, Dąbrowski F, Jędra R, Zagożdżon R. Surface Immune Checkpoints as Potential Biomarkers in Physiological Pregnancy and Recurrent Pregnancy Loss. Int J Mol Sci 2024; 25:9378. [PMID: 39273326 PMCID: PMC11395075 DOI: 10.3390/ijms25179378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Due to the genetic diversity between the mother and the fetus, heightened control over the immune system during pregnancy is crucial. Immunological parameters determined by clinicians in women with idiopathic recurrent spontaneous abortion (RSA) include the quantity and activity of Natural Killer (NK) and Natural Killer T (NKT) cells, the quantity of regulatory T lymphocytes, and the ratio of pro-inflammatory cytokines, which indicate imbalances in Th1 and Th2 cell response. The processes are controlled by immune checkpoint proteins (ICPs) expressed on the surface of immune cells. We aim to investigate differences in the expression of ICPs on T cells, T regulatory lymphocytes, NK cells, and NKT cells in peripheral blood samples collected from RSA women, pregnant women, and healthy multiparous women. We aim to discover new insights into the role of ICPs involved in recurrent pregnancy loss. Peripheral blood mononuclear cells (PBMCs) were isolated by gradient centrifugation from blood samples obtained from 10 multiparous women, 20 pregnant women (11-14th week of pregnancy), and 20 RSA women, at maximum of 72 h after miscarriage. The PBMCs were stained for flow cytometry analysis. Standard flow cytometry immunophenotyping of PBMCs was performed using antibodies against classical lymphocyte markers, including CD3, CD4, CD8, CD56, CD25, and CD127. Additionally, ICPs were investigated using antibodies against Programmed Death Protein-1 (PD-1, CD279), T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3, CD366), V-domain Ig suppressor of T cell activation (VISTA), T cell immunoglobulin and ITIM domain (TIGIT), and Lymphocyte activation gene 3 (LAG-3). We observed differences in the surface expression of ICPs in the analyzed subpopulations of lymphocytes between early pregnancy and RSA, after miscarriage, and in women. We noted diminished expression of PD-1 on T lymphocytes (p = 0.0046), T helper cells (CD3CD4 positive cells, p = 0.0165), T cytotoxic cells (CD3CD8 positive cells, p = 0.0046), T regulatory lymphocytes (CD3CD4CD25CD127 low positive cells, p = 0.0106), and NKT cells (CD3CD56/CD16 positive cells, p = 0.0438), as well as LAG-3 on lymphocytes T (p = 0.0225) T helper, p = 0.0426), T cytotoxic cells (p = 0.0458) and Treg (p = 0.0293), and cells from RSA women. Impaired expression of TIM-3 (p = 0.0226) and VISTA (p = 0.0039) on CD8 cytotoxic T and NK (TIM3 p = 0.0482; VISTA p = 0.0118) cells was shown, with an accompanying increased expression of TIGIT (p = 0.0211) on NKT cells. The changes in the expression of surface immune checkpoints indicate their involvement in the regulation of pregnancy. The data might be utilized to develop specific therapies for RSA women based on the modulation of ICP expression.
Collapse
MESH Headings
- Humans
- Female
- Pregnancy
- Abortion, Habitual/immunology
- Abortion, Habitual/metabolism
- Abortion, Habitual/blood
- Adult
- Biomarkers/blood
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Immune Checkpoint Proteins/metabolism
- Immune Checkpoint Proteins/genetics
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Immunophenotyping
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/immunology
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Antigens, CD/metabolism
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Programmed Cell Death 1 Receptor/metabolism
Collapse
Affiliation(s)
- Michał Zych
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Monika Kniotek
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Filip Dąbrowski
- Department of Gynecology and Gynecological Oncology, Medical Centre of Postgraduate Medical Education, CMKP, Marymoncka 99/103, 01-813 Warsaw, Poland
- Club35, Polish Society of Obstetricians and Gynecologists PTGiP, Cybernetyki7F/87, 02-677 Warsaw, Poland
| | - Robert Jędra
- Department of Gynecology and Gynecological Oncology, Medical Centre of Postgraduate Medical Education, CMKP, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Radosław Zagożdżon
- Laboratory of Cellular and Genetic Therapies, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|
5
|
Kwon M, Kim BS, Yoon S, Oh SO, Lee D. Hematopoietic Stem Cells and Their Niche in Bone Marrow. Int J Mol Sci 2024; 25:6837. [PMID: 38999948 PMCID: PMC11241602 DOI: 10.3390/ijms25136837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Extensive research has explored the functional correlation between stem cells and progenitor cells, particularly in blood. Hematopoietic stem cells (HSCs) can self-renew and regenerate tissues within the bone marrow, while stromal cells regulate tissue function. Recent studies have validated the role of mammalian stem cells within specific environments, providing initial empirical proof of this functional phenomenon. The interaction between bone and blood has always been vital to the function of the human body. It was initially proposed that during evolution, mammalian stem cells formed a complex relationship with the surrounding microenvironment, known as the niche. Researchers are currently debating the significance of molecular-level data to identify individual stromal cell types due to incomplete stromal cell mapping. Obtaining these data can help determine the specific activities of HSCs in bone marrow. This review summarizes key topics from previous studies on HSCs and their environment, discussing current and developing concepts related to HSCs and their niche in the bone marrow.
Collapse
Affiliation(s)
- Munju Kwon
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
6
|
Blinova VG, Zhdanov DD. Many Faces of Regulatory T Cells: Heterogeneity or Plasticity? Cells 2024; 13:959. [PMID: 38891091 PMCID: PMC11171907 DOI: 10.3390/cells13110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining the immune balance in normal and pathological conditions. In autoimmune diseases and transplantation, they restrain the loss of self-tolerance and promote engraftment, whereas in cancer, an increase in Treg numbers is mostly associated with tumor growth and poor prognosis. Numerous markers and their combinations have been used to identify Treg subsets, demonstrating the phenotypic diversity of Tregs. The complexity of Treg identification can be hampered by the unstable expression of some markers, the decrease in the expression of a specific marker over time or the emergence of a new marker. It remains unclear whether such phenotypic shifts are due to new conditions or whether the observed changes are due to initially different populations. In the first case, cellular plasticity is observed, whereas in the second, cellular heterogeneity is observed. The difference between these terms in relation to Tregs is rather blurred. Considering the promising perspectives of Tregs in regenerative cell-based therapy, the existing confusing data on Treg phenotypes require further investigation and analysis. In our review, we introduce criteria that allow us to distinguish between the heterogeneity and plasticity of Tregs normally and pathologically, taking a closer look at their diversity and drawing the line between two terms.
Collapse
Affiliation(s)
- Varvara G. Blinova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia;
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia;
- Department of Biochemistry, People’s Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russia
| |
Collapse
|
7
|
Ni H, Lin Q, Zhong J, Gan S, Cheng H, Huang Y, Ding X, Yu H, Xu Y, Nie H. Role of sulfatide-reactive vNKT cells in promoting lung Treg cells via dendritic cell modulation in asthma models. Eur J Pharmacol 2024; 970:176461. [PMID: 38460658 DOI: 10.1016/j.ejphar.2024.176461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Our previous studies have showed that sulfatide-reactive type II NKT (i.e. variant NKT, vNKT) cells inhibit the immunogenic maturation during the development of mature lung dendritic cells (LDCs), leading todeclined allergic airway inflammation in asthma. Nonetheless, the specific immunoregulatory roles of vNKT cells in LDC-mediated Th2 cell responses remain incompletely understood. Herein, we found that administration of sulfatide facilitated the generation of CD4+FoxP3+ regulatory T (Treg) cells in the lungs of wild-type mice, but not in CD1d-/- and Jα18-/- mice, after ovalbumin or house dust mite exposure. This finding implies that the enhancement of lung Treg cells by sulfatide requires vNKT cells, which dependent on invariant NKT (iNKT) cells. Furthermore, the CD4+FoxP3+ Treg cells induced by sulfatide-reactive vNKT cells were found to be associated with PD-L1 molecules expressed on LDCs, and this association was dependent on iNKT cells. Collectively, our findings suggest that in asthma-mimicking murine models, sulfatide-reactive vNKT cells facilitate the generation of lung Treg cells through inducing tolerogenic properties in LDCs, and this process is dependent on the presence of lung iNKT cells. These results may provide a potential therapeutic approach to treat allergic asthma.
Collapse
Affiliation(s)
- Haiyang Ni
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qibin Lin
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jieying Zhong
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Shaoding Gan
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hong Cheng
- Department of Parmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yi Huang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xuhong Ding
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hongying Yu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yaqing Xu
- Department of Geriatric Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
8
|
Zhang L, Liu Y, Song S, Makamure J, Shi H, Zheng C, Liang B. Hepatitis B virus reactivation in hepatocellular carcinoma patients after hepatic arterial infusion chemotherapy combined with and without immunotherapy. Infect Agent Cancer 2024; 19:19. [PMID: 38693564 PMCID: PMC11061977 DOI: 10.1186/s13027-024-00574-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/26/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) reactivation (HBVr) is a major concern for hepatocellular carcinoma (HCC) patients undergoing hepatic arterial infusion chemotherapy (HAIC) using mFOLFOX6 regimen. There is insufficient evidence to support the routine use of HAIC combined with immunotherapy in HCC patients with HBVr. The aim of this study was to examine the adverse events (AEs) related to HBVr in HCC patients after HAIC, with or without immunotherapy, and to assess the effectiveness of antiviral prophylaxis for HBVr. METHODS Medical records of HCC patients receiving HAIC combined with and without immunotherapy between January 2021 and June 2023 were reviewed. The patients were divided into two groups based on whether they received immunotherapy or not. RESULTS Out of the 106 patients, 32 (30.2%) developed HBVr. Among these, 23 eligible patients with HBVr were included, with 14 patients (61%) receiving immunotherapy and nine patients (39%) not receiving immunotherapy. Prior to HAIC treatment, four patients in each group had detectable HBV DNA with median titre of 3.66 × 102 IU/ml (patients with immunotherapy) and 1.98 × 102 IU/ml (patients without immunotherapy), respectively. Fifteen patients did not show detectable HBV DNA. At HBVr occurrence, the median HBV DNA level was 6.95 × 102 IU/ml for all patients, 4.82 × 102 IU/ml in patients receiving immunotherapy and 1.3 × 103 IU/ml in patients not receiving immunotherapy. Grade 3 hepatitis developed in 12 cases of all patients (12/23, 48%), including five patients with immunotherapy (56%) and seven patients without immunotherapy (78%). At the 3-month follow-up, HBV DNA was detected in 10 patients, with a median HBV DNA level of 2.05 × 102 IU/ml (range, 1.5 × 102- 3.55 × 102 IU/ml) in patients (7/10) with immunotherapy and 4.28 × 102 IU/ml (range, 1.15 × 102- 5.88 × 102 IU/ml) in patients (3/10) without immunotherapy. Intensified antiviral treatment was administered to all patients. No HBVr-related fatal events occurred. CONCLUSION HBVr can occur after HAIC combined with or without immunotherapy. The degree of liver damage did not differ significantly in patients treated with or without immunotherapy. Intensified antiviral treatment was found to be crucial for HCC patients with HBVr.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, 430022, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, 430022, Wuhan, China
| | - Yiming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, 430022, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, 430022, Wuhan, China
| | - Songlin Song
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, 430022, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, 430022, Wuhan, China
| | - Joyman Makamure
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, 430022, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, 430022, Wuhan, China
| | - Heshui Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, 430022, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, 430022, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, 430022, Wuhan, China.
