1
|
Xue S, Chen M, Sun HP, Wang T, Zhang LN, Cao XY. Case Report: Rapid response to gemtuzumab-ozogamicin in a pediatric patient with refractory systemic mastocytosis with AML1::ETO+ acute myeloid leukemia. Front Immunol 2025; 16:1566805. [PMID: 40270973 PMCID: PMC12014624 DOI: 10.3389/fimmu.2025.1566805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
This article describes a 6-year-old patient diagnosed with "systemic mastocytosis with AML1::ETO+ AML", he experience refractory disease during the course of treatment and salvage treatment was ineffective. The patient was administered gemtuzumab-ozogamicin therapy, resulting in rapid remission.
Collapse
MESH Headings
- Humans
- Gemtuzumab/therapeutic use
- Child
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/diagnosis
- Male
- Mastocytosis, Systemic/drug therapy
- Mastocytosis, Systemic/diagnosis
- Mastocytosis, Systemic/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Treatment Outcome
- RUNX1 Translocation Partner 1 Protein/genetics
- Oncogene Proteins, Fusion/genetics
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
Collapse
Affiliation(s)
- Song Xue
- Department of Bone Marrow Transplant, Beijing Lu Daopei Hospital, Beijing, China
| | - Man Chen
- Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, China
| | - Hui-Peng Sun
- Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, China
| | - Tong Wang
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Li-Na Zhang
- Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, China
| | - Xing-Yu Cao
- Department of Bone Marrow Transplant, Hebei Yanda Lu Daopei Hospital, Langfang, China
| |
Collapse
|
2
|
Li YQ, Liu D, Wang LL, Shao YL, Zhou HS, Hu YL, Min KL, Gao CJ, Liu DH, Zhou J, Lin J, Gao XN. WTAP-mediated m 6A methylation of PHF19 facilitates cell cycle progression by remodeling the accessible chromatin landscape in t(8;21) AML. Oncogene 2025:10.1038/s41388-025-03329-9. [PMID: 40038518 DOI: 10.1038/s41388-025-03329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Wilms' tumor 1-associated protein (WTAP) is a key N6-methyladenosine (m6A) methyltransferase that is upregulated in t(8;21) acute myeloid leukemia (AML) under hypoxia inducible factor 1α-mediated transcriptional activation, promoting leukemogenesis through transcriptome-wide m6A modifications. However, the specific substrates and intrinsic regulatory mechanisms of WTAP are not well understood. Here, we provide evidence that PHD finger protein 19 (PHF19) overexpression is regulated by WTAP-mediated m6A modification and promotes cell cycle progression by altering chromatin accessibility. At the same time, high expression of PHF19 and WTAP in t(8;21) AML patients indicates a worse prognosis. Furthermore, inhibition of PHF19 expression significantly suppresses the growth of t(8;21) AML cells in both in vitro and in vivo. Mechanistically, WTAP enhances the stability of PHF19 mRNA by binding to m6A sites in the 3'-untranslated region, thereby upregulating PHF19 expression. Conversely, WTAP suppression reduces m6A modification levels on the PHF19 transcript, leading to increased instability. Knockdown of PHF19 precipitates loss of H3K27 trimethylation and enhanced chromatin accessibility, ultimately resulting in upregulated expression of genes involved in the cell cycle and DNA damage checkpoints. Therefore, WTAP/m6A-dependent PHF19 upregulation accelerates leukemia progression by coordinating m6A modification and histone methylation, establishing its status as a novel therapeutic target for t(8;21) AML.
Collapse
Affiliation(s)
- Yu-Qing Li
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Di Liu
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Li-Li Wang
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang-Liu Shao
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Hui-Sheng Zhou
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Ya-Lei Hu
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Kai-Li Min
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Chun-Ji Gao
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dai-Hong Liu
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jie Zhou
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Ji Lin
- Chinese PLA Medical School, Beijing, China.
| | - Xiao-Ning Gao
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
3
|
Han Yu P, Yan Zhang Z, Yuan Kang Y, Huang P, Yang C, Naranmandura H. Acute myeloid leukemia with t(8;21) translocation: Molecular pathogenesis, potential therapeutics and future directions. Biochem Pharmacol 2025; 233:116774. [PMID: 39864466 DOI: 10.1016/j.bcp.2025.116774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous and aggressive blood cancer. Genetic abnormalities, such as the t(8;21) rearrangement, play a significant role in AML onset. This rearrangement leads to the formation of the RUNX1/RUNX1T1 fusion protein, disrupting gene regulation and genomic stability, ultimately causing full-blown leukemia. Despite a generally favorable prognosis, t(8;21) patients face relapse and chemotherapy resistance, particularly when harboring cooperating mutations. While advances in cellular genetics and molecular biology have improved AML treatment, there are currently no specific targeted therapies against RUNX1/RUNX1T1. Therefore, investigating targeted therapies for this AML subtype holds promise for patients. This review explores the complex landscape of t(8;21) AML, unravels the molecular mechanisms of RUNX1/RUNX1T1-driven leukemogenesis, and discusses recent advancements in target therapies including small molecule drugs and PROTAC. Our goal is to develop more effective and less toxic strategies for managing t(8;21) AML patients.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Translocation, Genetic/genetics
- Chromosomes, Human, Pair 8/genetics
- Chromosomes, Human, Pair 21/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- RUNX1 Translocation Partner 1 Protein/genetics
- RUNX1 Translocation Partner 1 Protein/metabolism
- RUNX1 Translocation Partner 1 Protein/antagonists & inhibitors
- Antineoplastic Agents/therapeutic use
- Animals
Collapse
Affiliation(s)
- Pei Han Yu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ze Yan Zhang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Yuan Kang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Huang
- Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Chang Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Yu S, Yang S, Hu L, Duan W, Zhao T, Qin Y, Wang Y, Lai Y, Shi H, Tang F, Sun Y, Jia J, Wang J, Lu S, Fu Q, Jiang H, Xu L, Wang Y, Zhang X, Huang X, Jiang Q. Genetic abnormalities predict outcomes in patients with core binding factor acute myeloid leukemia. Ann Hematol 2025; 104:997-1006. [PMID: 39966122 PMCID: PMC11971224 DOI: 10.1007/s00277-024-06182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025]
Abstract
Research on the comprehensive integration of clinical and genomic characteristics in patients with core binding factor acute myeloid leukemia (CBF-AML) is limited. Clinical and genomic data from consecutive patients with CBF-AML were reviewed. A Cox regression model was used to identify the variables associated with event-free survival (EFS), relapse-free survival (RFS) and overall survival (OS). A total of 346 CBF-AML patients (211 with RUNX1::RUNX1T1 and 135 with CBFB::MYH11) were included in this study. In the RUNX1::RUNX1T1 cohort, multivariate analyses revealed that KDM6A mutations were significantly associated with poor RFS (hazard ratio = 3.1 [1.4, 7.1], p = 0.007) and OS (HR = 11.5 [3.6, 37.0], p < 0.001); FLT3-TKD mutations, poor OS (HR = 4.9 [1.7, 14.3], p = 0.004); KIT mutation VAF > 25%, poor RFS (KITwt as ref, HR = 2.5 [1.1, 5.3], p = 0.022); ASXL1 mutations, favorable EFS (HR = 0.4 [0.2, 0.9], p = 0.016) and OS (HR = 0.2 [0.03, 0.8], p = 0.028). In the CBFB::MYH11 cohort, multivariate analyses revealed that a high mutation burden was significantly associated with inferior OS (HR = 1.4 [1.1, 1.8], p = 0.018); FLT3-ITD mutations, inferior OS (HR = 6.8 [1.3, 36.0], p = 0.024). In addition, increasing age, nonintensive chemotherapy, and high MRD levels predict poor outcomes in the RUNX1::RUNX1T1 cohort. In addition to the adverse impact of high KIT mutation burden and FLT3-ITD or FLT3-TKD mutations on prognosis in CBF-AML, KDM6A mutations predicted poor outcomes in patients with RUNX1::RUXN1T1; however, ASXL1 mutations, favourable outcomes; high mutation burden, poor outcomes in those with CBFB::MYH11.
Collapse
Affiliation(s)
- Shunjie Yu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China
| | - Sen Yang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China
| | - Lijuan Hu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China
| | - Wenbing Duan
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China
| | - Ting Zhao
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China
| | - Yazhen Qin
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China
| | - Yazhe Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China
| | - Yueyun Lai
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China
| | - Hongxia Shi
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China
| | - Feifei Tang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China
| | - Yuqian Sun
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China
| | - Jinsong Jia
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China
| | - Shengye Lu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China
| | - Qiang Fu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China
| | - Hao Jiang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China
| | - Lanping Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China
| | - Yu Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China
| | - Xiaohui Zhang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China
| | - Xiaojun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Qian Jiang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking University, No. 11 Xizhimen South St, Beijing, China.
- Peking University People's Hospital, Qingdao, China.
| |
Collapse
|
5
|
He H, Li J, Li W, Zhao X, Xue T, Liu S, Zhang R, Zheng H, Gao C. Clinical features and long-term outcomes of pediatric patients with de novo acute myeloid leukemia in China with or without specific gene abnormalities: a cohort study of patients treated with BCH-AML 2005. Hematology 2024; 29:2406596. [PMID: 39361146 DOI: 10.1080/16078454.2024.2406596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 09/15/2024] [Indexed: 10/05/2024] Open
Abstract
Acute myeloid leukemia (AML), which has distinct genetic abnormalities, has unique clinical and biological features. In this study, the incidence, clinical characteristics, induction treatment response, and outcomes of a large cohort of Chinese AML pediatric patients treated according to the BCH-AML 2005 protocol were analyzed. RUNX1-RUNX1T1 was the most common fusion transcript, followed by the CBFβ-MHY11 and KMT2A rearrangements. FLT3-ITD and KIT mutations are associated with unfavorable clinical features and induction responses, along with KMT2A rearrangements, DEK-NUP214, and CBF-AML. The 5-year event-free survival (EFS) and overall survival (OS) rates of our cohort were 53.9 ± 3.7% and 58.5 ± 3.6%, with the best survival found among patients with CBFβ-MYH11 and the worst survival among those with DEK-NUP214. In addition, we found that patients with FLT3-ITD mutation had adverse outcomes and that KIT mutation had a negative impact on OS in RUNX1-RUNX1T1+ patients. Furthermore, the risk classification and response to treatment after each induction block also influenced the prognosis, and HSCT after first remission could improve OS in high-risk patients. Not achieving complete remission after induction 2 was found to be an independent prognostic factor for OS and EFS. These findings indicate that genetic abnormalities could be considered stratification factors, predict patient outcomes, and imply the application of targeted therapy.
Collapse
Affiliation(s)
- Hongbo He
- Hematology Center, National Key Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Jun Li
- Department of Clinical Laboratory Center, Key Laboratory of Major Diseases in Children Ministry of Education, Beijing Children's Hospital Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Weijing Li
- Hematologic Disease Laboratory, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Xiaoxi Zhao
- Department of Clinical Laboratory Center, Key Laboratory of Major Diseases in Children Ministry of Education, Beijing Children's Hospital Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Tianlin Xue
- Department of Clinical Laboratory Center, Key Laboratory of Major Diseases in Children Ministry of Education, Beijing Children's Hospital Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Shuguang Liu
- Department of Clinical Laboratory Center, Key Laboratory of Major Diseases in Children Ministry of Education, Beijing Children's Hospital Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Ruidong Zhang
- Hematology Center, National Key Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Huyong Zheng
- Hematology Center, National Key Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Chao Gao
- Department of Clinical Laboratory Center, Key Laboratory of Major Diseases in Children Ministry of Education, Beijing Children's Hospital Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| |
Collapse
|
6
|
Travaglini S, Silvestrini G, Attardi E, Fanciulli M, Scalera S, Antonelli S, Maurillo L, Palmieri R, Divona M, Ciuffreda L, Savi A, Paterno G, Ottone T, Barbieri C, Maciejewski JP, Gurnari C, Ciliberto G, Voso MT. Evolution of transcriptomic profiles in relapsed inv(16) acute myeloid leukemia. Leuk Res 2024; 145:107568. [PMID: 39180902 DOI: 10.1016/j.leukres.2024.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Acute myeloid leukemia (AML) with inv(16) is typically associated with a favourable prognosis. However, up to 40 % of patients will eventually experience disease relapse. Herein, we dissected the genomic and transcriptomic profile of inv(16) AML to identify potential prognostic markers and therapeutic vulnerabilities. Sequencing data from 222 diagnostic samples, including 44 relapse/refractory patients, revealed a median of 1 concomitant additional mutation, cooperating with inv(16) in leukemogenesis. Notably, the mutational landscape at diagnosis did not differ significantly between patients experiencing primary induction failure or relapse when compared to the rest of the cohort, except for an increase in the mutational burden in the relapse/refractory group. RNA-Seq of unpaired diagnostic(n=7) and relapse(n=6) samples allowed the identification of oxidative phosphorylation (OXPHOS) as one of the most significantly downregulated pathways at relapse. Considering that OXPHOS could be targeted by Venetoclax/Azacitidine combination, we explored its biological effects on an inv(16) cell-line ME-1, but there was no additional advantage in terms of cell death over Azacitidine alone. To enhance Venetoclax efficacy, we tested in vitro effects of Metformin as a potential drug able to enhance chemosensitivity of AML cells by inhibiting the mitochondrial transfer. By challenging ME-1 with this combination, we observed a significant synergistic interaction at least similar to that of Venetoclax/Azacitidine. In conclusions, we identified a downregulated expression of oxidative phosphorylation (OXPHOS) at relapse in AML with inv(16), and explored the in vitro effects of metformin as a potential drug to enhance chemosensitivity in this setting.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Transcriptome
- Middle Aged
- Female
- Male
- Adult
- Oxidative Phosphorylation/drug effects
- Chromosome Inversion
- Aged
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Mutation
- Sulfonamides/pharmacology
- Prognosis
- Chromosomes, Human, Pair 16/genetics
- Recurrence
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic/drug effects
- Aged, 80 and over
Collapse
Affiliation(s)
- Serena Travaglini
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Giorgia Silvestrini
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Enrico Attardi
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Maurizio Fanciulli
- SAFU Laboratory, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Scalera
- Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Silvia Antonelli
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Luca Maurillo
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Raffaele Palmieri
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Mariadomenica Divona
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Saint Camillus International University of Health Sciences, Rome, Italy
| | - Ludovica Ciuffreda
- SAFU Laboratory, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Arianna Savi
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | | | - Tiziana Ottone
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, Rome, Italy
| | | | - Jaroslaw P Maciejewski
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Carmelo Gurnari
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, Rome, Italy.
