1
|
Liu H, Wang L, Liu J, Yuan H, Zhang K, Qiu Y, Zhu F. Efficient Generation of Megakaryocyte Progenitors and Platelets From HSPCs via JAK2/STAT3 Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500612. [PMID: 40298863 DOI: 10.1002/advs.202500612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Indexed: 04/30/2025]
Abstract
The supply of platelets for clinical transfusion is often insufficient to meet growing demand. Platelet regeneration from stem cells offers a potential solution to reduce reliance on donor-based transfusions. However, the current differentiation efficiency is suboptimal. A novel approach is presented that significantly enhances platelet yield from hematopoietic stem and progenitor cells (HSPCs) by increasing the production of megakaryocyte progenitors (MkPs) and mature megakaryocytes (MKs). This method employs the overexpression of HES7 combined with the HDAC inhibitor and GABA agonist (collectively termed the VGM cocktail). The VGM cocktail induces MkP production with an efficiency of up to 90%, validated across HSPCs from various donors. These MkPs exhibit extended proliferative capacity, remaining viable for up to 51 days in prolonged culture, and show enhanced maturation into MKs. This differentiation system effectively replicates in vivo thrombocytopoiesis, as evidenced by polyploidization, long protrusions, and proplatelet formation. Transfusion of VGM-induced MkPs into thrombocytopenic mice results in the release of platelets into circulation. Mechanistic investigation identifies the JAK2/STAT3 signaling pathway as critical in promoting megakaryopoiesis within this system. Therefore, this study demonstrates that the VGM cocktail facilitates enhanced platelet production by promoting MkP generation, offering a promising strategy for in vitro platelet regeneration for clinical applications.
Collapse
Affiliation(s)
- Huicong Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haitao Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Kaiqing Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yun Qiu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
2
|
Althaus K, Hoepner G, Zieger B, Prüller F, Pavlova A, Boeckelmann D, Birschmann I, Müller J, Rühl H, Sachs U, Kehrel B, Streif W, Bugert P, Zaninetti C, Cooper N, Schulze H, Knöfler R, Bakchoul T, Jurk K. The Diagnostic Assessment of Platelet Function Defects - Part 2: Update on Platelet Disorders. Hamostaseologie 2025. [PMID: 39870108 DOI: 10.1055/a-2404-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025] Open
Abstract
Congenital platelet disorders are rare and targeted treatment is usually not possible. Inherited platelet function disorders (iPFDs) can affect surface receptors and multiple platelet responses such as defects of platelet granules, signal transduction, and procoagulant activity. If iPFDs are also associated with a reduced platelet count (thrombocytopenia), it is not uncommon to be misdiagnosed as immune thrombocytopenia. Because the bleeding tendency of the different platelet disorders is variable, a correct diagnosis of the platelet defect based on phenotyping, function analysis, and genotyping is essential, especially in the perioperative setting. In the case of a platelet receptor deficiency, such as Bernard-Soulier syndrome or Glanzmann thrombasthenia, not only the bleeding tendency but also the risk of isoimmunization after platelet transfusions or pregnancy has to be considered. Platelet granule disorders are commonly associated with either intrinsically quantitative or qualitative granule defects due to impaired granulopoiesis, or granule release defects, which can also affect additional signaling pathways. Functional platelet defects require expertise in the clinical bleeding tendency in terms of the disorder when using antiplatelet agents or other medications that affect platelet function. Platelet defects associated with hematological-oncological diseases require comprehensive information about the patient including the clinical implication of the genetic testing. This review focuses on genetics, clinical presentation, and laboratory platelet function analysis of iPFDs with or without reduced platelet number. As platelet defects affecting the cytoskeleton usually show thrombocytopenia, but less impaired or normal platelet functional responses, they are not specifically addressed.
Collapse
Affiliation(s)
- Karina Althaus
- Medical Faculty of Tübingen, Institute for Clinical and Experimental Transfusion Medicine, Tübingen, Germany
- Center for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Gero Hoepner
- Center for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
- Department of Anaesthesiology and Intensive Care, University Hospital Tübingen, Tübingen, Germany
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Florian Prüller
- Klinisches Institut für Medizinische und Chemische Labordiagnostik, Medizinische Universität Graz, Graz, Austria
| | - Anna Pavlova
- Institute of Experimental Haematology and Transfusion Medicine (IHT), University Hospital Bonn, Bonn, Germany
| | - Doris Boeckelmann
- Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Ingvild Birschmann
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Institut für Laboratoriums- und Transfusionsmedizin, Bochum, Germany
| | - Jens Müller
- Institute of Experimental Haematology and Transfusion Medicine (IHT), University Hospital Bonn, Bonn, Germany
| | - Heiko Rühl
- Institute of Experimental Haematology and Transfusion Medicine (IHT), University Hospital Bonn, Bonn, Germany
| | - Ulrich Sachs
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
| | - Beate Kehrel
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University-Hospital Munster, Münster, Germany
| | - Werner Streif
- Kinder- und Jugendheilkunde, Innsbruck Medical University, Innsbruck, Austria
| | - Peter Bugert
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany
| | - Carlo Zaninetti
- Institute of Immunology and Transfusion Medicine, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Nina Cooper
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Ralf Knöfler
- Department of Paediatric Haemostaseology, Dresden University Hospital, Dresden, Germany
| | - Tamam Bakchoul
- Medical Faculty of Tübingen, Institute for Clinical and Experimental Transfusion Medicine, Tübingen, Germany
- Center for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
3
|
Del Carpio-Cano F, Songdej N, Guan L, Mao G, Goldfinger LE, Wurtzel JG, Lee K, Lambert MP, Poncz M, Rao AK. Transcription factor RUNX1 regulates coagulation factor XIII-A ( F13A1): decreased platelet-megakaryocyte F13A1 expression and clot contraction in RUNX1 haplodeficiency. Res Pract Thromb Haemost 2025; 9:102680. [PMID: 39995753 PMCID: PMC11849627 DOI: 10.1016/j.rpth.2025.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/13/2024] [Accepted: 01/09/2025] [Indexed: 02/26/2025] Open
Abstract
Background Germline RUNX1 haplodeficiency (RHD) is associated with thrombocytopenia, platelet dysfunction, and predisposition to myeloid malignancies. Platelet expression profiling of an RHD patient showed decreased F13A1, encoding for the A subunit of factor (F)XIII, a transglutaminase that cross-links fibrin and induces clot stabilization. FXIII-A is synthesized by hematopoietic cells, megakaryocytes, and monocytes. Objectives To understand RUNX1 regulation of F13A1 expression in platelets/megakaryocytes and the mechanisms and consequences of decreased F13A1 in RHD. Methods We performed studies in platelets, human erythroleukemia (HEL) cells, and human CD34+ cell-derived megakaryocytes including on clot contraction in cells following small inhibitor RNA knockdown (KD) of RUNX1 or F13A1. Results Platelet F13A1 mRNA and protein were decreased in our index patient and in 2 siblings from an unrelated family with RHD. Platelet-driven clot contraction was decreased in the patient and affected daughter. Promoter studies in HEL cells showed that RUNX1 regulates F13A1 transcription; RUNX1 overexpression increased, and small inhibitor RNA RUNX1 KD reduced F13A1 promoter activity and protein. Following RUNX1 or F13A1 KD, clot contraction by HEL cells was decreased, as were FXIII-A surface expression, myosin light chain phosphorylation, and PAC1 antibody binding upon activation. F13A1 expression and clot contraction were impaired in RUNX1 downregulation in human megakaryocytes. Conclusion RUNX1 regulates platelet-megakaryocyte F13A1 expression, which is decreased in RHD, reflecting regulation of a coagulation protein by a hematopoietic transcription factor. Platelet and megakaryocyte clot contraction is decreased in RHD, related to multiple impaired mechanisms including F13A1 expression, myosin phosphorylation, and αIIbβ3 activation.
Collapse
Affiliation(s)
- Fabiola Del Carpio-Cano
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Natthapol Songdej
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Penn State College of Medicine/Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | - Liying Guan
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Guangfen Mao
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Lawrence E. Goldfinger
- Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jeremy G.T. Wurtzel
- Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kiwon Lee
- Department of Pediatrics, Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Seoul, South Korea
| | - Michele P. Lambert
- Department of Pediatrics, Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mortimer Poncz
- Department of Pediatrics, Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - A. Koneti Rao
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Del Carpio-Cano F, Songdej N, Guan L, Mao G, Goldfinger LE, Wurtzel JGT, Lee K, Lambert MP, Poncz M, Koneti Rao A. Transcription Factor RUNX1 Regulates Coagulation Factor XIII-A ( F13A1 ): Decreased Platelet-Megakaryocyte F13A1 Expression and Clot Contraction in RUNX1 Haplodeficiency. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.17.24318561. [PMID: 39763522 PMCID: PMC11702714 DOI: 10.1101/2024.12.17.24318561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Background Germline RUNX1 haplodeficiency (RHD) is associated with thrombocytopenia, platelet dysfunction and predisposition to myeloid malignancies. Platelet expression profiling of a RHD patient showed decreased F13A1, encoding for the A subunit of factor XIII, a transglutaminase that cross-links fibrin and induces clot stabilization. FXIII-A is synthesized by hematopoietic cells, megakaryocytes and monocytes. Aims To understand RUNX1 regulation of F13A1 expression in platelet/megakaryocyte and the mechanisms and consequences of decreased F13A1 in RHD. Methods We performed studies in platelets, HEL cells and human CD34+ cell-derived megakaryocytes including on clot contraction in cells following small inhibitor (si)RNA knockdown (KD) of RUNX1 or F13A1 . Results Platelet F13A1 mRNA and protein were decreased in our index patient and in two siblings from an unrelated family with RHD. Platelet-driven clot contraction was decreased in the patient and affected daughter. Promoter studies in HEL cells showed that RUNX1 regulates F13A1 transcription; RUNX1 overexpression increased and (si)RNA RUNX1 KD reduced F13A1 promoter activity and protein. Following RUNX1 or F13A1 KD clot contraction by HEL cells was decreased as were FXIII-A surface expression, myosin light chain phosphorylation and PAC1 binding upon activation. F13A1 expression and clot contraction were impaired on RUNX1 downregulation in human megakaryocytes. Conclusions RUNX1 regulates platelet-megakaryocyte F13A1 expression, which is decreased in RHD, reflecting regulation of a coagulation protein by a hematopoietic transcription factor. Platelet and megakaryocyte clot contraction is decreased in RHD, related to multiple impaired mechanisms including F13A1 expression, myosin phosphorylation and αII b β 3 activation. Scientific category - Platelets and thrombopoiesis. Essentials RUNX1 regulates expression of FXIII-A chain ( F13A1) in megakaryocytes (MK) and platelets. Platelet and MK F13A1 expression and clot contraction are decreased in RUNX1 deficiency. MK clot contraction, myosin phosphorylation and PAC1-binding are impaired in F13A1 deficiency. Defective clot contraction in RHD arises from defects in multiple platelet-MK mechanisms.