- Hubei Key Laboratory of Molecular Imaging, 430022, Wuhan, China.
| | - Bin Liang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, 430022, Wuhan, China.
- Hubei Key Laboratory of Molecular Imaging, 430022, Wuhan, China.
| |
Collapse
|
9
|
Zhang M, Wan Y, Han J, Li J, Gong H, Mu X. The clinical association of programmed death-1/PD-L1 axis, myeloid derived suppressor cells subsets and regulatory T cells in peripheral blood of stable COPD patients. PeerJ 2024; 12:e16988. [PMID: 38560459 PMCID: PMC10981408 DOI: 10.7717/peerj.16988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/30/2024] [Indexed: 04/04/2024] Open
Abstract
Background Myeloid-derived suppressor cells (MDSCs) have crucial immunosuppressive role in T cell dysfunction in various disease processes. However, the role of MDSCs and their impact on Tregs in COPD have not been fully understood. The aim of the present study is to investigate the immunomodulatory role of MDSCs and their potential impact on the expansion and function of Tregs in COPD patients. Methods Peripheral blood samples were collected to analyze circulating MDSCs, Tregs, PD-1/PD-L1 expression to assess the immunomodulatory role of MDSC and their potential impact on the expansion and function of Treg in COPD. A total of 54 COPD patients and 24 healthy individuals were enrolled in our study. Flow cytometric analyses were performed to identify granulocytic MDSCs (G-MDSCs), monocytic MDSCs (M-MDSCs), Tregs, and the expression of PD-1/PD-L1(L2) on MDSCs and Tregs in peripheral blood. Results Our results revealed a significantly higher percentage of G-MDSCs and M-MDSCs (p < 0.001) in COPD patients compared to the healthy controls. Additionally, a significantly higher proportion of peripheral blood Tregs was observed in COPD patients. Furthermore, an increased expression of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) on Tregs (p < 0.01) was detected in COPD patients. The expression of PD-1 on CD4+ Tcells and Tregs, but not CD8+Tcells, was found to be increased in patients with COPD compared to controls. Furthermore, an elevated expression of PD-L1 on M-MDSCs (p < 0.01) was also observed in COPD patients. A positive correlation was observed between the accumulation of M-MDSCs and Tregs in COPD patients. Additionally, the percentage of circulating M-MDSCs is positively associated with the level of PD-1 (r = 0.51, p < 0.0001) and CTLA-4 (r = 0.42, p = 0.0014) on Tregs in COPD. Conclusion The recruitment of MDSCs, accumulation of Tregs, and up-regulation of CTLA-4 on Treg in COPD, accompanied by an increased level of PD-1/PD-L1, suggest PD-1/PD-L1 axis may be potentially involved in MDSCs-induced the expansion and activation of Treg at least partially in COPD.
Collapse
Affiliation(s)
- Mingqiang Zhang
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yinghua Wan
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jie Han
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jun Li
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Haihong Gong
- Affiliated Hospital of Qingdao University Medical College, Department of Respiratory and Critical Care Medicine, Qingdao, China
| | - Xiangdong Mu
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Tomasovic LM, Liu K, VanDyke D, Fabilane CS, Spangler JB. Molecular Engineering of Interleukin-2 for Enhanced Therapeutic Activity in Autoimmune Diseases. BioDrugs 2024; 38:227-248. [PMID: 37999893 PMCID: PMC10947368 DOI: 10.1007/s40259-023-00635-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The interleukin-2 (IL-2) cytokine plays a crucial role in regulating immune responses and maintaining immune homeostasis. Its immunosuppressive effects have been harnessed therapeutically via administration of low cytokine doses. Low-dose IL-2 has shown promise in the treatment of various autoimmune and inflammatory diseases; however, the clinical use of IL-2 is complicated by its toxicity, its pleiotropic effects on both immunostimulatory and immunosuppressive cell subsets, and its short serum half-life, which collectively limit the therapeutic window. As a result, there remains a considerable need for IL-2-based autoimmune disease therapies that can selectively target regulatory T cells with minimal off-target binding to immune effector cells in order to prevent cytokine-mediated toxicities and optimize therapeutic efficacy. In this review, we discuss exciting advances in IL-2 engineering that are empowering the development of novel therapies to treat autoimmune conditions. We describe the structural mechanisms of IL-2 signaling, explore current applications of IL-2-based compounds as immunoregulatory interventions, and detail the progress and challenges associated with clinical adoption of IL-2 therapies. In particular, we focus on protein engineering approaches that have been employed to optimize the regulatory T-cell bias of IL-2, including structure-guided or computational design of cytokine mutants, conjugation to polyethylene glycol, and the development of IL-2 fusion proteins. We also consider future research directions for enhancing the translational potential of engineered IL-2-based therapies. Overall, this review highlights the immense potential to leverage the immunoregulatory properties of IL-2 for targeted treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Luke M Tomasovic
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathy Liu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Derek VanDyke
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Charina S Fabilane
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
11
|
Wu Q, Pan C, Zhou Y, Wang S, Xie L, Zhou W, Ding L, Chen T, Qian J, Su R, Gao X, Mei Z, Qiao Y, Yin S, Wu Y, Wang J, Zhou L, Zheng S. Targeting neuropilin-1 abolishes anti-PD-1-upregulated regulatory T cells and synergizes with 4-1BB agonist for liver cancer treatment. Hepatology 2023; 78:1402-1417. [PMID: 36811396 DOI: 10.1097/hep.0000000000000320] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/09/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND AIMS Regulatory T cells (Tregs) are an obstacle to PD-1 blockade-mediated antitumor efficacy. However, the behaviors of Tregs response to anti-PD-1 in HCC and the characteristics of Tregs tissue adaptation from peripheral lymphoid tissues to the tumor are still unclear. APPROACH RESULTS Here, we determine that PD-1 monotherapy potentially augments the accumulation of tumor CD4 + Tregs. Mechanistically, anti-PD-1 mediates Tregs proliferation in lymphoid tissues rather than in the tumor. Increased peripheral Tregs burden replenishes intratumoral Tregs, raising the ratio of intratumoral CD4 + Tregs to CD8 + T cells. Subsequently, single-cell transcriptomics revealed that neuropilin-1 (Nrp-1) supports Tregs migration behavior, and the genes of Crem and Tnfrsf9 regulate the behaviors of the terminal suppressive Tregs. Nrp-1 + 4-1BB - Tregs stepwise develop to the Nrp-1 - 4-1BB + Tregs from lymphoid tissues into the tumor. Moreover, Treg-restricted Nrp1 depletion abolishes anti-PD-1-upregulated intratumoral Tregs burden and synergizes with the 4-1BB agonist to enhance the antitumor response. Finally, a combination of the Nrp-1 inhibitor and the 4-1BB agonist in humanized HCC models showed a favorable and safe outcome and evoked the antitumor effect of the PD-1 blockade. CONCLUSION Our findings elucidate the potential mechanism of anti-PD-1-mediated intratumoral Tregs accumulation in HCC and uncover the tissue adaptation characteristics of Tregs and identify the therapeutic potential of targeting Nrp-1 and 4-1BB for reprogramming the HCC microenvironment.
Collapse
Affiliation(s)
- Qinchuan Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
| | - Caixu Pan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
| | - Yuan Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuai Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
| | - Liting Xie
- Department of Ultrasound, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wuhua Zhou
- Department of Hepatobiliary Pancreatic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Limin Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
| | - Tianchi Chen
- Department of vascular surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junjie Qian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
| | - Rong Su
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
| | - Xingxing Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
| | - Zhibin Mei
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
| | - Shengyong Yin
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
| | - Yi Wu
- Lyvgen Biopharma, Shanghai, China
| | | | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Negura I, Pavel-Tanasa M, Danciu M. Regulatory T cells in gastric cancer: Key controllers from pathogenesis to therapy. Cancer Treat Rev 2023; 120:102629. [PMID: 37769435 DOI: 10.1016/j.ctrv.2023.102629] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
Gastric cancer (GC) is a highly aggressive malignancy that remains a significant contributor to cancer-related mortality worldwide, despite a decline in incidence in recent years. Early-stage GC poses a diagnostic challenge due to its asymptomatic nature, leading to poor prognoses for most patients. Conventional treatment approaches, including chemotherapy and surgery, have shown limited efficacy in improving outcomes for GC patients. The advent of immune checkpoint inhibitors (ICIs) has revolutionized cancer therapy, yielding durable responses across various malignancies. However, the clinical benefits of ICIs in GC have been modest, underscoring the need for a comprehensive understanding of immune cell functions within the GC tumor microenvironment (TME). Regulatory T cells (Tregs), a subset of T lymphocytes, play a pivotal role in GC development and progression and serve as prognostic biomarkers for GC patients. This review aims to elucidate the multifaceted roles of Tregs in the pathogenesis, progression, and prognosis of gastric cancer, and establish their actual and future potential as therapeutic targets. By providing insights into the intricate interplay between Tregs and the TME, this review strives to stimulate further investigation and facilitate the development of targeted Treg-based therapeutic strategies for GC.
Collapse
Affiliation(s)
- Ion Negura
- Department of Pathology, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Mariana Pavel-Tanasa
- Department of Immunology, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania.
| | - Mihai Danciu
- Department of Pathology, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| |
Collapse
|
13
|
Park J, Kim JC, Lee M, Lee J, Kim YN, Lee YJ, Kim S, Kim SW, Park SH, Lee JY. Frequency of peripheral PD-1 +regulatory T cells is associated with treatment responses to PARP inhibitor maintenance in patients with epithelial ovarian cancer. Br J Cancer 2023; 129:1841-1851. [PMID: 37821637 PMCID: PMC10667217 DOI: 10.1038/s41416-023-02455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Poly (adenosine diphosphate [ADP]-ribose) polymerase inhibitors (PARPis) are becoming the standard of care for epithelial ovarian cancer (EOC). Recently, clinical trials of triple maintenance therapy (PARPi+anti-angiogenic agent+anti-PD-1/L1) are actively ongoing. Here, we investigated the immunological effects of PARPi or triple maintenance therapy on T cells and their impact on clinical responses. METHODS We collected serial blood from EOC patients receiving PARPi therapy (cohort 1: PARPi, n = 49; cohort 2: olaparib+bevacizumab+pembrolizumab, n = 31). Peripheral T cells were analyzed using flow cytometry and compared according to the PARPi response. Progression-free survival (PFS) was assessed according to prognostic biomarkers identified in a comparative analysis. RESULTS Regulatory T cells (Tregs) were suppressed by PARPi therapy, whereas PD-1 was not significantly changed. Short PFS group exhibited a higher percentage of baseline PD-1+Tregs than long PFS group, and the patients with high percentage of PD-1+Tregs before treatment showed poor PFS in cohort 1. However, the expression of PD-1 on Tregs significantly decreased after receiving triple maintenance therapy, and the reduction in PD-1+Tregs was associated with superior PFS in cohort 2 (P = 0.0078). CONCLUSION PARPi suppresses Tregs, but does not affect PD-1 expression. Adding anti-PD-1 to PARPi decreases PD-1+Tregs, which have negative prognostic value for PARPi monotherapy.