| |
Collapse
|
7
|
Liu Y, Liu W, Lai A, Mei Y, Wang Y, Wei H, Rao Q, Gu R, Mi Y, Wang M, Wang J, Qiu S. Multiomic analysis identifies a high-risk subgroup that predicts poor prognosis in t(8;21) acute myeloid leukemia. Blood Cancer J 2024; 14:162. [PMID: 39284810 PMCID: PMC11405412 DOI: 10.1038/s41408-024-01144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/mortality
- Chromosomes, Human, Pair 8/genetics
- Translocation, Genetic
- Chromosomes, Human, Pair 21/genetics
- Prognosis
- Male
- Female
- Adult
- Middle Aged
- Adolescent
- Aged
- Young Adult
- Gene Expression Profiling
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wenbing Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Anli Lai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yihan Mei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ying Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Runxia Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yingchang Mi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Shaowei Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
8
|
Lints R, Walker CA, Delfi O, Prouse M, PohLui De Silva M, Bohlander SK, Wood AC. Mutational cooperativity of RUNX1::RUNX1T1 isoform 9a and oncogenic NRAS in zebrafish myeloid leukaemia. Biol Open 2024; 13:bio060523. [PMID: 39177514 PMCID: PMC11381922 DOI: 10.1242/bio.060523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
RUNX1::RUNX1T1 (R::RT1) acute myeloid leukaemia (AML) remains a clinical challenge, and further research is required to model and understand leukaemogenesis. Previous zebrafish R::RT1 models were hampered by embryonic lethality and low penetrance of the malignant phenotype. Here, we overcome this by developing an adult zebrafish model in which the human R::RT1 isoform 9a is co-expressed with the frequently co-occurring oncogenic NRASG12D mutation in haematopoietic stem and progenitor cells (HSPCs), using the Runx1+23 enhancer. Approximately 50% of F0 9a+NRASG12D transgenic zebrafish developed signs of haematological disease between 5 and 14 months, with 27% exhibiting AML-like pathology: myeloid precursor expansion, erythrocyte reduction, kidney marrow hypercellularity and the presence of blasts. Moreover, only 9a+NRASG12D transplant recipients developed leukaemia with high rates of mortality within 40 days, inferring the presence of leukaemia stem cells. These leukaemic features were rare or not observed in animals expressing either the NRAS or 9a oncogenes alone, suggesting 9a and NRAS cooperation drives leukaemogenesis. This novel adult AML zebrafish model provides a powerful new tool for investigating the basis of R::RT1 - NRAS cooperativity with the potential to uncover new therapeutic targets.
Collapse
Affiliation(s)
- Robyn Lints
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Christina A. Walker
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Omid Delfi
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Matthew Prouse
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | | | - Stefan K. Bohlander
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Andrew C. Wood
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
- Starship Child Health, Starship Blood and Cancer Centre, Auckland 1023, New Zealand
| |
Collapse
|
9
|
Halik A, Tilgner M, Silva P, Estrada N, Altwasser R, Jahn E, Heuser M, Hou HA, Pratcorona M, Hills RK, Metzeler KH, Fenwarth L, Dolnik A, Terre C, Kopp K, Blau O, Szyska M, Christen F, Krönke J, Vasseur L, Löwenberg B, Esteve J, Valk PJM, Duchmann M, Chou WC, Linch DC, Döhner H, Gale RE, Döhner K, Bullinger L, Yoshida K, Damm F. Genomic characterization of AML with aberrations of chromosome 7: a multinational cohort of 519 patients. J Hematol Oncol 2024; 17:70. [PMID: 39160538 PMCID: PMC11331663 DOI: 10.1186/s13045-024-01590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Deletions and partial losses of chromosome 7 (chr7) are frequent in acute myeloid leukemia (AML) and are linked to dismal outcome. However, the genomic landscape and prognostic impact of concomitant genetic aberrations remain incompletely understood. METHODS To discover genetic lesions in adult AML patients with aberrations of chromosome 7 [abn(7)], 60 paired diagnostic/remission samples were investigated by whole-exome sequencing in the exploration cohort. Subsequently, a gene panel including 66 genes and a SNP backbone for copy-number variation detection was designed and applied to the remaining samples of the validation cohort. In total, 519 patients were investigated, of which 415 received intensive induction treatment, typically containing a combination of cytarabine and anthracyclines. RESULTS In the exploration cohort, the most frequently mutated gene was TP53 (33%), followed by epigenetic regulators (DNMT3A, KMT2C, IDH2) and signaling genes (NRAS, PTPN11). Thirty percent of 519 patients harbored ≥ 1 mutation in genes located in commonly deleted regions of chr7-most frequently affecting KMT2C (16%) and EZH2 (10%). KMT2C mutations were often subclonal and enriched in patients with del(7q), de novo or core-binding factor AML (45%). Cancer cell fraction analysis and reconstruction of mutation acquisition identified TP53 mutations as mainly disease-initiating events, while del(7q) or -7 appeared as subclonal events in one-third of cases. Multivariable analysis identified five genetic lesions with significant prognostic impact in intensively treated AML patients with abn(7). Mutations in TP53 and PTPN11 (11%) showed the strongest association with worse overall survival (OS, TP53: hazard ratio [HR], 2.53 [95% CI 1.66-3.86]; P < 0.001; PTPN11: HR, 2.24 [95% CI 1.56-3.22]; P < 0.001) and relapse-free survival (RFS, TP53: HR, 2.3 [95% CI 1.25-4.26]; P = 0.008; PTPN11: HR, 2.32 [95% CI 1.33-4.04]; P = 0.003). By contrast, IDH2-mutated patients (9%) displayed prolonged OS (HR, 0.51 [95% CI 0.30-0.88]; P = 0.0015) and durable responses (RFS: HR, 0.5 [95% CI 0.26-0.96]; P = 0.036). CONCLUSION This work unraveled formerly underestimated genetic lesions and provides a comprehensive overview of the spectrum of recurrent gene mutations and their clinical relevance in AML with abn(7). KMT2C mutations are among the most frequent gene mutations in this heterogeneous AML subgroup and warrant further functional investigation.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Female
- Male
- Middle Aged
- Adult
- Chromosomes, Human, Pair 7/genetics
- Aged
- Mutation
- Cohort Studies
- Young Adult
- Chromosome Aberrations
- Prognosis
- Aged, 80 and over
- Adolescent
- Exome Sequencing
- DNA Copy Number Variations
- Tumor Suppressor Protein p53/genetics
- Genomics/methods
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
Collapse
Affiliation(s)
- Adriane Halik
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marlon Tilgner
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Patricia Silva
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Natalia Estrada
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Altwasser
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ekaterina Jahn
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Department of Internal Medicine IV, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, and Division of General Medicine, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung Shan South Road, Taipei City, Taiwan
| | - Marta Pratcorona
- Hospital de la Santa Creu i Sant Pau. Institut de Recerca Sant Pau. Department of Medicine, Universitat Autonoma of Barcelona, Barcelona, Spain
| | - Robert K Hills
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Klaus H Metzeler
- Department of Hematology, Cell Therapy, Hemostaseology and Infectious Diseases, University Hospital Leipzig, Leipzig, Germany
| | - Laurene Fenwarth
- Unité Mixte de Recherche (UMR) 9020-UMR1277, Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre Hospitalo-Universitaire (CHU) Lille, Institut de Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Anna Dolnik
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christine Terre
- Laboratoire de Cytogénétique, Service de Biologie, CH de Versailles, Le Chesnay, France
| | - Klara Kopp
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Olga Blau
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martin Szyska
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Friederike Christen
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jan Krönke
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (Deutsches Konsortium Für Translationale Krebsforschung, DKTK), Partner Site, Berlin, Germany
| | - Loïc Vasseur
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Bob Löwenberg
- Department of Hematology, Erasmus MC Cancer Institute, and Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jordi Esteve
- Hematology Department, IDIBAPS, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Peter J M Valk
- Department of Hematology, Erasmus MC Cancer Institute, and Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Matthieu Duchmann
- Institut de Recherche Saint-Louis (IRSL), Institut National de la Santé et de la Recherche Médicale (INSERM) U944, Centre National de la Recherche Scientifique (CNRS) UMR 7212 GenCellDis, Université Paris Cité, Paris, France
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, and Division of General Medicine, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung Shan South Road, Taipei City, Taiwan
| | - David C Linch
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Rosemary E Gale
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (Deutsches Konsortium Für Translationale Krebsforschung, DKTK), Partner Site, Berlin, Germany
| | - Kenichi Yoshida
- Division of Cancer Evolution, National Cancer Center Research Institute, Tokyo, Japan
| | - Frederik Damm
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- German Cancer Consortium (Deutsches Konsortium Für Translationale Krebsforschung, DKTK), Partner Site, Berlin, Germany.
| |
Collapse
|
10
|
Asou C, Sakamoto T, Suzuki K, Okuda I, Osaki A, Abe R, Ito Y, Kakegawa E, Miyakawa Y, Terui Y, Nakamura Y. Transformation into acute myeloid leukemia with t(8;21)(q22;q22.1); RUNX1::RUNX1T1 from JAK2-mutated essential thrombocythemia: a case report. J Med Case Rep 2024; 18:372. [PMID: 39154170 PMCID: PMC11330597 DOI: 10.1186/s13256-024-04691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/22/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Blast transformation is a rare but well-recognized event in Philadelphia-negative myeloproliferative neoplasms associated with a poor prognosis. Secondary acute myeloid leukemias evolving from myeloproliferative neoplasms are characterized by a unique set of cytogenetic and molecular features distinct from de novo disease. t(8;21) (q22;q22.1); RUNX1::RUNX1T1, one of the most frequent cytogenetic abnormalities in de novo acute myeloid leukemia, is rarely observed in post-myeloproliferative neoplasm acute myeloid leukemia. Here we report a case of secondary acute myeloid leukemia with t(8;21) evolving from JAK2-mutated essential thrombocythemia. CASE PRESENTATION The patient was a 74-year-old Japanese woman who was referred because of thrombocytosis (platelets 1046 × 109/L). Bone marrow was hypercellular with increase of megakaryocytes. Chromosomal analysis presented normal karyotype and genetic test revealed JAK2 V617F mutation. She was diagnosed with essential thrombocythemia. Thrombocytosis had been well controlled by oral administration of hydroxyurea; 2 years after the initial diagnosis with ET, she presented with leukocytosis (white blood cells 14.0 × 109/L with 82% of blasts), anemia (hemoglobin 91 g/L), and thrombocytopenia (platelets 24 × 109/L). Bone marrow was hypercellular and filled with 80% of myeloperoxidase-positive blasts bearing Auer rods. Chromosomal analysis revealed t(8;21) (q22;q22.1) and flow cytometry presented positivity of CD 13, 19, 34, and 56. Molecular analysis showed the coexistence of RUNX1::RUNX1T1 chimeric transcript and heterozygous JAK2 V617F mutation in leukemic blasts. She was diagnosed with secondary acute myeloid leukemia with t(8;21)(q22;q22.1); RUNX1::RUNX1T1 evolving from essential thrombocythemia. She was treated with combination chemotherapy with venetoclax and azacytidine. After the first cycle of the therapy, blasts disappeared from peripheral blood and decreased to 1.4% in bone marrow. After the chemotherapy, RUNX1::RUNX1T1 chimeric transcript disappeared, whereas mutation of JAK2 V617F was still present in peripheral leukocytes. CONCLUSIONS To our best knowledge, the present case is the first one with JAK2 mutation preceding the acquisition of t(8;21). Our result suggests that t(8;21); RUNX1::RUNX1T1 can be generated as a late event in the progression of JAK2-mutated myeloproliferative neoplasms. The case presented typical morphological and immunophenotypic features associated with t(8;21) acute myeloid leukemia.
