1
|
Nguyen KA, Liu Z, Davies JS, McIntosh CP, Draper LM, Norberg SM, Rae Z, Achar SR, Altan-Bonnet G, Zhang L, Wu X, Meyer TJ, Kelly MC, Taylor N, Hinrichs CS, Ishii K. CD22 TCR-engineered T cells exert antileukemia cytotoxicity without causing inflammatory responses. SCIENCE ADVANCES 2025; 11:eadq4297. [PMID: 40203088 PMCID: PMC11980841 DOI: 10.1126/sciadv.adq4297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Chimeric antigen receptor (CAR) T cells effectively treat B cell malignancies. However, CAR-T cells cause inflammatory toxicities such as cytokine release syndrome (CRS), which is in contrast to T cell receptor (TCR)-engineered T cells against various antigens that historically have rarely been associated with CRS. To study whether and how differences in receptor types affect the propensity for eliciting inflammatory responses in a model system wherein TCR and CAR target equalized sources of clinically relevant antigen, we discovered a CD22-specific TCR and compared it to CD22 CAR. Both CD22 TCR-T and CD22 CAR-T cells eradicated leukemia in xenografts, but only CD22 CAR-T cells induced dose-dependent systemic inflammation. Compared to TCR-T cells, CAR-T cells disproportionately upregulated inflammatory pathways without concordant augmentation in pathways involved in direct cytotoxicity upon antigen engagement. These differences in antileukemia responses comparing TCR-T and CAR-T cells highlight the potential opportunity to improve therapeutic safety by using TCRs.
Collapse
MESH Headings
- Humans
- Animals
- Sialic Acid Binding Ig-like Lectin 2/immunology
- Sialic Acid Binding Ig-like Lectin 2/genetics
- Sialic Acid Binding Ig-like Lectin 2/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Mice
- Inflammation/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Leukemia/therapy
- Leukemia/immunology
- Leukemia/pathology
- Cytotoxicity, Immunologic
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kilyna A. Nguyen
- Center for Immuno-Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Zhihui Liu
- Pediatric Oncology Branch, CCR, NCI, NIH, Bethesda, MD, USA
| | - John S. Davies
- Center for Immuno-Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Safety Assessment, Genentech Inc., South San Francisco, CA, USA
| | - Crystal P. McIntosh
- Center for Immuno-Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lindsey M. Draper
- Center for Immuno-Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Scott M. Norberg
- Center for Immuno-Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Zachary Rae
- Single Cell Analysis Facility, CCR, NCI, NIH, Bethesda, MD, USA
| | - Sooraj R. Achar
- Laboratory of Integrative Cancer Immunology, CCR, NCI, NIH, Bethesda, MD, USA
| | | | - Ling Zhang
- Center for Immuno-Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, NCI, NIH, Frederick, MD, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, CCR, NCI, NIH, Bethesda, MD, USA
| | | | - Naomi Taylor
- Pediatric Oncology Branch, CCR, NCI, NIH, Bethesda, MD, USA
| | - Christian S. Hinrichs
- Duncan and Nancy MacMillan Center of Excellence in Cancer Immunotherapy and Metabolism, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Kazusa Ishii
- Center for Immuno-Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
2
|
Lin MH, Hu LJ, Miller JS, Huang XJ, Zhao XY. CAR-NK cell therapy: a potential antiviral platform. Sci Bull (Beijing) 2025; 70:765-777. [PMID: 39837721 DOI: 10.1016/j.scib.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Viral infections persist as a significant cause of morbidity and mortality worldwide. Conventional therapeutic approaches often fall short in fully eliminating viral infections, primarily due to the emergence of drug resistance. Natural killer (NK) cells, one of the important members of the innate immune system, possess potent immunosurveillance and cytotoxic functions, thereby playing a crucial role in the host's defense against viral infections. Chimeric antigen receptor (CAR)-NK cell therapy has been developed to redirect the cytotoxic function of NK cells specifically towards virus-infected cells, further enhancing their cytotoxic efficacy. In this manuscript, we review the role of NK cells in antiviral infections and explore the mechanisms by which viruses evade immune detection. Subsequently, we focus on the optimization strategies for CAR-NK cell therapy to address existing limitations. Furthermore, we discuss significant advancements in CAR-NK cell therapy targeting viral infections, including those caused by severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus, hepatitis B virus, human cytomegalovirus, and Epstein-Barr virus.
Collapse
Affiliation(s)
- Ming-Hao Lin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China
| | - Li-Juan Hu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, 55455, USA.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China.
| |
Collapse
|
3
|
Wang J, Wang R, Wang M, Ge J, Wang Y, Li Y, Chen C, He J, Zheng B, Xu M, Jiang X, Liu Y, Chen M, Long J. Cutting-Edge Therapy and Immune Escape Mechanisms in EBV-Associated Tumors. Med Res Rev 2025. [PMID: 40077924 DOI: 10.1002/med.22104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/19/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Epstein-Barr virus (EBV), the first identified human tumor virus, significantly influences the immune microenvironment of associated cancers. EBV-induced expression of viral antigens by tumor cells triggers immune recognition and elicits a pro-inflammatory response. While mild inflammation may help eliminate malignant cells, intense inflammation can accelerate tumor progression. Moreover, EBV can establish lifelong latency in human hosts, characterized by low immunogenicity of its proteins and noncoding RNAs. This enables tumor cells to evade immune detection and impair immune cell function, disrupting immune homeostasis. Consequently, EBV-associated malignancies pose a considerable public health challenge globally, often complicating the prognosis of cancer patients under conventional treatment. With deeper research into the oncogenic expressions and mechanisms of EBV, novel targeted therapies against EBV are gaining prominence. This review discusses recent advancements in understanding how EBV helps tumor cells evade immune surveillance and induce immune dysfunction. It also examines the clinical potential of targeting EBV-associated tumors, providing fresh perspectives on the mechanisms and therapeutic strategies for these cancers.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Rong Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Meifeng Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
| | - Yanhan Li
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Changan Chen
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Jiale He
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Boshu Zheng
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Meifang Xu
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuhang Liu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
4
|
Dierickx D, Keane C, Natkunam Y. Genetic and immunological features of immune deficiency and dysregulation-associated lymphoproliferations and lymphomas as a basis for classification. Histopathology 2025; 86:106-118. [PMID: 39435688 DOI: 10.1111/his.15342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Abstract
Immune deficiency and dysregulation-associated lymphoproliferative disorders and lymphomas (IDD-LPDs) encompass a heterogeneous clinical and pathological spectrum of disorders that range from indolent lymphoproliferations to aggressive lymphomas. They arise in a variety of clinical settings and are associated with oncogenic viruses such as the Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus/human herpes virus (KSHV/HHV8) in some, but not all, cases. The recognition of IDD-LPDs as distinct from LPDs in immune competent patients is essential to tailor clinical management options for affected patients. The 5th edition of the World Health Organisation classification has introduced an integrated classification of IDD-LPDs with the goal of standardising diagnoses among different settings to enhance clinical decision support. In parallel, new knowledge in the field, particularly surrounding the role of oncogenic viruses and the tumour microenvironment, has led to clearer understanding of the complex pathogenesis of IDD-LPDs and how these features can be precisely harnessed for therapeutic purposes. In this perspective, we highlight the need for multidisciplinary decision-making to augment patient care as well as key areas where evolving concepts offer challenges and opportunities for clinical management, research and future iterations of the classification.