Collapse
Affiliation(s)
- Junsik Park
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Chul Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Miran Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - JooHyang Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoo-Na Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Jae Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Wun Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Hyung Park
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Chen Z, Zhang Y, Kwak-Kim J, Wang W. Memory regulatory T cells in pregnancy. Front Immunol 2023; 14:1209706. [PMID: 37954599 PMCID: PMC10637476 DOI: 10.3389/fimmu.2023.1209706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Pregnancy requires the process of maternal immune tolerance to semi-allogeneic embryos. In contrast, an overreactive maternal immune system to embryo-specific antigens is likely to result in the rejection of embryos while damaging the invading placenta, such that the likelihood of adverse pregnancy outcomes can be increased. Regulatory T cells (Tregs) are capable of suppressing excessive immune responses and regulating immune homeostasis. When stimulating Tregs, specific antigens will differentiate into memory Tregs with long-term survival and rapid and powerful immune regulatory ability. Immunomodulatory effects mediated by memory Tregs at the maternal-fetal interface take on critical significance in a successful pregnancy. The impaired function of memory Tregs shows a correlation with various pregnancy complications (e.g., preeclampsia, gestational diabetes mellitus, and recurrent pregnancy losses). However, the differentiation process and characteristics of memory Tregs, especially their role in pregnancy, remain unclear. In this study, a review is presented in terms of memory Tregs differentiation and activation, the characteristics of memory Tregs and their role in pregnancy, and the correlation between memory Tregs and pregnancy complications. Furthermore, several potential therapeutic methods are investigated to restore the function of memory Tregs in accordance with immunopathologies arising from memory Tregs abnormalities and provide novel targets for diagnosing and treating pregnancy-associated diseases.
Collapse
Affiliation(s)
- Zeyang Chen
- School of Medicine, Qingdao University, Qingdao, China
- Reproduction Medical Center, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanan Zhang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Wenjuan Wang
- Reproduction Medical Center, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Davé V, Richert-Spuhler LE, Arkatkar T, Warrier L, Pholsena T, Johnston C, Schiffer JT, Prlic M, Lund JM. Recurrent infection transiently expands human tissue T cells while maintaining long-term homeostasis. J Exp Med 2023; 220:e20210692. [PMID: 37314481 PMCID: PMC10267593 DOI: 10.1084/jem.20210692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 03/13/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
Chronic viral infections are known to lead to T cell exhaustion or dysfunction. However, it remains unclear if antigen exposure episodes from periodic viral reactivation, such as herpes simplex virus type-2 (HSV-2) recrudescence, are sufficient to induce T cell dysfunction, particularly in the context of a tissue-specific localized, rather than a systemic, infection. We designed and implemented a stringent clinical surveillance protocol to longitudinally track both viral shedding and in situ tissue immune responses in a cohort of HSV+ volunteers that agreed to avoid using anti-viral therapy for the course of this study. Comparing lesion to control skin biopsies, we found that tissue T cells expanded immediately after reactivation, and then returned numerically and phenotypically to steady state. T cell responses appeared to be driven at least in part by migration of circulating T cells to the infected tissue. Our data indicate that tissue T cells are stably maintained in response to HSV reactivation, resembling a series of acute recall responses.
Collapse
Affiliation(s)
- Veronica Davé
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, USA
| | - Laura E. Richert-Spuhler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tanvi Arkatkar
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, USA
| | - Lakshmi Warrier
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, USA
| | | | - Christine Johnston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
16
|
Wang J, Hong J, Yang F, Liu F, Wang X, Shen Z, Wu D. A deficient MIF-CD74 signaling pathway may play an important role in immunotherapy-induced hyper-progressive disease. Cell Biol Toxicol 2023; 39:1169-1180. [PMID: 34797429 DOI: 10.1007/s10565-021-09672-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/13/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND With the advent of immune checkpoint inhibitors (ICIs) therapies, a major breakthrough has been made in cancer treatment. However, instead of good results, some patients experienced a deterioration of their disease. This unexpected result is termed as hyper-progressive disease (HPD). The biology of HPD is currently not fully understood. METHODS Isolation of CD3+ cells from peripheral blood mononuclear cells (PBMC) in healthy control, tumor patients receiving immunotherapy with or without immunotherapy-induced HPD, then conducted single-cell RNA sequencing (scRNA-seq). RESULTS By analyzing scRNA-seq data, we identified 15 cell clusters. We observed developed-exhausted CD4+ T cells and regulatory T cells (Tregs) increasingly enriched in HPD group. Meanwhile, some effector T cells were decreased in HPD. The imbalance potentially contributes to the occurrence of HPD and poor clinical prognosis. In addition, we analyzed ligand-receptor interactions between subsets. The ligand-receptor interaction "CD74-MIF" was absent in HPD. However, in vitro experiment, we found that CD74 regulated effector function of effector CD8+ T cells. Overall, the article provides a primary study of immune profile in HPD.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jinsheng Hong
- Department of Radiotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Feiyu Yang
- Emergency Department of Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Fangming Liu
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangdong Wang
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
| | - Zan Shen
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China.
| | - Duojiao Wu
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
van Gulijk M, van Krimpen A, Schetters S, Eterman M, van Elsas M, Mankor J, Klaase L, de Bruijn M, van Nimwegen M, van Tienhoven T, van Ijcken W, Boon L, van der Schoot J, Verdoes M, Scheeren F, van der Burg SH, Lambrecht BN, Stadhouders R, Dammeijer F, Aerts J, van Hall T. PD-L1 checkpoint blockade promotes regulatory T cell activity that underlies therapy resistance. Sci Immunol 2023; 8:eabn6173. [PMID: 37205768 DOI: 10.1126/sciimmunol.abn6173] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
Despite the clinical success of immune checkpoint blockade (ICB), in certain cancer types, most patients with cancer do not respond well. Furthermore, in patients for whom ICB is initially successful, this is often short-lived because of the development of resistance to ICB. The mechanisms underlying primary or secondary ICB resistance are incompletely understood. Here, we identified preferential activation and enhanced suppressive capacity of regulatory T cells (Treg cells) in αPD-L1 therapy-resistant solid tumor-bearing mice. Treg cell depletion reversed resistance to αPD-L1 with concomitant expansion of effector T cells. Moreover, we found that tumor-infiltrating Treg cells in human patients with skin cancer, and in patients with non-small cell lung cancer, up-regulated a suppressive transcriptional gene program after ICB treatment, which correlated with lack of treatment response. αPD-1/PD-L1-induced PD-1+ Treg cell activation was also seen in peripheral blood of patients with lung cancer and mesothelioma, especially in nonresponders. Together, these data reveal that treatment with αPD-1 and αPD-L1 unleashes the immunosuppressive role of Treg cells, resulting in therapy resistance, suggesting that Treg cell targeting is an important adjunct strategy to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Mandy van Gulijk
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Anneloes van Krimpen
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sjoerd Schetters
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Mike Eterman
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marit van Elsas
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Joanne Mankor
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Larissa Klaase
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marjolein de Bruijn
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Tim van Tienhoven
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wilfred van Ijcken
- Department of Biomics, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Johan van der Schoot
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Institute for Chemical Immunology, Nijmegen, Netherlands
| | - Ferenc Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Bart N Lambrecht
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joachim Aerts
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
18
|
Ji R, Li Y, Huang R, Xiong J, Wang X, Zhang X. Recent Advances and Research Progress in Biomarkers for Chronic Graft Versus Host Disease. Crit Rev Oncol Hematol 2023; 186:103993. [PMID: 37061073 DOI: 10.1016/j.critrevonc.2023.103993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023] Open
Abstract
Chronic graft-versus host disease (cGVHD) is a major risk for patients undergoing allogeneic hematopoietic stem cell transplantation. With the emergence of novel therapies and the increased understanding of the mechanisms underlying cGVHD, there are more options for cGVHD treatment. Regardless of improvements in treatment, diagnosis mainly depends on identification of symptoms, which makes precise treatment a challenge. Numerous biomarkers for cGVHD have been validated and have demonstrated strong associations with prognosis and response to treatment. The most common biomarkers mainly include critical types of immune cells, chemokines, cytokines, microRNAs, and autoantibodies, all of which play important roles in the development of cGVHD. Compared to traditional tools, biomarkers have several advantages, for example, they can be applied for early diagnosis, to identify cGVHD risk before onset, and predict which therapy is most likely to benefit patients. In this review, we summarize biomarkers with potential clinical value and discuss future applications.
Collapse
Affiliation(s)
- Rui Ji
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Yue Li
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Jingkang Xiong
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China; Jinfeng Laboratory, Chongqing 400037, China.
| |
Collapse
|
19
|
Hagiwara S, Nishida N, Kudo M. Advances in Immunotherapy for Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:2070. [PMID: 37046727 PMCID: PMC10093619 DOI: 10.3390/cancers15072070] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) aim to induce immune responses against tumors and are less likely to develop drug resistance than molecularly targeted drugs. In addition, they are characterized by a long-lasting antitumor effect. However, since its effectiveness depends on the tumor's immune environment, it is essential to understand the immune environment of hepatocellular carcinoma to select ICI therapeutic indications and develop biomarkers. A network of diverse cellular and humoral factors establishes cancer immunity. By analyzing individual cases and classifying them from the viewpoint of tumor immunity, attempts have been made to select the optimal therapeutic drug for immunotherapy, including ICIs. ICI treatment is discussed from the viewpoints of immune subclass of HCC, Wnt/β-catenin mutation, immunotherapy in NASH-related HCC, the mechanism of HPD onset, and HBV reactivation.
Collapse
Affiliation(s)
- Satoru Hagiwara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | | | | |
Collapse
|
20
|
Inappropriate Expression of PD-1 and CTLA-4 Checkpoints in Myeloma Patients Is More Pronounced at Diagnosis: Implications for Time to Progression and Response to Therapeutic Checkpoint Inhibitors. Int J Mol Sci 2023; 24:ijms24065730. [PMID: 36982802 PMCID: PMC10056286 DOI: 10.3390/ijms24065730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by severely profound immune dysfunction. Therefore, the efficacy of drugs targeting the immune environments, such as immune checkpoint inhibitors (ICIs), is of high clinical importance. However, several clinical trials evaluating ICIs in MM in different therapeutic combinations revealed underwhelming results showing a lack of clinical efficacy and excessive side effects. The underlying mechanisms of resistance to ICIs observed in the majority of MM patients are still under investigation. Recently, we demonstrated that inappropriate expression of PD-1 and CTLA-4 on CD4 T cells in active MM is associated with adverse clinical outcomes and treatment status. The aim of the current study was to determine the usefulness of immune checkpoint expression assessment as a predictive biomarker of the response to therapeutic inhibitors. For this purpose, along with checkpoint expression estimated by flow cytometry, we evaluated the time to progression (TTP) of MM patients at different clinical stages (disease diagnosis and relapse) depending on the checkpoint expression level; the cut-off point (dividing patients into low and high expressors) was selected based on the median value. Herein, we confirmed the defective levels of regulatory PD-1, CTLA-4 receptors, and the CD69 marker activation in newly diagnosed (ND) patients, whereas relapsed/refractory patients (RR) exhibited their recovered values and reactivity. Additionally, substantially higher populations of senescent CD4+CD28− T cells were found in MM, primarily in NDMM subjects. These observations suggest the existence of two dysfunctional states in MM CD4 T cells with the predominance of immunosenescence at disease diagnosis and exhaustion at relapse, thus implying different responsiveness to the external receptor blockade depending on the disease stage. Furthermore, we found that lower CTLA-4 levels in NDMM patients or higher PD-1 expression in RRMM patients may predict early relapse. In conclusion, our study clearly showed that the checkpoint level in CD4 T cells may significantly affect the time to MM progression concerning the treatment status. Therefore, when considering novel therapies and potent combinations, it should be taken into account that blocking PD-1 rather than CTLA-4 might be a beneficial form of immunotherapy for only a proportion of RRMM patients.