Collapse
MESH Headings
- Humans
- Female
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Aged
- Janus Kinase 2/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Thrombocythemia, Essential/genetics
- Thrombocythemia, Essential/drug therapy
- Translocation, Genetic
- RUNX1 Translocation Partner 1 Protein/genetics
- Chromosomes, Human, Pair 8/genetics
- Chromosomes, Human, Pair 21/genetics
- Mutation
Collapse
Affiliation(s)
- Chie Asou
- Department of Hematology, Saitama Medical University Hospital, 38 Morohongo, Iruma-gun, Moroyama, Saitama, 350-0495, Japan
| | - Tomoyuki Sakamoto
- Department of Hematology, Saitama Medical University Hospital, 38 Morohongo, Iruma-gun, Moroyama, Saitama, 350-0495, Japan
| | - Kodai Suzuki
- Department of Hematology, Saitama Medical University Hospital, 38 Morohongo, Iruma-gun, Moroyama, Saitama, 350-0495, Japan
| | - Itoko Okuda
- Department of Hematology, Saitama Medical University Hospital, 38 Morohongo, Iruma-gun, Moroyama, Saitama, 350-0495, Japan
| | - Atsushi Osaki
- Department of Hematology, Saitama Medical University Hospital, 38 Morohongo, Iruma-gun, Moroyama, Saitama, 350-0495, Japan
| | - Ryohei Abe
- Department of Hematology, Saitama Medical University Hospital, 38 Morohongo, Iruma-gun, Moroyama, Saitama, 350-0495, Japan
| | - Yoshihiro Ito
- Department of Hematology, Saitama Medical University Hospital, 38 Morohongo, Iruma-gun, Moroyama, Saitama, 350-0495, Japan
| | - Emi Kakegawa
- Department of Hematology, Saitama Medical University Hospital, 38 Morohongo, Iruma-gun, Moroyama, Saitama, 350-0495, Japan
| | - Yoshitaka Miyakawa
- Department of Hematology, Saitama Medical University Hospital, 38 Morohongo, Iruma-gun, Moroyama, Saitama, 350-0495, Japan
| | - Yasuhito Terui
- Department of Hematology, Saitama Medical University Hospital, 38 Morohongo, Iruma-gun, Moroyama, Saitama, 350-0495, Japan
| | - Yuichi Nakamura
- Department of Hematology, Saitama Medical University Hospital, 38 Morohongo, Iruma-gun, Moroyama, Saitama, 350-0495, Japan.
| |
Collapse
|
11
|
Papke DJ, Odintsov I, Dickson BC, Nucci MR, Agaimy A, Fletcher CDM. Myxoid Inflammatory Myofibroblastic Sarcoma: Clinicopathologic Analysis of 25 Cases of a Distinctive Sarcoma With Deceptively Bland Morphology and Aggressive Clinical Behavior. Am J Surg Pathol 2024; 48:1005-1016. [PMID: 38717131 DOI: 10.1097/pas.0000000000002231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The number of recognized sarcoma types harboring targetable molecular alterations continues to increase. Here we present 25 examples of a distinctive myofibroblastic tumor, provisionally termed "myxoid inflammatory myofibroblastic sarcoma," which might be related to inflammatory myofibroblastic tumor, and which occurred in 13 males (52%) and 12 females at a median age of 37 years (range: 7 to 79 years). Primary tumor sites were peritoneum (18 patients; 72%), paratesticular (2; 8%), chest wall (1), upper extremity (1), esophagus (1), retroperitoneum (1), and uterus (1). Nine peritoneal tumors (50%) were multifocal at presentation; all other tumors were unifocal. Tumors showed bland-to-mildly-atypical neoplastic myofibroblasts in a myxoid stroma, with prominent inflammatory infiltrates in 22 cases (88%). Most tumors showed delicate branching stromal vessels like those of myxoid liposarcoma, and most showed infiltrative growth through non-neoplastic tissue. Immunohistochemistry demonstrated expression of SMA (19/25 tumors; 76%), desmin (13/22; 59%), and CD30 (5/11; 45%), while ALK was expressed in 1 tumor (of 25; 4%) that was negative for ALK rearrangement. Sequencing of 11 tumors showed seven to harbor tyrosine kinase fusions (4 PDGFRB , 2 PML :: JAK1 , 1 SEC31A :: PDGFRA ). Two instead harbored hot spot KRAS mutations (G12V and Q61H), and 2 were negative for known driving alterations. Clinical follow-up was available for 18 patients (72%; median: 2.7 years; range: 4 mo-12.3 years). Nine patients (50%) were alive with no evidence of disease, 5 (28%) died of disease, and 4 (22%) were alive with disease. Seven patients (39%) experienced peritoneal relapse or distant metastasis. Two patients showed disease progression on conventional, nontargeted chemotherapy. The patient whose tumor harbored SEC31A :: PDGFRA was treated after multiple relapses with imatinib and sunitinib therapy, with progression-free periods of 5 and 2 years, respectively. Despite its bland appearance, myxoid inflammatory myofibroblastic sarcoma harbors a significant risk for disseminated disease, particularly when it occurs in the peritoneum. Targeted therapy could be considered for patients with disseminated disease.
Collapse
Affiliation(s)
- David J Papke
- Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Igor Odintsov
- Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | | | - Marisa R Nucci
- Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Abbas Agaimy
- Institute of Pathology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
12
|
Lin L, Xue S, Chen J, Gu C, Zhang J, Xing E, Wang W, Wang L, Zhang Z. Olaparib combined with low-dose chemotherapy for relapsed AML1::ETO positive acute myeloid leukemia in elderly patient. Leuk Lymphoma 2024; 65:1181-1185. [PMID: 39041737 DOI: 10.1080/10428194.2024.2337795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/27/2024] [Indexed: 07/24/2024]
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/pathology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Piperazines/administration & dosage
- Piperazines/therapeutic use
- Phthalazines/administration & dosage
- Phthalazines/therapeutic use
- RUNX1 Translocation Partner 1 Protein/genetics
- Aged
- Core Binding Factor Alpha 2 Subunit/genetics
- Oncogene Proteins, Fusion/genetics
- Treatment Outcome
- Male
- Female
- Recurrence
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
Collapse
Affiliation(s)
- Li Lin
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, People's Republic of China
| | - Song Xue
- Department of Bone Marrow Transplant, Beijing Lu Daopei Hospital, Beijing, People's Republic of China
| | - Jiaqi Chen
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, People's Republic of China
| | - Cuihong Gu
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, People's Republic of China
| | - Jingzheng Zhang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, People's Republic of China
| | - Enhong Xing
- Department of Central Laboratory, The Affiliated Hospital of Chengde Medical College, Chengde, People's Republic of China
| | - Wei Wang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, People's Republic of China
| | - Lihong Wang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, People's Republic of China
| | - Zhihua Zhang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, People's Republic of China
| |
Collapse
|
13
|
Salustiano-Bandeira ML, Moreira-Aguiar A, Pereira-Martins DA, Coelho-Silva JL, Weinhäuser I, França-Neto PL, Lima AS, Lima AS, Baccarin AR, Silva FB, de Melo MA, Niemann FS, Nardinelli L, Ortiz Rojas CA, Duarte BK, Araujo AS, Azevedo EA, Morais CN, Figueiredo-Pontes LL, Schuringa JJ, Huls G, Bendit I, Rego EM, Olalla Saad ST, Traina F, Bezerra MA, Lucena-Araujo AR. Prognostic implications of ΔNp73/TAp73 expression ratio in core-binding factor acute myeloid leukemia. Blood Cancer J 2024; 14:102. [PMID: 38914584 PMCID: PMC11196665 DOI: 10.1038/s41408-024-01086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Affiliation(s)
| | | | - Diego A Pereira-Martins
- Department of Genetics, Federal University of Pernambuco, Recife, Brazil
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Isabel Weinhäuser
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Aleide S Lima
- Department of Genetics, Federal University of Pernambuco, Recife, Brazil
| | - Ana S Lima
- Department of Medical Imaging, Hematology, and Oncology, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Anemari R Baccarin
- Department of Medical Imaging, Hematology, and Oncology, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Fernanda B Silva
- Department of Medical Imaging, Hematology, and Oncology, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Manuela A de Melo
- Department of Medical Imaging, Hematology, and Oncology, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Fernanda S Niemann
- Hematology and Transfusion Medicine Center, University of Campinas, Campinas, Brazil
| | - Luciana Nardinelli
- Hematology Division, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - César A Ortiz Rojas
- Hematology Division, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Bruno K Duarte
- Hematology and Transfusion Medicine Center, University of Campinas, Campinas, Brazil
- Department of Internal Medicine, University of Campinas, Campinas, Brazil
| | - Aderson S Araujo
- Department of Internal Medicine, Hematology and Hemotherapy Foundation of Pernambuco, Recife, Brazil
| | - Elisa A Azevedo
- Department of Virology, Fundação Oswaldo Cruz, Instituto de Pesquisas Aggeu Magalhães, Recife, Brazil
| | - Clarice N Morais
- Department of Virology, Fundação Oswaldo Cruz, Instituto de Pesquisas Aggeu Magalhães, Recife, Brazil
| | - Lorena L Figueiredo-Pontes
- Department of Medical Imaging, Hematology, and Oncology, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Jan J Schuringa
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerwin Huls
- Department of Hematology, Cancer Research Centre Groningen, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Israel Bendit
- Hematology Division, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Eduardo M Rego
- Hematology Division, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Sara T Olalla Saad
- Hematology and Transfusion Medicine Center, University of Campinas, Campinas, Brazil
- Department of Internal Medicine, University of Campinas, Campinas, Brazil
| | - Fabiola Traina
- Department of Medical Imaging, Hematology, and Oncology, Medical School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Marcos A Bezerra
- Department of Genetics, Federal University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
14
|
Bruzzese A, Vigna E, Martino EA, Labanca C, Mendicino F, Lucia E, Olivito V, Stanzione G, Zimbo A, Lugli E, Neri A, Morabito F, Gentile M. The potential of triplet combination therapies for patients with FLT3-ITD -mutated acute myeloid leukemia. Expert Rev Hematol 2024; 17:241-253. [PMID: 38748404 DOI: 10.1080/17474086.2024.2356258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) encompasses a heterogeneous group of aggressive myeloid malignancies, where FMS-like tyrosine kinase 3 (FLT3) mutations are prevalent, accounting for approximately 25-30% of adult patients. The presence of this mutation is related to a dismal prognosis and high relapse rates. In the lasts years many FLT3 inhibitors have been developed. AREAS COVERED This review provides a comprehensive overview of FLT3mut AML, summarizing the state of art of current treatment and available data about combination strategies including an FLT3 inhibitor. EXPERT OPINION In addition, the review discusses the emergence of drug resistance and the need for a nuanced approaches in treating patients who are ineligible for or resistant to intensive chemotherapy. Specifically, it explores the historical context of FLT3 inhibitors (FLT3Is) and their impact on treatment outcomes, emphasizing the pivotal role of midostaurin, as well as gilteritinib and quizartinib, and providing detailed insights into ongoing trials exploring the safety and efficacy of novel triplet combinations involving FLT3Is in different AML settings.
Collapse
Affiliation(s)
| | - Ernesto Vigna
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | | | | | - Eugenio Lucia
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | - Gaia Stanzione
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Division of Hematology, Azienda Policlinico-S. Marco, University of Catania, Catania, Italy
| | - Annamaria Zimbo
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- UOC Laboratorio Analisi Cliniche, Biomolecolari e Genetica, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Elisabetta Lugli
- Ematologia Azienda USL-IRCSS Reggio Emilia, Emilia-Romagna, Italy
| | - Antonino Neri
- Scientific Directorate IRCCS of Reggio Emilia, Emilia-Romagna, Reggio Emilia, Italy
| | | | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
15
|
Gabellier L, Peterlin P, Thepot S, Hicheri Y, Paul F, Gallego-Hernanz MP, Bertoli S, Turlure P, Pigneux A, Guieze R, Ochmann M, Malfuson JV, Cluzeau T, Thomas X, Tavernier E, Jourdan E, Bonnet S, Tudesq JJ, Raffoux E. Hypomethylating agent monotherapy in core binding factor acute myeloid leukemia: a French multicentric retrospective study. Ann Hematol 2024; 103:759-769. [PMID: 38273140 PMCID: PMC10867066 DOI: 10.1007/s00277-024-05623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Very few data are available about hypomethylating agent (HMA) efficiency in core binding factor acute myeloid leukemias (CBF-AML). Our main objective was to evaluate the efficacy and safety of HMA in the specific subset of CBF-AML. Here, we report the results of a multicenter retrospective French study about efficacy of HMA monotherapy, used frontline or for R/R CBF-AML. Forty-nine patients were included, and received a median of 5 courses of azacitidine (n = 46) or decitabine (n = 3). ORR was 49% for the whole cohort with a median time to response of 112 days. After a median follow-up of 72.3 months, median OS for the total cohort was 10.6 months. In multivariate analysis, hematological relapse of CBF-AML at HMA initiation was significantly associated with a poorer OS (HR: 2.13; 95%CI: 1.04-4.36; p = 0.038). Responders had a significantly improved OS (1-year OS: 75%) compared to non-responders (1-year OS: 15.3%; p < 0.0001). Hematological improvement occurred for respectively 28%, 33% and 48% for patients who were red blood cell or platelet transfusion-dependent, or who experienced grade 3/4 neutropenia at HMA initiation. Adverse events were consistent with the known safety profile of HMA. Our study highlights that HMA is a well-tolerated therapeutic option with moderate clinical activity for R/R CBF-AML and for patients who cannot handle intensive chemotherapy.
Collapse
Affiliation(s)
- Ludovic Gabellier
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier-Nîmes, 80, Avenue Augustin Fliche, 34090, Montpellier, France.
| | - Pierre Peterlin
- Département d'Hématologie Clinique, CHU Nantes, Université de Nantes, Nantes, France
| | - Sylvain Thepot
- Département d'Hématologie Clinique, CHU Angers, Université d'Angers, Angers, France
| | - Yosr Hicheri
- Département d'Hématologie Clinique, Institut Paoli-Calmettes, Marseille, France
| | - Franciane Paul
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier-Nîmes, 80, Avenue Augustin Fliche, 34090, Montpellier, France
| | | | - Sarah Bertoli
- Service d'Hématologie Clinique, CHU Toulouse, Institut Universitaire du Cancer de Toulouse - Oncopôle, Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Pascal Turlure
- Département d'Hématologie Clinique, CHU Limoges, Université de Limoges, Limoges, France
| | - Arnaud Pigneux
- Département d'Hématologie Clinique, CHU Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Romain Guieze
- Département d'Hématologie Clinique, CHU Clermont-Ferrand, Université de Clermont-Ferrand, Clermont-Ferrand, France
| | - Marlène Ochmann
- Département d'Hématologie Clinique, Orléans, Orléans, CH, France
| | - Jean-Valère Malfuson
- Département d'Hématologie Clinique, Hôpital d'instruction Des Armées, Percy, France
| | - Thomas Cluzeau
- Département d'Hématologie Clinique, CHU Nice, Université de Nice, Nice, France
| | - Xavier Thomas
- Département d'Hématologie Clinique, Hospices Civils de Lyon, CHU Lyon, Université de Lyon, Lyon, France
| | - Emmanuelle Tavernier
- Département d'Hématologie Clinique, Institut de Cancérologie Lucien Neuwirth, Université de Saint-Etienne, Saint-Etienne, France
| | - Eric Jourdan
- Département d'Hématologie Clinique, CHU Nîmes, Université de Montpellier-Nîmes, Nîmes, France
| | - Sarah Bonnet
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier-Nîmes, 80, Avenue Augustin Fliche, 34090, Montpellier, France
| | - Jean-Jacques Tudesq
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier-Nîmes, 80, Avenue Augustin Fliche, 34090, Montpellier, France
| | - Emmanuel Raffoux
- Département d'Hématologie Clinique Adultes, Hôpital Saint-Louis, APHP, Université Paris Diderot, Paris, France
| |
Collapse
|
16
|
Wachter F, Pikman Y. Pathophysiology of Acute Myeloid Leukemia. Acta Haematol 2024; 147:229-246. [PMID: 38228114 DOI: 10.1159/000536152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a biologically heterogenous disease arising in clonally proliferating hematopoietic stem cells. Sequential acquisition of mutations leads to expanded proliferation of clonal myeloid progenitors and failure of differentiation, leading to fulminant AML. SUMMARY Here, we review the pathophysiology of AML with a focus on factors predisposing to AML development, including prior chemo- and radiation therapy, environmental factors, and germline predisposition. KEY MESSAGE Increasing genomic characterization of AML and insight into mechanisms of its development will be critical to improvement in AML prognostication and therapy.