Collapse
|
5
|
Guan L, Voora D, Myers R, Del Carpio-Cano F, Rao AK. RUNX1 isoforms regulate RUNX1 and target genes differentially in platelets-megakaryocytes: association with clinical cardiovascular events. J Thromb Haemost 2024; 22:3581-3598. [PMID: 39181539 DOI: 10.1016/j.jtha.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Hematopoietic transcription factor RUNX1 is expressed from proximal P2 and distal P1 promoters to yield isoforms RUNX1 B and C, respectively. The roles of these isoforms in RUNX1 autoregulation and downstream gene regulation in megakaryocytes and platelets are unknown. OBJECTIVES To understand the regulation of RUNX1 and its target genes by RUNX1 isoforms. METHODS We performed studies on RUNX1 isoforms in megakaryocytic human erythroleukemia (HEL) cells and HeLa cells (lack endogenous RUNX1), in platelets from 85 healthy volunteers administered aspirin or ticagrelor, and on the association of RUNX1 target genes with acute events in 587 patients with cardiovascular disease (CVD). RESULTS In chromatin immunoprecipitation and luciferase promoter assays, RUNX1 isoforms B and C bound and regulated P1 and P2 promoters. In HeLa cells, RUNX1B decreased and RUNX1C increased P1 and P2 activities, respectively. In HEL cells, RUNX1B overexpression decreased RUNX1C and RUNX1A expression; RUNX1C increased RUNX1B and RUNX1A. RUNX1B and RUNX1C regulated target genes (MYL9, F13A1, PCTP, PDE5A, and others) differentially in HEL cells. In platelets, RUNX1B transcripts (by RNA sequencing) correlated negatively with RUNX1C and RUNX1A; RUNX1C correlated positively with RUNX1A. RUNX1B correlated positively with F13A1, PCTP, PDE5A, RAB1B, and others, and negatively with MYL9. In our previous studies, RUNX1C transcripts in whole blood were protective against acute events in CVD patients. We found that higher expression of RUNX1 targets F13A1 and RAB31 associated with acute events. CONCLUSION RUNX1 isoforms B and C autoregulate RUNX1 and regulate downstream genes in a differential manner, and this is associated with acute events in CVD.
Collapse
Affiliation(s)
- Liying Guan
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Deepak Voora
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Rachel Myers
- Duke Clinical Research Unit, Duke University School of Medicine, Durham, North Carolina, USA
| | - Fabiola Del Carpio-Cano
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - A Koneti Rao
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA; Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
6
|
Guan L, Voora D, Myers R, Del Carpio-Cano F, Rao AK. RUNX1 Isoforms Regulate RUNX1 and Target-Genes Differentially in Platelets-Megakaryocytes: Association with Clinical Cardiovascular Events. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599563. [PMID: 38948740 PMCID: PMC11212995 DOI: 10.1101/2024.06.18.599563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Hematopoietic transcription factor RUNX1 is expressed from proximal P2 and distal P1 promoter to yield isoforms RUNX1 B and C, respectively. The roles of these isoforms in RUNX1 autoregulation and downstream-gene regulation in megakaryocytes and platelets are unknown. Objectives To understand the regulation of RUNX1 and its target genes by RUNX1 isoforms. Methods We performed studies on RUNX1 isoforms in megakaryocytic HEL cells and HeLa cells (lack endogenous RUNX1), in platelets from 85 healthy volunteers administered aspirin or ticagrelor, and on the association of RUNX1 target genes with acute events in 587 patients with cardiovascular disease (CVD). Results In chromatin immunoprecipitation and luciferase promoter assays, RUNX1 isoforms B and C bound and regulated P1 and P2 promoters. In HeLa cells RUNX1B decreased and RUNX1C increased P1 and P2 activities, respectively. In HEL cells, RUNX1B overexpression decreased RUNX1C and RUNX1A expression; RUNX1C increased RUNX1B and RUNX1A. RUNX1B and RUNX1C regulated target genes (MYL9, F13A1, PCTP, PDE5A and others) differentially in HEL cells. In platelets RUNX1B transcripts (by RNAseq) correlated negatively with RUNX1C and RUNX1A; RUNX1C correlated positively with RUNX1A. RUNX1B correlated positively with F13A1, PCTP, PDE5A, RAB1B, and others, and negatively with MYL9. In our previous studies, RUNX1C transcripts in whole blood were protective against acute events in CVD patients. We found that higher expression of RUNX1 targets F13A1 and RAB31 associated with acute events. Conclusions RUNX1 isoforms B and C autoregulate RUNX1 and regulate downstream genes in a differential manner and this associates with acute events in CVD.
Collapse
Affiliation(s)
- Liying Guan
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Deepak Voora
- Department of Medicine, Duke University, Durham, NC
| | - Rachel Myers
- Duke Clinical Research Unit, Duke University School of Medicine, Durham, NC
| | - Fabiola Del Carpio-Cano
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - A. Koneti Rao
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
7
|
Qiu X, Nair MG, Jaroszewski L, Godzik A. Deciphering Abnormal Platelet Subpopulations in COVID-19, Sepsis and Systemic Lupus Erythematosus through Machine Learning and Single-Cell Transcriptomics. Int J Mol Sci 2024; 25:5941. [PMID: 38892129 PMCID: PMC11173046 DOI: 10.3390/ijms25115941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
This study focuses on understanding the transcriptional heterogeneity of activated platelets and its impact on diseases such as sepsis, COVID-19, and systemic lupus erythematosus (SLE). Recognizing the limited knowledge in this area, our research aims to dissect the complex transcriptional profiles of activated platelets to aid in developing targeted therapies for abnormal and pathogenic platelet subtypes. We analyzed single-cell transcriptional profiles from 47,977 platelets derived from 413 samples of patients with these diseases, utilizing Deep Neural Network (DNN) and eXtreme Gradient Boosting (XGB) to distinguish transcriptomic signatures predictive of fatal or survival outcomes. Our approach included source data annotations and platelet markers, along with SingleR and Seurat for comprehensive profiling. Additionally, we employed Uniform Manifold Approximation and Projection (UMAP) for effective dimensionality reduction and visualization, aiding in the identification of various platelet subtypes and their relation to disease severity and patient outcomes. Our results highlighted distinct platelet subpopulations that correlate with disease severity, revealing that changes in platelet transcription patterns can intensify endotheliopathy, increasing the risk of coagulation in fatal cases. Moreover, these changes may impact lymphocyte function, indicating a more extensive role for platelets in inflammatory and immune responses. This study identifies crucial biomarkers of platelet heterogeneity in serious health conditions, paving the way for innovative therapeutic approaches targeting platelet activation, which could improve patient outcomes in diseases characterized by altered platelet function.
Collapse
Affiliation(s)
| | | | | | - Adam Godzik
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA 92521, USA; (X.Q.); (M.G.N.); (L.J.)
| |
Collapse
|
8
|
Del Carpio-Cano F, Mao G, Goldfinger LE, Wurtzel J, Guan L, Alam MA, Lee K, Poncz M, Rao AK. Altered platelet-megakaryocyte endocytosis and trafficking of albumin and fibrinogen in RUNX1 haplodeficiency. Blood Adv 2024; 8:1699-1714. [PMID: 38330198 PMCID: PMC10997914 DOI: 10.1182/bloodadvances.2023011098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
ABSTRACT Platelet α-granules have numerous proteins, some synthesized by megakaryocytes (MK) and others not synthesized but incorporated by endocytosis, an incompletely understood process in platelets/MK. Germ line RUNX1 haplodeficiency, referred to as familial platelet defect with predisposition to myeloid malignancies (FPDMMs), is associated with thrombocytopenia, platelet dysfunction, and granule deficiencies. In previous studies, we found that platelet albumin, fibrinogen, and immunoglobulin G (IgG) were decreased in a patient with FPDMM. We now show that platelet endocytosis of fluorescent-labeled albumin, fibrinogen, and IgG is decreased in the patient and his daughter with FPDMM. In megakaryocytic human erythroleukemia (HEL) cells, small interfering RNA RUNX1 knockdown (KD) increased uptake of these proteins over 24 hours compared with control cells, with increases in caveolin-1 and flotillin-1 (2 independent regulators of clathrin-independent endocytosis), LAMP2 (a lysosomal marker), RAB11 (a marker of recycling endosomes), and IFITM3. Caveolin-1 downregulation in RUNX1-deficient HEL cells abrogated the increased uptake of albumin, but not fibrinogen. Albumin, but not fibrinogen, partially colocalized with caveolin-1. RUNX1 KD resulted in increased colocalization of albumin with flotillin and fibrinogen with RAB11, suggesting altered trafficking of both proteins. The increased uptake of albumin and fibrinogen, as well as levels of caveolin-1, flotillin-1, LAMP2, and IFITM3, were recapitulated by short hairpin RNA RUNX1 KD in CD34+-derived MK. To our knowledge, these studies provide first evidence that platelet endocytosis of albumin and fibrinogen is impaired in some patients with RUNX1-haplodeficiency and suggest that megakaryocytes have enhanced endocytosis with defective trafficking, leading to loss of these proteins by distinct mechanisms. This study provides new insights into mechanisms governing endocytosis and α-granule deficiencies in RUNX1-haplodeficiency.
Collapse
Affiliation(s)
- Fabiola Del Carpio-Cano
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Guangfen Mao
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Lawrence E. Goldfinger
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Jeremy Wurtzel
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Liying Guan
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Mohammad Afaque Alam
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Kiwon Lee
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Seoul, Korea
| | - Mortimer Poncz
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - A. Koneti Rao
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
9
|
Wang N, Tan X, Cao S, Liu M. Predictive value of immediate early response 5 like (IER5L) in the prognosis and immune checkpoint blockade therapy of non-small cell lung cancer patients. Pathol Res Pract 2024; 256:155270. [PMID: 38552564 DOI: 10.1016/j.prp.2024.155270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a malignancy with high mortality. Immediate early response 5 like (IER5L) has been found to associate with worse prognosis in colorectal cancer patients. However, its role in the prognosis prediction of NSCLC has remained largely unknown. METHODS The IER5L expression in NSCLC and normal tissues was analyzed in two public cohorts: TCGA-LUAD-LUSC and GSE159857. Additionally, functional enrichment, survival analysis, CIBERSORT and tumor mutation burden (TMB) were investigated between low- and high-IER5L level groups. The in vitro IER5L mRNA and protein levels were determined using RT-qPCR and western blot, respectively. RESULTS The data from TCGA-LUAD-LUSC and GSE159857 cohorts showed a high IER5L mRNA expression in NSCLC tissue samples compared to normal controls. The increased expression of IER5L in NSCLC cells were also validated by RT-qPCR and western blot analysis. Additionally, NSCLC patients with high-IER5L level had significantly worse prognosis and IER5L could be used as an independent prognostic factor for NSCLC patients. Meanwhile, patients in the high-IER5L group had higher TMB level. IER5L expression was negatively correlated with the proportion of Monocytes and T cells CD4 memory resting, and was positively related to the proportion of Tregs and M0 macrophages in tumor tissues. Besides, transcription factors TFAP4 and ZNF692 may bind to the promoter region of IER5L, and then modulate IER5L gene transcription, thereby affecting IER5L gene expression. Furthermore, GSEA results showed that IER5L gene was closely related to MAPK, PI3K-Akt, NF-kappaB signaling pathways in NSCLC. CONCLUSION Collectively, high IER5L expression may be a promising unfavorable prognostic biomarker and therapeutic target for NSCLC patients.