Collapse
|
21
|
Lyu MA, Huang M, Zeng K, Li L, Khoury JD, Nishimoto M, Ma H, Sadeghi T, Mukherjee S, Slutsky AS, Flowers CR, Parmar S. Allogeneic cord blood regulatory T cells can resolve lung inflammation. Cytotherapy 2023; 25:245-253. [PMID: 36437190 DOI: 10.1016/j.jcyt.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/13/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AIMS CD4+CD25+CD127lo regulatory T cells (Tregs) are responsible for maintaining immune homeostasis. Tregs can be rendered defective and deficient as a result of the immune imbalance seen in lung injury, and such dysfunction can play a major role in continued tissue inflammation. The authors hypothesized that adoptive therapy with healthy allogeneic umbilical cord blood (UCB)-derived Tregs may be able to resolve inflammation. RESULTS Ex vivo-expanded UCB Tregs exhibited a unique phenotype with co-expression of CD45RA+CD45RO+ >80% and lung homing markers, including CD49d. UCB Tregs did not turn pathogenic when exposed to IL-6. Co-culture with increasing doses of dexamethasone led to a synergistic increase in UCB Treg-induced apoptosis of conventional T cells (Tcons), which translated into significantly higher suppression of proliferating Tcons, especially at a lower Treg:Tcon ratio. Multiple injections of UCB Tregs led to their preferential accumulation in lung tissue in an immune injury xenogenic model. A significant decrease in lung resident cytotoxic CD8+ T cells (P = 0.0218) correlated with a sustained decrease in their systemic distribution compared with controls (P < 0.0001) (n = 7 per arm) as well as a decrease in circulating human soluble CD40 ligand level (P = 0.031). Tissue architecture was preserved in the treatment arm, and a significant decrease in CD3+ and CD8+ burden was evident in immunohistochemistry analysis. CONCLUSIONS UCB Treg adoptive therapy is a promising therapeutic strategy for treatment of lung injury.
Collapse
Affiliation(s)
- Mi-Ae Lyu
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Meixian Huang
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Ke Zeng
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Li Li
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Mitsutaka Nishimoto
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Hongbing Ma
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | | - Siddhartha Mukherjee
- Division of Hematology/Oncology, Department of Medicine, New York-Presbyterian Hospital, Columbia University Irving Medical Center, New York, New York, USA
| | - Arthur S Slutsky
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Canada
| | - Christopher R Flowers
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Simrit Parmar
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
22
|
Zhang B, Sun J, Yuan Y, Ji D, Sun Y, Liu Y, Li S, Zhu X, Wu X, Hu J, Xie Q, Wu L, Liu L, Cheng B, Zhang Y, Jiang L, Zhao L, Yu F, Song W, Wang M, Xu Y, Ma S, Fei Y, Zhang L, Zhou D, Zhang X. Proximity-enabled covalent binding of IL-2 to IL-2Rα selectively activates regulatory T cells and suppresses autoimmunity. Signal Transduct Target Ther 2023; 8:28. [PMID: 36690610 PMCID: PMC9871032 DOI: 10.1038/s41392-022-01208-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023] Open
Abstract
Interleukin-2 (IL-2) is a pleiotropic cytokine that orchestrates bidirectional immune responses via regulatory T cells (Tregs) and effector cells, leading to paradoxical consequences. Here, we report a strategy that exploited genetic code expansion-guided incorporation of the latent bioreactive artificial amino acid fluorosulfate-L-tyrosine (FSY) into IL-2 for proximity-enabled covalent binding to IL-2Rα to selectively promote Treg activation. We found that FSY-bearing IL-2 variants, such as L72-FSY, covalently bound to IL-2Rα via sulfur-fluoride exchange when in proximity, resulting in persistent recycling of IL-2 and selectively promoting the expansion of Tregs but not effector cells. Further assessment of L72-FSY-expanded Tregs demonstrated that L72-FSY maintained Tregs in a central memory phenotype without driving terminal differentiation, as demonstrated by simultaneously attenuated expression of lymphocyte activation gene-3 (LAG-3) and enhanced expression of programmed cell death protein-1 (PD-1). Subcutaneous administration of L72-FSY in murine models of pristane-induced lupus and graft-versus-host disease (GvHD) resulted in enhanced and sustained therapeutic efficacy compared with wild-type IL-2 treatment. The efficacy of L72-FSY was further improved by N-terminal PEGylation, which increased its circulatory retention for preferential and sustained effects. This proximity-enabled covalent binding strategy may accelerate the development of pleiotropic cytokines as a new class of immunomodulatory therapies.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Jiaqi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yeshuang Yuan
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Dezhong Ji
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yeting Sun
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Shengjie Li
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xingxing Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xunyao Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jin Hu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qiu Xie
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ling Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lulu Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Boyang Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yuanjie Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lingjuan Jiang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Fei Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wei Song
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Shiliang Ma
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yunyun Fei
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
23
|
Kim MJ, Kim K, Park HJ, Kim GR, Hong KH, Oh JH, Son J, Park DJ, Kim D, Choi JM, Lee I, Ha SJ. Deletion of PD-1 destabilizes the lineage identity and metabolic fitness of tumor-infiltrating regulatory T cells. Nat Immunol 2023; 24:148-161. [PMID: 36577929 DOI: 10.1038/s41590-022-01373-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/27/2022] [Indexed: 12/29/2022]
Abstract
Regulatory T (Treg) cells have an immunosuppressive function and highly express the immune checkpoint receptor PD-1 in the tumor microenvironment; however, the function of PD-1 in tumor-infiltrating (TI) Treg cells remains controversial. Here, we showed that conditional deletion of PD-1 in Treg cells delayed tumor progression. In Pdcd1fl/flFoxp3eGFP-Cre-ERT2(+/-) mice, in which both PD-1-expressing and PD-1-deficient Treg cells coexisted in the same tissue environment, conditional deletion of PD-1 in Treg cells resulted in impairment of the proliferative and suppressive capacity of TI Treg cells. PD-1 antibody therapy reduced the TI Treg cell numbers, but did not directly restore the cytokine production of TI CD8+ T cells in TC-1 lung cancer. Single-cell analysis indicated that PD-1 signaling promoted lipid metabolism, proliferation and suppressive pathways in TI Treg cells. These results suggest that PD-1 ablation or inhibition can enhance antitumor immunity by weakening Treg cell lineage stability and metabolic fitness in the tumor microenvironment.
Collapse
Affiliation(s)
- Myeong Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.,Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Republic of Korea
| | - Kyungsoo Kim
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hyo Jin Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Gil-Ran Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Kyeong Hee Hong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.,Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Republic of Korea
| | - Ji Hoon Oh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.,Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Republic of Korea
| | - Jimin Son
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.,Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Republic of Korea
| | - Dong Jin Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.,Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Republic of Korea
| | - Dahae Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.,Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea.,Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| | - Insuk Lee
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Republic of Korea. .,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea. .,Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Gao N, Li T, Cui W, Zhao L, Zhang J, Pan L. PD-1 Deficiency in Regulatory T Cells May be Involved in the Pathogenesis of Takayasu's Arteritis. Clin Appl Thromb Hemost 2023; 29:10760296231187896. [PMID: 37461218 DOI: 10.1177/10760296231187896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVES This study aims to investigate whether PD-1 expressions are abnormal in patients with TAK. METHODS PD-1 expression was analyzed by flow cytometry. Serum cytokines IL-10, IL-7, IL-2, IL-15, CCL2, CCL3, and CXCL10 were detected using a cytokine cytometric bead array. Immunohistochemistry staining analysis was used to test PD-1 and programmed death-ligand 1 (PD-L1) expression in the aorta of three patients with TAK and three patients with atherosclerosis as controls. RESULTS The mean fluorescence intensity of PD-1 in CD4+PD-1+ cells was decreased in patients with TAK and the frequency of CD4+Foxp3-PD-1+ cells among CD4+T cells was also decreased in peripheral blood relative to healthy controls (P < .05). The percentage of CD4+CD25+Foxp3+PD-1+ cells in the CD4+CD25+T cell population was lower in patients with TAK than in healthy control and was lower in active TAK group (P < .05). Comparing PD-1 and PDL-1 expression in aorta tissue showed that patients with TAK tended to have lower levels than patients with atherosclerosis, but the difference was not significant (P > .05). Patients with TAK had higher serum levels of IL-10, IL-7, CCL2, and CCL3 (P < .05). CONCLUSIONS Abnormal expression of PD-1 in serum and aorta tissue of patients with TAK may contribute to TAK pathogenesis. KEY POINTS PD-1 expression in both peripheral blood and aorta tissue of TAK patients decreased relative to healthy controls, indicating that PD-1 might be involved in TAK pathogenesis.
Collapse
Affiliation(s)
- Na Gao
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Taoao Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Wei Cui
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Limin Zhao
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Jianghui Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Lili Pan
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| |
Collapse
|
25
|
Wang B, Chen C, Liu X, Zhou S, Xu T, Wu M. The effect of combining PD-1 agonist and low-dose Interleukin-2 on treating systemic lupus erythematosus. Front Immunol 2023; 14:1111005. [PMID: 36969198 PMCID: PMC10030866 DOI: 10.3389/fimmu.2023.1111005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease involving multiple organs. It is often called "immortal cancer" due to the difficulties in disease treatment. As the cornerstone of immune regulation, the programmed cell death protein 1 (PD-1) has been extensively studied in the context of chronic inflammation due to its ability of regulating immune response and immunosuppression. Recently, more and more studies on rheumatic immune related complications have also focused on PD-1 and proposed that the use of PD-1 agonist could inhibit the activation of lymphocytes and alleviate SLE disease activity. In this review, we summarized the role of PD-1 in SLE, implicating its potential application as a biomarker to predict SLE disease activity; we also proposed that the combination of PD-1 agonist and low-dose IL-2 may have better therapeutic efficacy, shining light on a new direction for developing specific treatment approaches.
Collapse
Affiliation(s)
- Bing Wang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Can Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xia Liu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Shuang Zhou
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ting Xu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- *Correspondence: Ting Xu, ; Min Wu,
| | - Min Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- *Correspondence: Ting Xu, ; Min Wu,
| |
Collapse
|
26
|
Wei C, Zhu Y, Li S, Chen W, Li C, Jiang S, Xu R. Identification of an immune-related gene prognostic index for predicting prognosis, immunotherapeutic efficacy, and candidate drugs in amyotrophic lateral sclerosis. Front Cell Neurosci 2022; 16:993424. [PMID: 36589282 PMCID: PMC9798295 DOI: 10.3389/fncel.2022.993424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Rationale and objectives Considering the great insufficiency in the survival prediction and therapy of amyotrophic lateral sclerosis (ALS), it is fundamental to determine an accurate survival prediction for both the clinical practices and the design of treatment trials. Therefore, there is a need for more accurate biomarkers that can be used to identify the subtype of ALS which carries a high risk of progression to guide further treatment. Methods The transcriptome profiles and clinical parameters of a total of 561 ALS patients in this study were analyzed retrospectively by analysis of four public microarray datasets. Based on the results from a series of analyses using bioinformatics and machine learning, immune signatures are able to be used to predict overall survival (OS) and immunotherapeutic response in ALS patients. Apart from other comprehensive analyses, the decision tree and the nomogram, based on the immune signatures, were applied to guide individual risk stratification. In addition, molecular docking methodology was employed to screen potential small molecular to which the immune signatures might response. Results Immune was determined as a major risk factor contributing to OS among various biomarkers of ALS patients. As compared with traditional clinical features, the immune-related gene prognostic index (IRGPI) had a significantly higher capacity for survival prediction. The determination of risk stratification and assessment was optimized by integrating the decision tree and the nomogram. Moreover, the IRGPI may be used to guide preventative immunotherapy for patients at high risks for mortality. The administration of 2MIU IL2 injection in the short-term was likely to be beneficial for the prolongment of survival time, whose dosage should be reduced to 1MIU if the long-term therapy was required. Besides, a useful clinical application for the IRGPI was to screen potential compounds by the structure-based molecular docking methodology. Conclusion Ultimately, the immune-derived signatures in ALS patients were favorable biomarkers for the prediction of survival probabilities and immunotherapeutic responses, and the promotion of drug development.