Collapse
Affiliation(s)
- Franziska Wachter
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Noerenberg D, Briest F, Hennch C, Yoshida K, Hablesreiter R, Takeuchi Y, Ueno H, Staiger AM, Ziepert M, Asmar F, Locher BN, Toth E, Weber T, Amini RM, Klapper W, Bouzani M, Poeschel V, Rosenwald A, Held G, Campo E, Ishaque N, Stamatopoulos K, Kanellis G, Anagnostopoulos I, Bullinger L, Goldschmidt N, Zinzani PL, Bödör C, Rosenquist R, Vassilakopoulos TP, Ott G, Ogawa S, Damm F. Genetic Characterization of Primary Mediastinal B-Cell Lymphoma: Pathogenesis and Patient Outcomes. J Clin Oncol 2024; 42:452-466. [PMID: 38055913 DOI: 10.1200/jco.23.01053] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE Primary mediastinal large B-cell lymphoma (PMBCL) is a rare aggressive lymphoma predominantly affecting young female patients. Large-scale genomic investigations and genetic markers for risk stratification are lacking. PATIENTS AND METHODS To elucidate the full spectrum of genomic alterations, samples from 340 patients with previously untreated PMBCL were investigated by whole-genome (n = 20), whole-exome (n = 78), and targeted (n = 308) sequencing. Statistically significant prognostic variables were identified using a multivariable Cox regression model and confirmed by L1/L2 regularized regressions. RESULTS Whole-genome sequencing revealed a commonly disrupted p53 pathway with nonredundant somatic structural variations (SVs) in TP53-related genes (TP63, TP73, and WWOX) and identified novel SVs facilitating immune evasion (DOCK8 and CD83). Integration of mutation and copy-number data expanded the repertoire of known PMBCL alterations (eg, ARID1A, P2RY8, and PLXNC1) with a previously unrecognized role for epigenetic/chromatin modifiers. Multivariable analysis identified six genetic lesions with significant prognostic impact. CD58 mutations (31%) showed the strongest association with worse PFS (hazard ratio [HR], 2.52 [95% CI, 1.50 to 4.21]; P < .001) and overall survival (HR, 2.33 [95% CI, 1.14 to 4.76]; P = .02). IPI high-risk patients with mutated CD58 demonstrated a particularly poor prognosis, with 5-year PFS and OS rates of 41% and 58%, respectively. The adverse prognostic significance of the CD58 mutation status was predominantly observed in patients treated with nonintensified regimens, indicating that dose intensification may, to some extent, mitigate the impact of this high-risk marker. By contrast, DUSP2-mutated patients (24%) displayed durable responses (PFS: HR, 0.2 [95% CI, 0.07 to 0.55]; P = .002) and prolonged OS (HR, 0.11 [95% CI, 0.01 to 0.78]; P = .028). Upon CHOP-like treatment, these patients had very favorable outcome, with 5-year PFS and OS rates of 93% and 98%, respectively. CONCLUSION This large-scale genomic characterization of PMBCL identified novel treatment targets and genetic lesions for refined risk stratification. DUSP2 and CD58 mutation analyses may guide treatment decisions between rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone and dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab.
Collapse
Affiliation(s)
- Daniel Noerenberg
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Franziska Briest
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cornelius Hennch
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Cancer Evolution, National Cancer Center Research Institute, Tokyo, Japan
| | - Raphael Hablesreiter
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yasuhide Takeuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroo Ueno
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Annette M Staiger
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology Stuttgart, and University of Tuebingen, Stuttgart, Germany
| | - Marita Ziepert
- Institute of Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Fazila Asmar
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Benjamin N Locher
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Erika Toth
- Department of Surgical and Molecular Pathology, National Tumour Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Thomas Weber
- Department of Internal Medicine IV, Haematology and Oncology, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Rose-Marie Amini
- Department of Immunology, Genetics and Pathology, Uppsala University and University Hospital, Uppsala, Sweden
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Maria Bouzani
- Department of Hematology and Lymphoma, BMTU, Evaggelismos General Hospital, Athens, Greece
| | - Viola Poeschel
- Department of Internal Medicine 1 (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical School, Homburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
| | - Gerhard Held
- Department of Internal Medicine 1 (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical School, Homburg, Germany
- Department Internal Medicine I, Westpfalzklinikum Kaiserslautern, Kaiserslautern, Germany
| | - Elías Campo
- Centro de Investigacion Biomedica en Red en Oncologia (CIBERONC), Madrid, Spain
- Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Naveed Ishaque
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Center of Digital Health, Berlin, Germany
| | - Kostas Stamatopoulos
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - George Kanellis
- Department of Hematopathology, Evangelismos General Hospital, Athens, Greece
| | - Ioannis Anagnostopoulos
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
- Department of Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Theodoros P Vassilakopoulos
- Department of Internal Medicine IV, Haematology and Oncology, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Frederik Damm
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
18
|
Yan M, Liu M, Davis AG, Stoner SA, Zhang DE. Single-cell RNA sequencing of a new transgenic t(8;21) preleukemia mouse model reveals regulatory networks promoting leukemic transformation. Leukemia 2024; 38:31-44. [PMID: 37838757 PMCID: PMC10776403 DOI: 10.1038/s41375-023-02063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
T(8;21)(q22;q22), which generates the AML1-ETO fusion oncoprotein, is a common chromosomal abnormality in acute myeloid leukemia (AML) patients. Despite having favorable prognosis, 40% of patients will relapse, highlighting the need for innovative models and application of the newest technologies to study t(8;21) leukemogenesis. Currently, available AML1-ETO mouse models have limited utility for studying the pre-leukemic stage because AML1-ETO produces mild hematopoietic phenotypes and no leukemic transformation. Conversely, overexpression of a truncated variant, AML1-ETO9a (AE9a), promotes fully penetrant leukemia and is too potent for studying pre-leukemic changes. To overcome these limitations, we devised a germline-transmitted Rosa26 locus AE9a knock-in mouse model that moderately overexpressed AE9a and developed leukemia with long latency and low penetrance. We observed pre-leukemic alterations in AE9a mice, including skewing of progenitors towards granulocyte/monocyte lineages and replating of stem and progenitor cells. Next, we performed single-cell RNA sequencing to identify specific cell populations that contribute to these pre-leukemic phenotypes. We discovered a subset of common myeloid progenitors that have heightened granulocyte/monocyte bias in AE9a mice. We also observed dysregulation of key hematopoietic transcription factor target gene networks, blocking cellular differentiation. Finally, we identified Sox4 activation as a potential contributor to stem cell self-renewal during the pre-leukemic stage.
Collapse
Affiliation(s)
- Ming Yan
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Mengdan Liu
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amanda G Davis
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Samuel A Stoner
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Dong-Er Zhang
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Zhai Y, Wang Q, Ji L, Ren H, Dong Y, Yang F, Yin Y, Liang Z, Wang Q, Liu W, Mei Y, Zhang L, Li Y. Clinical characteristics and prognostic factors analysis of core binding factor acute myeloid leukemia in real world. Cancer Med 2023; 12:21592-21604. [PMID: 38062912 PMCID: PMC10757144 DOI: 10.1002/cam4.6693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND Chromosomal translocations involving core binding factor (CBF) genes account for 15% of adult acute myeloid leukemia (AML) cases in China. Despite being classified as favorable-risk by European Leukemia Net (ELN), CBF-AML patients have a 40% relapse rate. This study aims to analyze clinical characteristics and prognosis of CBF-AML, compare its subtypes (inv(16) and t(8;21)), and validate prognostic factors. METHODS Retrospective analysis of 149 AML patients (75 CBF-AML, 74 non-CBF) at Peking University First Hospital (March 2012-March 2022). RESULTS CBF-AML patients have significantly lower disease-free survival (DFS) (p = 0.005) and higher non-relapse mortality (NRM) (p = 0.028) compared to non-CBF AML. inv (16) and t(8;21) show distinct co-occurring gene mutation patterns, with inv(16) being prone to central nervous system (CNS) leukemia. Multivariate analysis identifies age as a risk factor for overall survival (OS) and disease free survival (DFS), kinase mutation as a risk factor for DFS and Recurrence, while WT1 mutation as a risk factor for OS and non relapse mortality (NRM) risk in t(8;21) AML. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) improves prognosis in low-risk t(8;21). CONCLUSION Prognosis of CBF-AML is poorer than ELN guidelines suggest. inv(16) and (8;21) are separate entities with relatively poor prognoses, requiring rational risk stratification strategies. Allo-HSCT may benefit low-risk t(8;21), but further research is needed for conclusive evidence.
Collapse
Affiliation(s)
- Yamei Zhai
- Department of HematologyPeking University First HospitalBeijingChina
| | - Qingya Wang
- Department of HematologyPeking University First HospitalBeijingChina
| | - Li Ji
- Department of HematologyPeking University First HospitalBeijingChina
| | - Hanyun Ren
- Department of HematologyPeking University First HospitalBeijingChina
| | - Yujun Dong
- Department of HematologyPeking University First HospitalBeijingChina
| | - Fan Yang
- Department of HematologyPeking University First HospitalBeijingChina
| | - Yue Yin
- Department of HematologyPeking University First HospitalBeijingChina
| | - Zeyin Liang
- Department of HematologyPeking University First HospitalBeijingChina
| | - Qian Wang
- Department of HematologyPeking University First HospitalBeijingChina
| | - Wei Liu
- Department of HematologyPeking University First HospitalBeijingChina
| | - Yan Mei
- Department of HematologyPeking University First HospitalBeijingChina
| | - Lu Zhang
- Department of HematologyPeking University First HospitalBeijingChina
| | - Yuan Li
- Department of HematologyPeking University First HospitalBeijingChina
| |
Collapse
|
20
|
Xu D, Yang Y, Yin Z, Tu S, Nie D, Li Y, Huang Z, Sun Q, Huang C, Nie X, Yao Z, Shi P, Zhang Y, Jiang X, Liu Q, Yu G. Risk-directed therapy based on genetics and MRD improves the outcomes of AML1-ETO-positive AML patients, a multi-center prospective cohort study. Blood Cancer J 2023; 13:168. [PMID: 37957175 PMCID: PMC10643486 DOI: 10.1038/s41408-023-00941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Affiliation(s)
- Dan Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Yang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sanfang Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Danian Nie
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiqing Li
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhenqian Huang
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qixin Sun
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou, China
| | - Changfen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaqi Nie
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zurong Yao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuejie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Nachmias B, Krichevsky S, Gatt ME, Gross Even-Zohar N, Shaulov A, Haran A, Aumann S, Vainstein V. Standardization of Molecular MRD Levels in AML Using an Integral Vector Bearing ABL and the Mutation of Interest. Cancers (Basel) 2023; 15:5360. [PMID: 38001621 PMCID: PMC10670136 DOI: 10.3390/cancers15225360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Quantitative PCR for specific mutation is being increasingly used in Acute Myeloid Leukemia (AML) to assess Measurable Residual Disease (MRD), allowing for more tailored clinical decisions. To date, standardized molecular MRD is limited to typical NPM1 mutations and core binding factor translocations, with clear prognostic and clinical implications. The monitoring of other identified mutations lacks standardization, limiting its use and incorporation in clinical trials. To overcome this problem, we designed a plasmid bearing both the sequence of the mutation of interest and the ABL reference gene. This allows the use of commercial standards for ABL to determine the MRD response in copy number. We provide technical aspects of this approach as well as our experience with 19 patients with atypical NPM1, RUNX1 and IDH1/2 mutations. In all cases, we demonstrate a correlation between response and copy number. We further demonstrate how copy number monitoring can modulate the clinical management. Taken together, we provide proof of concept of a novel yet simple tool, which allows in-house MRD monitoring for identified mutations, with ABL-based commercial standards. This approach would facilitate large multi-center studies assessing the clinical relevance of selected MRD monitoring.
Collapse
|
22
|
Wang YL, Gao SJ, Su L, Liu YJ, Zhang YW, Du YZ. [The study of clinical characteristics and prognosis of RUNX1-RUNX1T1 positive acute myeloid leukemia based on next-generation sequencing]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:851-854. [PMID: 38049338 PMCID: PMC10694073 DOI: 10.3760/cma.j.issn.0253-2727.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 12/06/2023]
Affiliation(s)
- Y L Wang
- Cancer Center, the First Hospital, Jilin University, Changchun 130021, China
| | - S J Gao
- Cancer Center, the First Hospital, Jilin University, Changchun 130021, China
| | - L Su
- Cancer Center, the First Hospital, Jilin University, Changchun 130021, China
| | - Y J Liu
- Cancer Center, the First Hospital, Jilin University, Changchun 130021, China
| | - Y W Zhang
- Cancer Center, the First Hospital, Jilin University, Changchun 130021, China
| | - Y Z Du
- Cancer Center, the First Hospital, Jilin University, Changchun 130021, China
| |
Collapse
|
23
|
Swoboda AS, Arfelli VC, Danese A, Windisch R, Kerbs P, Redondo Monte E, Bagnoli JW, Chen-Wichmann L, Caroleo A, Cusan M, Krebs S, Blum H, Sterr M, Enard W, Herold T, Colomé-Tatché M, Wichmann C, Greif PA. CSF3R T618I Collaborates With RUNX1-RUNX1T1 to Expand Hematopoietic Progenitors and Sensitizes to GLI Inhibition. Hemasphere 2023; 7:e958. [PMID: 37841755 PMCID: PMC10569757 DOI: 10.1097/hs9.0000000000000958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/22/2023] [Indexed: 10/17/2023] Open
Abstract
Activating colony-stimulating factor-3 receptor gene (CSF3R) mutations are recurrent in acute myeloid leukemia (AML) with t(8;21) translocation. However, the nature of oncogenic collaboration between alterations of CSF3R and the t(8;21) associated RUNX1-RUNX1T1 fusion remains unclear. In CD34+ hematopoietic stem and progenitor cells from healthy donors, double oncogene expression led to a clonal advantage, increased self-renewal potential, and blast-like morphology and distinct immunophenotype. Gene expression profiling revealed hedgehog signaling as a potential mechanism, with upregulation of GLI2 constituting a putative pharmacological target. Both primary hematopoietic cells and the t(8;21) positive AML cell line SKNO-1 showed increased sensitivity to the GLI inhibitor GANT61 when expressing CSF3R T618I. Our findings suggest that during leukemogenesis, the RUNX1-RUNXT1 fusion and CSF3R mutation act in a synergistic manner to alter hedgehog signaling, which can be exploited therapeutically.