Collapse
Affiliation(s)
- Nana Wang
- Department of Genenal Internal Medicine, Tianjin Hospital, Tianjin 300211, China
| | - Xiaofeng Tan
- Department of Genenal Internal Medicine, Tianjin Hospital, Tianjin 300211, China
| | - Shuming Cao
- Department of Hand Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Meirong Liu
- Department of Genenal Internal Medicine, Tianjin Hospital, Tianjin 300211, China.
| |
Collapse
|
10
|
Tang X, Liao R, Zhou L, Yi T, Ran M, Luo J, Huang F, Wu A, Mei Q, Wang L, Huang X, Wu J. Genistin: A Novel Estrogen Analogue Targeting ERβ to Alleviate Thrombocytopenia. Int J Biol Sci 2024; 20:2236-2260. [PMID: 38617546 PMCID: PMC11008259 DOI: 10.7150/ijbs.90483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/14/2024] [Indexed: 04/16/2024] Open
Abstract
Thrombocytopenia, a prevalent hematologic challenge, correlates directly with the mortality of numerous ailments. Current therapeutic avenues for thrombocytopenia are not without limitations. Here, we identify genistin, an estrogen analogue, as a promising candidate for thrombocytopenia intervention, discovered through AI-driven compound library screening. While estrogen's involvement in diverse biological processes is recognized, its role in thrombopoiesis remains underexplored. Our findings elucidate genistin's ability to enhance megakaryocyte differentiation, thereby augmenting platelet formation and production. In vivo assessments further underscore genistin's remedial potential against radiation-induced thrombocytopenia. Mechanistically, genistin's efficacy is attributed to its direct interaction with estrogen receptor β (ERβ), with subsequent activation of both ERK1/2 and the Akt signaling pathways membrane ERβ. Collectively, our study positions genistin as a prospective therapeutic strategy for thrombocytopenia, shedding light on novel interplays between platelet production and ERβ.
Collapse
Affiliation(s)
- Xiaoqin Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou,646000, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Rui Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou,646000, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ling Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou,646000, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Taian Yi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mei Ran
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou,646000, China
| | - Jiesi Luo
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Feihong Huang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou,646000, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou,646000, China
| | - Qibing Mei
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou,646000, China
| | - Long Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou,646000, China
| | - Xinwu Huang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou,646000, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou,646000, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
11
|
Carpio-Cano FD, Mao G, Goldfinger LE, Wurtzel J, Guan L, Alam AM, Lee K, Poncz ME, Rao AK. Altered Platelet-Megakaryocyte Endocytosis and Trafficking of Albumin and Fibrinogen in RUNX1 Haplodeficiency. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.23.23297335. [PMID: 37961544 PMCID: PMC10635164 DOI: 10.1101/2023.10.23.23297335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Platelet α-granules have numerous proteins, some synthesized by megakaryocytes (MK) and others not synthesized but incorporated by endocytosis, an incompletely understood process in platelets/MK. Germline RUNX1 haplodeficiency, referred to as familial platelet defect with predisposition to myeloid malignancies (FPDMM), is associated with thrombocytopenia, platelet dysfunction and granule deficiencies. In previous studies, we found that platelet albumin, fibrinogen and IgG levels were decreased in a FPDMM patient. We now show that platelet endocytosis of fluorescent-labeled albumin, fibrinogen and IgG is decreased in the patient and his daughter with FPDMM. In megakaryocytic human erythroleukemia (HEL) cells, siRNA RUNX1 knockdown (KD) increased uptake of these proteins over 24 hours compared to control cells, with increases in caveolin-1 and flotillin-1 (two independent regulators of clathrin-independent endocytosis), LAMP2 (a lysosomal marker), RAB11 (a marker of recycling endosomes) and IFITM3. Caveolin-1 downregulation in RUNX1-deficient HEL cells abrogated the increased uptake of albumin, but not fibrinogen. Albumin, but not fibrinogen, partially colocalized with caveolin-1. RUNX1 knockdown increased colocalization of albumin with flotillin and of fibrinogen with RAB11 suggesting altered trafficking of both. The increased albumin and fibrinogen uptake and levels of caveolin-1, flotillin-1, LAMP2 and IFITM3 were recapitulated by shRNA RUNX1 knockdown in CD34 + -derived MK. These studies provide the first evidence that in RUNX1- haplodeficiency platelet endocytosis of albumin and fibrinogen is impaired and that megakaryocytes have enhanced endocytosis with defective trafficking leading to loss of these proteins by distinct mechanisms. They provide new insights into mechanisms governing endocytosis and α-granule deficiencies in RUNX1- haplodeficiency. Key points Platelet content and endocytosis of α-granule proteins, albumin, fibrinogen and IgG, are decreased in germline RUNX1 haplodeficiency. In RUNX1 -deficient HEL cells and primary MK endocytosis is enhanced with defective trafficking leading to decreased protein levels.
Collapse
|
12
|
Nassiri SM, Ahmadi Afshar N, Almasi P. Insight into microRNAs' involvement in hematopoiesis: current standing point of findings. Stem Cell Res Ther 2023; 14:282. [PMID: 37794439 PMCID: PMC10552299 DOI: 10.1186/s13287-023-03504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
Hematopoiesis is a complex process in which hematopoietic stem cells are differentiated into all mature blood cells (red blood cells, white blood cells, and platelets). Different microRNAs (miRNAs) involve in several steps of this process. Indeed, miRNAs are small single-stranded non-coding RNA molecules, which control gene expression by translational inhibition and mRNA destabilization. Previous studies have revealed that increased or decreased expression of some of these miRNAs by targeting several proto-oncogenes could inhibit or stimulate the myeloid and erythroid lineage commitment, proliferation, and differentiation. During the last decades, the development of molecular and bioinformatics techniques has led to a comprehensive understanding of the role of various miRNAs in hematopoiesis. The critical roles of miRNAs in cell processes such as the cell cycle, apoptosis, and differentiation have been confirmed as well. However, the main contribution of some miRNAs is still unclear. Therefore, it seems undeniable that future studies are required to focus on miRNA activities during various hematopoietic stages and hematological malignancy.
Collapse
Affiliation(s)
- Seyed Mahdi Nassiri
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Qarib St., Azadi Ave, Tehran, Iran.
| | - Neda Ahmadi Afshar
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Qarib St., Azadi Ave, Tehran, Iran
| | - Parsa Almasi
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Qarib St., Azadi Ave, Tehran, Iran
| |
Collapse
|
13
|
Zerella JR, Homan CC, Arts P, Brown AL, Scott HS, Hahn CN. Transcription factor genetics and biology in predisposition to bone marrow failure and hematological malignancy. Front Oncol 2023; 13:1183318. [PMID: 37377909 PMCID: PMC10291195 DOI: 10.3389/fonc.2023.1183318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription factors (TFs) play a critical role as key mediators of a multitude of developmental pathways, with highly regulated and tightly organized networks crucial for determining both the timing and pattern of tissue development. TFs can act as master regulators of both primitive and definitive hematopoiesis, tightly controlling the behavior of hematopoietic stem and progenitor cells (HSPCs). These networks control the functional regulation of HSPCs including self-renewal, proliferation, and differentiation dynamics, which are essential to normal hematopoiesis. Defining the key players and dynamics of these hematopoietic transcriptional networks is essential to understanding both normal hematopoiesis and how genetic aberrations in TFs and their networks can predispose to hematopoietic disease including bone marrow failure (BMF) and hematological malignancy (HM). Despite their multifaceted and complex involvement in hematological development, advances in genetic screening along with elegant multi-omics and model system studies are shedding light on how hematopoietic TFs interact and network to achieve normal cell fates and their role in disease etiology. This review focuses on TFs which predispose to BMF and HM, identifies potential novel candidate predisposing TF genes, and examines putative biological mechanisms leading to these phenotypes. A better understanding of the genetics and molecular biology of hematopoietic TFs, as well as identifying novel genes and genetic variants predisposing to BMF and HM, will accelerate the development of preventative strategies, improve clinical management and counseling, and help define targeted treatments for these diseases.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Anna L. Brown
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hamish S. Scott
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
14
|
Palma-Barqueros V, Bastida JM, López Andreo MJ, Zámora-Cánovas A, Zaninetti C, Ruiz-Pividal JF, Bohdan N, Padilla J, Teruel-Montoya R, Marín-Quilez A, Revilla N, Sánchez-Fuentes A, Rodriguez-Alen A, Benito R, Vicente V, Iturbe T, Greinacher A, Lozano ML, Rivera J. Platelet transcriptome analysis in patients with germline RUNX1 mutations. J Thromb Haemost 2023; 21:1352-1365. [PMID: 36736831 DOI: 10.1016/j.jtha.2023.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Germline mutations in RUNX1 can cause a familial platelet disorder that may lead to acute myeloid leukemia, an autosomal dominant disorder characterized by moderate thrombocytopenia, platelet dysfunction, and a high risk of developing acute myeloid leukemia or myelodysplastic syndrome. Discerning the pathogenicity of novel RUNX1 variants is critical for patient management. OBJECTIVES To extend the characterization of RUNX1 variants and evaluate their effects by transcriptome analysis. METHODS Three unrelated patients with long-standing thrombocytopenia carrying heterozygous RUNX1 variants were included: P1, who is a subject with recent development of myelodysplastic syndrome, with c.802 C>T[p.Gln268∗] de novo; P2 with c.586A>G[p.Thr196Ala], a variant that segregates with thrombocytopenia and myeloid neoplasia in the family; and P3 with c.476A>G[p.Asn159Ser], which did not segregate with thrombocytopenia or neoplasia. Baseline platelet evaluations were performed. Ultrapure platelets were prepared for platelet transcriptome analysis. RESULTS In P1 and P2, but not in P3, transcriptome analysis confirmed aberrant expression of genes recognized as RUNX1 targets. Data allowed grouping patients by distinct gene expression profiles, which were partitioned with clinical parameters. Functional studies and platelet mRNA expression identified alterations in the actin cytoskeleton, downregulation of GFI1B, defective GPVI downstream signaling, and reduction of alpha granule proteins, such as thrombospondin-1, as features likely implicated in thrombocytopenia and platelet dysfunction. CONCLUSION Platelet phenotype, familial segregation, and platelet transcriptomics support the pathogenicity of RUNX1 variants p.Gln268∗ and p.Thr196Ala, but not p.Asn159Ser. This study is an additional proof of concept that platelet RNA analysis could be a tool to help classify pathogenic RUNX1 variants and identify novel RUNX1 targets.