Collapse
Affiliation(s)
- Caihui Wei
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yu Zhu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shu Li
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Wenzhi Chen
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Cheng Li
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China,Department of Neurology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Shishi Jiang
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China,Department of Neurology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China,*Correspondence: Renshi Xu, ;
| |
Collapse
|
27
|
Najafi S, Majidpoor J, Mortezaee K. The impact of microbiota on PD-1/PD-L1 inhibitor therapy outcomes: A focus on solid tumors. Life Sci 2022; 310:121138. [DOI: 10.1016/j.lfs.2022.121138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/02/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
28
|
Dai M, Liu M, Yang H, Küçük C, You H. New insights into epigenetic regulation of resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms and therapeutic opportunities. Exp Hematol Oncol 2022; 11:101. [PMID: 36384676 PMCID: PMC9667634 DOI: 10.1186/s40164-022-00356-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Programmed cell death protein 1(PD-1) is a type of immune-inhibitory checkpoint protein, which delivers inhibitory signals to cytotoxic T cells by binding to the programmed death ligand-1 (PD-L1) displayed on the surface of cancer cells. Antibodies blocking PD-1/PD-L1 interaction have been extensively used in treatment of human malignancies and have achieved promising outcomes in recent years. However, gradual development of resistance to PD-1/PD-L1 blockade has decreased the effectiveness of this immunotherapy in cancer patients. The underlying epigenetic mechanisms need to be elucidated for application of novel strategies overcoming this immunotherapy resistance. Epigenetic aberrations contribute to cancerogenesis by promoting different hallmarks of cancer. Moreover, these alterations may lead to therapy resistance, thereby leading to poor prognosis. Recently, the epigenetic regulatory drugs have been shown to decrease the resistance to PD-1/PD-L1 inhibitors in certain cancer patients. Inhibitors of the non-coding RNAs, DNA methyltransferases, and histone deacetylases combined with PD-1/PD-L1 inhibitors have shown considerable therapeutic efficacy against carcinomas as well as blood cancers. Importantly, DNA methylation-mediated epigenetic silencing can inhibit antigen processing and presentation, which promotes cancerogenesis and aggravates resistance to PD-1/PD-L1 blockade immunotherapy. These observations altogether suggest that the combination of the epigenetic regulatory drugs with PD-1/PD-L1 inhibitors may present potential solution to the resistance caused by monotherapy of PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Mengyuan Dai
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Hematology and Oncology, Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Second Rd., Yuzhong District, 401122, Chongqing, China
| | - Miao Liu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medical, Foshan University, Foshan, China
| | - Can Küçük
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Türkiye
- Basic and Translational Research Program, İzmir Biomedicine and Genome Center, İzmir, Türkiye
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Hematology and Oncology, Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Second Rd., Yuzhong District, 401122, Chongqing, China.
| |
Collapse
|
29
|
Mina A, Curtis L, West K, Yau YY, Cowen EW, Hakim F, Pavletic SZ. Collection of peripheral blood mononucleated cells for chronic graft-versus-host disease immunology research: safety and effectiveness of leukapheresis in 132 patients. J Transl Med 2022; 20:519. [DOI: 10.1186/s12967-022-03708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Chronic graft-versus-host disease (GVHD) is a major cause of late morbidity and non-relapse mortality in recipients of allogeneic hematopoietic cell transplantation (HCT). Its biology, however, remains poorly understood, making the studies of its biology and immunomodulatory therapies a difficult task. Such research is often hampered by lymphopenia which is common in these patients and precludes studies of critical cellular subsets across the spectrum of severity of disease. This study explores the potential of leukapheresis to safely acquire and efficiently store immune cells for immunology research in chronic GVHD.
Methods
This is a cross-sectional study in which 132 consecutively accrued patients undergo optional research leukapheresis and a one-week comprehensive outpatient evaluation. Baseline clinical and laboratory data and efficiency of the procedure were reported.
Results
Ninety-four of 132 patients (71%) achieved the goal collection of 2 × 10^9 PBMNCs with a mean volume processed of 4.6 L. Only mild decreases in hemoglobin, platelet, lymphocyte and monocytes were observed. All adverse events were mild (grade 1) and had resolved by the time of discharge from the apheresis unit.
Conclusion
This study demonstrates feasibility, safety, and efficiency of research leukapheresis in a frail patient population. Results presented promote leukapheresis as a standard research practice option in studies of chronic GVHD in humans which may expedite advances in our understanding of this complex multisystem disease.
Collapse
|
30
|
Shan F, Somasundaram A, Bruno TC, Workman CJ, Vignali DAA. Therapeutic targeting of regulatory T cells in cancer. Trends Cancer 2022; 8:944-961. [PMID: 35853825 PMCID: PMC9588644 DOI: 10.1016/j.trecan.2022.06.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022]
Abstract
The success of immunotherapy in oncology underscores the vital role of the immune system in cancer development. Regulatory T cells (Tregs) maintain a fine balance between autoimmunity and immune suppression. They have multiple roles in the tumor microenvironment (TME) but act particularly in suppressing T cell activation. This review focuses on the detrimental and sometimes beneficial roles of Tregs in tumors, our current understanding of recruitment and stabilization of Tregs within the TME, and current Treg-targeted therapeutics. Research identifying subpopulations of Tregs and their respective functions and interactions within the complex networks of the TME will be crucial to develop the next generation of immunotherapies. Through these advances, Treg-targeted immunotherapy could have important implications for the future of oncology.
Collapse
Affiliation(s)
- Feng Shan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Ashwin Somasundaram
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
31
|
Yang Z, Wu H, Lin Q, Wang X, Kang S. Lymphopenic condition enhanced the antitumor immunity of PD-1-knockout T cells mediated by CRISPR/Cas9 system in malignant melanoma. Immunol Lett 2022; 250:15-22. [PMID: 36174769 DOI: 10.1016/j.imlet.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Adoptive transfer of PD-1 knockout T cells mediated by CRISPR/Cas9 technology has been used in various cancers and got satisfactory treatment effectiveness. However, the effectiveness was limited due to the low proliferation ability, antigen recognition ability and short lifetime of T cells in vivo. METHOD In this study, PD-1 knockout T cells mediated by CRISPR/Cas9 system were transferred into lymphopenic mice after sub-lethal dose of total body irradiation. The antitumor effects of PD-1 knockout T cells were comprehensively analyzed by flow cytometry. Moreover, PD-L1 knockout B16 cells were inoculated subcutaneously in lymphopenic mice receiving infusion of naïve T cells to value the role of PD-1/PD-L1 axis on lymphopenia-induced antitumor immunity RESULT: In this study, we found that the PD-1-knockout T cells underwent several rounds of homeostatic proliferation in vivo when they were transferred into lymphopenic mice. The number of IFN-γ-releasing CTL was significantly increased and the tumor growth was remarkably inhibited in lymphopenic mice receiving infusion of PD-1 knockout T cells. The expression of PD-L1 on tumor cells rose smartly in lymphopenic mice undergoing homeostatic proliferation. PD-L1 gene knockout on B16 melanoma cells could effectively enhance the antitumor immunity mediated by the homeostatic proliferation of T cells and significantly inhibited the growth of tumor CONCLUSION: These findings suggested that lymphopenic condition after total body irradiation might be able to create an environment to promote the PD-1 knockout T cells to recognize tumor antigen and undergo homeostatic proliferation, thus induced a more powerful antitumor immunity than adoptively transferring into immunocompetent hosts.
Collapse
Affiliation(s)
- Zike Yang
- Department of Oncology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361001, Fujian, China
| | - Huita Wu
- Department of Oncology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361001, Fujian, China
| | - Qing Lin
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361001, Fujian, China
| | - Xin Wang
- Department of Oncology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361001, Fujian, China
| | - Shijun Kang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
32
|
Muckenhuber M, Wekerle T, Schwarz C. Costimulation blockade and Tregs in solid organ transplantation. Front Immunol 2022; 13:969633. [PMID: 36119115 PMCID: PMC9478950 DOI: 10.3389/fimmu.2022.969633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Regulatory T cells (Tregs) play a critical role in maintaining self-tolerance and in containing allo-immune responses in the context of transplantation. Recent advances yielded the approval of the first pharmaceutical costimulation blockers (abatacept and belatacept), with more of them in the pipeline. These costimulation blockers inhibit effector cells with high clinical efficacy to control disease activity, but might inadvertently also affect Tregs. Treg homeostasis is controlled by a complex network of costimulatory and coinhibitory signals, including CD28, the main target of abatacept/belatacept, and CTLA4, PD-1 and ICOS. This review shall give an overview on what effects the therapeutic manipulation of costimulation has on Treg function in transplantation.
Collapse
Affiliation(s)
- Moritz Muckenhuber
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
- *Correspondence: Thomas Wekerle, ; Christoph Schwarz,
| | - Christoph Schwarz
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
- *Correspondence: Thomas Wekerle, ; Christoph Schwarz,
| |
Collapse
|
33
|
Nishiyama N, Nakahashi-Oda C, Shibuya A. Interferon-β promotes the survival and function of induced regulatory T cells. Cytokine 2022; 158:156009. [PMID: 36049243 DOI: 10.1016/j.cyto.2022.156009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/18/2022] [Accepted: 08/13/2022] [Indexed: 11/03/2022]
Abstract
Type I interferons (IFNs) are pleiotropic cytokines and impact various immune cells, including regulatory T cells (Treg cells). The effect of type-I IFNs on the development and function of Treg cells is quite controversial. Here we induced Treg cells (iTreg cells) from naïve CD4+ T cells in vitro in the presence or absence of IFN-β to elucidate its direct effect on the induction of iTreg cells. We found that IFN-β suppressed the proliferation of iTreg cells but enhanced their expression of anti-apoptotic genes Bcl-2 and Mcl-1 during the development of iTreg cells. We also found that IFN-β promoted suppression of conventional T cell proliferation by iTreg cells. These results suggest that IFN-β promotes the survival and immunomodulatory function of iTreg cells.