Collapse
Affiliation(s)
- Anja S. Swoboda
- Department of Medicine III, University Hospital, LMU Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vanessa C. Arfelli
- Department of Medicine III, University Hospital, LMU Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Danese
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
- Department of Physiological Genomics, Biomedical Center Munich, Ludwig-Maximilians University, Germany
| | - Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Germany
| | - Paul Kerbs
- Department of Medicine III, University Hospital, LMU Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Enric Redondo Monte
- Department of Medicine III, University Hospital, LMU Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes W. Bagnoli
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Martinsried, Germany
| | - Linping Chen-Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Germany
| | - Alessandra Caroleo
- Department of Medicine III, University Hospital, LMU Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Monica Cusan
- Department of Medicine III, University Hospital, LMU Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Krebs
- Gene Center - Laboratory for Functional Genome Analysis, LMU Munich, Germany
| | - Helmut Blum
- Gene Center - Laboratory for Functional Genome Analysis, LMU Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Martinsried, Germany
| | - Tobias Herold
- Department of Medicine III, University Hospital, LMU Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maria Colomé-Tatché
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Germany
| | - Philipp A. Greif
- Department of Medicine III, University Hospital, LMU Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
24
|
Marrero RJ, Lamba JK. Current Landscape of Genome-Wide Association Studies in Acute Myeloid Leukemia: A Review. Cancers (Basel) 2023; 15:3583. [PMID: 37509244 PMCID: PMC10377605 DOI: 10.3390/cancers15143583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal hematopoietic disease that arises from chromosomal and genetic aberrations in myeloid precursor cells. AML is one of the most common types of acute leukemia in adults; however, it is relatively rare overall, comprising about 1% of all cancers. In the last decade or so, numerous genome-wide association studies (GWAS) have been conducted to screen between hundreds of thousands and millions of variants across many human genomes to discover genetic polymorphisms associated with a particular disease or phenotype. In oncology, GWAS has been performed in almost every commonly occurring cancer. Despite the increasing number of studies published regarding other malignancies, there is a paucity of GWAS studies for AML. In this review article, we will summarize the current status of GWAS in AML.
Collapse
Affiliation(s)
- Richard J. Marrero
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Jatinder K. Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
25
|
Boscaro E, Urbino I, Catania FM, Arrigo G, Secreto C, Olivi M, D'Ardia S, Frairia C, Giai V, Freilone R, Ferrero D, Audisio E, Cerrano M. Modern Risk Stratification of Acute Myeloid Leukemia in 2023: Integrating Established and Emerging Prognostic Factors. Cancers (Basel) 2023; 15:3512. [PMID: 37444622 DOI: 10.3390/cancers15133512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
An accurate estimation of AML prognosis is complex since it depends on patient-related factors, AML manifestations at diagnosis, and disease genetics. Furthermore, the depth of response, evaluated using the level of MRD, has been established as a strong prognostic factor in several AML subgroups. In recent years, this rapidly evolving field has made the prognostic evaluation of AML more challenging. Traditional prognostic factors, established in cohorts of patients treated with standard intensive chemotherapy, are becoming less accurate as new effective therapies are emerging. The widespread availability of next-generation sequencing platforms has improved our knowledge of AML biology and, consequently, the recent ELN 2022 recommendations significantly expanded the role of new gene mutations. However, the impact of rare co-mutational patterns remains to be fully disclosed, and large international consortia such as the HARMONY project will hopefully be instrumental to this aim. Moreover, accumulating evidence suggests that clonal architecture plays a significant prognostic role. The integration of clinical, cytogenetic, and molecular factors is essential, but hierarchical methods are reaching their limit. Thus, innovative approaches are being extensively explored, including those based on "knowledge banks". Indeed, more robust prognostic estimations can be obtained by matching each patient's genomic and clinical data with the ones derived from very large cohorts, but further improvements are needed.
Collapse
Affiliation(s)
- Eleonora Boscaro
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Irene Urbino
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Federica Maria Catania
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Giulia Arrigo
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Carolina Secreto
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Matteo Olivi
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Stefano D'Ardia
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Chiara Frairia
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Valentina Giai
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Roberto Freilone
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Dario Ferrero
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy
| | - Ernesta Audisio
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Marco Cerrano
- Division of Hematology, Department of Oncology, Presidio Molinette, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| |
Collapse
|
26
|
Kong J, Zheng FM, Wang ZD, Zhang YY, Cheng YF, Fu HX, Lv M, Chen H, Xu LP, Zhang XH, Huang XJ, Wang Y. Avapritinib is effective for treatment of minimal residual disease in acute myeloid leukemia with t (8;21) and kit mutation failing to immunotherapy after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2023; 58:777-783. [PMID: 37024571 DOI: 10.1038/s41409-023-01973-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
In patients with t(8;21) acute myeloid leukemia (AML) with recurrent measurable residual disease (MRD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT), pre-emptive interferon-α therapy and donor lymphocyte infusion are noneffective in 30%-50% of patients. Avapritinib is a novel tyrosine kinase inhibitor targeting KIT mutations. We retrospectively report about 20 patients with t(8;21) AML and KIT mutations treated with avapritinib after allo-HSCT with MRD and most failing to respond to immunotherapy. Reduction of RUNX1-RUNX1T1 after 1 month of treatment was ≥1 log in 12 patients (60%), which became negative in 4 patients (20%). In 13 patients who received avapritinib for ≥3 months, the reduction was ≥1 log in all patients, which became negative in 7 patients (53.8%). The median follow-up time was 5.5 (2.0-10.0) months from avapritinib initiation to the last follow-up. Three patients underwent hematologic relapse and survived. Among all 20 patients, RUNX1-RUNX1T1 transcripts turned negative in 9 patients (45%). The efficacy did not differ significantly between D816 and non-D816 KIT mutation groups. The main adverse effect was hematological toxicity, which could generally be tolerated. In summary, avapritinib was effective for MRD treatment in patients with t(8;21) AML with KIT mutations failing to respond to immunotherapy after allo-HSCT.
Collapse
Affiliation(s)
- Jun Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Feng-Mei Zheng
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zhi-Dong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yi-Fei Cheng
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Hai-Xia Fu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Huan Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, 100044, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.
- National Clinical Research Center for Hematologic Disease, Beijing, China.
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|
27
|
George B, Yohannan B, Mohlere V, Gonzalez A. Therapy-related core binding factor acute myeloid leukemia. Int J Hematol Oncol 2023; 12:IJH43. [PMID: 36874378 PMCID: PMC9979104 DOI: 10.2217/ijh-2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Therapy-related acute myeloid leukemia (t-AML) usually stems from exposure of the bone marrow to cytotoxic chemotherapy and/or radiation therapy. t-AML is usually associated with poor overall survival, but occasionally t-AML can involve favorable-risk cytogenetics, including core binding factor AML (CBF-AML), which shows a recurrent chromosomal rearrangement with t(8;21) (q22;22) and 'inv(16) (p13.1;q22)/t(16;16)(p13.1;q22)', leading to 'RUNX1::RUNX1T1 and CBFB::MYH11' fusion genes, respectively. Therapy-related CBF-AML (t-CBF-AML) accounts for 5-15% of CBF-AML cases and tends to have better outcomes than t-AML with unfavorable cytogenetics. Although CBF-AML is sensitive to high-dose cytarabine, t-CBF-AML has worse overall survival than de novo CBF- AML. The objective of this review is to discuss the available data on the pathogenesis, mutations, and therapeutic options in patients with t-CBF-AML.
Collapse
Affiliation(s)
- Binsah George
- Department of Hematology/Oncology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, 6410 Fannin, Suite 830 Houston, TX 77030, USA
| | - Binoy Yohannan
- Department of Hematology/Oncology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, 6410 Fannin, Suite 830 Houston, TX 77030, USA
| | - Virginia Mohlere
- Department of Hematology/Oncology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, 6410 Fannin, Suite 830 Houston, TX 77030, USA
| | - Anneliese Gonzalez
- Department of Hematology/Oncology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, 6410 Fannin, Suite 830 Houston, TX 77030, USA
| |
Collapse
|
28
|
Ren R, Horton JR, Chen Q, Yang J, Liu B, Huang Y, Blumenthal RM, Zhang X, Cheng X. Structural basis for transcription factor ZBTB7A recognition of DNA and effects of ZBTB7A somatic mutations that occur in human acute myeloid leukemia. J Biol Chem 2023; 299:102885. [PMID: 36626981 PMCID: PMC9932118 DOI: 10.1016/j.jbc.2023.102885] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
ZBTB7A belongs to a small family of transcription factors having three members in humans (7A, 7B, and 7C). They share a BTB/POZ protein interaction domain at the amino end and a zinc-finger DNA-binding domain at the carboxyl end. They control the transcription of a wide range of genes, having varied functions in hematopoiesis, oncogenesis, and metabolism (in particular glycolysis). ZBTB7A-binding profiles at gene promoters contain a consensus G(a/c)CCC motif, followed by a CCCC sequence in some instances. Structural and mutational investigations suggest that DNA-specific contacts with the four-finger tandem array of ZBTB7A are formed sequentially, initiated from ZF1-ZF2 binding to G(a/c)CCC before spreading to ZF3-ZF4, which bind the DNA backbone and the 3' CCCC sequence, respectively. Here, we studied some mutations found in t(8;21)-positive acute myeloid leukemia patients that occur within the ZBTB7A DNA-binding domain. We determined that these mutations generally impair ZBTB7A DNA binding, with the most severe disruptions resulting from mutations in ZF1 and ZF2, and the least from a frameshift mutation in ZF3 that results in partial mislocalization. Information provided here on ZBTB7A-DNA interactions is likely applicable to ZBTB7B/C, which have overlapping functions with ZBTB7A in controlling primary metabolism.
Collapse
Affiliation(s)
- Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
29
|
Singh G, Thakur N, Kumar U. RAS: Circuitry and therapeutic targeting. Cell Signal 2023; 101:110505. [PMID: 36341985 DOI: 10.1016/j.cellsig.2022.110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/26/2022]
Abstract
Cancer has affected the lives of millions worldwide and is truly regarded as a devastating disease process. Despite advanced understanding of the genomic underpinning of cancer development and progression, therapeutic challenges are still persistent. Among all the human cancers, around 33% are attributed to mutations in RAS oncogene, a crucial component of the signaling pathways. With time, our understanding of RAS circuitry has improved and now the fact that it activates several downstream effectors, depending on the type and grades of cancer has been established. The circuitry is controlled via post-transcriptional mechanisms and frequent distortions in these mechanisms lead to important metabolic as well as immunological states that favor cancer cells' growth, survival, plasticity and metastasis. Therefore, understanding RAS circuitry can help researchers/clinicians to develop novel and potent therapeutics that, in turn, can save the lives of patients suffering from RAS-mutant cancers. There are many challenges presented by resistance and the potential strategies with a particular focus on novel combinations for overcoming these, that could move beyond transitory responses in the direction of treatment. Here in this review, we will look at how understanding the circuitry of RAS can be put to use in making strategies for developing therapeutics against RAS- driven malignancies.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Sahibzada Ajit Singh Nagar, Punjab 140413, India
| | - Neelam Thakur
- Department of Biosciences (UIBT), Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Sahibzada Ajit Singh Nagar, Punjab 140413, India; Department of Zoology, Sardar Patel University, Vallabh Government College Campus, Paddal, Kartarpur, Mandi, Himachal Pradesh 175001, India.
| | - Umesh Kumar
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH09, Ghaziabad, Uttar Pradesh 201015, India.
| |
Collapse
|
30
|
Karlsson L, Nyvold CG, Soboli A, Johansson P, Palmqvist L, Tierens A, Hasle H, Lausen B, Jónsson ÓG, Jürgensen GW, Ebbesen LH, Abrahamsson J, Fogelstrand L. Fusion transcript analysis reveals slower response kinetics than multiparameter flow cytometry in childhood acute myeloid leukaemia. Int J Lab Hematol 2022; 44:1094-1101. [PMID: 35918824 PMCID: PMC9804713 DOI: 10.1111/ijlh.13935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/26/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Analysis of measurable residual disease (MRD) is increasingly being implemented in the clinical care of children and adults with acute myeloid leukaemia (AML). However, MRD methodologies differ and discordances in results lead to difficulties in interpretation and clinical decision-making. The aim of this study was to compare results from reverse transcription quantitative polymerase chain reaction (RT-qPCR) and multiparameter flow cytometry (MFC) in childhood AML and describe the kinetics of residual leukaemic burden during induction treatment. METHODS In 15 children who were treated in the NOPHO-AML 2004 trial and had fusion transcripts quantified by RT-qPCR, we compared MFC with RT-qPCR for analysis of MRD during (day 15) and after induction therapy. Eight children had RUNX1::RUNX1T1, one CBFB::MYH11 and six KMT2A::MLLT3. RESULTS When ≥0.1% was used as cut-off for positivity, 10 of 22 samples were discordant. The majority (9/10) were MRD positive with RT-qPCR but MRD negative with MFC, and several such cases showed the presence of mature myeloid cells. Fusion transcript expression was verified in mature cells as well as in CD34 expressing cells sorted from diagnostic samples. CONCLUSIONS Measurement with RT-qPCR suggests slower response kinetics than indicated from MFC, presumably due to the presence of mature cells expressing fusion transcript. The prognostic impact of early measurements with RT-qPCR remains to be determined.