Collapse
Affiliation(s)
- Verónica Palma-Barqueros
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-U765, Murcia, Spain
| | - José María Bastida
- Department of Hematology, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), Salamanca, Spain
| | | | - Ana Zámora-Cánovas
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-U765, Murcia, Spain
| | - Carlo Zaninetti
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Juan Francisco Ruiz-Pividal
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-U765, Murcia, Spain
| | - Natalia Bohdan
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-U765, Murcia, Spain
| | - José Padilla
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-U765, Murcia, Spain
| | - Raúl Teruel-Montoya
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-U765, Murcia, Spain
| | - Ana Marín-Quilez
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-U765, Murcia, Spain; Department of Hematology, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), Salamanca, Spain
| | - Nuria Revilla
- Department of Hematology, Hospital Universitario Fundación Jiménez Díaz, Instituto Investigación Sanitaria FJD (IIS-FJD), Madrid, Spain
| | - Ana Sánchez-Fuentes
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-U765, Murcia, Spain
| | - Agustín Rodriguez-Alen
- Servicio de Hematología, Hospital Virgen de la Salud, Complejo Hospitalario de Toledo, Toledo, Spain
| | - Rocío Benito
- Department of Hematology, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), Salamanca, Spain
| | - Vicente Vicente
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-U765, Murcia, Spain
| | - Teodoro Iturbe
- Servicio de Hematología, Hospital Universitario Santa Lucía, Cartagena, Murcia, Spain
| | - Andreas Greinacher
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - María Luisa Lozano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-U765, Murcia, Spain
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-U765, Murcia, Spain.
| | | | | |
Collapse
|
15
|
Jiang X, Sun Y, Yang S, Wu Y, Wang L, Zou W, Jiang N, Chen J, Han Y, Huang C, Wu A, Zhang C, Wu J. Novel chemical-structure TPOR agonist, TMEA, promotes megakaryocytes differentiation and thrombopoiesis via mTOR and ERK signalings. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154637. [PMID: 36610353 DOI: 10.1016/j.phymed.2022.154637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Non-peptide thrombopoietin receptor (TPOR) agonists are promising therapies for the mitigation and treatment of thrombocytopenia. However, only few agents are available as safe and effective for stimulating platelet production for thrombocytopenic patients in the clinic. PURPOSE This study aimed to develop a novel small molecule TPOR agonist and investigate its underlying regulation of function in megakaryocytes (MKs) differentiation and thrombopoiesis. METHODS A potential active compound that promotes MKs differentiation and thrombopoiesis was obtained by machine learning (ML). Meanwhile, the effect was verified in zebrafish model, HEL and Meg-01 cells. Next, the key regulatory target was identified by Drug Affinity Responsive Target Stabilization Assay (DARTS), Cellular Thermal Shift Assay (CETSA), and molecular simulation experiments. After that, RNA-sequencing (RNA-seq) was used to further confirm the associated pathways and evaluate the gene expression induced during MK differentiation. In vivo, irradiation (IR) mice, C57BL/6N-TPORem1cyagen (Tpor-/-) mice were constructed by CRISPR/Cas9 technology to examine the therapeutic effect of TMEA on thrombocytopenia. RESULTS A natural chemical-structure small molecule TMEA was predicted to be a potential active compound based on ML. Obvious phenotypes of MKs differentiation were observed by TMEA induction in zebrafish model and TMEA could increase co-expression of CD41/CD42b, DNA content, and promote polyploidization and maturation of MKs in HEL and Meg-01 cells. Mechanically, TMEA could bind with TPOR protein and further regulate the PI3K/AKT/mTOR/P70S6K and MEK/ERK signal pathways. In vivo, TMEA evidently promoted platelet regeneration in mice with radiation-induced thrombocytopenia but had no effect on Tpor-/- and C57BL/6 (WT) mice. CONCLUSION TMEA could serve as a novel TPOR agonist to promote MKs differentiation and thrombopoiesis via mTOR and ERK signaling and could potentially be created as a promising new drug to treat thrombocytopenia.
Collapse
Affiliation(s)
- Xueqin Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yueshan Sun
- The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, China
| | - Shuo Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuesong Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Long Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Nan Jiang
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Yunwei Han
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunlan Huang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Anguo Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Jianming Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|
16
|
Defective RAB31-mediated megakaryocytic early endosomal trafficking of VWF, EGFR, and M6PR in RUNX1 deficiency. Blood Adv 2022; 6:5100-5112. [PMID: 35839075 PMCID: PMC9631641 DOI: 10.1182/bloodadvances.2021006945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
RAB31 is a RUNX1 target; regulates VWF, epidermal growth factor receptor, and mannose-6-phosphate trafficking; and is downregulated in RHD. EE and vesicle trafficking defects induced by RAB31 downregulation likely contribute to α-granule defects with RUNX1 mutation.
Transcription factor RUNX1 is a master regulator of hematopoiesis and megakaryopoiesis. RUNX1 haplodeficiency (RHD) is associated with thrombocytopenia and platelet granule deficiencies and dysfunction. Platelet profiling of our study patient with RHD showed decreased expression of RAB31, a small GTPase whose cell biology in megakaryocytes (MKs)/platelets is unknown. Platelet RAB31 messenger RNA was decreased in the index patient and in 2 additional patients with RHD. Promoter-reporter studies using phorbol 12-myristate 13-acetate–treated megakaryocytic human erythroleukemia cells revealed that RUNX1 regulates RAB31 via binding to its promoter. We investigated RUNX1 and RAB31 roles in endosomal dynamics using immunofluorescence staining for markers of early endosomes (EEs; early endosomal autoantigen 1) and late endosomes (CD63)/multivesicular bodies. Downregulation of RUNX1 or RAB31 (by small interfering RNA or CRISPR/Cas9) showed a striking enlargement of EEs, partially reversed by RAB31 reconstitution. This EE defect was observed in MKs differentiated from a patient-derived induced pluripotent stem cell line (RHD-iMKs). Studies using immunofluorescence staining showed that trafficking of 3 proteins with distinct roles (von Willebrand factor [VWF], a protein trafficked to α-granules; epidermal growth factor receptor; and mannose-6-phosphate) was impaired at the level of EE on downregulation of RAB31 or RUNX1. There was loss of plasma membrane VWF in RUNX1- and RAB31-deficient megakaryocytic human erythroleukemia cells and RHD-iMKs. These studies provide evidence that RAB31 is downregulated in RHD and regulates megakaryocytic vesicle trafficking of 3 major proteins with diverse biological roles. EE defect and impaired vesicle trafficking is a potential mechanism for the α-granule defects observed in RUNX1 deficiency.
Collapse
|
17
|
Wen J, Lagler TM, Sun Q, Yang Y, Chen J, Harigaya Y, Sankaran VG, Hu M, Reiner AP, Raffield LM, Li Y. Super interactive promoters provide insight into cell type-specific regulatory networks in blood lineage cell types. PLoS Genet 2022; 18:e1009984. [PMID: 35100265 PMCID: PMC8830683 DOI: 10.1371/journal.pgen.1009984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/10/2022] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Existing studies of chromatin conformation have primarily focused on potential enhancers interacting with gene promoters. By contrast, the interactivity of promoters per se, while equally critical to understanding transcriptional control, has been largely unexplored, particularly in a cell type-specific manner for blood lineage cell types. In this study, we leverage promoter capture Hi-C data across a compendium of blood lineage cell types to identify and characterize cell type-specific super-interactive promoters (SIPs). Notably, promoter-interacting regions (PIRs) of SIPs are more likely to overlap with cell type-specific ATAC-seq peaks and GWAS variants for relevant blood cell traits than PIRs of non-SIPs. Moreover, PIRs of cell-type-specific SIPs show enriched heritability of relevant blood cell trait (s), and are more enriched with GWAS variants associated with blood cell traits compared to PIRs of non-SIPs. Further, SIP genes tend to express at a higher level in the corresponding cell type. Importantly, SIP subnetworks incorporating cell-type-specific SIPs and ATAC-seq peaks help interpret GWAS variants. Examples include GWAS variants associated with platelet count near the megakaryocyte SIP gene EPHB3 and variants associated lymphocyte count near the native CD4 T-Cell SIP gene ETS1. Interestingly, around 25.7% ~ 39.6% blood cell traits GWAS variants residing in SIP PIR regions disrupt transcription factor binding motifs. Importantly, our analysis shows the potential of using promoter-centric analyses of chromatin spatial organization data to identify biologically important genes and their regulatory regions.
Collapse
Affiliation(s)
- Jia Wen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Taylor M. Lagler
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yuchen Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiawen Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yuriko Harigaya
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Alexander P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yun Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
18
|
Huang J, Huang X, Li Y, Li X, Wang J, Li F, Yan X, Wang H, Wang Y, Lin X, Tu J, He D, Ye W, Yang M, Jin J. Abivertinib inhibits megakaryocyte differentiation and platelet biogenesis. Front Med 2021; 16:416-428. [PMID: 34792736 DOI: 10.1007/s11684-021-0838-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022]
Abstract
Abivertinib, a third-generation tyrosine kinase inhibitor, is originally designed to target epidermal growth factor receptor (EGFR)-activating mutations. Previous studies have shown that abivertinib has promising antitumor activity and a well-tolerated safety profile in patients with non-small-cell lung cancer. However, abivertinib also exhibited high inhibitory activity against Bruton's tyrosine kinase and Janus kinase 3. Given that these kinases play some roles in the progression of megakaryopoiesis, we speculate that abivertinib can affect megakaryocyte (MK) differentiation and platelet biogenesis. We treated cord blood CD34+ hematopoietic stem cells, Meg-01 cells, and C57BL/6 mice with abivertinib and observed megakaryopoiesis to determine the biological effect of abivertinib on MK differentiation and platelet biogenesis. Our in vitro results showed that abivertinib impaired the CFU-MK formation, proliferation of CD34+ HSC-derived MK progenitor cells, and differentiation and functions of MKs and inhibited Meg-01-derived MK differentiation. These results suggested that megakaryopoiesis was inhibited by abivertinib. We also demonstrated in vivo that abivertinib decreased the number of MKs in bone marrow and platelet counts in mice, which suggested that thrombopoiesis was also inhibited. Thus, these preclinical data collectively suggested that abivertinib could inhibit MK differentiation and platelet biogenesis and might be an agent for thrombocythemia.
Collapse
Affiliation(s)
- Jiansong Huang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Xin Huang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yang Li
- Department of Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xia Li
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinghan Wang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Fenglin Li
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiao Yan
- Department of Hematology, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Huanping Wang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yungui Wang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiangjie Lin
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jifang Tu
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Daqiang He
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Wenle Ye
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Min Yang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jie Jin
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Nam Y, Yeon GM, Kong SG. RUNX1 Germline Mutation in a Patient with Chronic Thrombocytopenia. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2021. [DOI: 10.15264/cpho.2021.28.2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yujin Nam
- Department of Pediatrics, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| | - Gyu Min Yeon
- Department of Pediatrics, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| | - Seom Gim Kong
- Department of Pediatrics, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
20
|
Saultier P, Cabantous S, Puceat M, Peiretti F, Bigot T, Saut N, Bordet JC, Canault M, van Agthoven J, Loosveld M, Payet-Bornet D, Potier D, Falaise C, Bernot D, Morange PE, Alessi MC, Poggi M. GATA1 pathogenic variants disrupt MYH10 silencing during megakaryopoiesis. J Thromb Haemost 2021; 19:2287-2301. [PMID: 34060193 DOI: 10.1111/jth.15412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND GATA1 is an essential transcription factor for both polyploidization and megakaryocyte (MK) differentiation. The polyploidization defect observed in GATA1 variant carriers is not well understood. OBJECTIVE To extensively phenotype two pedigrees displaying different variants in the GATA1 gene and determine if GATA1 controls MYH10 expression levels, a key modulator of MK polyploidization. METHOD A total of 146 unrelated propositi with constitutional thrombocytopenia were screened on a multigene panel. We described the genotype-phenotype correlation in GATA1 variant carriers and investigated the effect of these novel variants on MYH10 transcription using luciferase constructs. RESULTS The clinical profile associated with the p.L268M variant localized in the C terminal zinc finger was unusual in that the patient displayed bleeding and severe platelet aggregation defects without early-onset thrombocytopenia. p.N206I localized in the N terminal zinc finger was associated, on the other hand, with severe thrombocytopenia (15G/L) in early life. High MYH10 levels were evidenced in platelets of GATA1 variant carriers. Analysis of MKs anti-GATA1 chromatin immunoprecipitation-sequencing data revealed two GATA1 binding sites, located in the 3' untranslated region and in intron 8 of the MYH10 gene. Luciferase reporter assays showed their respective role in the regulation of MYH10 gene expression. Both GATA1 variants significantly alter intron 8 driven MYH10 transcription. CONCLUSION The discovery of an association between MYH10 and GATA1 is a novel one. Overall, this study suggests that impaired MYH10 silencing via an intronic regulatory element is the most likely cause of GATA1-related polyploidization defect.