Collapse
Affiliation(s)
- Nanako Nishiyama
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Chigusa Nakahashi-Oda
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; R&D Center for Innovative Drug Discovery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; R&D Center for Innovative Drug Discovery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
34
|
Meguri Y, Asano T, Yoshioka T, Iwamoto M, Ikegawa S, Sugiura H, Kishi Y, Nakamura M, Sando Y, Kondo T, Sumii Y, Maeda Y, Matsuoka KI. Responses of regulatory and effector T-cells to low-dose interleukin-2 differ depending on the immune environment after allogeneic stem cell transplantation. Front Immunol 2022; 13:891925. [PMID: 35983059 PMCID: PMC9379320 DOI: 10.3389/fimmu.2022.891925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
CD4+Foxp3+ regulatory T cells (Tregs) play a central role in the maintenance of immune tolerance after allogeneic hematopoietic stem cell transplantation (HSCT). Tregs promptly respond to low concentrations of IL-2 through the constitutive expression of high-affinity IL-2 receptors. It has been reported that low-dose IL-2 therapy increased circulating Tregs and improved clinical symptoms of chronic GVHD. Clinical studies of IL-2 therapy so far have mainly targeted patients in the chronic phase of transplantation when acute immune responses has subsided. However, the biological and clinical effects of exogenous IL-2 in an acute immune environment have not been well investigated. In the current study, we investigated the impact of exogenous IL-2 therapy on the post-transplant homeostasis of T cell subsets which influence the balance between GVHD and GVL in the acute phase, by setting the various immune environments early after HSCT in murine model. We initially found that 5,000 IU of IL-2 was enough to induce the active proliferation of Treg without influencing other conventional T cells (Tcons) when administered to normal mice. However, activated Tcons showed the response to the same dose of IL-2 in recipients after allogeneic HSCT. In a mild inflammatory environment within a threshold, exogenous IL-2 could effectively modulate Treg homeostasis with just limited influence to activated T cells, which resulted in an efficient GVHD suppression. In contrast, in a severely inflammatory environment, exogenous IL-2 enhanced activated T cells rather than Tregs, which resulted in the exacerbation of GVHD. Of interest, in an immune-tolerant state after transplant, exogenous IL-2 triggered effector T-cells to exert an anti-tumor effect with maintaining GVHD suppression. These data suggested that the responses of Tregs and effector T cells to exogenous IL-2 differ depending on the immune environment in the host, and the mutual balance of the response to IL-2 between T-cell subsets modulates GVHD and GVL after HSCT. Our findings may provide useful information in the optimization of IL-2 therapy, which may be personalized for each patient having different immune status.
Collapse
|
35
|
Liang Y, Shen J, Lan Q, Zhang K, Xu Y, Duah M, Xu K, Pan B. Blockade of PD-1/PD-L1 increases effector T cells and aggravates murine chronic graft-versus-host disease. Int Immunopharmacol 2022; 110:109051. [PMID: 35850051 DOI: 10.1016/j.intimp.2022.109051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 11/05/2022]
Abstract
T-cells mediated immunopathology is crucial for pathogenesis of chronic graft-versus-host disease (cGVHD), a common complication following allogeneic hematopoietic cell transplantation. Programmed death-1 (PD-1) regulates long-term survival and functional exhaustion of T-cell which might play a role in regulating cGVHD. We examined PD-1 expression on T cells of cGVHD mice and tested the impact of a PD-1 antibody on severity of cGVHD in murine allotransplant models. We also used a murine graft-versus-tumor (GVT) model to explore how tumor cell-derived PD-L1 affect the GVT effect and occurrence of cGVHD. PD-1 fluorescence intensity on CD4+ T-cells increased in mice developing cGVHD. PD-1High T cells expressed higher levels of IFNγ and IL-17, comparing with PD-1Low T cells. Giving the PD-1 antibody increased proportions of Th1, Th17 and Tc1 cells, but decreased proportion of Treg cells in allotransplant mice. The PD-1 antibody decreased survival of recipients and induced severe lung cGVHD. In the GVT model, knockdown of PD-L1 in A20 tumor cells enhanced GVT effect but increased cGVHD. In vitro study showed knockdown of PD-L1 in tumor cells increased cytotoxicity of T cells and reduced apoptosis of T cells. Knockdown of PD-L1 in tumor cells increased protein levels of phosphorylated AKT, Bcl-2 and Mcl-1, but decreased protein levels of Bak and Bax in co-cultured allogeneic T cells. In conclusion, expression of PD-1 on T cells increased in mice undergoing cGVHD. Intervention of the PD-1/PD-L1 pathway showed a significant impact on occurrence of cGVHD and GVT effect.
Collapse
Affiliation(s)
- Yiwen Liang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jingyi Shen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qiu Lan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kexin Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Yan Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Maxwell Duah
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
36
|
Li X, Zhou X, Liu J, Zhang J, Feng Y, Wang F, He Y, Wan A, Filipczak N, Yalamarty SSK, Jin Y, Torchilin VP. Liposomal Co-delivery of PD-L1 siRNA/Anemoside B4 for Enhanced Combinational Immunotherapeutic Effect. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28439-28454. [PMID: 35726706 DOI: 10.1021/acsami.2c01123] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Combination therapy has gained a lot of attention thanks to its superior activity against cancer. In the present study, we report a cRGD-targeted liposomal preparation for co-delivery of programmed cell death ligand 1 (PD-L1) small interfering RNA (siRNA) and anemoside B4 (AB4)─AB4/siP-c-L─and evaluate its anticancer efficiency in mouse models of LLC and 4T1 tumors. AB4/siP-c-L showed a particle size of (180.7 ± 7.3) nm and a ζ-potential of (32.8 ± 1.5) mV, with high drug encapsulation, pH-sensitive release properties, and good stability in serum. AB4/siP-c-L demonstrated prolonged blood circulation and increased tumor accumulation. Elevated cellular uptake was dependent on the targeting ligand cRGD. This combination induced significant tumor inhibition in LLC xenograft tumor-bearing mice by downregulating PD-L1 protein expression and modulating the immunosuppressive microenvironment. Liposomes favored the antitumor T-cell response with long-term memory, without obvious toxicity. A similar tumor growth inhibition was also demonstrated in the 4T1 tumor model. In summary, our results indicate that cRGD-modified and AB4- and PD-L1 siRNA-coloaded liposomes have potential as an antitumor preparation, and this approach may lay a foundation for the development of a new targeted drug delivery system.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiong Zhou
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jun Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yulin Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Fang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yao He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Anping Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
37
|
Zhao LP, Hu JH, Hu D, Wang HJ, Huang CG, Luo RH, Zhou ZH, Huang XY, Xie T, Lou JS. Hyperprogression, a challenge of PD-1/PD-L1 inhibitors treatments: potential mechanisms and coping strategies. Biomed Pharmacother 2022; 150:112949. [PMID: 35447545 DOI: 10.1016/j.biopha.2022.112949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
Immunotherapy is now a mainstay in cancer treatments. Programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) immune checkpoint inhibitor (ICI) therapies have opened up a new venue of advanced cancer immunotherapy. However, hyperprogressive disease (HPD) induced by PD-1/PD-L1 inhibitors caused a significant decrease in the overall survival (OS) of the patients, which compromise the efficacy of PD-1/PD-L1 inhibitors. Therefore, HPD has become an urgent issue to be addressed in the clinical uses of PD-1/PD-L1 inhibitors. The mechanisms of HPD remain unclear, and possible predictive factors of HPD are not well understood. In this review, we summarized the potential mechanisms of HPD and coping strategies that can effectively reduce the occurrence and development of HPD.
Collapse
Affiliation(s)
- Li-Ping Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chang-Gang Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ru-Hua Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
38
|
Yshii L, Pasciuto E, Bielefeld P, Mascali L, Lemaitre P, Marino M, Dooley J, Kouser L, Verschoren S, Lagou V, Kemps H, Gervois P, de Boer A, Burton OT, Wahis J, Verhaert J, Tareen SHK, Roca CP, Singh K, Whyte CE, Kerstens A, Callaerts-Vegh Z, Poovathingal S, Prezzemolo T, Wierda K, Dashwood A, Xie J, Van Wonterghem E, Creemers E, Aloulou M, Gsell W, Abiega O, Munck S, Vandenbroucke RE, Bronckaers A, Lemmens R, De Strooper B, Van Den Bosch L, Himmelreich U, Fitzsimons CP, Holt MG, Liston A. Astrocyte-targeted gene delivery of interleukin 2 specifically increases brain-resident regulatory T cell numbers and protects against pathological neuroinflammation. Nat Immunol 2022; 23:878-891. [PMID: 35618831 PMCID: PMC9174055 DOI: 10.1038/s41590-022-01208-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022]
Abstract
The ability of immune-modulating biologics to prevent and reverse pathology has transformed recent clinical practice. Full utility in the neuroinflammation space, however, requires identification of both effective targets for local immune modulation and a delivery system capable of crossing the blood-brain barrier. The recent identification and characterization of a small population of regulatory T (Treg) cells resident in the brain presents one such potential therapeutic target. Here, we identified brain interleukin 2 (IL-2) levels as a limiting factor for brain-resident Treg cells. We developed a gene-delivery approach for astrocytes, with a small-molecule on-switch to allow temporal control, and enhanced production in reactive astrocytes to spatially direct delivery to inflammatory sites. Mice with brain-specific IL-2 delivery were protected in traumatic brain injury, stroke and multiple sclerosis models, without impacting the peripheral immune system. These results validate brain-specific IL-2 gene delivery as effective protection against neuroinflammation, and provide a versatile platform for delivery of diverse biologics to neuroinflammatory patients.
Collapse
Affiliation(s)
- Lidia Yshii
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
- KU Leuven - Department of Neurosciences, Leuven, Belgium
| | - Emanuela Pasciuto
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
- KU Leuven - Department of Neurosciences, Leuven, Belgium
| | - Pascal Bielefeld
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Loriana Mascali
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Pierre Lemaitre
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Marika Marino
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven - Department of Neurosciences, Leuven, Belgium
| | - James Dooley
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Lubna Kouser
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Stijn Verschoren
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven - Department of Neurosciences, Leuven, Belgium
| | - Vasiliki Lagou
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Hannelore Kemps
- Cardio & Organ Systems (COST), Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Pascal Gervois
- Cardio & Organ Systems (COST), Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Antina de Boer
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven - Department of Neurosciences, Leuven, Belgium
| | - Oliver T Burton
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Jérôme Wahis
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven - Department of Neurosciences, Leuven, Belgium
| | - Jens Verhaert
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven - Department of Neurosciences, Leuven, Belgium
| | - Samar H K Tareen
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Carlos P Roca
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Kailash Singh
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Carly E Whyte
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Axelle Kerstens
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven - Department of Neurosciences, Leuven, Belgium
- VIB Bio-Imaging Core, Leuven, Belgium
| | | | | | - Teresa Prezzemolo
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Keimpe Wierda
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven - Department of Neurosciences, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Electrophysiology Expertise Unit, Leuven, Belgium
| | - Amy Dashwood
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Junhua Xie
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Elien Van Wonterghem
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Eline Creemers
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven - Department of Neurosciences, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Electrophysiology Expertise Unit, Leuven, Belgium
| | - Meryem Aloulou
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
- Toulouse Institute for Infectious and Inflammatory diseases (INFINITY), INSERM UMR1291, CNRS UMR 5051, Toulouse, France
| | - Willy Gsell
- KU Leuven, Department of Imaging and Pathology, Biomedical MRI, Leuven, Belgium
| | - Oihane Abiega
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Sebastian Munck
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven - Department of Neurosciences, Leuven, Belgium
- VIB Bio-Imaging Core, Leuven, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Annelies Bronckaers
- Cardio & Organ Systems (COST), Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Robin Lemmens
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven - Department of Neurosciences, Leuven, Belgium
- University Hospitals Leuven, Department of Neurology, Leuven, Belgium
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven - Department of Neurosciences, Leuven, Belgium
- Dementia Research Institute, University College London, London, United Kingdom
| | - Ludo Van Den Bosch
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- KU Leuven - Department of Neurosciences, Leuven, Belgium
| | - Uwe Himmelreich
- KU Leuven, Department of Imaging and Pathology, Biomedical MRI, Leuven, Belgium
| | - Carlos P Fitzsimons
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Matthew G Holt
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- KU Leuven - Department of Neurosciences, Leuven, Belgium.