Collapse
Affiliation(s)
- Daan Dierickx
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, Laboratory for Experimental Hematology, KU Leuven, Leuven, Belgium
| | - Colm Keane
- Frazer Institute, University of Queensland, Brisbane, QLD, Australia
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Gupta S, Martinov T, Thelen A, Sunahara M, Mureli S, Vazquez A, Gerdts J, Dandekar R, Cortese I, Fouassier C, Schanzer E, Urnov FD, Marson A, Shy BR, Greenberg PD, Wilson MR. Antigen-Specific T Cell Receptor Discovery for Treating Progressive Multifocal Leukoencephalopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621904. [PMID: 39574748 PMCID: PMC11580961 DOI: 10.1101/2024.11.04.621904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Background Progressive multifocal leukoencephalopathy (PML) is a frequently fatal disease of the central nervous system caused by JC virus (JCV). Survival is dependent on early diagnosis and ability to re-establish anti-viral T cell immunity. Adoptive transfer of polyomavirus-specific T cells has shown promise; however, there are no readily available HLA-matched anti-viral T cells to facilitate rapid treatment. Objective Identify epitopes of the JCV major capsid protein VP1 that elicit an immune response in the context of human leukocyte antigen allele A*02:01 (HLA-A2) and isolate cognate T cell receptors (TCRs) from healthy donors. Evaluate individual VP1-specific TCRs for their capacity to be expressed in T cells and clear JCV in vitro . Methods PBMCs from HLA-A2+ healthy donors were stimulated with peptide libraries tiled across the JCV VP1 protein. Multiple rounds of stimulation were performed to identify the antigens that induced the largest expansion and CD8 + T cell response (measured as INF γ , TNF α , CD137, and CD69 expression). High-affinity, antigen-specific CD8 + T cells were isolated based on intensity of tetramer binding for downstream single-cell TCR sequencing. Candidate TCRs were selected based on tetramer binding affinity and activation assays. Promising TCRs were introduced into the T cell genome via viral transduction for in vitro validation including peptide-pulsed K562 cells and astrocyte cells, and JCV-infected astrocytes. Results Four conserved JCV VP1 epitopes (amino acids 100-108, 251-259, 253-262, and 274-283) presented by HLA-A2 were identified. VP1(100-108) consistently elicited the highest level of IFN- γ production from multiple donors and this peptide is in a highly conserved region of VP1. We next identified fourteen high avidity TCRs specific for VP1(100-108). When virally transduced into primary human T cells, seven of these TCRs demonstrated specific binding to VP1(100-108):HLA-A2 tetramers, and four showed increased IFN- γ response when incubated with peptide. Primary CD8 + T cells expressing two of these TCRs cleared both HLA-A2 positive K562 cells and HLA-A2 positive SVG astrocyte cell line presenting exogenously added VP1 peptide at a range of E:T ratios. In addition, both TCR-transduced T cell populations effectively lysed JCV-infected astrocytes. Conclusions We identified JCV VP1 epitopes that are immunogenic in the context of HLA-A2 MHC-I, including epitopes that have not been previously described. The VP1(100-108) epitope was used to isolate HLA-A2-restricted TCRs. When cloned into primary human CD8 + T cells, these TCRs recognized VP1 (100-108)-presenting targets, and the transduced T cells conferred cytotoxic activity and eliminated K562 and astrocyte cells displaying the VP1(100-108) peptide and not sham peptide, as well as JCV-infected astrocytes. Taken together, these data suggest that JCV VP1-specific TCRs could be appealing therapeutics for HLA-A2+ individuals with PML in whom intrinsic T cell immunity cannot be rescued.
Collapse
|
6
|
Wang C, Wang L. Resistance mechanisms and potential therapeutic strategies in relapsed or refractory natural killer/T cell lymphoma. Chin Med J (Engl) 2024; 137:2308-2324. [PMID: 39175124 PMCID: PMC11441923 DOI: 10.1097/cm9.0000000000003152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Indexed: 08/24/2024] Open
Abstract
ABSTRACT Natural killer/T cell lymphoma (NKTCL) is a malignant tumor originating from NK or T cells, characterized by its highly aggressive and heterogeneous nature. NKTCL is predominantly associated with Epstein-Barr virus infection, disproportionately affecting Asian and Latin American populations. Owing to the application of asparaginase and immunotherapy, clinical outcomes have improved significantly. However, for patients in whom first-line treatment fails, the prognosis is exceedingly poor. Overexpression of multidrug resistance genes, abnormal signaling pathways, epigenetic modifications and active Epstein-Barr virus infection may be responsible for resistance. This review summarized the mechanisms of resistance for NKTCL and proposed potential therapeutic approaches.
Collapse
Affiliation(s)
- Chengji Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
7
|
Toner K, McCann CD, Bollard CM. Applications of cell therapy in the treatment of virus-associated cancers. Nat Rev Clin Oncol 2024; 21:709-724. [PMID: 39160243 DOI: 10.1038/s41571-024-00930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/21/2024]
Abstract
A diverse range of viruses have well-established roles as the primary driver of oncogenesis in various haematological malignancies and solid tumours. Indeed, estimates suggest that approximately 1.5 million patients annually are diagnosed with virus-related cancers. The predominant human oncoviruses include Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis B and C viruses (HBV and HCV), human papillomavirus (HPV), human T-lymphotropic virus type 1 (HTLV1), and Merkel cell polyomavirus (MCPyV). In addition, although not inherently oncogenic, human immunodeficiency virus (HIV) is associated with immunosuppression that contributes to the development of AIDS-defining cancers (specifically, Kaposi sarcoma, aggressive B cell non-Hodgkin lymphoma and cervical cancer). Given that an adaptive T cell-mediated immune response is crucial for the control of viral infections, increasing research is being focused on evaluating virus-specific T cell therapies for the treatment of virus-associated cancers. In this Review, we briefly outline the roles of viruses in the pathogenesis of these malignancies before describing progress to date in the field of virus-specific T cell therapy and evaluating the potential utility of these therapies to treat or possibly even prevent virus-related malignancies.
Collapse
Affiliation(s)
- Keri Toner
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chase D McCann
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
8
|
Palianina D, Mietz J, Stühler C, Arnold B, Bantug G, Münz C, Chijioke O, Khanna N. Stem cell memory EBV-specific T cells control EBV tumor growth and persist in vivo. SCIENCE ADVANCES 2024; 10:eado2048. [PMID: 39178248 PMCID: PMC11343021 DOI: 10.1126/sciadv.ado2048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Adoptive T cell therapy (ACT), the therapeutic transfer of defined T cell immunity to patients, offers great potential in the fight against different human diseases including difficult-to-treat viral infections, but persistence and longevity of the cells are areas of concern. Very-early-differentiated stem cell memory T cells (TSCMs) have superior self-renewal, engraftment, persistence, and anticancer efficacy, but their potential for antiviral ACT remains unknown. Here, we developed a clinically scalable protocol for expanding Epstein-Barr virus (EBV)-specific TSCM-enriched T cells with high proportions of CD4+ T cells and broad EBV antigen coverage. These cells showed tumor control in a xenograft model of EBV-induced lymphoma and were superior to previous ACT protocols in terms of tumor infiltration, in vivo proliferation, persistence, proportion of functional CD4+ T cells, and diversity of EBV antigen specificity. Thus, our protocol may pave the way for the next generation of potent unmodified antigen-specific cell therapies for EBV-associated diseases, including tumors, and other indications.