Collapse
Affiliation(s)
- Lene Karlsson
- Department of PediatricsInstitute of Clinical Sciences, Sahlgrenska Academy at University of GothenburgGothenburgSweden
| | - Charlotte Guldborg Nyvold
- Haemodiagnostic Laboratory, Department of HaematologyAarhus University HospitalAarhusDenmark,Haematolology‐Pathology Research LaboratoryResearch Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University HospitalOdenseDenmark
| | - Anastasia Soboli
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden,Department of Laboratory MedicineInstitute of Biomedicine, Sahlgrenska Academy at University of GothenburgGothenburgSweden
| | - Pegah Johansson
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
| | - Lars Palmqvist
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden,Department of Laboratory MedicineInstitute of Biomedicine, Sahlgrenska Academy at University of GothenburgGothenburgSweden
| | - Anne Tierens
- Laboratory Medicine ProgramUniversity Health Network, Toronto General HospitalTorontoOntarioCanada
| | - Henrik Hasle
- Department of PediatricsAarhus University HospitalAarhusDenmark
| | - Birgitte Lausen
- Department of Pediatrics and Adolescent MedicineRigshospitalet, University of CopenhagenCopenhagenDenmark
| | | | - Gitte Wulff Jürgensen
- Department of Clinical ImmunologyCopenhagen University Hospital RigshospitaletCopenhagenDenmark,Department of ImmunologyOslo University HosptialOsloNorway
| | - Lene Hyldahl Ebbesen
- Haemodiagnostic Laboratory, Department of HaematologyAarhus University HospitalAarhusDenmark
| | - Jonas Abrahamsson
- Department of PediatricsInstitute of Clinical Sciences, Sahlgrenska Academy at University of GothenburgGothenburgSweden
| | - Linda Fogelstrand
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden,Department of Laboratory MedicineInstitute of Biomedicine, Sahlgrenska Academy at University of GothenburgGothenburgSweden
| |
Collapse
|
31
|
Zhai Y, Singh P, Dolnik A, Brazda P, Atlasy N, del Gaudio N, Döhner K, Döhner H, Minucci S, Martens J, Altucci L, Megchelenbrink W, Bullinger L, Stunnenberg HG. Longitudinal single-cell transcriptomics reveals distinct patterns of recurrence in acute myeloid leukemia. Mol Cancer 2022; 21:166. [PMID: 35986270 PMCID: PMC9389773 DOI: 10.1186/s12943-022-01635-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/07/2022] [Indexed: 12/02/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a heterogeneous and aggressive blood cancer that results from diverse genetic aberrations in the hematopoietic stem or progenitor cells (HSPCs) leading to the expansion of blasts in the hematopoietic system. The heterogeneity and evolution of cancer blasts can render therapeutic interventions ineffective in a yet poorly understood patient-specific manner. In this study, we investigated the clonal heterogeneity of diagnosis (Dx) and relapse (Re) pairs at genetic and transcriptional levels, and unveiled the underlying pathways and genes contributing to recurrence. Methods Whole-exome sequencing was used to detect somatic mutations and large copy number variations (CNVs). Single cell RNA-seq was performed to investigate the clonal heterogeneity between Dx-Re pairs and amongst patients. Results scRNA-seq analysis revealed extensive expression differences between patients and Dx-Re pairs, even for those with the same -presumed- initiating events. Transcriptional differences between and within patients are associated with clonal composition and evolution, with the most striking differences in patients that gained large-scale copy number variations at relapse. These differences appear to have significant molecular implications, exemplified by a DNMT3A/FLT3-ITD patient where the leukemia switched from an AP-1 regulated clone at Dx to a mTOR signaling driven clone at Re. The two distinct AML1-ETO pairs share genes related to hematopoietic stem cell maintenance and cell migration suggesting that the Re leukemic stem cell-like (LSC-like) cells evolved from the Dx cells. Conclusions In summary, the single cell RNA data underpinned the tumor heterogeneity not only amongst patient blasts with similar initiating mutations but also between each Dx-Re pair. Our results suggest alternatively and currently unappreciated and unexplored mechanisms leading to therapeutic resistance and AML recurrence. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01635-4.
Collapse
|
32
|
Zhai Y, Singh P, Dolnik A, Brazda P, Atlasy N, Del Gaudio N, Döhner K, Döhner H, Minucci S, Martens J, Altucci L, Megchelenbrink W, Bullinger L, Stunnenberg HG. Longitudinal single-cell transcriptomics reveals distinct patterns of recurrence in acute myeloid leukemia. Mol Cancer 2022. [PMID: 35986270 DOI: 10.1186/s12943-022-01635-4.pmid:35986270;pmcid:pmc9389773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous and aggressive blood cancer that results from diverse genetic aberrations in the hematopoietic stem or progenitor cells (HSPCs) leading to the expansion of blasts in the hematopoietic system. The heterogeneity and evolution of cancer blasts can render therapeutic interventions ineffective in a yet poorly understood patient-specific manner. In this study, we investigated the clonal heterogeneity of diagnosis (Dx) and relapse (Re) pairs at genetic and transcriptional levels, and unveiled the underlying pathways and genes contributing to recurrence. METHODS Whole-exome sequencing was used to detect somatic mutations and large copy number variations (CNVs). Single cell RNA-seq was performed to investigate the clonal heterogeneity between Dx-Re pairs and amongst patients. RESULTS scRNA-seq analysis revealed extensive expression differences between patients and Dx-Re pairs, even for those with the same -presumed- initiating events. Transcriptional differences between and within patients are associated with clonal composition and evolution, with the most striking differences in patients that gained large-scale copy number variations at relapse. These differences appear to have significant molecular implications, exemplified by a DNMT3A/FLT3-ITD patient where the leukemia switched from an AP-1 regulated clone at Dx to a mTOR signaling driven clone at Re. The two distinct AML1-ETO pairs share genes related to hematopoietic stem cell maintenance and cell migration suggesting that the Re leukemic stem cell-like (LSC-like) cells evolved from the Dx cells. CONCLUSIONS In summary, the single cell RNA data underpinned the tumor heterogeneity not only amongst patient blasts with similar initiating mutations but also between each Dx-Re pair. Our results suggest alternatively and currently unappreciated and unexplored mechanisms leading to therapeutic resistance and AML recurrence.
Collapse
Affiliation(s)
- Yanan Zhai
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy.,Prinses Maxima Centrum, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Prashant Singh
- Prinses Maxima Centrum, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Anna Dolnik
- Medical Department, Division of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Brazda
- Prinses Maxima Centrum, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Nader Atlasy
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, EO, Italy
| | - Joost Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy.,Institute of Molecular Biology and Genetics, BIOGEM, Ariano Irpino, AV, Italy
| | - Wout Megchelenbrink
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy.,Prinses Maxima Centrum, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Lars Bullinger
- Medical Department, Division of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hendrik G Stunnenberg
- Prinses Maxima Centrum, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands. .,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
33
|
Gupta S, Dovey OM, Domingues AF, Cyran OW, Cash CM, Giotopoulos G, Rak J, Cooper J, Gozdecka M, Dijkhuis L, Asby RJ, Al-Jabery N, Hernandez-Hernandez V, Prabakaran S, Huntly BJ, Vassiliou GS, Pina C. Transcriptional variability accelerates preleukemia by cell diversification and perturbation of protein synthesis. SCIENCE ADVANCES 2022; 8:eabn4886. [PMID: 35921412 PMCID: PMC9348803 DOI: 10.1126/sciadv.abn4886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Transcriptional variability facilitates stochastic cell diversification and can in turn underpin adaptation to stress or injury. We hypothesize that it may analogously facilitate progression of premalignancy to cancer. To investigate this, we initiated preleukemia in mouse cells with enhanced transcriptional variability due to conditional disruption of the histone lysine acetyltransferase gene Kat2a. By combining single-cell RNA sequencing of preleukemia with functional analysis of transformation, we show that Kat2a loss results in global variegation of cell identity and accumulation of preleukemic cells. Leukemia progression is subsequently facilitated by destabilization of ribosome biogenesis and protein synthesis, which confer a transient transformation advantage. The contribution of transcriptional variability to early cancer evolution reflects a generic role in promoting cell fate transitions, which, in the case of well-adapted malignancies, contrastingly differentiates and depletes cancer stem cells. That is, transcriptional variability confers forward momentum to cell fate systems, with differential multistage impact throughout cancer evolution.
Collapse
Affiliation(s)
- Shikha Gupta
- Department of Genetics, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Oliver M. Dovey
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Ana Filipa Domingues
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Oliwia W. Cyran
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Caitlin M. Cash
- College of Health, Medicine and Life Sciences - Division of Biosciences, Brunel University London, Uxbridge, UK
| | - George Giotopoulos
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Justyna Rak
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Jonathan Cooper
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Malgorzata Gozdecka
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Liza Dijkhuis
- College of Health, Medicine and Life Sciences - Division of Biosciences, Brunel University London, Uxbridge, UK
| | - Ryan J. Asby
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Noor Al-Jabery
- College of Health, Medicine and Life Sciences - Division of Biosciences, Brunel University London, Uxbridge, UK
| | - Victor Hernandez-Hernandez
- College of Health, Medicine and Life Sciences - Division of Biosciences, Brunel University London, Uxbridge, UK
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge, UB8 3PH, UK
| | | | - Brian J. Huntly
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - George S. Vassiliou
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Cristina Pina
- College of Health, Medicine and Life Sciences - Division of Biosciences, Brunel University London, Uxbridge, UK
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge, UB8 3PH, UK
| |
Collapse
|
34
|
Dissecting the Genetic and Non-Genetic Heterogeneity of Acute Myeloid Leukemia Using Next-Generation Sequencing and In Vivo Models. Cancers (Basel) 2022; 14:cancers14092182. [PMID: 35565315 PMCID: PMC9103951 DOI: 10.3390/cancers14092182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is an extremely aggressive form of blood cancer with high rates of treatment failure. AML arises from the stepwise acquisition of genetic aberrations and is a highly heterogeneous disorder. Recent research has shown that individual AML samples often contain several clones that are defined by a distinct combination of genetic lesions, epigenetic patterns and cell surface marker expression profiles. A better understanding of the clonal dynamics of AML is required to develop novel treatment strategies against this disease. In this review, we discuss the recent developments that have further deepened our understanding of clonal evolution and heterogeneity in AML. Abstract Acute myeloid leukemia (AML) is an extremely aggressive and heterogeneous disorder that results from the transformation of hematopoietic stem cells. Although our understanding of the molecular pathology of AML has greatly improved in the last few decades, the overall and relapse free survival rates among AML patients remain quite poor. This is largely due to evolution of the disease and selection of the fittest, treatment-resistant leukemic clones. There is increasing evidence that most AMLs possess a highly complex clonal architecture and individual leukemias are comprised of genetically, phenotypically and epigenetically distinct clones, which are continually evolving. Advances in sequencing technologies as well as studies using murine AML models have provided further insights into the heterogeneity of leukemias. We will review recent advances in the field of genetic and non-genetic heterogeneity in AML.
Collapse
|
35
|
Shen Q, Feng Y, Gong X, Jia Y, Gao Q, Jiao X, Qi S, Liu X, Wei H, Huang B, Zhao N, Song X, Ma Y, Liang S, Zhang D, Qin L, Wang Y, Qu S, Zou Y, Chen Y, Guo Y, Yi S, An G, Jiao Z, Zhang S, Li L, Yan J, Wang H, Song Z, Mi Y, Qiu L, Zhu X, Wang J, Xiao Z, Chen J. A Phenogenetic Axis that Modulates Clinical Manifestation and Predicts Treatment Outcome in Primary Myeloid Neoplasms. CANCER RESEARCH COMMUNICATIONS 2022; 2:258-276. [PMID: 36873623 PMCID: PMC9981215 DOI: 10.1158/2767-9764.crc-21-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
Although the concept of "myeloid neoplasm continuum" has long been proposed, few comparative genomics studies directly tested this hypothesis. Here we report a multi-modal data analysis of 730 consecutive newly diagnosed patients with primary myeloid neoplasm, along with 462 lymphoid neoplasm cases serving as the outgroup. Our study identified a "Pan-Myeloid Axis" along which patients, genes, and phenotypic features were all aligned in sequential order. Utilizing relational information of gene mutations along the Pan-Myeloid Axis improved prognostic accuracy for complete remission and overall survival in adult patients of de novo acute myeloid leukemia and for complete remission in adult patients of myelodysplastic syndromes with excess blasts. We submit that better understanding of the myeloid neoplasm continuum might shed light on how treatment should be tailored to individual diseases. Significance The current criteria for disease diagnosis treat myeloid neoplasms as a group of distinct, separate diseases. This work provides genomics evidence for a "myeloid neoplasm continuum" and suggests that boundaries between myeloid neoplastic diseases are much more blurred than previously thought.