- Instituto de Investigaçāo e Inovaçāo em Saúde (i3S), University of Porto, Porto, Portugal.
| | - Adrian Liston
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium.
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom.
| |
Collapse
|
39
|
Yuan Y, Kolios AGA, Liu Y, Zhang B, Li H, Tsokos GC, Zhang X. Therapeutic potential of interleukin-2 in autoimmune diseases. Trends Mol Med 2022; 28:596-612. [PMID: 35624009 DOI: 10.1016/j.molmed.2022.04.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 12/27/2022]
Abstract
Autoimmune diseases are characterized by dysregulation and aberrant activation of cells in the immune system. Therefore, restoration of the immune balance represents a promising therapeutic target in autoimmune diseases. Interleukin-2 (IL-2) can promote the expansion and differentiation of different immune cell subsets dose-dependently. At high doses, IL-2 can promote the differentiation and expansion of effector and memory T cells, whereas at low doses, IL-2 can promote the differentiation, survival, and function of regulatory T (Treg) cells, a CD4+ T cell subset that is essential for the maintenance of immune homeostasis and immune tolerance. Therefore, IL-2 exerts immunostimulatory and immunosuppressive effects in autoimmune diseases. The immunoregulatory role of low-dose IL-2 has sparked excitement for the therapeutic exploration of modulating the IL-2-Treg axis in the context of autoimmune diseases. In this review, we discuss recent advances in the therapeutic potential of IL-2 or IL-2-derived molecules in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yeshuang Yuan
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Antonios G A Kolios
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Bo Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
40
|
Jiang Z, Zhu H, Wang P, Que W, Zhong L, Li X, Du F. Different subpopulations of regulatory T cells in human autoimmune disease, transplantation, and tumor immunity. MedComm (Beijing) 2022; 3:e137. [PMID: 35474948 PMCID: PMC9023873 DOI: 10.1002/mco2.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022] Open
Abstract
CD4+CD25+ regulatory T cells (Tregs), a subpopulation of naturally CD4+ T cells that characteristically express transcription factor Forkhead box P3 (FOXP3), play a pivotal role in the maintenance of immune homeostasis and the prevention of autoimmunity. With the development of biological technology, the understanding of plasticity and stability of Tregs has been further developed. Recent studies have suggested that human Tregs are functionally and phenotypically diverse. The functions and mechanisms of different phenotypes of Tregs in different disease settings, such as tumor microenvironment, autoimmune diseases, and transplantation, have gradually become hot spots of immunology research that arouse extensive attention. Among the complex functions, CD4+CD25+FOXP3+ Tregs possess a potent immunosuppressive capacity and can produce various cytokines, such as IL‐2, IL‐10, and TGF‐β, to regulate immune homeostasis. They can alleviate the progression of diseases by resisting inflammatory immune responses, whereas promoting the poor prognosis of diseases by helping cells evade immune surveillance or suppressing effector T cells activity. Therefore, methods for targeting Tregs to regulate their functions in the immune microenvironment, such as depleting them to strengthen tumor immunity or expanding them to treat immunological diseases, need to be developed. Here, we discuss that different subpopulations of Tregs are essential for the development of immunotherapeutic strategies involving Tregs in human diseases.
Collapse
Affiliation(s)
- Zhongyi Jiang
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Haitao Zhu
- Department of Hepatobiliary Surgery The Affiliated Hospital of Guizhou Medical University Guizhou P. R. China
| | - Pusen Wang
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Weitao Que
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Lin Zhong
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Xiao‐Kang Li
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
- Division of Transplantation Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Futian Du
- Department of Hepatobiliary Surgery Weifang People's Hospital Shandong P. R. China
| |
Collapse
|
41
|
Wang WL, Ouyang C, Graham NM, Zhang Y, Cassady K, Reyes EY, Xiong M, Davis AM, Tang K, Zeng D, Boldin MP. microRNA-142 guards against autoimmunity by controlling Treg cell homeostasis and function. PLoS Biol 2022; 20:e3001552. [PMID: 35180231 PMCID: PMC8893712 DOI: 10.1371/journal.pbio.3001552] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/03/2022] [Accepted: 01/21/2022] [Indexed: 01/10/2023] Open
Abstract
Regulatory T (Treg) cells are critical in preventing aberrant immune responses. Posttranscriptional control of gene expression by microRNA (miRNA) has recently emerged as an essential genetic element for Treg cell function. Here, we report that mice with Treg cell-specific ablation of miR-142 (hereafter Foxp3CremiR-142fl/fl mice) developed a fatal systemic autoimmune disorder due to a breakdown in peripheral T-cell tolerance. Foxp3CremiR-142fl/fl mice displayed a significant decrease in the abundance and suppressive capacity of Treg cells. Expression profiling of miR-142-deficient Treg cells revealed an up-regulation of multiple genes in the interferon gamma (IFNγ) signaling network. We identified several of these IFNγ-associated genes as direct miR-142-3p targets and observed excessive IFNγ production and signaling in miR-142-deficient Treg cells. Ifng ablation rescued the Treg cell homeostatic defect and alleviated development of autoimmunity in Foxp3CremiR-142fl/fl mice. Thus, our findings implicate miR-142 as an indispensable regulator of Treg cell homeostasis that exerts its function by attenuating IFNγ responses.
Collapse
Affiliation(s)
- Wei-Le Wang
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, California, United States of America
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Ching Ouyang
- Center for Informatics, Beckman Research Institute, City of Hope, Duarte, California, United States of America
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Natalie M. Graham
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, California, United States of America
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Yuankun Zhang
- Department of Diabetes Research, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Kaniel Cassady
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, California, United States of America
- Department of Diabetes Research, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Estefany Y. Reyes
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Min Xiong
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, California, United States of America
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Alicia M. Davis
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Kathie Tang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Defu Zeng
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, California, United States of America
- Department of Diabetes Research, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Mark P. Boldin
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, California, United States of America
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| |
Collapse
|
42
|
Lee HJ, Min HY, Yong YS, Ann J, Nguyen CT, La MT, Hyun SY, Le HT, Kim H, Kwon H, Nam G, Park HJ, Lee J, Lee HY. A novel C-terminal heat shock protein 90 inhibitor that overcomes STAT3-Wnt-β-catenin signaling-mediated drug resistance and adverse effects. Theranostics 2022; 12:105-125. [PMID: 34987637 PMCID: PMC8690924 DOI: 10.7150/thno.63788] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
Rationale: The heat shock protein (Hsp) system plays important roles in cancer stem cell (CSC) and non-CSC populations. However, limited efficacy due to drug resistance and toxicity are obstacles to clinical use of Hsp90 inhibitors, suggesting the necessity to develop novel Hsp90 inhibitors overcoming these limitations. Methods: The underlying mechanism of resistance to Hsp90 inhibitors was investigated by colony formation assay, sphere formation assay, western blot analysis, and real-time PCR. To develop anticancer Hsp90 inhibitors that overcome the signal transducer and activator of transcription 3 (STAT3)-mediated resistance, we synthesized and screened a series of synthetic deguelin-based compounds in terms of inhibition of colony formation, migration, and viability of non-small cell lung cancer (NSCLC) cells and toxicity to normal cells. Regulation of Hsp90 by the selected compound NCT-80 [5-methoxy-N-(3-methoxy-4-(2-(pyridin-3-yl)ethoxy)phenyl)-2,2-dimethyl-2H-chromene-6-carboxamide] was investigated by immunoprecipitation, drug affinity responsive target stability assay, binding experiments using ATP-agarose beads and biotinylated drug, and docking analysis. The antitumor, antimetastatic, and anti-CSC effects of NCT-80 were examined in vitro and in vivo using various assays such as MTT, colony formation, and migration assays and flow cytometric analysis and tumor xenograft models. Results: We demonstrated a distinct mechanism in which Hsp90 inhibitors that block N-terminal ATP-binding pocket causes transcriptional upregulation of Wnt ligands through Akt- and ERK-mediated activation of STAT3, resulting in NSCLC cell survival in an autocrine or paracrine manner. In addition, NCT-80 effectively reduced viability, colony formation, migration, and CSC-like phenotypes of NSCLC cells and their sublines with acquired resistance to anticancer drugs by inducing apoptosis and inhibiting epithelial-mesenchymal transition and the growth of NSCLC patient-derived xenograft tumors without overt toxicity. With regards to mechanism, NCT-80 directly bound to the C-terminal ATP-binding pocket of Hsp90, disrupting the interaction between Hsp90 and STAT3 and degrading STAT3 protein. Moreover, NCT-80 inhibited chemotherapy- and EGFR TKI-induced programmed cell death ligand 1 expression and potentiated the antitumor effect of chemotherapy in the LLC-Luc allograft model. Conclusions: These data indicate the potential of STAT3/Wnt signaling pathway as a target to overcome resistance to Hsp90 inhibitors and NCT-80 as a novel Hsp90 inhibitor that targets both CSCs and non-CSCs in NSCLC.
Collapse
Affiliation(s)
- Ho Jin Lee
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Young Min
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Sik Yong
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihyae Ann
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Cong Truong Nguyen
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Minh Thanh La
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Yeob Hyun
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Huong Thuy Le
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyewon Kim
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyukjin Kwon
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Gibeom Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jeewoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Young Lee
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
43
|
Aoki T, Nishida N, Kudo M. Current Perspectives on the Immunosuppressive Niche and Role of Fibrosis in Hepatocellular Carcinoma and the Development of Antitumor Immunity. J Histochem Cytochem 2022; 70:53-81. [PMID: 34751050 PMCID: PMC8721576 DOI: 10.1369/00221554211056853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Immune checkpoint inhibitors have become the mainstay of treatment for hepatocellular carcinoma (HCC). However, they are ineffective in some cases. Previous studies have reported that genetic alterations in oncogenic pathways such as Wnt/β-catenin are the important triggers in HCC for primary refractoriness. T-cell exhaustion has been reported in various tumors and is likely to play a prominent role in the emergence of HCC due to chronic inflammation and cirrhosis-associated immune dysfunction. Immunosuppressive cells including regulatory T-cells and tumor-associated macrophages infiltrating the tumor are associated with hyperprogressive disease in the early stages of immune checkpoint inhibitor treatment. In addition, stellate cells and tumor-associated fibroblasts create an abundant desmoplastic environment by producing extracellular matrix. This strongly contributes to epithelial to mesenchymal transition via signaling activities including transforming growth factor beta, Wnt/β-catenin, and Hippo pathway. The abundant desmoplastic environment has been demonstrated in pancreatic ductal adenocarcinoma and cholangiocarcinoma to suppress cytotoxic T-cell infiltration, PD-L1 expression, and neoantigen expression, resulting in a highly immunosuppressive niche. It is possible that a similar immunosuppressive environment is created in HCC with advanced fibrosis in the background liver. Although sufficient understanding is required for the establishment of immune therapies of HCC, further investigations are still required in this field.