Collapse
Affiliation(s)
- Darya Palianina
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Juliane Mietz
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Claudia Stühler
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Brice Arnold
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Glenn Bantug
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Nina Khanna
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
9
|
Münz C. Altered EBV specific immune control in multiple sclerosis. J Neuroimmunol 2024; 390:578343. [PMID: 38615370 DOI: 10.1016/j.jneuroim.2024.578343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Since the 1980s it is known that immune responses to the Epstein-Barr virus (EBV) are elevated in multiple sclerosis (MS) patients. Recent seroepidemiologial data have shown that this alteration after primary EBV infection identifies individuals with a more than 30-fold increased risk to develop MS. The mechanisms by which EBV infection might erode tolerance for the central nervous system (CNS) in these individuals, years prior to clinical MS onset, remain unclear. In this review I will discuss altered frequencies of EBV life cycle stages and their tissue distribution, EBV with CNS autoantigen cross-reactive immune responses and loss of immune control for autoreactive B and T cells as possible mechanisms. This discussion is intended to stimulate future studies into these mechanisms with the aim to identify candidates for interventions that might correct EBV specific immune control and/or resulting cross-reactivities with CNS autoantigens in MS patients and thereby ameliorate disease activity.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Switzerland.
| |
Collapse
|
10
|
Vittayawacharin P, Kongtim P, Chu Y, June CH, Bollard CM, Ciurea SO. Adoptive cellular therapy after hematopoietic stem cell transplantation. Am J Hematol 2024; 99:910-921. [PMID: 38269484 DOI: 10.1002/ajh.27204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Effective cellular therapy using CD19 chimeric antigen receptor T-cells for the treatment of advanced B-cell malignancies raises the question of whether the administration of adoptive cellular therapy (ACT) posttransplant could reduce relapse and improve survival. Moreover, several early phase clinical studies have shown the potential beneficial effects of administration of tumor-associated antigen-specific T-cells and natural killer cells posttransplant for high-risk patients, aiming to decrease relapse and possibly improve survival. In this article, we present an in-depth review of ACT after transplantation, which has the potential to significantly improve the efficacy of this procedure and revolutionize this field.
Collapse
Affiliation(s)
- Pongthep Vittayawacharin
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Orange, California, USA
| | - Piyanuch Kongtim
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Orange, California, USA
| | - Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Carl H June
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital and The George Washington University, Washington, DC, USA
| | - Stefan O Ciurea
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Orange, California, USA
| |
Collapse
|
11
|
Emilius L, Bremm F, Binder AK, Schaft N, Dörrie J. Tumor Antigens beyond the Human Exome. Int J Mol Sci 2024; 25:4673. [PMID: 38731892 PMCID: PMC11083240 DOI: 10.3390/ijms25094673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the advent of immunotherapeutics, a new era in the combat against cancer has begun. Particularly promising are neo-epitope-targeted therapies as the expression of neo-antigens is tumor-specific. In turn, this allows the selective targeting and killing of cancer cells whilst healthy cells remain largely unaffected. So far, many advances have been made in the development of treatment options which are tailored to the individual neo-epitope repertoire. The next big step is the achievement of efficacious "off-the-shelf" immunotherapies. For this, shared neo-epitopes propose an optimal target. Given the tremendous potential, a thorough understanding of the underlying mechanisms which lead to the formation of neo-antigens is of fundamental importance. Here, we review the various processes which result in the formation of neo-epitopes. Broadly, the origin of neo-epitopes can be categorized into three groups: canonical, noncanonical, and viral neo-epitopes. For the canonical neo-antigens that arise in direct consequence of somatic mutations, we summarize past and recent findings. Beyond that, our main focus is put on the discussion of noncanonical and viral neo-epitopes as we believe that targeting those provides an encouraging perspective to shape the future of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Lisabeth Emilius
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
12
|
Yamada M, L'Huillier AG, Green M. A Focused Review of Epstein-Barr Virus Infections and PTLD in Pediatric Transplant Recipients: Guidance From the IPTA and ECIL Guidelines. J Pediatric Infect Dis Soc 2024; 13:S31-S38. [PMID: 38417085 DOI: 10.1093/jpids/piad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/08/2023] [Indexed: 03/01/2024]
Abstract
Epstein-Barr Virus (EBV) diseases, including EBV-associated post-transplant lymphoproliferative disorder (PTLD) remain important causes of morbidity and mortality in children undergoing solid organ transplantation (SOT) and hematopoietic cell transplantation (HCT). Despite progress in the prevention of EBV disease including PTLD (EBV/PTLD) in HCT, key questions in the prevention, and management of these infectious complications remain unanswered. The goal of this manuscript is to highlight key points and recommendations derived from the consensus guidelines published by the International Pediatric Transplant Association and the European Conference on Infections in Leukemia for children undergoing SOT and HCT, respectively. Additionally, we provide background and guidance on the use of EBV viral load measurement in the prevention and management of these children.
Collapse
Affiliation(s)
- Masaki Yamada
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan
| | - Arnaud G L'Huillier
- Pediatric Infectious Diseases Unit, Department of Woman, Child and Adolescent Health, Geneva University Hospitals, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics Gynecology and Obstetrics, Faculty of Medicine, Geneva, Switzerland
| | - Michael Green
- Departments of Pediatrics and Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA and
- Departments of Pediatrics and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Kong IY, Giulino-Roth L. Targeting latent viral infection in EBV-associated lymphomas. Front Immunol 2024; 15:1342455. [PMID: 38464537 PMCID: PMC10920267 DOI: 10.3389/fimmu.2024.1342455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Epstein-Barr virus (EBV) contributes to the development of a significant subset of human lymphomas. As a herpes virus, EBV can transition between a lytic state which is required to establish infection and a latent state where a limited number of viral antigens are expressed which allows infected cells to escape immune surveillance. Three broad latency programs have been described which are defined by the expression of viral proteins RNA, with latency I being the most restrictive expressing only EBV nuclear antigen 1 (EBNA1) and EBV-encoded small RNAs (EBERs) and latency III expressing the full panel of latent viral genes including the latent membrane proteins 1 and 2 (LMP1/2), and EBNA 2, 3, and leader protein (LP) which induce a robust T-cell response. The therapeutic use of EBV-specific T-cells has advanced the treatment of EBV-associated lymphoma, however this approach is only effective against EBV-associated lymphomas that express the latency II or III program. Latency I tumors such as Burkitt lymphoma (BL) and a subset of diffuse large B-cell lymphomas (DLBCL) evade the host immune response to EBV and are resistant to EBV-specific T-cell therapies. Thus, strategies for inducing a switch from the latency I to the latency II or III program in EBV+ tumors are being investigated as mechanisms to sensitize tumors to T-cell mediated killing. Here, we review what is known about the establishment and regulation of latency in EBV infected B-cells, the role of EBV-specific T-cells in lymphoma, and strategies to convert latency I tumors to latency II/III.
Collapse
|
14
|
O’Reilly RJ, Prockop S, Oved JH. Virus-specific T-cells from third party or transplant donors for treatment of EBV lymphoproliferative diseases arising post hematopoietic cell or solid organ transplantation. Front Immunol 2024; 14:1290059. [PMID: 38274824 PMCID: PMC10808771 DOI: 10.3389/fimmu.2023.1290059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
EBV+ lymphomas constitute a significant cause of morbidity and mortality in recipients of allogeneic hematopoietic cell (HCT) and solid organ transplants (SOT). Phase I and II trials have shown that in HCT recipients, adoptive transfer of EBV-specific T-cells from the HCT donor can safely induce durable remissions of EBV+ lymphomas including 70->90% of patients who have failed to respond to treatment with Rituximab. More recently, EBV-specific T-cells generated from allogeneic 3rd party donors have also been shown to induce durable remission of EBV+ lymphomas in Rituximab refractory HCT and SOT recipients. In this review, we compare results of phase I and II trials of 3rd party and donor derived EBV-specific T-cells. We focus on the attributes and limitations of each product in terms of access, safety, responses achieved and durability. The limited data available regarding donor and host factors contributing to T cell persistence is also described. We examine factors contributing to treatment failures and approaches to prevent or salvage relapse. Lastly, we summarize strategies to further improve results for virus-specific immunotherapies for post-transplant EBV lymphomas.