Collapse
Affiliation(s)
- Paul Saultier
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
- Department of Pediatric Hematology, Immunology and Oncology, APHM, La Timone Children's Hospital, Marseille, France
| | | | | | | | - Timothée Bigot
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | - Noémie Saut
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | | | | | - Johannes van Agthoven
- Structural Biology Program, Division of Nephrology/Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Marie Loosveld
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
- Aix-Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | | | - Céline Falaise
- Department of Pediatric Hematology, Immunology and Oncology, APHM, La Timone Children's Hospital, Marseille, France
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | - Denis Bernot
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | - Pierre-Emmanuel Morange
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | - Marie-Christine Alessi
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | - Marjorie Poggi
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| |
Collapse
|
21
|
Tsai FD, Battinelli EM. Inherited Platelet Disorders. Hematol Oncol Clin North Am 2021; 35:1069-1084. [PMID: 34391603 DOI: 10.1016/j.hoc.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bleeding disorders due to platelet dysfunction are a common hematologic complication affecting patients, and typically present with mucocutaneous bleeding or hemorrhage. An inherited platelet disorder should be suspected in individuals with a suggestive family history and no identified secondary causes of bleeding. Genetic defects have been described at all levels of platelet activation, including receptor binding, signaling, granule release, cytoskeletal remodeling, and platelet hematopoiesis. Management of these disorders is typically supportive, with an emphasis on awareness, patient education, and anticipatory guidance to prevent future episodes of bleeding.
Collapse
Affiliation(s)
- Frederick D Tsai
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA; Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Elisabeth M Battinelli
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Liu J, Li Y, Gan Y, Xiao Q, Tian R, Shu G, Yin G. Identification of ZNF26 as a Prognostic Biomarker in Colorectal Cancer by an Integrated Bioinformatic Analysis. Front Cell Dev Biol 2021; 9:671211. [PMID: 34178996 PMCID: PMC8226143 DOI: 10.3389/fcell.2021.671211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/11/2021] [Indexed: 01/12/2023] Open
Abstract
The dysregulation of transcriptional factors (TFs) leads to malignant growth and the development of colorectal cancer (CRC). Herein, we sought to identify the transcription factors relevant to the prognosis of colorectal cancer patients. We found 526 differentially expressed TFs using the TCGA database of colorectal cancer patients (n = 544) for the differential analysis of TFs (n = 1,665) with 210 upregulated genes as well as 316 downregulated genes. Subsequently, GO analysis and KEGG pathway analysis were performed for these differential genes for investigating their pathways and function. At the same time, we established a genetic risk scoring model for predicting the overall survival (OS) by using the mRNA expression levels of these differentially regulated TFs, and defined the CRC into low and high-risk categories which showed significant survival differences. The genetic risk scoring model included four high-risk genes (HSF4, HEYL, SIX2, and ZNF26) and two low-risk genes (ETS2 and SALL1), and validated the OS in two GEO databases (p = 0.0023 for the GSE17536, p = 0.0193 for the GSE29623). To analyze the genetic and epigenetic changes of these six risk-related TFs, a unified bioinformatics analysis was conducted. Among them, ZNF26 is progressive in CRC and its high expression is linked with a poor diagnosis as well. Knockdown of ZNF26 inhibits the proliferative capacity of CRC cells. Moreover, the positive association between ZNF26 and cyclins (CDK2, CCNE2, CDK6, CHEK1) was also identified. Therefore, as a novel biomarker, ZNF26 may be a promising candidate in the diagnosis and prognostic evaluation of colorectal cancer.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yimin Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yaqi Gan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qing Xiao
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ruotong Tian
- School of Basic Medical Sciences, Central South University, Changsha, China
| | - Guang Shu
- School of Basic Medical Sciences, Central South University, Changsha, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
23
|
Oved JH, Lambert MP, Kowalska MA, Poncz M, Karczewski KJ. Population based frequency of naturally occurring loss-of-function variants in genes associated with platelet disorders. J Thromb Haemost 2021; 19:248-254. [PMID: 33006441 DOI: 10.1111/jth.15113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
Essentials The frequency of predicted loss-of-function (pLoF) variants in platelet-associated genes is unknown in the general population. Datasets like Genome Aggregation Database allow us to analyze pLoF variants with increased resolution. Expected prevalence of significant pLoF variants in platelet-associated genes in 0.329% in the general population. Platelet-associated genes that cause phenotypes due to haploinsufficiency are significantly depleted for deleterious variation. ABSTRACT: Background Inherited platelet disorders are being recognized more frequently as advanced sequencing technologies become more commonplace in clinical scenarios. The prevalence of each inherited platelet disorder and the disorders in aggregate are not known. This deficit in the field makes it difficult for clinicians to discuss results of sequencing assays and provide appropriate anticipatory guidance. Objectives In this study, we aim to calculate the prevalence of predicted loss-of-function variants in platelet-associated genes in the general population. Methods Here, we leverage the aggregation of exomes from the general population in the form of Genome Aggregation Database to assess 58 platelet-associated genes with phenotypic correlates. We use the loss-of-function transcript effect estimator (LOFTEE) to identify predicted loss-of-function mutations in these platelet-associated genes. These variants are curated and we then quantify the frequency of predicted loss-of-function variants in each gene. Results Our data show that 0.329% of the general population have a clinically meaningful predicted loss-of-function variant in a platelet-associated gene. Thus, these individuals are at risk for bleeding disorders that can range from mild to severe. Conclusions These data provide a novel lens through which clinicians can analyze sequencing results in their patients as well as an additional method to curate newly discovered platelet-associated genes in the future.
Collapse
Affiliation(s)
- Joseph H Oved
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michele P Lambert
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - M Anna Kowalska
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mortimer Poncz
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Konrad J Karczewski
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| |
Collapse
|
24
|
Águila S, Cuenca-Zamora E, Martínez C, Teruel-Montoya R. MicroRNAs in Platelets: Should I Stay or Should I Go? Platelets 2020. [DOI: 10.5772/intechopen.93181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this chapter, we discuss different topics always using the microRNA as the guiding thread of the review. MicroRNAs, member of small noncoding RNAs family, are an important element involved in gene expression. We cover different issues such as their importance in the differentiation and maturation of megakaryocytes (megakaryopoiesis), as well as the role in platelets formation (thrombopoiesis) focusing on the described relationship between miRNA and critical myeloid lineage transcription factors such as RUNX1, chemokines receptors as CRCX4, or central hormones in platelet homeostasis like TPO, as well as its receptor (MPL) and the TPO signal transduction pathway, that is JAK/STAT. In addition to platelet biogenesis, we review the microRNA participation in platelets physiology and function. This review also introduces the use of miRNAs as biomarkers of platelet function since the detection of pathogenic situations or response to therapy using these noncoding RNAs is getting increasing interest in disease management. Finally, this chapter describes the participation of platelets in cellular interplay, since extracellular vesicles have been demonstrated to have the ability to deliver microRNAs to others cells, modulating their function through intercellular communication, redefining the extracellular vesicles from the so-called “platelet dust” to become mediators of intercellular communication.
Collapse
|
25
|
Abdelmoumen K, Fabre M, Ducastelle-Lepretre S, Favier R, Ballerini P, Bordet JC, Dargaud Y. Eltrombopag for the Treatment of Severe Inherited Thrombocytopenia. Acta Haematol 2020; 144:308-313. [PMID: 32987389 DOI: 10.1159/000509922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Inherited thrombocytopenias correspond to a group of hereditary disorders characterized by a reduced platelet count, platelet dysfunction, and a family history of thrombocytopenia. It is commonly associated with mucocutaneous bleeding. Thrombocytopenia results from mutations in genes involved in megakaryocyte differentiation, platelet formation, and clearance. Here we report on a patient presenting with severe syndromic inherited thrombocytopenia manifesting as spontaneous mucocutaneous bleeds, requiring frequent platelet transfusions. Thrombocytopenia was explained by the presence of 4 mutations in 3 hematopoietic transcription factor genes: FLI1, RUNX1, and ETV6. The patient was successfully treated with high-dose eltrombopag at 150 mg/day, an orally available non-peptide thrombopoietin receptor agonist. Since the start of treatment 23 months ago, the manifestations of bleeding have resolved, and no platelet transfusions or corticosteroids have been required. The patient has no clinical or laboratory evidence of myeloid malignancy so far.
Collapse
Affiliation(s)
- Karim Abdelmoumen
- Unite d'Hemostase Clinique, Hopital Cardiologique Louis Pradel, Lyon, France
| | - Marc Fabre
- Service de Medecine Interne, Centre Hospitalier Pierre Oudot, Bourgoin-Jallieu, France
| | | | - Remi Favier
- Assistance Publique Hôpitaux de Paris, Service d'Hématologie Biologique, CRPP, Hôpital Armand Trousseau, Paris, France
| | - Paola Ballerini
- Assistance Publique Hôpitaux de Paris, Service d'Hématologie Biologique, CRPP, Hôpital Armand Trousseau, Paris, France
| | - Jean Claude Bordet
- Laboratoire d'Hemostase, Groupement Hospitalier Est, CHU de Lyon, Lyon, France
| | - Yesim Dargaud
- Unite d'Hemostase Clinique, Hopital Cardiologique Louis Pradel, Lyon, France,
- Laboratoire d'Hemostase, Groupement Hospitalier Est, CHU de Lyon, Lyon, France,
| |
Collapse
|
26
|
Karampini E, Bierings R, Voorberg J. Orchestration of Primary Hemostasis by Platelet and Endothelial Lysosome-Related Organelles. Arterioscler Thromb Vasc Biol 2020; 40:1441-1453. [PMID: 32375545 DOI: 10.1161/atvbaha.120.314245] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Megakaryocyte-derived platelets and endothelial cells store their hemostatic cargo in α- and δ-granules and Weibel-Palade bodies, respectively. These storage granules belong to the lysosome-related organelles (LROs), a heterogeneous group of organelles that are rapidly released following agonist-induced triggering of intracellular signaling pathways. Following vascular injury, endothelial Weibel-Palade bodies release their content into the vascular lumen and promote the formation of long VWF (von Willebrand factor) strings that form an adhesive platform for platelets. Binding to VWF strings as well as exposed subendothelial collagen activates platelets resulting in the release of α- and δ-granules, which are crucial events in formation of a primary hemostatic plug. Biogenesis and secretion of these LROs are pivotal for the maintenance of proper hemostasis. Several bleeding disorders have been linked to abnormal generation of LROs in megakaryocytes and endothelial cells. Recent reviews have emphasized common pathways in the biogenesis and biological properties of LROs, focusing mainly on melanosomes. Despite many similarities, LROs in platelet and endothelial cells clearly possess distinct properties that allow them to provide a highly coordinated and synergistic contribution to primary hemostasis by sequentially releasing hemostatic cargo. In this brief review, we discuss in depth the known regulators of α- and δ-granules in megakaryocytes/platelets and Weibel-Palade bodies in endothelial cells, starting from transcription factors that have been associated with granule formation to protein complexes that promote granule maturation. In addition, we provide a detailed view on the interplay between platelet and endothelial LROs in controlling hemostasis as well as their dysfunction in LRO related bleeding disorders.