Collapse
Affiliation(s)
- Qiujin Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yahui Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaowen Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yujiao Jia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qingyan Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | - Saibing Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xueou Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Bingqing Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ningning Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoqiang Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yueshen Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | - Donglei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Li Qin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ying Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shiqiang Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yao Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yumei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shuhua Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | - Song Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Linfeng Li
- Yidu Cloud Technology Inc., Beijing, China
| | - Jun Yan
- Yidu Cloud Technology Inc., Beijing, China
| | - Huijun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhen Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingchang Mi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Junren Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
36
|
Hayashi Y, Harada Y, Harada H. Myeloid neoplasms and clonal hematopoiesis from the RUNX1 perspective. Leukemia 2022; 36:1203-1214. [PMID: 35354921 DOI: 10.1038/s41375-022-01548-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022]
Abstract
RUNX1 is a critical transcription factor for the emergence of definitive hematopoiesis and the precise regulation of adult hematopoiesis. Dysregulation of its regulatory network causes aberrant hematopoiesis. Recurrent genetic alterations in RUNX1, including chromosomal translocations and mutations, have been identified in both inherited and sporadic diseases. Recent genomic studies have revealed a vast mutational landscape surrounding genetic alterations in RUNX1. Accumulating pieces of evidence also indicate the leukemogenic role of wild-type RUNX1 in certain situations. Based on these efforts, part of the molecular mechanisms of disease development as a consequence of dysregulated RUNX1-regulatory networks have become increasingly evident. This review highlights the recent advances in the field of RUNX1 research and discusses the critical roles of RUNX1 in hematopoiesis and the pathobiological function of its alterations in the context of disease, particularly myeloid neoplasms, and clonal hematopoiesis.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuka Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,Department of Clinical Laboratory, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Hironori Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| |
Collapse
|
37
|
Accurate Detection of Subclonal Variants in Paired Diagnosis-Relapse Acute Myeloid Leukemia Samples by Next Generation Duplex Sequencing. Leuk Res 2022; 115:106822. [PMID: 35303493 PMCID: PMC9014797 DOI: 10.1016/j.leukres.2022.106822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 11/22/2022]
Abstract
Mutations characterize diverse human cancers; there is a positive correlation between elevated mutation frequency and tumor progression. One exception is acute myeloid leukemia (AML), which has few clonal single nucleotide mutations. We used highly sensitive and accurate Duplex Sequencing (DS) to show now that AML, in addition, has an extensive repertoire of variants with low allele frequencies, < 1%, which is below the accurate detection limit of most other sequencing methodologies. The subclonal variants are unique to each individual and change in composition, frequency, and sequence context from diagnosis to relapse. Their functional significance is apparent by the observation that many are known variants and cluster within functionally important protein domains. Subclones provide a reservoir of variants that could expand and contribute to the development of drug resistance and relapse. In accord, we accurately identified subclonal variants in AML driver genes NRAS and RUNX1 at allele frequencies between 0.1% and 0.3% at diagnosis, which expanded to comprise a major fraction (14-53%) of the blast population at relapse. Early and accurate detection of subclonal variants with low allele frequency thus offers the opportunity for early intervention, prior to detection of clinical relapse, to improve disease outcome and enhance patient survival.
Collapse
|
38
|
Monte ER, Leubolt G, Windisch R, Kerbs P, Dutta S, Sippenauer T, Istvánffy R, Oostendorp RAJ, Chen-Wichmann L, Herold T, Cusan M, Schotta G, Wichmann C, Greif PA. Specific effects of somatic GATA2 zinc finger mutations on erythroid differentiation. Exp Hematol 2022; 108:26-35. [PMID: 35181392 DOI: 10.1016/j.exphem.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/25/2022]
Abstract
GATA2 Zinc-Finger (ZF) mutations are associated with distinct entities of myeloid malignancies. The specific distribution of these mutations points towards different mechanisms of leukemogenesis depending on the affected ZF domain. In this study, we compared recurring somatic mutations in ZF1 and ZF2. All tested ZF mutants disrupted DNA-binding in vitro. In transcription assays, co-expression of FOG1 counteracted GATA2-dependent transcriptional activation, while a variable response to FOG1-mediated repression was observed for individual GATA2 mutants. In primary murine bone marrow cells, GATA2 wild-type (WT) expression inhibited colony formation, while this effect was reduced for both mutants A318T (ZF1) and L359V (ZF2) with a shift towards granulopoiesis. In primary human CD34+ bone marrow cells and in the myeloid cell line K562, ectopic expression of GATA2 L359V but not A318T or G320D caused a block of erythroid differentiation accompanied by downregulation of GATA1, STAT5B and PLCG1. Our findings may explain the role of GATA2 L359V during the progression of chronic myeloid leukemia and the collaboration of GATA2 ZF1 alterations with CEBPA double mutations in erythroleukemia.
Collapse
Affiliation(s)
- Enric Redondo Monte
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Georg Leubolt
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Roland Windisch
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Paul Kerbs
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Sayantanee Dutta
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Theresa Sippenauer
- Technical University of Munich, Department of Internal Medicine III, Munich, Germany
| | - Rouzanna Istvánffy
- Technical University of Munich, Department of Internal Medicine III, Munich, Germany
| | - Robert A J Oostendorp
- Technical University of Munich, Department of Internal Medicine III, Munich, Germany
| | - Linping Chen-Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Tobias Herold
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Monica Cusan
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Gunnar Schotta
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Philipp A Greif
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany.
| |
Collapse
|
39
|
Simonsen AT, Meggendorfer M, Hansen MH, Nederby L, Koch S, Hansen M, Rosenberg CA, Kern W, Nyvold CG, Aggerholm A, Haferlach T, Ommen HB. Acute myeloid leukemia displaying clonal instability during treatment: implications for measurable residual disease assessments. Exp Hematol 2022; 107:51-59. [PMID: 35122908 DOI: 10.1016/j.exphem.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 11/04/2022]
Abstract
Next-generation sequencing (NGS) is an excellent methodology for measuring residual disease in acute myeloid leukemia and survey several sub-clones simultaneously. Little experience exists regarding interpretation of differential clonal responses to therapy. We hypothesize that differential clonal response could best be studied in patients with residual disease at the time of response evaluation. We performed targeted panel sequencing of paired diagnostic and first treatment evaluation samples in 69 patients with residual disease by morphology or measurable residual disease (MRD) level >0.02. Five patients displayed a rising clone at the time of evaluation. A representative case showed the rising clone present only in the putative healthy stem cells (CD45lowCD34+CD38-CD123-CD7-) and not in the putative leukemic stem cells (CD34+CD38-CD123+CD7+) cells, thus representing non-malignant clonal hematopoiesis. In contrast, 17/43 evaluable patients displayed a differential response in genes related to the leukemic clone. 26/43 patients displayed a clonal response that followed the overall treatment response. Patients with a differential response had a better event-free survival (EFS) as well as overall survival (OS) than those where the clonal response followed the overall response (log-rank test, EFS P=0.045, OS, P=0.050). This indicates that when following multiple leukemia-related clones the less chemotherapy-responsive clone could, in some cases, have lesser relapse potential, contrary to what is known when using standard mutation or fusion transcript-based disease surveillance. In conclusion, our results confirm the potential of refining MRD assessments by following multiple clones and warrants further studies into the precise interpretations of multi-clone NGS-MRD assays.
Collapse
Affiliation(s)
- Anita T Simonsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Marcus H Hansen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark; Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Line Nederby
- Department of Clinical Immunology and Biochemistry, Lillebaelt Hospital, Vejle, Denmark
| | - Sarah Koch
- Munich Leukemia Laboratory GmbH, Munich, Germany
| | - Maria Hansen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Charlotte G Nyvold
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Anni Aggerholm
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Hans B Ommen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
40
|
Mori A, Onozawa M, Hidaka D, Yokoyama S, Miyajima T, Yokoyama E, Ogasawara R, Izumiyama K, Saito M, Fujisawa S, Ota S, Kakinoki Y, Tsutsumi Y, Yamamoto S, Miyagishima T, Nagashima T, Iwasaki H, Kobayashi H, Haseyama Y, Kurosawa M, Morioka M, Teshima T, Kondo T. Non-age-related neoplastic loss of sex chromosome correlated with prolonged survival in real-world CBF-AML patients. Int J Hematol 2022; 115:188-197. [PMID: 34739701 DOI: 10.1007/s12185-021-03238-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022]
Abstract
In this real-world clinical study, in which we determined eligibility for allogenic hematopoietic stem cell transplantation by prognostic factors and minimal residual disease status, we retrospectively evaluated cytogenetic, genetic, and clinical features in 96 patients with core-binding factor acute myeloid leukemia (CBF-AML) including 62 patients with RUNX1/RUNX1T1 and 34 patients with CBFβ/MYH11. Multivariate analyses for 5-year overall survival (OS) in CBF-AML patients revealed that age of 50 years or older (HR: 3.46, 95% CI 1.47-8.11, P = 0.004) and receiving 2 or more induction cycles (HR: 3.55, 95% CI 1.57-8.05, P = 0.002) were independently associated with worse OS and that loss of sex chromosome (LOS) was independently associated with better OS (HR: 0.09, 95% CI 0.01-0.71, P = 0.022). At the time of complete remission, all 21 karyotyped patients with LOS had a normal karyotype. Furthermore, in all 9 patients with LOS who had a mosaic of metaphase cells with and without t(8;21) or inv(16), the metaphase cells without t(8;21)/inv(16) showed a normal karyotype. These results proved that LOS was not age-related and physiological, but rather a neoplastic chromosomal abnormality.
Collapse
Affiliation(s)
- Akio Mori
- Blood Disorders Center, Aiiku Hospital, S4W25, Chuo-ku, Sapporo, 064-0804, Japan.
| | - Masahiro Onozawa
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Daisuke Hidaka
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shota Yokoyama
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Toru Miyajima
- Blood Disorders Center, Aiiku Hospital, S4W25, Chuo-ku, Sapporo, 064-0804, Japan
| | - Emi Yokoyama
- Blood Disorders Center, Aiiku Hospital, S4W25, Chuo-ku, Sapporo, 064-0804, Japan
| | - Reiki Ogasawara
- Blood Disorders Center, Aiiku Hospital, S4W25, Chuo-ku, Sapporo, 064-0804, Japan
| | - Koh Izumiyama
- Blood Disorders Center, Aiiku Hospital, S4W25, Chuo-ku, Sapporo, 064-0804, Japan
| | - Makoto Saito
- Blood Disorders Center, Aiiku Hospital, S4W25, Chuo-ku, Sapporo, 064-0804, Japan
| | - Shinichi Fujisawa
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | | | - Yutaka Tsutsumi
- Department of Hematology, Hakodate Municipal Hospital, Hakodate, Japan
| | - Satoshi Yamamoto
- Department of Hematology, Sapporo City General Hospital, Sapporo, Japan
| | | | - Takahiro Nagashima
- Department of Internal Medicine/General Medicine, Kitami Red Cross Hospital, Kitami, Japan
| | - Hiroshi Iwasaki
- Department of Hematology, Sapporo Kosei General Hospital, Sapporo, Japan
| | - Hajime Kobayashi
- Department of Hematology, Obihiro Kosei Hospital, Obihiro, Japan
| | | | - Mitsutoshi Kurosawa
- Department of Hematology, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Masanobu Morioka
- Blood Disorders Center, Aiiku Hospital, S4W25, Chuo-ku, Sapporo, 064-0804, Japan
| | - Takanori Teshima
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, S4W25, Chuo-ku, Sapporo, 064-0804, Japan
| |
Collapse
|
41
|
Repurposing cabozantinib with therapeutic potential in KIT-driven t(8;21) acute myeloid leukaemias. Cancer Gene Ther 2022; 29:519-532. [PMID: 33833412 PMCID: PMC9113930 DOI: 10.1038/s41417-021-00329-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 02/02/2023]
Abstract
Cabozantinib is an orally available, multi-target tyrosine kinase inhibitor approved for the treatment of several solid tumours and known to inhibit KIT tyrosine kinase. In acute myeloid leukaemia (AML), aberrant KIT tyrosine kinase often coexists with t(8;21) to drive leukaemogenesis. Here we evaluated the potential therapeutic effect of cabozantinib on a selected AML subtype characterised by t(8;21) coupled with KIT mutation. Cabozantinib exerted substantial cytotoxicity in Kasumi-1 cells with an IC50 of 88.06 ± 4.32 nM, which was well within clinically achievable plasma levels. The suppression of KIT phosphorylation and its downstream signals, including AKT/mTOR, STAT3, and ERK1/2, was elicited by cabozantinib treatment and associated with subsequent alterations of cell cycle- and apoptosis-related molecules. Cabozantinib also disrupted the synthesis of an AML1-ETO fusion protein in a dose- and time-dependent manner. In a mouse xenograft model, cabozantinib suppressed tumourigenesis at 10 mg/kg and significantly prolonged survival of the mice. Further RNA-sequencing analysis revealed that mTOR-mediated signalling pathways were substantially inactivated by cabozantinib treatment, causing the downregulation of ribosome biogenesis and glycolysis, along with myeloid leukocyte activation. We suggest that cabozantinib may be effective in the treatment of AML with t(8;21) and KIT mutation. Relevant clinical trials are warranted.
Collapse
|
42
|
Christen F, Hablesreiter R, Hoyer K, Hennch C, Maluck-Böttcher A, Segler A, Madadi A, Frick M, Bullinger L, Briest F, Damm F. Modeling clonal hematopoiesis in umbilical cord blood cells by CRISPR/Cas9. Leukemia 2022; 36:1102-1110. [PMID: 34782715 PMCID: PMC8979818 DOI: 10.1038/s41375-021-01469-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022]
Abstract
To investigate clonal hematopoiesis associated gene mutations in vitro and to unravel the direct impact on the human stem and progenitor cell (HSPC) compartment, we targeted healthy, young hematopoietic progenitor cells, derived from umbilical cord blood samples, with CRISPR/Cas9 technology. Site-specific mutations were introduced in defined regions of DNMT3A, TET2, and ASXL1 in CD34+ progenitor cells that were subsequently analyzed in short-term as well as long-term in vitro culture assays to assess self-renewal and differentiation capacities. Colony-forming unit (CFU) assays revealed enhanced self-renewal of TET2 mutated (TET2mut) cells, whereas ASXL1mut as well as DNMT3Amut cells did not reveal significant changes in short-term culture. Strikingly, enhanced colony formation could be detected in long-term culture experiments in all mutants, indicating increased self-renewal capacities. While we could also demonstrate preferential clonal expansion of distinct cell clones for all mutants, the clonal composition after long-term culture revealed a mutation-specific impact on HSPCs. Thus, by using primary umbilical cord blood cells, we were able to investigate epigenetic driver mutations without confounding factors like age or a complex mutational landscape, and our findings provide evidence for a direct impact of clonal hematopoiesis-associated mutations on self-renewal and clonal composition of human stem and progenitor cells.