Collapse
Affiliation(s)
- Richard J. O’Reilly
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Susan Prockop
- Pediatric Stem Cell Transplantation, Boston Children’s Hospital/Dana-Farber Cancer Institute, Boston, MA, United States
| | - Joseph H. Oved
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
15
|
Zhang Q, Xu M. EBV-induced T-cell responses in EBV-specific and nonspecific cancers. Front Immunol 2023; 14:1250946. [PMID: 37841280 PMCID: PMC10576448 DOI: 10.3389/fimmu.2023.1250946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human tumor virus associated with various malignancies, including B-lymphoma, NK and T-lymphoma, and epithelial carcinoma. It infects B lymphocytes and epithelial cells within the oropharynx and establishes persistent infection in memory B cells. With a balanced virus-host interaction, most individuals carry EBV asymptomatically because of the lifelong surveillance by T cell immunity against EBV. A stable anti-EBV T cell repertoire is maintained in memory at high frequency in the blood throughout persistent EBV infection. Patients with impaired T cell immunity are more likely to develop life-threatening lymphoproliferative disorders, highlighting the critical role of T cells in achieving the EBV-host balance. Recent studies reveal that the EBV protein, LMP1, triggers robust T-cell responses against multiple tumor-associated antigens (TAAs) in B cells. Additionally, EBV-specific T cells have been identified in EBV-unrelated cancers, raising questions about their role in antitumor immunity. Herein, we summarize T-cell responses in EBV-related cancers, considering latency patterns, host immune status, and factors like human leukocyte antigen (HLA) susceptibility, which may affect immune outcomes. We discuss EBV-induced TAA-specific T cell responses and explore the potential roles of EBV-specific T cell subsets in tumor microenvironments. We also describe T-cell immunotherapy strategies that harness EBV antigens, ranging from EBV-specific T cells to T cell receptor-engineered T cells. Lastly, we discuss the involvement of γδ T-cells in EBV infection and associated diseases, aiming to elucidate the comprehensive interplay between EBV and T-cell immunity.
Collapse
Affiliation(s)
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Gong T, Wu J. Synthetic engineered bacteria for cancer therapy. Expert Opin Drug Deliv 2023; 20:993-1013. [PMID: 37497622 DOI: 10.1080/17425247.2023.2241367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/10/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Cancer mortality worldwide highlights the urgency for advanced therapeutic methods to fill the gaps in conventional cancer therapies. Bacteriotherapy is showing great potential in tumor regression due to the motility and colonization tendencies of bacteria. However, the complicated in vivo environment and tumor pathogenesis hamper the therapeutic outcomes. Synthetic engineering methods endow bacteria with flexible abilities both at the extracellular and intracellular levels to meet treatment requirements. In this review, we introduce synthetic engineering methods for bacterial modifications. We highlight the recent progress in engineered bacteria and explore how these synthetic methods endow bacteria with superior abilities in cancer therapy. The current clinical translations are further discussed. Overall, this review may shed light on the advancement of engineered bacteria for cancer therapy. AREAS COVERED Recent progress in synthetic methods for bacterial engineering and specific examples of their applications in cancer therapy are discussed in this review. EXPERT OPINION Bacteriotherapy bridges the gaps of conventional cancer therapies through the natural motility and colonization tendency of bacteria, as well as their synthetic engineering. Nevertheless, to fulfill the bacteriotherapy potential and move into clinical trials, more research focusing on its safety concerns should be conducted.
Collapse
Affiliation(s)
- Tong Gong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Wang J, Metheny L. Umbilical cord blood derived cellular therapy: advances in clinical development. Front Oncol 2023; 13:1167266. [PMID: 37274288 PMCID: PMC10232824 DOI: 10.3389/fonc.2023.1167266] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
While cord blood (CB) is primarily utilized in allogeneic hematopoietic cell transplantation (HCT), the development of novel cell therapy products from CB is a growing and developing field. Compared to adult blood, CB is characterized by a higher percentage of hematopoietic stem cells (HSCs) and progenitor cells, less mature immune cells that retain a high capacity of proliferation, and stronger immune tolerance that requires less stringent HLA-matching when used in the allogenic setting. Given that CB is an FDA regulated product and along with its unique cellular composition, CB lends itself as a readily available and safe starting material for the development of off-the-shelf cell therapies. Moreover, non-hematologic cells such as mesenchymal stem cell (MSCs) residing in CB or CB tissue also have potential in regenerative medicine and inflammatory and autoimmune conditions. In this review, we will focus on recent clinical development on CB-derived cellular therapies in the field of oncology, including T-cell therapies such as chimeric antigen receptor (CAR) T-cells, regulatory T-cells, and virus-specific T-cells; NK-cell therapies, such as NK cell engagers and CAR NK-cells; CB-HCT and various modifications; as well as applications of MSCs in HCT.
Collapse
|
18
|
Wang Y, Huang R, Wang Z, Xiong J, Wang X, Zhang X. Facing challenges with hope: universal immune cells for hematologic malignancies. Cancer Biol Med 2023; 20:229-247. [PMID: 37144558 PMCID: PMC10157807 DOI: 10.20892/j.issn.2095-3941.2022.0759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/07/2023] [Indexed: 05/06/2023] Open
Abstract
Many patients have achieved a favorable overall survival rate since allogenic hematopoietic stem cell transplantation (allo-HSCT) has been widely implemented to treat hematologic malignancies. However, graft-versus-host disease (GVHD) and complications of immunosuppressive drugs after allo-HSCT are the main causes of non-relapse mortality and a poor quality of life. In addition, GVHD and infusion-induced toxicity still occur with donor lymphocyte infusions (DLIs) and chimeric antigen receptor (CAR) T-cell therapy. Because of the special immune tolerance characteristics and anti-tumor ability of universal immune cells, universal immune cell therapy may strongly reduce GVHD, while simultaneously reducing tumor burden. Nevertheless, widespread application of universal immune cell therapy is mainly restricted by poor expansion and persistence efficacy. Many strategies have been applied to improve universal immune cell proliferation and persistence efficacy, including the use of universal cell lines, signaling regulation and CAR technology. In this review we have summarized current advances in universal immune cell therapy for hematologic malignancies with a discussion of future perspectives.