Collapse
Affiliation(s)
- Ellie Karampini
- From the Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory (E.K., R.B., J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| | - Ruben Bierings
- From the Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory (E.K., R.B., J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands.,Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands (R.B.)
| | - Jan Voorberg
- From the Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory (E.K., R.B., J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands.,Experimental Vascular Medicine (J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
27
|
Mazzola M, Pezzotta A, Fazio G, Rigamonti A, Bresciani E, Gaudenzi G, Pelleri MC, Saitta C, Ferrari L, Parma M, Fumagalli M, Biondi A, Cazzaniga G, Marozzi A, Pistocchi A. Dysregulation of NIPBL leads to impaired RUNX1 expression and haematopoietic defects. J Cell Mol Med 2020; 24:6272-6282. [PMID: 32323916 PMCID: PMC7294146 DOI: 10.1111/jcmm.15269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 01/03/2023] Open
Abstract
The transcription factor RUNX1, a pivotal regulator of HSCs and haematopoiesis, is a frequent target of chromosomal translocations, point mutations or altered gene/protein dosage. These modifications lead or contribute to the development of myelodysplasia, leukaemia or platelet disorders. A better understanding of how regulatory elements contribute to fine‐tune the RUNX1 expression in haematopoietic tissues could improve our knowledge of the mechanisms responsible for normal haematopoiesis and malignancy insurgence. The cohesin RAD21 was reported to be a regulator of RUNX1 expression in the human myeloid HL60 cell line and during primitive haematopoiesis in zebrafish. In our study, we demonstrate that another cohesin, NIPBL, exerts positive regulation of RUNX1 in three different contexts in which RUNX1 displays important functions: in megakaryocytes derived from healthy donors, in bone marrow samples obtained from adult patients with acute myeloid leukaemia and during zebrafish haematopoiesis. In this model, we demonstrate that alterations in the zebrafish orthologue nipblb reduce runx1 expression with consequent defects in its erythroid and myeloid targets such as gata1a and spi1b in an opposite way to rad21. Thus, also in the absence of RUNX1 translocation or mutations, additional factors such as defects in the expression of NIPBL might induce haematological diseases.
Collapse
Affiliation(s)
- Mara Mazzola
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Alex Pezzotta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Grazia Fazio
- Centro Ricerca Tettamanti, Fondazione Tettamanti, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Alessandra Rigamonti
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Erica Bresciani
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Germano Gaudenzi
- Laboratorio Sperimentale di Ricerche di Neuroendocrinologia Geriatrica e Oncologica, Istituto Auxologico Italiano, IRCCS, Cusano Milanino, Italy
| | - Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Claudia Saitta
- Centro Ricerca Tettamanti, Fondazione Tettamanti, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Luca Ferrari
- Dipartimento di Scienze Cliniche e Comunità, Università degli Studi di Milano, Milano, Italy
| | - Matteo Parma
- Clinica Ematologica e Centro Trapianti di Midollo Osseo, Ospedale San Gerardo, Università di Milano-Bicocca, Monza, Italy
| | - Monica Fumagalli
- Clinica Ematologica e Centro Trapianti di Midollo Osseo, Ospedale San Gerardo, Università di Milano-Bicocca, Monza, Italy
| | - Andrea Biondi
- Centro Ricerca Tettamanti, Fondazione Tettamanti, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Fondazione Tettamanti, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Anna Marozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
28
|
Zaninetti C, Greinacher A. Diagnosis of Inherited Platelet Disorders on a Blood Smear. J Clin Med 2020; 9:jcm9020539. [PMID: 32079152 PMCID: PMC7074415 DOI: 10.3390/jcm9020539] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited platelet disorders (IPDs) are rare diseases featured by low platelet count and defective platelet function. Patients have variable bleeding diathesis and sometimes additional features that can be congenital or acquired. Identification of an IPD is desirable to avoid misdiagnosis of immune thrombocytopenia and the use of improper treatments. Diagnostic tools include platelet function studies and genetic testing. The latter can be challenging as the correlation of its outcomes with phenotype is not easy. The immune-morphological evaluation of blood smears (by light- and immunofluorescence microscopy) represents a reliable method to phenotype subjects with suspected IPD. It is relatively cheap, not excessively time-consuming and applicable to shipped samples. In some forms, it can provide a diagnosis by itself, as for MYH9-RD, or in addition to other first-line tests as aggregometry or flow cytometry. In regard to genetic testing, it can guide specific sequencing. Since only minimal amounts of blood are needed for the preparation of blood smears, it can be used to characterize thrombocytopenia in pediatric patients and even newborns further. In principle, it is based on visualizing alterations in the distribution of proteins, which result from specific genetic mutations by using monoclonal antibodies. It can be applied to identify deficiencies in membrane proteins, disturbed distribution of cytoskeletal proteins, and alpha as well as delta granules. On the other hand, mutations associated with impaired signal transduction are difficult to identify by immunofluorescence of blood smears. This review summarizes technical aspects and the main diagnostic patterns achievable by this method.
Collapse
Affiliation(s)
- Carlo Zaninetti
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany;
- University of Pavia, and IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
- PhD Program of Experimental Medicine, University of Pavia, 27100 Pavia, Italy
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany;
- Correspondence: ; Tel.: +49-3834-865482; Fax: +49-3834-865489
| |
Collapse
|
29
|
Wang T, Chen X, Hui S, Ni J, Yin Y, Cao W, Zhang Y, Wang X, Ma X, Cao P, Liu M, Chen KN, Wang F, Zhang Y, Nie D, Yuan L, Liu H. Ectopia associated MN1 fusions and aberrant activation in myeloid neoplasms with t(12;22)(p13;q12). Cancer Gene Ther 2020; 27:810-818. [PMID: 31902945 DOI: 10.1038/s41417-019-0159-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022]
Abstract
Chromosome translocation t(12;22)(p13;q12)/MN1-ETV6 and MN1 overexpression confer a subset of adverse prognostic AML but so far lack in-depth research. We focused on the clinical course and comprehensive genetic analysis of eight cases with t(12;22)(p13;q12) and one with t(12;17;22) (p13;q21;q13) to elucidate their molecular etiology and outcomes of allogeneic hemopoietic stem cell transplantation (allo-HSCT). The total incidence of t(12;22)(p13;q12) and related translocations was 0.32% in myeloid neoplasms. These patients were confirmed to have dismal prognosis when treated only with chemotherapy, and we firstly provided evidence that they can significantly benefit from timely allo-HSCT. Five cases were MN1-ETV6 positive, and a novel MN1-STAT3 fusion was identified in the patient with triadic translocation. Significant MN1 overexpression was observed in all three MN1-fusion-negative cases. Genetic analysis highlighted the evidence of an ectopic super-enhancer associated orchestrated mechanism of MN1 overexpression and ETV6 haploinsufficiency in t(12;22)(p13;q12) myeloid neoplasms, rather than the conventional thought of MN1-ETV6 fusion formation. We also disclosed the high concomitance of trisomy 8 and 531 Kbps focal 8q duplication in t(12;22)(p13;q12) cases. The new perspective about this entity of disease will enlighten further research to define the mechanism of tumorigenesis and discover effective treatments for MN1-driven malignancies.
Collapse
Affiliation(s)
- Tong Wang
- Beijing Lu Daopei Institute of Hematology, Beijing, 100176, China.,Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China.,Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, 100176, China
| | - Xue Chen
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Shuang Hui
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Jingbo Ni
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Ying Yin
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Wei Cao
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Yan Zhang
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Xinyu Wang
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Xiaoli Ma
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Panxiang Cao
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Mingyue Liu
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Kylan N Chen
- Beijing Lu Daopei Institute of Hematology, Beijing, 100176, China
| | - Fang Wang
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Yang Zhang
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Daijing Nie
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Lili Yuan
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Hongxing Liu
- Beijing Lu Daopei Institute of Hematology, Beijing, 100176, China. .,Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China. .,Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, 100176, China.
| |
Collapse
|
30
|
Chong WC, Cain JE. Lessons learned from the developmental origins of childhood renal cancer. Anat Rec (Hoboken) 2019; 303:2561-2577. [DOI: 10.1002/ar.24315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/14/2019] [Accepted: 10/05/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Wai Chin Chong
- Centre for Cancer ResearchHudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health SciencesMonash University Clayton Victoria Australia
| | - Jason E. Cain
- Centre for Cancer ResearchHudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health SciencesMonash University Clayton Victoria Australia
| |
Collapse
|
31
|
Park SW, Do HJ, Choi W, Kim JH. Fli-1 promotes proliferation and upregulates NANOGP8 expression in T-lymphocyte leukemia cells. Biochimie 2019; 168:1-9. [PMID: 31626853 DOI: 10.1016/j.biochi.2019.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/10/2019] [Indexed: 11/27/2022]
Abstract
Friend leukemia integration 1 (Fli-1) is a member of the E26 transformation-specific (ETS) transcription factor family. Fli-1 regulates normal hematopoiesis and vasculogenesis, and its aberrant expression underlies virus-induced leukemias and various types of human cancers. NANOGP8, a retro-pseudogene of stem cell mediator NANOG, is expressed predominantly in cancer cells and plays a role in tumorigenesis. In this study, we demonstrate that Fli-1 expression enhances human acute T-cell leukemia Jurkat cell proliferation and that Fli-1 acts as a transcriptional activator of NANOGP8 expression in these cells. NANOGP8 and Fli-1 are highly expressed in Jurkat cells, whereas NANOG was undetectable at both the RNA and protein levels. Moreover, the expression of endogenous NANOGP8 was significantly influenced by gain of function and loss of function of Fli-1. Promoter-reporter assays showed that NANOGP8 transcription was significantly upregulated by dose-dependent Fli-1 overexpression. A series of deletion mutagenesis of NANOGP8 promoter sequence revealed that NANOGP8 promoter activity was tightly regulated and found the minimal promoter region sufficient to activate NANOGP8 transcription mediated by Fli-1. Moreover, site-directed mutagenesis of the putative binding site abolished both NANOGP8 full-length and minimal promoter activities. Binding assays revealed that Fli-1 directly interacts with the potent binding site in NANOG promoter region. Taken together, our data demonstrate that Fli-1 is a novel upstream transcriptional activator of NANOGP8 and provide the molecular details of Fli-1-mediated NANOGP8 gene expression. Ultimately, these findings may contribute to understanding the expanded regulatory mechanisms of oncogenic NANOGP8 and ETS family transcription factors in leukemogenesis.
Collapse
Affiliation(s)
- Sung-Won Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-Si, Gyeonggi-Do, 13488, South Korea
| | - Hyun-Jin Do
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-Si, Gyeonggi-Do, 13488, South Korea
| | - Wonbin Choi
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-Si, Gyeonggi-Do, 13488, South Korea
| | - Jae-Hwan Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-Si, Gyeonggi-Do, 13488, South Korea.
| |
Collapse
|
32
|
Asquith NL, Machlus KR. Teamwork makes the dream work in thrombopoiesis. Blood 2019; 134:791-792. [PMID: 31488457 DOI: 10.1182/blood.2019002306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Shared roles for Scl and Lyl1 in murine platelet production and function. Blood 2019; 134:826-835. [PMID: 31300405 DOI: 10.1182/blood.2019896175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
The stem cell leukemia (Scl or Tal1) protein forms part of a multimeric transcription factor complex required for normal megakaryopoiesis. However, unlike other members of this complex such as Gata1, Fli1, and Runx1, mutations of Scl have not been observed as a cause of inherited thrombocytopenia. We postulated that functional redundancy with its closely related family member, lymphoblastic leukemia 1 (Lyl1) might explain this observation. To determine whether Lyl1 can substitute for Scl in megakaryopoiesis, we examined the platelet phenotype of mice lacking 1 or both factors in megakaryocytes. Conditional Scl knockout (KO) mice crossed with transgenic mice expressing Cre recombinase under the control of the mouse platelet factor 4 (Pf4) promoter generated megakaryocytes with markedly reduced but not absent Scl These Pf4Sclc-KO mice had mild thrombocytopenia and subtle defects in platelet aggregation. However, Pf4Sclc-KO mice generated on an Lyl1-null background (double knockout [DKO] mice) had severe macrothrombocytopenia, abnormal megakaryocyte morphology, defective pro-platelet formation, and markedly impaired platelet aggregation. DKO megakaryocytes, but not single-knockout megakaryocytes, had reduced expression of Gata1, Fli1, Nfe2, and many other genes that cause inherited thrombocytopenia. These gene expression changes were significantly associated with shared Scl and Lyl1 E-box binding sites that were also enriched for Gata1, Ets, and Runx1 motifs. Thus, Scl and Lyl1 share functional roles in platelet production by regulating expression of partner proteins including Gata1. We propose that this functional redundancy provides one explanation for the absence of Scl and Lyl1 mutations in inherited thrombocytopenia.