Collapse
Affiliation(s)
- Friederike Christen
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Raphael Hablesreiter
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Kaja Hoyer
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Cornelius Hennch
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Antje Maluck-Böttcher
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Angela Segler
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Gynecology with Center for Oncological Surgery, Berlin, Germany ,grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Obstetrics, Berlin, Germany
| | - Annett Madadi
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Obstetrics, Berlin, Germany
| | - Mareike Frick
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Bullinger
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Franziska Briest
- grid.7468.d0000 0001 2248 7639Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Frederik Damm
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
43
|
Guo CR, Mao Y, Jiang F, Juan CX, Zhou GP, Li N. Computational detection of a genome instability-derived lncRNA signature for predicting the clinical outcome of lung adenocarcinoma. Cancer Med 2021; 11:864-879. [PMID: 34866362 PMCID: PMC8817082 DOI: 10.1002/cam4.4471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/30/2021] [Accepted: 10/03/2021] [Indexed: 12/13/2022] Open
Abstract
Evidence has been emerging of the importance of long non-coding RNAs (lncRNAs) in genome instability. However, no study has established how to classify such lncRNAs linked to genomic instability, and whether that connection poses a therapeutic significance. Here, we established a computational frame derived from mutator hypothesis by combining profiles of lncRNA expression and those of somatic mutations in a tumor genome, and identified 185 candidate lncRNAs associated with genomic instability in lung adenocarcinoma (LUAD). Through further studies, we established a six lncRNA-based signature, which assigned patients to the high- and low-risk groups with different prognosis. Further validation of this signature was performed in a number of separate cohorts of LUAD patients. In addition, the signature was found closely linked to genomic mutation rates in patients, indicating it could be a useful way to quantify genomic instability. In summary, this research offered a novel method by through which more studies may explore the function of lncRNAs and presented a possible new way for detecting biomarkers associated with genomic instability in cancers.
Collapse
Affiliation(s)
- Chen-Rui Guo
- Department of Abdominal Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Mao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Jiang
- Department of Neonatology,, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chen-Xia Juan
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Li
- Department of Abdominal Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
44
|
Krasnov GS, Ghukasyan LG, Abramov IS, Nasedkina TV. Determination of the Subclonal Tumor Structure in Childhood Acute Myeloid Leukemia and Acral Melanoma by Next-Generation Sequencing. Mol Biol 2021. [DOI: 10.1134/s0026893321040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Duchmann M, Laplane L, Itzykson R. Clonal Architecture and Evolutionary Dynamics in Acute Myeloid Leukemias. Cancers (Basel) 2021; 13:4887. [PMID: 34638371 PMCID: PMC8507870 DOI: 10.3390/cancers13194887] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemias (AML) results from the accumulation of genetic and epigenetic alterations, often in the context of an aging hematopoietic environment. The development of high-throughput sequencing-and more recently, of single-cell technologies-has shed light on the intratumoral diversity of leukemic cells. Taking AML as a model disease, we review the multiple sources of genetic, epigenetic, and functional heterogeneity of leukemic cells and discuss the definition of a leukemic clone extending its definition beyond genetics. After introducing the two dimensions contributing to clonal diversity, namely, richness (number of leukemic clones) and evenness (distribution of clone sizes), we discuss the mechanisms at the origin of clonal emergence (mutation rate, number of generations, and effective size of the leukemic population) and the causes of clonal dynamics. We discuss the possible role of neutral drift, but also of cell-intrinsic and -extrinsic influences on clonal fitness. After reviewing available data on the prognostic role of genetic and epigenetic diversity of leukemic cells on patients' outcome, we discuss how a better understanding of AML as an evolutionary process could lead to the design of novel therapeutic strategies in this disease.
Collapse
Affiliation(s)
- Matthieu Duchmann
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Université de Paris, 75010 Paris, France;
- Laboratoire d’Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 75010 Paris, France
| | - Lucie Laplane
- Institut d’Histoire et Philosophie des Sciences et des Techniques UMR 8590, CNRS, Université Paris 1 Panthéon-Sorbonne, 75010 Paris, France;
- Gustave Roussy Cancer Center, UMR1287, 94805 Villejuif, France
| | - Raphael Itzykson
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Université de Paris, 75010 Paris, France;
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 75010 Paris, France
| |
Collapse
|
46
|
Peña OA, Lubin A, Rowell J, Hoade Y, Khokhar N, Lemmik H, Mahony C, Dace P, Umamahesan C, Payne EM. Differential Requirement of Gata2a and Gata2b for Primitive and Definitive Myeloid Development in Zebrafish. Front Cell Dev Biol 2021; 9:708113. [PMID: 34589480 PMCID: PMC8475954 DOI: 10.3389/fcell.2021.708113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/10/2021] [Indexed: 11/14/2022] Open
Abstract
Germline loss or mutation of one copy of the transcription factor GATA2 in humans leads to a range of clinical phenotypes affecting hematopoietic, lymphatic and vascular systems. GATA2 heterozygous mice show only a limited repertoire of the features observed in humans. Zebrafish have two copies of the Gata2 gene as a result of an additional round of ancestral whole genome duplication. These genes, Gata2a and Gata2b, show distinct but overlapping expression patterns, and between them, highlight a significantly broader range of the phenotypes observed in GATA2 deficient syndromes, than each one alone. In this manuscript, we use mutants for Gata2a and Gata2b to interrogate the effects on hematopoiesis of these two ohnologs, alone and in combination, during development in order to further define the role of GATA2 in developmental hematopoiesis. We define unique roles for each ohnolog at different stages of developmental myelopoiesis and for the emergence of hematopoietic stem and progenitor cells. These effects are not additive in the haploinsufficient state suggesting a redundancy between these two genes in hematopoietic stem and progenitor cells. Rescue studies additionally support that Gata2b can compensate for the effects of Gata2a loss. Finally we show that adults with loss of combined heterozygosity show defects in the myeloid compartment consistent with GATA2 loss in humans. These results build on existing knowledge from other models of GATA2 deficiency and refine our understanding of the early developmental effects of GATA2. In addition, these studies shed light on the complexity and potential structure-function relationships as well as sub-functionalization of Gata2 genes in the zebrafish model.
Collapse
Affiliation(s)
- Oscar A. Peña
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Alexandra Lubin
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Jasmine Rowell
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Yvette Hoade
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Noreen Khokhar
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Hanna Lemmik
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Christopher Mahony
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Phoebe Dace
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Chianna Umamahesan
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Elspeth M. Payne
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
- National Institute for Health Research (NIHR)/UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
47
|
Onecha E, Rapado I, Luz Morales M, Carreño-Tarragona G, Martinez-Sanchez P, Gutierrez X, Sáchez Pina JM, Linares M, Gallardo M, Martinez-López J, Ayala R. Monitoring of clonal evolution of acute myeloid leukemia identifies the leukemia subtype, clinical outcome and potential new drug targets for post-remission strategies or relapse. Haematologica 2021; 106:2325-2333. [PMID: 32732356 PMCID: PMC8409047 DOI: 10.3324/haematol.2020.254623] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Indexed: 12/16/2022] Open
Abstract
In cases of treatment failure in acute myeloid leukemia (AML), the utility of mutational profiling in primary refractoriness and relapse is not established. We undertook a perspective study using next-generation sequencing (NGS) of clinical follow-up samples (n=91) from 23 patients with AML with therapeutic failure to cytarabine plus idarubicin or fludarabine. Cases of primary refractoriness to treatment were associated with a lower number of DNA variants at diagnosis than cases of relapse (median 1.67 and 3.21, respectively, P=0.029). The most frequently affected pathways in patients with primary refractoriness were signaling, transcription and tumor suppression, whereas methylation and splicing pathways were mainly implicated in relapsed patients. New therapeutic targets, either by an approved drug or within clinical trials, were not identified in any of the cases of refractoriness (zero of ten); however, eight potential new targets were found in five relapsed patients (five of 13, P=0.027): one IDH2, three SF3B1, two KRAS, one KIT and one JAK2. Sixty-five percent of all variants detected at diagnosis were not detected at complete response. Specifically, 100% of variants in EZH2, RUNX1, VHL, FLT3, ETV6, U2AF1, PHF6 and SF3B1 disappeared at complete response, indicating their potential use as markers to evaluate minimal residual disease for follow-up of AML. Molecular follow-up using a custom NGS myeloid panel of 32 genes in the post-treatment evaluation of AML can help in the stratification of prognostic risk, the selection of minimal residual disease markers to monitor the response to treatment and guide post-remission strategies targeting AML, and the selection of new drugs for leukemia relapse.
Collapse
Affiliation(s)
- Esther Onecha
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid
| | | | | | | | | | - Xabier Gutierrez
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid
| | | | - María Linares
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid
| | - Miguel Gallardo
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid
| | | | - Rosa Ayala
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid
| |
Collapse
|
48
|
Rejeski K, Duque-Afonso J, Lübbert M. AML1/ETO and its function as a regulator of gene transcription via epigenetic mechanisms. Oncogene 2021; 40:5665-5676. [PMID: 34331016 PMCID: PMC8460439 DOI: 10.1038/s41388-021-01952-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/11/2021] [Accepted: 07/07/2021] [Indexed: 01/10/2023]
Abstract
The chromosomal translocation t(8;21) and the resulting oncofusion gene AML1/ETO have long served as a prototypical genetic lesion to model and understand leukemogenesis. In this review, we describe the wide-ranging role of AML1/ETO in AML leukemogenesis, with a particular focus on the aberrant epigenetic regulation of gene transcription driven by this AML-defining mutation. We begin by analyzing how structural changes secondary to distinct genomic breakpoints and splice changes, as well as posttranscriptional modifications, influence AML1/ETO protein function. Next, we characterize how AML1/ETO recruits chromatin-modifying enzymes to target genes and how the oncofusion protein alters chromatin marks, transcription factor binding, and gene expression. We explore the specific impact of these global changes in the epigenetic network facilitated by the AML1/ETO oncofusion on cellular processes and leukemic growth. Furthermore, we define the genetic landscape of AML1/ETO-positive AML, presenting the current literature concerning the incidence of cooperating mutations in genes such as KIT, FLT3, and NRAS. Finally, we outline how alterations in transcriptional regulation patterns create potential vulnerabilities that may be exploited by epigenetically active agents and other therapeutics.
Collapse
Affiliation(s)
- Kai Rejeski
- Department of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg Medical Center, Freiburg, Germany.,Department of Hematology and Oncology, University Hospital of the LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK) Freiburg Partner Site, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jesús Duque-Afonso
- Department of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg Medical Center, Freiburg, Germany. .,German Cancer Consortium (DKTK) Freiburg Partner Site, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
49
|
Barabino SML, Citterio E, Ronchi AE. Transcription Factors, R-Loops and Deubiquitinating Enzymes: Emerging Targets in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13153753. [PMID: 34359655 PMCID: PMC8345071 DOI: 10.3390/cancers13153753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The advent of DNA massive sequencing technologies has allowed for the first time an extensive look into the heterogeneous spectrum of genes and mutations underpinning myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). In this review, we wish to explore the most recent advances and the rationale for the potential therapeutic interest of three main actors in myelo-leukemic transformation: transcription factors that govern myeloid differentiation; RNA splicing factors, which ensure proper mRNA maturation and whose mutations increase R-loops formation; and deubiquitinating enzymes, which contribute to genome stability in hematopoietic stem cells (HSCs). Abstract Myeloid neoplasms encompass a very heterogeneous family of diseases characterized by the failure of the molecular mechanisms that ensure a balanced equilibrium between hematopoietic stem cells (HSCs) self-renewal and the proper production of differentiated cells. The origin of the driver mutations leading to preleukemia can be traced back to HSC/progenitor cells. Many properties typical to normal HSCs are exploited by leukemic stem cells (LSCs) to their advantage, leading to the emergence of a clonal population that can eventually progress to leukemia with variable latency and evolution. In fact, different subclones might in turn develop from the original malignant clone through accumulation of additional mutations, increasing their competitive fitness. This process ultimately leads to a complex cancer architecture where a mosaic of cellular clones—each carrying a unique set of mutations—coexists. The repertoire of genes whose mutations contribute to the progression toward leukemogenesis is broad. It encompasses genes involved in different cellular processes, including transcriptional regulation, epigenetics (DNA and histones modifications), DNA damage signaling and repair, chromosome segregation and replication (cohesin complex), RNA splicing, and signal transduction. Among these many players, transcription factors, RNA splicing proteins, and deubiquitinating enzymes are emerging as potential targets for therapeutic intervention.
Collapse
|
50
|
Cai Y, Wang J, Jin D, Liu Q, Chen X, Pan L, Li Y, Wang X, Qian F, Wang J, Zhong TP, Wang S. Dhx15 regulates zebrafish definitive hematopoiesis through the unfolded protein response pathway. Cancer Sci 2021; 112:3884-3894. [PMID: 34077586 PMCID: PMC8409414 DOI: 10.1111/cas.15002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022] Open
Abstract
Gene alterations are recognized as important events in acute myeloid leukemia (AML) progression. Studies on hematopoiesis of altered genes contribute to a better understanding on their roles in AML progression. Our previous work reported a DEAH box helicase 15 (DHX15) R222G mutation in AML patients, and we showed DHX15 overexpression is associated with poor prognosis in AML patients. In this work, we further study the role of dhx15 in zebrafish developmental hematopoiesis by generating dhx15−/− zebrafish using transcription activator‐like effector nuclease technology. Whole‐mount in situ hybridization (WISH) analysis showed hematopoietic stem/progenitor cells were dramatically perturbed when dhx15 was deleted. Immunofluorescence staining indicated inhibited hematopoietic stem/progenitor cell (HSPC) proliferation instead of accelerated apoptosis were detected in dhx15−/− zebrafish. Furthermore, our data showed that HSPC defect is mediated through the unfolded protein response (UPR) pathway. DHX15 R222G mutation, a recurrent mutation identified in AML patients, displayed a compromised function in restoring HSPC failure in dhx15−/−; Tg (hsp: DHX15 R222G) zebrafish. Collectively, this work revealed a vital role of dhx15 in the maintenance of definitive hematopoiesis in zebrafish through the unfolded protein respone pathway. The study of DHX15 and DHX15 R222G mutation could hold clinical significance for evaluating prognosis of AML patients with aberrant DHX15 expression.
Collapse
Affiliation(s)
- Yuanhua Cai
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China
| | - Jing Wang
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China
| | - Daqing Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai, China
| | - Qiao Liu
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China
| | - Xianglei Chen
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China
| | - Lili Pan
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China.,Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yang Li
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China.,Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xuechun Wang
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China
| | - Feng Qian
- School of Life Sciences and Institutes of Biomedical Sciences, Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Jiucun Wang
- School of Life Sciences and Institutes of Biomedical Sciences, Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Tao Peter Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai, China.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shaoyuan Wang
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China.,Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|