Collapse
Affiliation(s)
- Yuqing Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
- Jinfeng Laboratory, Chongqing 400037, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Zheng Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Jingkang Xiong
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
- Jinfeng Laboratory, Chongqing 400037, China
| |
Collapse
|
19
|
Dross S, Venkataraman R, Patel S, Huang ML, Bollard CM, Rosati M, Pavlakis GN, Felber BK, Bar KJ, Shaw GM, Jerome KR, Mullins JI, Kiem HP, Fuller DH, Peterson CW. Efficient ex vivo expansion of conserved element vaccine-specific CD8+ T-cells from SHIV-infected, ART-suppressed nonhuman primates. Front Immunol 2023; 14:1188018. [PMID: 37207227 PMCID: PMC10189133 DOI: 10.3389/fimmu.2023.1188018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
HIV-specific T cells are necessary for control of HIV-1 replication but are largely insufficient for viral clearance. This is due in part to these cells' recognition of immunodominant but variable regions of the virus, which facilitates viral escape via mutations that do not incur viral fitness costs. HIV-specific T cells targeting conserved viral elements are associated with viral control but are relatively infrequent in people living with HIV (PLWH). The goal of this study was to increase the number of these cells via an ex vivo cell manufacturing approach derived from our clinically-validated HIV-specific expanded T-cell (HXTC) process. Using a nonhuman primate (NHP) model of HIV infection, we sought to determine i) the feasibility of manufacturing ex vivo-expanded virus-specific T cells targeting viral conserved elements (CE, CE-XTCs), ii) the in vivo safety of these products, and iii) the impact of simian/human immunodeficiency virus (SHIV) challenge on their expansion, activity, and function. NHP CE-XTCs expanded up to 10-fold following co-culture with the combination of primary dendritic cells (DCs), PHA blasts pulsed with CE peptides, irradiated GM-K562 feeder cells, and autologous T cells from CE-vaccinated NHP. The resulting CE-XTC products contained high frequencies of CE-specific, polyfunctional T cells. However, consistent with prior studies with human HXTC and these cells' predominant CD8+ effector phenotype, we did not observe significant differences in CE-XTC persistence or SHIV acquisition in two CE-XTC-infused NHP compared to two control NHP. These data support the safety and feasibility of our approach and underscore the need for continued development of CE-XTC and similar cell-based strategies to redirect and increase the potency of cellular virus-specific adaptive immune responses.
Collapse
Affiliation(s)
- Sandra Dross
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, Seattle, WA, United States
| | - Rasika Venkataraman
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Shabnum Patel
- Center for Cancer and Immunology Research, Children’s National Hospital and Department of Pediatrics, The George Washington University, Washington, DC, United States
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children’s National Hospital and Department of Pediatrics, The George Washington University, Washington, DC, United States
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, National Cancer Institute at Frederick, Frederick, MD, United States
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Katharine J. Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - George M. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Division of Vaccine and Infectious Diseases, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Hans-Peter Kiem
- Washington National Primate Research Center, Seattle, WA, United States
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Deborah Heydenburg Fuller
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, Seattle, WA, United States
| | - Christopher W. Peterson
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
20
|
Ullah A, Lee KT, Malham K, Yasinzai AQK, Khan I, Asif B, Waheed A, Heneidi S, Karki NR, Sidhwa F. Post-transplant Lymphoproliferative Disorder (PTLD) in the US Population: Demographics, Treatment Characteristics, and Survival Analysis. Cureus 2023; 15:e39777. [PMID: 37398803 PMCID: PMC10312545 DOI: 10.7759/cureus.39777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Post-transplant lymphoproliferative disorder (PTLD) is a lymphoplasmacytic proliferative disorder in the setting of hematopoietic stem cells and solid organ transplants. PTLD is divided into nondestructive, polymorphic, monomorphic, and classical Hodgkin lymphoma subtypes. Most cases of PTLDs are Epstein-Barr virus (EBV) related (two third of the cases), and most are of B cell (80-85%) origin. The polymorphic PTLD subtype can be locally destructive and show malignant features. Treatment for PTLD includes a reduction in immunosuppression, surgery, cytotoxic chemotherapy and/or immunotherapy, anti-viral agents, and/or radiation. The aim of this study was to examine the demographic factors and treatment modalities that influence survival in patients with polymorphic PTLD. METHODS About 332 cases of polymorphic PTLD were identified from 2000 to 2018 using the Surveillance, Epidemiology, and End Results (SEER) database. RESULTS The median age of the patients was found to be 44 years. The most common age groups were between the ages of 1-19 years (n=100. 30.1%) and 60-69 years (n=70. 21.1%). The majority of cases in this cohort underwent systemic (cytotoxic chemo and/or immuno) therapy only (n=137, 41.3%), while 129 (38.9%) cases did not undergo any treatment. The overall five-year observed survival was 54.6% (95% confidence interval (CI), 51.1 - 58.1). One-year and five-year survival with systemic therapy was 63.8% (95% CI, 59.6 - 68.0) and 52.5% (95% CI, 47.7 - 57.3), respectively. The one-year and five-year survival with surgery was 87.3% (95% CI, 81.2-93.4) and 60.8% (95% CI., 42.2 - 79.4), respectively. The one-year and five-year without therapy were 67.6% (95% CI, 63.2-72.0) and 49.6% (95% CI, 43.5-55.7), respectively. Univariate analysis revealed that surgery alone (hazard ratio (HR) 0.386 (0.170-0.879), p = 0.023) was a positive predictor of survival. Race and sex were not predictors of survival, although age >55 years was a negative predictor for survival (HR 1.128 (1.139-1.346), p <0.001). CONCLUSION Polymorphic PTLD is a destructive complication of organ transplantation that is usually associated with EBV positivity. We found that it most often presents in the pediatric age group, and its occurrence in those older than 55 years was associated with a worse prognosis. Treatment with surgery alone is associated with improved outcomes and should be considered in addition to a reduction in immunosuppression in cases of polymorphic PTLD.
Collapse
Affiliation(s)
- Asad Ullah
- Pathology, Vanderbilt University Medical Center, Augusta, USA
| | - Kue T Lee
- ENT, Medical College of Georgia, Augusta, USA
| | - Kali Malham
- Surgery, Medical College of Georgia, Augusta, USA
| | | | - Imran Khan
- Surgery, Bolan Medical College, Quetta, PAK
| | - Bina Asif
- Medicine, Bannu Medical College, Bannu, PAK
| | - Abdul Waheed
- Surgery, San Joaquin General Hospital, French Camp, USA
| | - Saleh Heneidi
- Pathology, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Nabin R Karki
- Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, USA
| | - Feroze Sidhwa
- General Surgery/Trauma and Critical Care, San Joaquin General Hospital, French Camp, USA
| |
Collapse
|
21
|
Sausen DG, Basith A, Muqeemuddin S. EBV and Lymphomagenesis. Cancers (Basel) 2023; 15:cancers15072133. [PMID: 37046794 PMCID: PMC10093459 DOI: 10.3390/cancers15072133] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
The clinical significance of Epstein–Barr virus (EBV) cannot be understated. Not only does it infect approximately 90% of the world’s population, but it is also associated with numerous pathologies. Diseases linked to this virus include hematologic malignancies such as diffuse large B-cell lymphoma, Hodgkin lymphoma, Burkitt lymphoma, primary CNS lymphoma, and NK/T-cell lymphoma, epithelial malignancies such as nasopharyngeal carcinoma and gastric cancer, autoimmune diseases such as multiple sclerosis, Graves’ disease, and lupus. While treatment for these disease states is ever evolving, much work remains to more fully elucidate the relationship between EBV, its associated disease states, and their treatments. This paper begins with an overview of EBV latency and latency-associated proteins. It will then review EBV’s contributions to select hematologic malignancies with a focus on the contribution of latent proteins as well as their associated management.