Collapse
|
34
|
Kong X, Ma L, Chen E, Shaw CA, Edelstein LC. Identification of the Regulatory Elements and Target Genes of Megakaryopoietic Transcription Factor MEF2C. Thromb Haemost 2019; 119:716-725. [PMID: 30731491 PMCID: PMC6932631 DOI: 10.1055/s-0039-1678694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Megakaryopoiesis produces specialized haematopoietic stem cells in the bone marrow that give rise to megakaryocytes which ultimately produce platelets. Defects in megakaryopoiesis can result in altered platelet counts and physiology, leading to dysfunctional haemostasis and thrombosis. Additionally, dysregulated megakaryopoiesis is also associated with myeloid pathologies. Transcription factors play critical roles in cell differentiation by regulating the temporal and spatial patterns of gene expression which ultimately decide cell fate. Several transcription factors have been described as regulating megakaryopoiesis including myocyte enhancer factor 2C (MEF2C); however, the genes regulated by MEF2C that influence megakaryopoiesis have not been reported. Using chromatin immunoprecipitation-sequencing and Gene Ontology data we identified five candidate genes that are bound by MEF2C and regulate megakaryopoiesis: MOV10, AGO3, HDAC1, RBBP5 and WASF2. To study expression of these genes, we silenced MEF2C gene expression in the Meg01 megakaryocytic cell line and in induced pluripotent stem cells by CRISPR/Cas9 editing. We also knocked down MEF2C expression in cord blood-derived haematopoietic stem cells by siRNA. We found that absent or reduced MEF2C expression resulted in defects in megakaryocytic differentiation and reduced levels of the candidate target genes. Luciferase assays confirmed that genomic sequences within the target genes are regulated by MEF2C levels. Finally, we demonstrate that small deletions linked to a platelet count-associated single nucleotide polymorphism alter transcriptional activity, suggesting a mechanism by which genetic variation in MEF2C alters platelet production. These data help elucidate the mechanism behind MEF2C regulation of megakaryopoiesis and genetic variation driving platelet production.
Collapse
Affiliation(s)
- Xianguo Kong
- Cardeza Foundation for Hematologic Research and Department of Medicine, Sidney Kimmel Medical School at Thomas Jefferson University, Philadelphia, PA
| | - Lin Ma
- Cardeza Foundation for Hematologic Research and Department of Medicine, Sidney Kimmel Medical School at Thomas Jefferson University, Philadelphia, PA
| | - Edward Chen
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - Chad A. Shaw
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
- Department of Statistics, Rice University, Houston, TX
| | - Leonard C. Edelstein
- Cardeza Foundation for Hematologic Research and Department of Medicine, Sidney Kimmel Medical School at Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
35
|
Kim M, Civin CI, Kingsbury TJ. MicroRNAs as regulators and effectors of hematopoietic transcription factors. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1537. [PMID: 31007002 DOI: 10.1002/wrna.1537] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/24/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Hematopoiesis is a highly-regulated development process orchestrated by lineage-specific transcription factors that direct the generation of all mature blood cells types, including red blood cells, megakaryocytes, granulocytes, monocytes, and lymphocytes. Under homeostatic conditions, the hematopoietic system of the typical adult generates over 1011 blood cells daily throughout life. In addition, hematopoiesis must be responsive to acute challenges due to blood loss or infection. MicroRNAs (miRs) cooperate with transcription factors to regulate all aspects of hematopoiesis, including stem cell maintenance, lineage selection, cell expansion, and terminal differentiation. Distinct miR expression patterns are associated with specific hematopoietic lineages and stages of differentiation and functional analyses have elucidated essential roles for miRs in regulating cell transitions, lineage selection, maturation, and function. MiRs function as downstream effectors of hematopoietic transcription factors and as upstream regulators to control transcription factor levels. Multiple miRs have been shown to play essential roles. Regulatory networks comprised of differentially expressed lineage-specific miRs and hematopoietic transcription factors are involved in controlling the quiescence and self-renewal of hematopoietic stem cells as well as proliferation and differentiation of lineage-specific progenitor cells during erythropoiesis, myelopoiesis, and lymphopoiesis. This review focuses on hematopoietic miRs that function as upstream regulators of central hematopoietic transcription factors required for normal hematopoiesis. This article is categorized under: RNA in Disease and Development > RNA in Development Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- MinJung Kim
- Department of Pediatrics, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Curt I Civin
- Department of Pediatrics and Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tami J Kingsbury
- Department of Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
36
|
Simplifying the diagnosis of inherited platelet disorders? The new tools do not make it any easier. Blood 2019; 133:2478-2483. [PMID: 30858232 DOI: 10.1182/blood-2019-01-852350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/28/2019] [Indexed: 12/25/2022] Open
Abstract
The molecular causes of many inherited platelet disorders are being unraveled. Next-generation sequencing facilitates diagnosis in 30% to 50% of patients. However, interpretation of genetic variants is challenging and requires careful evaluation in the context of a patient's phenotype. Before detailed testing is initiated, the treating physician and patient should establish an understanding of why testing is being performed and discuss potential consequences, especially before testing for variants in genes associated with an increased risk for hematologic malignancies.
Collapse
|
37
|
Defective RAB1B-related megakaryocytic ER-to-Golgi transport in RUNX1 haplodeficiency: impact on von Willebrand factor. Blood Adv 2019; 2:797-806. [PMID: 29632235 DOI: 10.1182/bloodadvances.2017014274] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/27/2018] [Indexed: 12/18/2022] Open
Abstract
Patients with RUNX1 haplodeficiency have thrombocytopenia, platelet dysfunction, and deficiencies of α-granules and dense granules. Platelet expression profiling of a patient with a heterozygous RUNX1 mutation (c.969-323G>T) revealed decreased RAB1B, which encodes a small G protein. RAB GTPases regulate vesicle trafficking, and RAB1B is implicated in endoplasmic reticulum (ER)-to-Golgi transport in nonhematopoietic cells, but its role in megakaryocytes (MK) is unknown. We addressed the hypothesis that RAB1B is a transcriptional target of RUNX1 and that RAB1B regulates ER-to-Golgi transport in MK cells. Chromatin immunoprecipitation studies and electrophoretic mobility shift assay using phorbol 12-myristate 13-acetate (PMA)-treated human erythroleukemia cells revealed RUNX1 binding to RAB1B promoter region RUNX1 consensus sites, and their mutation reduced the promoter activity. RAB1B promoter activity and protein expression were inhibited by RUNX1 siRNA and enhanced by RUNX1 overexpression. These indicate that RAB1B is a direct RUNX1 target, providing a mechanism for decreased RAB1B in patient platelets. Vesicle trafficking from ER to Golgi in PMA-treated human erythroleukemia cells was impaired along with Golgi disruption on siRNA downregulation of RUNX1 or RAB1B. The effects of RUNX1 knockdown were reversed by RAB1B reconstitution. Trafficking of von Willebrand factor (vWF), an α-granule MK synthesized protein, was impaired with RUNX1 or RAB1B downregulation and reconstituted by ectopic RAB1B expression. Platelet vWF was decreased in patients with RUNX1 mutations. Thus, ER-to-Golgi transport, an early critical step in protein trafficking to granules, is impaired in megakaryocytic cells on RUNX1 downregulation, secondary to decreased RAB1B expression. Impaired RAB1B mediated ER-to-Golgi transport contributes to platelet α-granule defects in RUNX1 haplodeficiency.
Collapse
|
38
|
Barbarani G, Fugazza C, Strouboulis J, Ronchi AE. The Pleiotropic Effects of GATA1 and KLF1 in Physiological Erythropoiesis and in Dyserythropoietic Disorders. Front Physiol 2019; 10:91. [PMID: 30809156 PMCID: PMC6379452 DOI: 10.3389/fphys.2019.00091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/25/2019] [Indexed: 01/19/2023] Open
Abstract
In the last few years, the advent of new technological approaches has led to a better knowledge of the ontogeny of erythropoiesis during development and of the journey leading from hematopoietic stem cells (HSCs) to mature red blood cells (RBCs). Our view of a well-defined hierarchical model of hematopoiesis with a near-homogeneous HSC population residing at the apex has been progressively challenged in favor of a landscape where HSCs themselves are highly heterogeneous and lineages separate earlier than previously thought. The coordination of these events is orchestrated by transcription factors (TFs) that work in a combinatorial manner to activate and/or repress their target genes. The development of next generation sequencing (NGS) has facilitated the identification of pathological mutations involving TFs underlying hematological defects. The examples of GATA1 and KLF1 presented in this review suggest that in the next few years the number of TF mutations associated with dyserythropoietic disorders will further increase.
Collapse
Affiliation(s)
- Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| | - Cristina Fugazza
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| | - John Strouboulis
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Antonella E Ronchi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| |
Collapse
|
39
|
Churpek JE, Bresnick EH. Transcription factor mutations as a cause of familial myeloid neoplasms. J Clin Invest 2019; 129:476-488. [PMID: 30707109 DOI: 10.1172/jci120854] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The initiation and evolution of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are driven by genomic events that disrupt multiple genes controlling hematopoiesis. Human genetic studies have discovered germline mutations in single genes that instigate familial MDS/AML. The best understood of these genes encode transcription factors, such as GATA-2, RUNX1, ETV6, and C/EBPα, which establish and maintain genetic networks governing the genesis and function of blood stem and progenitor cells. Many questions remain unanswered regarding how genes and circuits within these networks function in physiology and disease and whether network integrity is exquisitely sensitive to or efficiently buffered from perturbations. In familial MDS/AML, mutations change the coding sequence of a gene to generate a mutant protein with altered activity or introduce frameshifts or stop codons or disrupt regulatory elements to alter protein expression. Each mutation has the potential to exert quantitatively and qualitatively distinct influences on networks. Consistent with this mechanistic diversity, disease onset is unpredictable and phenotypic variability can be considerable. Efforts to elucidate mechanisms and forge prognostic and therapeutic strategies must therefore contend with a spectrum of patient-specific leukemogenic scenarios. Here we illustrate mechanistic advances in our understanding of familial MDS/AML syndromes caused by germline mutations of hematopoietic transcription factors.