Collapse
Affiliation(s)
- Tomoko Aoki
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Naoshi Nishida
- Naoshi Nishida, Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, 377-2 Ohno-higashi, Osaka-Sayama 589-8511, Japan. E-mail:
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| |
Collapse
|
44
|
Lee JB, Kim HR, Ha SJ. Immune Checkpoint Inhibitors in 10 Years: Contribution of Basic Research and Clinical Application in Cancer Immunotherapy. Immune Netw 2022; 22:e2. [PMID: 35291660 PMCID: PMC8901707 DOI: 10.4110/in.2022.22.e2] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/01/2022] Open
Abstract
Targeting immune evasion via immune checkpoint pathways has changed the treatment paradigm in cancer. Since CTLA-4 antibody was first approved in 2011 for treatment of metastatic melanoma, eight immune checkpoint inhibitors (ICIs) centered on PD-1 pathway blockade are approved and currently administered to treat 18 different types of cancers. The first part of the review focuses on the history of CTLA-4 and PD-1 discovery and the preclinical experiments that demonstrated the possibility of anti-CTLA-4 and anti-PD-1 as anti-cancer therapeutics. The approval process of clinical trials and clinical utility of ICIs are described, specifically focusing on non-small cell lung cancer (NSCLC), in which immunotherapies are most actively applied. Additionally, this review covers the combination therapy and novel ICIs currently under investigation in NSCLC. Although ICIs are now key pivotal cancer therapy option in clinical settings, they show inconsistent therapeutic efficacy and limited responsiveness. Thus, newly proposed action mechanism to overcome the limitations of ICIs in a near future are also discussed.
Collapse
Affiliation(s)
- Jii Bum Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
45
|
Zhulai G, Oleinik E. Targeting regulatory T cells in anti-PD-1/PD-L1 cancer immunotherapy. Scand J Immunol 2021; 95:e13129. [PMID: 34936125 DOI: 10.1111/sji.13129] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022]
Abstract
The programmed death (PD)-1/PD-ligand (PD-L) pathway and regulatory T cells (Tregs) are essential for the maintenance of immune tolerance. Their activation in the tumor microenvironment contributes to the evasion of the transformed cells from the immune surveillance and the suppression of an antitumor immune response. Therefore, PD-1/PD-L1 and Tregs are important targets for cancer immunotherapy. Our review focuses on the current role of the PD-1/PD-L1 axis in Treg development and function in the tumor microenvironment. We also discuss combination therapy with PD-1/PD-L1 inhibitors and Treg-modulating agents affecting the adenosinergic pathway, TGF-β signaling, immune checkpoints, and other approaches to downregulation of Tregs.
Collapse
Affiliation(s)
- Galina Zhulai
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russian Federation
| | - Eugenia Oleinik
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russian Federation
| |
Collapse
|
46
|
Kim MJ, Ha SJ. Differential Role of PD-1 Expressed by Various Immune and Tumor Cells in the Tumor Immune Microenvironment: Expression, Function, Therapeutic Efficacy, and Resistance to Cancer Immunotherapy. Front Cell Dev Biol 2021; 9:767466. [PMID: 34901012 PMCID: PMC8662983 DOI: 10.3389/fcell.2021.767466] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
In the tumor immune microenvironment (TIME), tumor cells interact with various cells and operate various strategies to avoid antitumor immune responses. These immune escape strategies often make the TIME resistant to cancer immunotherapy. Neutralizing immune escape strategies is necessary to overcome resistance to cancer immunotherapy. Immune checkpoint receptors (ICRs) expressed in effector immune cells inhibit their effector function via direct interaction with immune checkpoint ligands (ICLs) expressed in tumor cells. Therefore, blocking ICRs or ICLs has been developed as a promising cancer immunotherapy by reinvigorating the function of effector immune cells. Among the ICRs, programmed cell death 1 (PD-1) has mainly been antagonized to enhance the survival of human patients with cancer by restoring the function of tumor-infiltrating (TI) CD8+ T cells. It has been demonstrated that PD-1 is expressed not only in TI CD8+ T cells, but also in other TI immune cells and even tumor cells. While PD-1 suppresses the function of TI CD8+ T cells, it is controversial whether PD-1 suppresses or amplifies the suppressive function of TI-suppressive immune cells (e.g., regulatory T cells, tumor-associated macrophages, and myeloid cells). There is also controversy regarding the role of tumor-expressing PD-1. Therefore, a precise understanding of the expression pattern and function of PD-1 in each cell subset is important for improving the efficacy of cancer immunotherapy. Here, we review the differential role of PD-1 expressed by various TI immune cells and tumor cells. We focused on how cell-type-specific ablation or blockade of PD-1 affects tumor growth in a murine tumor model. Furthermore, we will also describe how the blockade of PD-1 acts on TI immune cells in human patients with cancer.
Collapse
Affiliation(s)
- Myeong Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, South Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, South Korea
| |
Collapse
|
47
|
Abstract
Failure of regulatory T (Treg) cells to properly control immune responses leads invariably to autoimmunity and organ damage. Decreased numbers or impaired function of Treg cells, especially in the context of inflammation, has been documented in many human autoimmune diseases. Restoration of Treg cell fitness and/or expansion of their numbers using low-dose natural IL-2, the main cytokine driving Treg cell survival and function, has demonstrated clinical efficacy in early clinical trials. Genetically modified IL-2 with an extended half-life and increased selectivity for Treg cells is now in clinical development. Administration of IL-2 combined with therapies targeting other pathways involved in the expression of autoimmune diseases should further enhance its therapeutic potential. Ongoing clinical efforts that capitalize on the early clinical success of IL-2 treatment should bring the use of this cytokine to the forefront of biological treatments for autoimmune diseases.
Collapse
|
48
|
Huang Y, Li X, Chen W, He Y, Wu S, Li X, Hou B, Wang S, He Y, Jiang H, Lun Y, Zhang J. Analysis of the prognostic significance and potential mechanisms of lncRNAs associated with m6A methylation in papillary thyroid carcinoma. Int Immunopharmacol 2021; 101:108286. [PMID: 34735975 DOI: 10.1016/j.intimp.2021.108286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND m6A methylation-related long non-coding RNAs (lncRNAs) play a significant role in the progression of various tumors and can be used as prognostic markers. However, whether m6A-related lncRNAs also play the same function as prognostic markers in papillary thyroid carcinoma (PTC) remains unclear. METHODS Consensus cluster analysis was performed to divide PTC samples obtained from The Cancer Genome Atlas database into two clusters according to the expression of m6A-related lncRNAs. Then, the least absolute shrinkage and selection operator (LASSO) regression analysis was performed to create and verify a prognostic model. Furthermore, the relationship among risk scores, clusters, programmed death-ligand 1 (PD-L1), tumor microenvironment (TME), clinicopathological characteristics, immune infiltration, immune checkpoint, and tumor mutation burden (TMB) was analyzed. In addition, a nomogram was created, and subsequently, the drug sensitivity of lncRNAs in the prognostic model was analyzed. Finally, the relationship between these lncRNAs and prognosis in pan-cancer was investigated. RESULTS The prognosis, RAS, BRAF, M, and TME were found to be different in two clusters. The prognostic model included three lncRNAs: PSMG3-AS1, BHLHE40-AS1, and AC016747.3. The risk score was associated with clusters, PD-L1, tumor microenvironment, clinicopathological characteristics, immune cell infiltration, immune checkpoint, and TMB, and thus, risk score was confirmed as useful prognostic indicator. Differentially expressed lncRNAs are involved in many malignancies and can be identified as cancer prognostic makers. CONCLUSION According to our research, we can regard m6A-related lncRNAs involved in the procession of PTC as a biomarker of progression-free survival for PTC patients, and pan-cancer.
Collapse
Affiliation(s)
- Yinde Huang
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Xin Li
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Wenbin Chen
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Yuzhen He
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Song Wu
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Xinyang Li
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Bingchen Hou
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Shiyue Wang
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Yuchen He
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Han Jiang
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Yu Lun
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Jian Zhang
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
49
|
Curnock AP, Bossi G, Kumaran J, Bawden LJ, Figueiredo R, Tawar R, Wiseman K, Henderson E, Hoong SJ, Gonzalez V, Ghadbane H, Knight DE, O'Dwyer R, Overton DX, Lucato CM, Smith NM, Reis CR, Page K, Whaley LM, McCully ML, Hearty S, Mahon TM, Weber P. Cell-targeted PD-1 agonists that mimic PD-L1 are potent T cell inhibitors. JCI Insight 2021; 6:e152468. [PMID: 34491911 PMCID: PMC8564903 DOI: 10.1172/jci.insight.152468] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
The PD-1/PD-L1 pathway is a key immune checkpoint that regulates T cell activation. There is strong rationale to develop PD-1 agonists as therapeutics against autoimmunity, but progress in this area has been limited. Here, we generated T cell receptor (TCR) targeting, PD-1 agonist bispecifics called ImmTAAI molecules that mimic the ability of PD-L1 to facilitate the colocalization of PD-1 with the TCR complex at the target cell-T cell interface. PD-1 agonist ImmTAAI molecules specifically bound to target cells and were highly effective in activating the PD-1 receptor on interacting T cells to achieve immune suppression. Potent PD-1 antibody ImmTAAI molecules closely mimicked the mechanism of action of endogenously expressed PD-L1 in their localization to the target cell-T cell interface, inhibition of proximal TCR signaling events, and suppression of T cell function. At picomolar concentrations, these bispecifics suppressed cytokine production and inhibited CD8+ T cell-mediated cytotoxicity in vitro. Crucially, in soluble form, the PD-1 ImmTAAI molecules were inactive and, hence, could avoid systemic immunosuppression. This study outlines a promising new route to generate more effective, potent, tissue-targeted PD-1 agonists that can inhibit T cell function locally with the potential to treat autoimmune and chronic inflammatory diseases of high unmet need.
Collapse
|
50
|
Ikegawa S, Matsuoka KI. Harnessing Treg Homeostasis to Optimize Posttransplant Immunity: Current Concepts and Future Perspectives. Front Immunol 2021; 12:713358. [PMID: 34526990 PMCID: PMC8435715 DOI: 10.3389/fimmu.2021.713358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
CD4+CD25+Foxp3+ regulatory T cells (Tregs) are functionally distinct subsets of mature T cells with broad suppressive activity and have been shown to play an important role in the establishment of immune tolerance after allogeneic hematopoietic stem cell transplantation (HSCT). Tregs exhibit an activated phenotype from the stage of emigration from the thymus and maintain continuous proliferation in the periphery. The distinctive feature in homeostasis enables Tregs to respond sensitively to small environmental changes and exert necessary and sufficient immune suppression; however, on the other hand, it also predisposes Tregs to be susceptible to apoptosis in the inflammatory condition post-transplant. Our studies have attempted to define the intrinsic and extrinsic factors affecting Treg homeostasis from the acute to chronic phases after allogeneic HSCT. We have found that altered cytokine environment in the prolonged post-HSCT lymphopenia or peri-transplant use of immune checkpoint inhibitors could hamper Treg reconstitution, leading to refractory graft-versus-host disease. Using murine models and clinical trials, we have also demonstrated that proper intervention with low-dose interleukin-2 or post-transplant cyclophosphamide could restore Treg homeostasis and further amplify the suppressive function after HSCT. The purpose of this review is to reconsider the distinctive characteristics of post-transplant Treg homeostasis and discuss how to harness Treg homeostasis to optimize posttransplant immunity for developing a safe and efficient therapeutic strategy.
Collapse
Affiliation(s)
- Shuntaro Ikegawa
- Department of Hematology and Oncology, Okayama University, Okayama, Japan.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University, Okayama, Japan
| |
Collapse
|