Collapse
Affiliation(s)
- Daniel G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ayeman Basith
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | | |
Collapse
|
22
|
Chu Y, Gardenswartz A, Diorio C, Marks LJ, Lowe E, Teachey DT, Cairo MS. Cellular and humoral immunotherapy in children, adolescents and young adults with non-Hodgkin lymphoma. Best Pract Res Clin Haematol 2023; 36:101442. [PMID: 36907635 DOI: 10.1016/j.beha.2023.101442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The prognosis is dismal (2-year overall survival less than 25%) for childhood, adolescent, and young adult (CAYA) with relapsed and/or refractory (R/R) non-Hodgkin lymphoma (NHL). Novel targeted therapies are desperately needed for this poor-risk population. CD19, CD20, CD22, CD79a, CD38, CD30, LMP1 and LMP2 are attractive targets for immunotherapy in CAYA patients with R/R NHL. Novel anti-CD20 monoclonal antibodies, anti-CD38 monoclonal antibody, antibody drug conjugates and T and natural killer (NK)-cell bispecific and trispecific engagers are being investigated in the R/R setting and are changing the landscape of NHL therapy. A variety of cellular immunotherapies such as viral activated cytotoxic T-lymphocyte, chimeric antigen receptor (CAR) T-cells, NK and CAR NK-cells have been investigated and provide alternative options for CAYA patients with R/R NHL. Here, we provide an update and clinical practice guidance of utilizing these cellular and humoral immunotherapies in CAYA patients with R/R NHL.
Collapse
Affiliation(s)
- Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | | | - Caroline Diorio
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lianna J Marks
- Division of Pediatric Hematology and Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Eric Lowe
- Division of Pediatric Hematology-Oncology, Children's Hospital of the Kings Daughter, Norfolk, VA, USA
| | - David T Teachey
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA; Department of Epidemiology and Community Health, New York Medical College, Valhalla, NY, USA; Department of Medicine, New York Medical College, Valhalla, NY, USA; Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA; Department of Cell Biology, New York Medical College, Valhalla, NY, USA; Department of Anatomy, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
23
|
Quach DH, Lulla P, Rooney CM. Banking on virus-specific T cells to fulfill the need for off-the-shelf cell therapies. Blood 2023; 141:877-885. [PMID: 36574622 PMCID: PMC10023738 DOI: 10.1182/blood.2022016202] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Adoptively transferred virus-specific T cells (VSTs) have shown remarkable safety and efficacy for the treatment of virus-associated diseases and malignancies in hematopoietic stem cell transplant (HSCT) recipients, for whom VSTs are derived from the HSCT donor. Autologous VSTs have also shown promise for the treatment of virus-driven malignancies outside the HSCT setting. In both cases, VSTs are manufactured as patient-specific products, and the time required for procurement, manufacture, and release testing precludes their use in acutely ill patients. Further, Good Manufacturing Practices-compliant products are expensive, and failures are common in virus-naive HSCT donors and patient-derived VSTs that are rendered anergic by immunosuppressive tumors. Hence, highly characterized, banked VSTs (B-VSTs) that can be used for multiple unrelated recipients are highly desirable. The major challenges facing B-VSTs result from the inevitable mismatches in the highly polymorphic and immunogenic human leukocyte antigens (HLA) that present internally processed antigens to the T-cell receptor, leading to the requirement for partial HLA matching between the B-VST and recipient. HLA mismatches lead to rapid rejection of allogeneic T-cell products and graft-versus-host disease induced by alloreactive T cells in the infusion product. Here, we summarize the clinical outcomes to date of trials of B-VSTs used for the treatment of viral infections and malignancies and their potential as a platform for chimeric antigen receptors targeting nonviral tumors. We will highlight the properties of VSTs that make them attractive off-the-shelf cell therapies, as well as the challenges that must be overcome before they can become mainstream.
Collapse
Affiliation(s)
- David H. Quach
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Premal Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Cliona M. Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
- Department of Molecular Virology and Immunology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
24
|
Major A, Porcu P, Haverkos BM. Rational Targets of Therapy in Extranodal NK/T-Cell Lymphoma. Cancers (Basel) 2023; 15:cancers15051366. [PMID: 36900160 PMCID: PMC10000128 DOI: 10.3390/cancers15051366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Extranodal NK/T-cell lymphoma (ENKTL) is an aggressive extranodal non-Hodgkin lymphoma (NHL) with poor outcomes, particularly in advanced-stage and relapsed/refractory disease. Emerging research on molecular drivers of ENKTL lymphomagenesis by next-generation and whole genome sequencing has revealed diverse genomic mutations in multiple signaling pathways, with the identification of multiple putative targets for novel therapeutic agents. In this review, we summarize the biological underpinnings of newly-understood therapeutic targets in ENKTL with a focus on translational implications, including epigenetic and histone regulatory aberrations, activation of cell proliferation signaling pathways, suppression of apoptosis and tumor suppressor genes, changes in the tumor microenvironment, and EBV-mediated oncogenesis. In addition, we highlight prognostic and predictive biomarkers which may enable a personalized medicine approach toward ENKTL therapy.
Collapse
Affiliation(s)
- Ajay Major
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Pierluigi Porcu
- Division of Medical Oncology and Hematopoietic Stem Cell Transplantation, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bradley M. Haverkos
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-720-848-0414
| |
Collapse
|
25
|
Glover A, Zhang Z, Shannon-Lowe C. Deciphering the roles of myeloid derived suppressor cells in viral oncogenesis. Front Immunol 2023; 14:1161848. [PMID: 37033972 PMCID: PMC10076641 DOI: 10.3389/fimmu.2023.1161848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Myeloid derived suppressor cells (MDSCs) are a heterogenous population of myeloid cells derived from monocyte and granulocyte precursors. They are pathologically expanded in conditions of ongoing inflammation where they function to suppress both innate and adaptive immunity. They are subdivided into three distinct subsets: monocytic (M-) MDSC, polymorphonuclear (or neutrophilic) (PMN-) MDSC and early-stage (e-) MDSC that may exhibit differential function in different pathological scenarios. However, in cancer they are associated with inhibition of the anti-tumour immune response and are universally associated with a poor prognosis. Seven human viruses classified as Group I carcinogenic agents are jointly responsible for nearly one fifth of all human cancers. These viruses represent a large diversity of species, including DNA, RNA and retroviridae. They include the human gammaherpesviruses (Epstein Barr virus (EBV) and Kaposi's Sarcoma-Associated Herpesvirus (KSHV), members of the high-risk human papillomaviruses (HPVs), hepatitis B and C (HBV, HCV), Human T cell leukaemia virus (HTLV-1) and Merkel cell polyomavirus (MCPyV). Each of these viruses encode an array of different oncogenes that perturb numerous cellular pathways that ultimately, over time, lead to cancer. A prerequisite for oncogenesis is therefore establishment of chronic infection whereby the virus persists in the host cells without being eradicated by the antiviral immune response. Although some of the viruses can directly modulate the immune response to enable persistence, a growing body of evidence suggests the immune microenvironment is modulated by expansions of MDSCs, driven by viral persistence and oncogenesis. It is likely these MDSCs play a role in loss of immune recognition and function and it is therefore essential to understand their phenotype and function, particularly given the increasing importance of immunotherapy in the modern arsenal of anti-cancer therapies. This review will discuss the role of MDSCs in viral oncogenesis. In particular we will focus upon the mechanisms thought to drive the MDSC expansions, the subsets expanded and their impact upon the immune microenvironment. Importantly we will explore how MDSCs may modulate current immunotherapies and their impact upon the success of future immune-based therapies.