Collapse
Affiliation(s)
- Jane E Churpek
- Section of Hematology/Oncology and Center for Clinical Cancer Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
40
|
Cunin P, Nigrovic PA. Megakaryocytes as immune cells. J Leukoc Biol 2019; 105:1111-1121. [PMID: 30645026 DOI: 10.1002/jlb.mr0718-261rr] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
Platelets play well-recognized roles in inflammation, but their cell of origin-the megakaryocyte-is not typically considered an immune lineage. Megakaryocytes are large polyploid cells most commonly identified in bone marrow. Egress via sinusoids enables migration to the pulmonary capillary bed, where elaboration of platelets can continue. Beyond receptors involved in hemostasis and thrombosis, megakaryocytes express receptors that confer immune sensing capacity, including TLRs and Fc-γ receptors. They control the proliferation of hematopoietic cells, facilitate neutrophil egress from marrow, possess the capacity to cross-present antigen, and can promote systemic inflammation through microparticles rich in IL-1. Megakaryocytes internalize other hematopoietic lineages, especially neutrophils, in an intriguing cell-in-cell interaction termed emperipolesis. Together, these observations implicate megakaryocytes as direct participants in inflammation and immunity.
Collapse
Affiliation(s)
- Pierre Cunin
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter A Nigrovic
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
41
|
|
42
|
|
43
|
Heuston EF, Keller CA, Lichtenberg J, Giardine B, Anderson SM, Hardison RC, Bodine DM. Establishment of regulatory elements during erythro-megakaryopoiesis identifies hematopoietic lineage-commitment points. Epigenetics Chromatin 2018; 11:22. [PMID: 29807547 PMCID: PMC5971425 DOI: 10.1186/s13072-018-0195-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Enhancers and promoters are cis-acting regulatory elements associated with lineage-specific gene expression. Previous studies showed that different categories of active regulatory elements are in regions of open chromatin, and each category is associated with a specific subset of post-translationally marked histones. These regulatory elements are systematically activated and repressed to promote commitment of hematopoietic stem cells along separate differentiation paths, including the closely related erythrocyte (ERY) and megakaryocyte (MK) lineages. However, the order in which these decisions are made remains unclear. RESULTS To characterize the order of cell fate decisions during hematopoiesis, we collected primary cells from mouse bone marrow and isolated 10 hematopoietic populations to generate transcriptomes and genome-wide maps of chromatin accessibility and histone H3 acetylated at lysine 27 binding (H3K27ac). Principle component analysis of transcriptional and open chromatin profiles demonstrated that cells of the megakaryocyte lineage group closely with multipotent progenitor populations, whereas erythroid cells form a separate group distinct from other populations. Using H3K27ac and open chromatin profiles, we showed that 89% of immature MK (iMK)-specific active regulatory regions are present in the most primitive hematopoietic cells, 46% of which contain active enhancer marks. These candidate active enhancers are enriched for transcription factor binding site motifs for megakaryopoiesis-essential proteins, including ERG and ETS1. In comparison, only 64% of ERY-specific active regulatory regions are present in the most primitive hematopoietic cells, 20% of which containing active enhancer marks. These regions were not enriched for any transcription factor consensus sequences. Incorporation of genome-wide DNA methylation identified significant levels of de novo methylation in iMK, but not ERY. CONCLUSIONS Our results demonstrate that megakaryopoietic profiles are established early in hematopoiesis and are present in the majority of the hematopoietic progenitor population. However, megakaryopoiesis does not constitute a "default" differentiation pathway, as extensive de novo DNA methylation accompanies megakaryopoietic commitment. In contrast, erythropoietic profiles are not established until a later stage of hematopoiesis, and require more dramatic changes to the transcriptional and epigenetic programs. These data provide important insights into lineage commitment and can contribute to ongoing studies related to diseases associated with differentiation defects.
Collapse
|
44
|
Abstract
Platelet granules are unique among secretory vesicles in both their content and their life cycle. Platelets contain three major granule types—dense granules, α-granules, and lysosomes—although other granule types have been reported. Dense granules and α-granules are the most well-studied and the most physiologically important. Platelet granules are formed in large, multilobulated cells, termed megakaryocytes, prior to transport into platelets. The biogenesis of dense granules and α-granules involves common but also distinct pathways. Both are formed from the
trans-Golgi network and early endosomes and mature in multivesicular bodies, but the formation of dense granules requires trafficking machinery different from that of α-granules. Following formation in the megakaryocyte body, both granule types are transported through and mature in long proplatelet extensions prior to the release of nascent platelets into the bloodstream. Granules remain stored in circulating platelets until platelet activation triggers the exocytosis of their contents. Soluble
N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, located on both the granules and target membranes, provide the mechanical energy that enables membrane fusion during both granulogenesis and exocytosis. The function of these core fusion engines is controlled by SNARE regulators, which direct the site, timing, and extent to which these SNAREs interact and consequently the resulting membrane fusion. In this review, we assess new developments in the study of platelet granules, from their generation to their exocytosis.
Collapse
Affiliation(s)
- Anish Sharda
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| |
Collapse
|
45
|
|
46
|
Noris P, Pecci A. Hereditary thrombocytopenias: a growing list of disorders. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:385-399. [PMID: 29222283 PMCID: PMC6142591 DOI: 10.1182/asheducation-2017.1.385] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The introduction of high throughput sequencing (HTS) techniques greatly improved the knowledge of inherited thrombocytopenias (ITs) over the last few years. A total of 33 different forms caused by molecular defects affecting at least 32 genes have been identified; along with the discovery of new disease-causing genes, pathogenetic mechanisms of thrombocytopenia have been better elucidated. Although the clinical picture of ITs is heterogeneous, bleeding has been long considered the major clinical problem for patients with IT. Conversely, the current scenario indicates that patients with some of the most common ITs are at risk of developing additional disorders more dangerous than thrombocytopenia itself during life. In particular, MYH9 mutations result in congenital macrothrombocytopenia and predispose to kidney failure, hearing loss, and cataracts, MPL and MECOM mutations cause congenital thrombocytopenia evolving into bone marrow failure, whereas thrombocytopenias caused by RUNX1, ANKRD26, and ETV6 mutations are characterized by predisposition to hematological malignancies. Making a definite diagnosis of these forms is crucial to provide patients with the most appropriate treatment, follow-up, and counseling. In this review, the ITs known to date are discussed, with specific attention focused on clinical presentations and diagnostic criteria for ITs predisposing to additional illnesses. The currently available therapeutic options for the different forms of IT are illustrated.
Collapse
Affiliation(s)
- Patrizia Noris
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| |
Collapse
|
47
|
Mao G, Songdej N, Voora D, Goldfinger LE, Del Carpio-Cano FE, Myers RA, Rao AK. Transcription Factor RUNX1 Regulates Platelet PCTP (Phosphatidylcholine Transfer Protein): Implications for Cardiovascular Events: Differential Effects of RUNX1 Variants. Circulation 2017; 136:927-939. [PMID: 28676520 DOI: 10.1161/circulationaha.116.023711] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/16/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND PCTP (phosphatidylcholine transfer protein) regulates the intermembrane transfer of phosphatidylcholine. Higher platelet PCTP expression is associated with increased platelet responses on activation of protease-activated receptor 4 thrombin receptors noted in black subjects compared with white subjects. Little is known about the regulation of platelet PCTP. Haplodeficiency of RUNX1, a major hematopoietic transcription factor, is associated with thrombocytopenia and impaired platelet responses on activation. Platelet expression profiling of a patient with a RUNX1 loss-of-function mutation revealed a 10-fold downregulation of the PCTP gene compared with healthy controls. METHODS We pursued the hypothesis that PCTP is regulated by RUNX1 and that PCTP expression is correlated with cardiovascular events. We studied RUNX1 binding to the PCTP promoter using DNA-protein binding studies and human erythroleukemia cells and promoter activity using luciferase reporter studies. We assessed the relationship between RUNX1 and PCTP in peripheral blood RNA and PCTP and death or myocardial infarction in 2 separate patient cohorts (587 total patients) with cardiovascular disease. RESULTS Platelet PCTP protein in the patient was reduced by ≈50%. DNA-protein binding studies showed RUNX1 binding to consensus sites in ≈1 kB of PCTP promoter. PCTP expression was increased with RUNX1 overexpression and reduced with RUNX1 knockdown in human erythroleukemia cells, indicating that PCTP is regulated by RUNX1. Studies in 2 cohorts of patients showed that RUNX1 expression in blood correlated with PCTP gene expression; PCTP expression was higher in black compared with white subjects and was associated with future death/myocardial infarction after adjustment for age, sex, and race (odds ratio, 2.05; 95% confidence interval 1.6-2.7; P<0.0001). RUNX1 expression is known to initiate at 2 alternative promoters, a distal P1 and a proximal P2 promoter. In patient cohorts, there were differential effects of RUNX1 isoforms on PCTP expression with a negative correlation in blood between RUNX1 expressed from the P1 promoter and PCTP expression. CONCLUSIONS PCTP is a direct transcriptional target of RUNX1. PCTP expression is associated with death/myocardial infarction in patients with cardiovascular disease. RUNX1 regulation of PCTP may play a role in the pathogenesis of platelet-mediated cardiovascular events.
Collapse
Affiliation(s)
- Guangfen Mao
- From Sol Sherry Thrombosis Research Center (G.M., N.S., F.E.D.C.-C., L.E.G., A.K.R.), Hematology Section, Department of Medicine (N.S., A.K.R.), and Department of Anatomy and Cell Biology (L.E.G.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; and Duke Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC (D.V., R.A.M.)
| | - Natthapol Songdej
- From Sol Sherry Thrombosis Research Center (G.M., N.S., F.E.D.C.-C., L.E.G., A.K.R.), Hematology Section, Department of Medicine (N.S., A.K.R.), and Department of Anatomy and Cell Biology (L.E.G.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; and Duke Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC (D.V., R.A.M.)
| | - Deepak Voora
- From Sol Sherry Thrombosis Research Center (G.M., N.S., F.E.D.C.-C., L.E.G., A.K.R.), Hematology Section, Department of Medicine (N.S., A.K.R.), and Department of Anatomy and Cell Biology (L.E.G.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; and Duke Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC (D.V., R.A.M.)
| | - Lawrence E Goldfinger
- From Sol Sherry Thrombosis Research Center (G.M., N.S., F.E.D.C.-C., L.E.G., A.K.R.), Hematology Section, Department of Medicine (N.S., A.K.R.), and Department of Anatomy and Cell Biology (L.E.G.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; and Duke Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC (D.V., R.A.M.)
| | - Fabiola E Del Carpio-Cano
- From Sol Sherry Thrombosis Research Center (G.M., N.S., F.E.D.C.-C., L.E.G., A.K.R.), Hematology Section, Department of Medicine (N.S., A.K.R.), and Department of Anatomy and Cell Biology (L.E.G.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; and Duke Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC (D.V., R.A.M.)
| | - Rachel A Myers
- From Sol Sherry Thrombosis Research Center (G.M., N.S., F.E.D.C.-C., L.E.G., A.K.R.), Hematology Section, Department of Medicine (N.S., A.K.R.), and Department of Anatomy and Cell Biology (L.E.G.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; and Duke Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC (D.V., R.A.M.)
| | - A Koneti Rao
- From Sol Sherry Thrombosis Research Center (G.M., N.S., F.E.D.C.-C., L.E.G., A.K.R.), Hematology Section, Department of Medicine (N.S., A.K.R.), and Department of Anatomy and Cell Biology (L.E.G.), Lewis Katz School of Medicine at Temple University, Philadelphia, PA; and Duke Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC (D.V., R.A.M.).
| |
Collapse
|