Collapse
|
26
|
Motta CM, Keller MD, Bollard CM. Applications of Virus specific T cell Therapies Post BMT. Semin Hematol 2022; 60:10-19. [PMID: 37080705 DOI: 10.1053/j.seminhematol.2022.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) has been used as a curative standard of care for moderate to severe primary immunodeficiency disorders as well as relapsed hematologic malignancies for over 50 years [1,2]. However, chronic and refractory viral infections remain a leading cause of morbidity and mortality in the immune deficient period following HSCT, where use of available antiviral pharmacotherapies is limited by toxicity and emerging resistance [3]. Adoptive immunotherapy using virus-specific T cells (VSTs) has been explored for over 2 decades [4,5] in patients post-HSCT and has been shown prior phase I-II studies to be safe and effective for treatment or preventions of viral infections including cytomegalovirus, Epstein-Barr virus, BK virus, and adenovirus with minimal toxicity and low risk of graft vs host disease [6-9]. This review summarizes methodologies to generate VSTs the clinical results utilizing VST therapeutics and the challenges and future directions for the field.
Collapse
|
27
|
Soldan SS, Messick TE, Lieberman PM. Therapeutic approaches to Epstein-Barr virus cancers. Curr Opin Virol 2022; 56:101260. [PMID: 36174496 PMCID: PMC11058316 DOI: 10.1016/j.coviro.2022.101260] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022]
Abstract
Epstein-Barr virus (EBV) establishes a lifelong latent infection that can be a causal agent for a diverse spectrum of cancers and autoimmune disease. A complex and dynamic viral lifecycle evades eradication by the host immune system and confounds antiviral therapeutic strategies. To date, there are no clinically approved vaccines or therapies that selectively target EBV as the underlying cause of EBV-associated disease. Here, we review the challenges and recent advances in the development of EBV-specific therapeutics for treatment of EBV-associated cancers.
Collapse
|
28
|
Immunocompromised host section: Adoptive T-cell therapy for dsDNA viruses in allogeneic hematopoietic cell transplant recipients. Curr Opin Infect Dis 2022; 35:302-311. [PMID: 35849520 DOI: 10.1097/qco.0000000000000838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Double-stranded DNA (dsDNA) viruses remain important causes of morbidity and mortality after allogeneic hematopoietic cell transplantation (HCT). As treatment options are limited, adoptive therapy with virus-specific T cells (VST) is promising in restoring immunity and thereby preventing and treating virus infections. Here we review current evidence and recent advances in the field of VST for dsDNA viruses in allogeneic HCT recipients. RECENT FINDINGS Four different protocols for VST generation are currently used in clinical trials, and various products including multivirus-specific and off-the-shelf products are under investigation for prophylaxis, preemptive therapy or treatment. Data from nearly 1400 dsDNA-VST applications in allogeneic HCT patients have been published and demonstrated its safety. Although Epstein-Barr virus, cytomegalovirus, and adenovirus-specific T-cell therapy studies have predominated over the past 25 years, additional human herpes viruses were added to multivirus-specific T cells over the last decade and clinical evidence for polyomavirus-specific VST has just recently emerged. Response rates of around 70-80% have been reported, but cautious interpretation is warranted as data are predominantly from phase 1/2 studies and clinical efficacy needs to be confirmed in phase 3 studies. SUMMARY Investigation on the 'ideal' composition of VST is ongoing. Several products recently entered phase 3 trials and may allow widespread clinical use in the near future.
Collapse
|
29
|
Jeyakumar N, Smith M. Custom CARs: Leveraging the Adaptability of Allogeneic CAR Therapies to Address Current Challenges in Relapsed/Refractory DLBCL. Front Immunol 2022; 13:887866. [PMID: 35663947 PMCID: PMC9158546 DOI: 10.3389/fimmu.2022.887866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/06/2022] [Indexed: 12/27/2022] Open
Abstract
Cellular therapies have transformed the treatment of relapsed/refractory diffuse large B-cell lymphoma (r/r DLBCL), which typically does not respond well to salvage chemotherapy. Recently, approximately 40% of r/r DLBCL patients across three different trials achieved a complete remission at 1 year after receiving treatment with autologous chimeric antigen receptor (CAR) T cells (auto-CARs). These successes have prompted studies of auto-CARs in second-line settings, in which axicabtagene ciloleucel and lisocabtagene maraleucel both showed improved event-free survival over autologous hematopoietic cell transplantation (AHCT). While encouraging, this data also highlights that 60% of patients relapse or progress following treatment with auto-CARs. Individual disease characteristics and logistical challenges of cell engineering also limit patients’ eligibility for auto-CARs. Allogeneic CAR T cells (allo-CARs) may address some of these limitations as they may mitigate delays associated with auto-CARs, thereby reducing the need for bridging chemotherapies and increasing availability of cellular products for patients with aggressive lymphomas. By being sourced from healthy donors who have never been exposed to cytotoxic chemotherapy, allo-CARs can be created from T cells with better fitness. Allo-CARs made from specific cellular subsets (e.g., stem cell memory or naïve/early memory T cells) may also have increased efficacy and long-term persistence. Additionally, allo-CARs have been successfully created from other cell types, including natural killer cells, gamma-delta T-cells and induced pluripotent stem cells. These cell types can be engineered to target viral antigens, enabling precision targeting of virally driven DLBCL. As allogeneic donor cells can be banked and cryopreserved in batches, they can be made more readily available, potentially reducing logistical hurdles and costs compared to engineering auto-CARs. This may ultimately create a more sustainable platform for cell therapies. Challenges with allo-CARs that will need to be addressed include graft versus host disease, alloimmunization, potentially decreased persistence relative to auto-CARs, and antigen escape. In short, the adaptability of allo-CARs makes them ideal for treating patients with r/r DLBCL who have progressed through standard chemotherapy, AHCT, or auto-CARs. Here, we review the published literature on patients with r/r DLBCL treated with allogeneic CAR products manufactured from various cell types as well as forthcoming allogeneic CAR technologies.
Collapse
Affiliation(s)
- Nikeshan Jeyakumar
- Divisions of Hematology and Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Melody Smith
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
30
|
The generation and application of antigen-specific T cell therapies for cancer and viral-associated disease. Mol Ther 2022; 30:2130-2152. [PMID: 35149193 PMCID: PMC9171249 DOI: 10.1016/j.ymthe.2022.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/27/2021] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy with antigen-specific T cells is a promising, targeted therapeutic option for patients with cancer as well as for immunocompromised patients with virus infections. In this review, we characterize and compare current manufacturing protocols for the generation of T cells specific to viral and non-viral tumor-associated antigens. Specifically, we discuss: (1) the different methodologies to expand virus-specific T cell and non-viral tumor-associated antigen-specific T cell products, (2) an overview of the immunological principles involved when developing such manufacturing protocols, and (3) proposed standardized methodologies for the generation of polyclonal, polyfunctional antigen-specific T cells irrespective of donor source. Ex vivo expanded cells have been safely administered to treat numerous patients with virus-associated malignancies, hematologic malignancies, and solid tumors. Hence, we have performed a comprehensive review of the clinical trial results evaluating the safety, feasibility, and efficacy of these products in the clinic. In summary, this review seeks to provide new insights regarding antigen-specific T cell technology to benefit a rapidly expanding T cell therapy field.
Collapse
|
31
|
Reneau JC, Shindiapina P, Braunstein Z, Youssef Y, Ruiz M, Farid S, Hanel W, Brammer JE. Extranodal Natural Killer/T-Cell Lymphomas: Current Approaches and Future Directions. J Clin Med 2022; 11:jcm11102699. [PMID: 35628826 PMCID: PMC9145443 DOI: 10.3390/jcm11102699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022] Open
Abstract
Extranodal natural killer/T(NK/T)-cell lymphoma (ENKTL) is a rare subtype of non-Hodgkin lymphoma that typically presents with an isolated nasal mass, but a sizeable minority present with advanced stage disease and have a significantly poorer prognosis. Those with limited disease are standardly treated with chemotherapy and radiation while those with advanced stage disease are treated with L-asparaginase containing chemotherapy regimens. The addition of modern radiation therapy techniques and the incorporation of L-asparaginase into chemotherapy regimens have significantly improved outcomes in this disease, but relapses and death from relapsed disease remain frequent. Given the high rate of relapse, several novel therapies have been evaluated for the treatment of this disease. In this review, we explore the current standard of care for ENKTL as well as novel therapies that have been evaluated for its treatment and the biologic understanding behind these therapies.
Collapse
Affiliation(s)
- John C. Reneau
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (J.C.R.); (P.S.); (Y.Y.); (M.R.); (S.F.); (W.H.)
| | - Polina Shindiapina
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (J.C.R.); (P.S.); (Y.Y.); (M.R.); (S.F.); (W.H.)
| | - Zachary Braunstein
- Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA;
| | - Youssef Youssef
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (J.C.R.); (P.S.); (Y.Y.); (M.R.); (S.F.); (W.H.)
| | - Miguel Ruiz
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (J.C.R.); (P.S.); (Y.Y.); (M.R.); (S.F.); (W.H.)
| | - Saira Farid
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (J.C.R.); (P.S.); (Y.Y.); (M.R.); (S.F.); (W.H.)
| | - Walter Hanel
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (J.C.R.); (P.S.); (Y.Y.); (M.R.); (S.F.); (W.H.)
| | - Jonathan E. Brammer
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (J.C.R.); (P.S.); (Y.Y.); (M.R.); (S.F.); (W.H.)
- Correspondence:
| |
Collapse
|
32
|
Wang Y, Wang J, Zhu F, Wang H, Yi L, Huang K, Zhai Z. Elevated circulating myeloid-derived suppressor cells associated with poor prognosis in B-cell non-Hodgkin's lymphoma patients. Immun Inflamm Dis 2022; 10:e616. [PMID: 35478441 PMCID: PMC9017625 DOI: 10.1002/iid3.616] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction Myeloid‐derived suppressor cells (MDSCs) are a heterogeneous cell population with the ability to suppress immune responses. MDSCs usually cluster in cancer, inflammation, and autoimmune diseases. Although there have been some studies on MDSCs in non‐Hodgkin lymphoma (NHL), the correlation between the peripheral levels of MDSCs in patients with various subtypes of B cell NHL and clinical features and prognosis remains inconclusive. This study aimed at the issue. Methods 101 patients with B cell NHL and 15 age‐matched healthy controls were included in this study. Flow cytometric detection of monocytic‐MDSCs (M‐MDSCs) and granulocytic‐MDSCs (G‐MDSCs) was done. Results In this study, we found that counts of circulating M‐MDSCs and G‐MDSCs were significantly increased in different clinical statuses of B‐NHL patients compared to healthy controls. Similarly, a significant increase in the levels of M‐MDSCs and G‐MDSCs was found among the diverse types of B‐NHL compared with healthy donors. Stratification studies indicated MDSCs expansion was closely associated with disease progression (tumor stage, LDH levels and B syndromes). Moreover, the overall survival time of patients with G‐MDSCs (%) ≥ 98.70% was shorter than patients with G‐MDSCs (%) < 98.70% in newly diagnosed B‐NHL subgroup, meanwhile, there was a significant difference in survival of patients with M‐MDSCs (%) ≥ 7.19% compared to patients with M‐MDSCs (%) < 7.19% in relapsed B‐NHL subgroup. Conclusion Our results suggested that M‐MDSCs and G‐MDSCs may be a potential and efficient index to evaluate the prognosis of B‐NHL patients.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Hematology, Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiyu Wang
- Department of Hematology, Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fengfeng Zhu
- Department of Hematology, Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Huiping Wang
- Department of Hematology, Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liuying Yi
- Department of Hematology, Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Keke Huang
- Department of Hematology, Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhimin Zhai
- Department of Hematology, Second Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
33
|
Toner K, Bollard CM. EBV+ lymphoproliferative diseases: opportunities for leveraging EBV as a therapeutic target. Blood 2022; 139:983-994. [PMID: 34437680 PMCID: PMC8854679 DOI: 10.1182/blood.2020005466] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/24/2021] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human tumor virus, which contributes to the development of lymphoproliferative disease, most notably in patients with impaired immunity. EBV-associated lymphoproliferation is characterized by expression of latent EBV proteins and ranges in severity from a relatively benign proliferative response to aggressive malignant lymphomas. The presence of EBV can also serve as a unique target for directed therapies for the treatment of EBV lymphoproliferative diseases, including T cell-based immune therapies. In this review, we describe the EBV-associated lymphoproliferative diseases and particularly focus on the therapies that target EBV.
Collapse
Affiliation(s)
- Keri Toner
- Center for Cancer and Immunology Research
- Division of Oncology, and
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC; and
- GW Cancer Center, George Washington University, Washington, DC
| | - Catherine M Bollard
- Center for Cancer and Immunology Research
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC; and
- GW Cancer Center, George Washington University, Washington, DC
| |
Collapse
|
34
|
Fox CP, Ahearne MJ, Pettengell R, Dearden C, El-Sharkawi D, Kassam S, Cook L, Cwynarski K, Illidge T, Collins G. Guidelines for the management of mature T- and natural killer-cell lymphomas (excluding cutaneous T-cell lymphoma): a British Society for Haematology Guideline. Br J Haematol 2022; 196:507-522. [PMID: 34811725 DOI: 10.1111/bjh.17951] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
MESH Headings
- Humans
- Clinical Decision-Making
- Combined Modality Therapy/adverse effects
- Combined Modality Therapy/methods
- Diagnosis, Differential
- Disease Management
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Leukemia, Prolymphocytic, T-Cell/diagnosis
- Leukemia, Prolymphocytic, T-Cell/etiology
- Leukemia, Prolymphocytic, T-Cell/therapy
- Lymphoma, T-Cell/diagnosis
- Lymphoma, T-Cell/epidemiology
- Lymphoma, T-Cell/etiology
- Lymphoma, T-Cell/therapy
- Prognosis
- Treatment Outcome
Collapse
Affiliation(s)
- Christopher P Fox
- Department of Clinical Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Matthew J Ahearne
- Department of Haematology, University Hospitals of Leicester NHS Trust, Lymphoid Malignancies Group, University of Leicester, Leicester, UK
| | - Ruth Pettengell
- Haematology and Medical Oncology, St. George's Healthcare NHS Trust, London, UK
| | - Claire Dearden
- Department of Haemato-Oncology, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Dima El-Sharkawi
- Department of Haemato-Oncology, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Shireen Kassam
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Lucy Cook
- Department of Haematology and National Centre for Human Retrovirology, Imperial College Healthcare NHS Trust, London, UK
| | - Kate Cwynarski
- Department of Haematology, University College Hospital, London, UK
| | - Tim Illidge
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Graham Collins
- Department of Clinical Haematology, Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Trust, Oxford, UK
| |
Collapse
|
35
|
Dave H, Terpilowski M, Mai M, Toner K, Grant M, Stanojevic M, Lazarski C, Shibli A, Bien SA, Maglo P, Hoq F, Schore R, Glenn M, Hu B, Hanley PJ, Ambinder R, Bollard CM. Tumor-associated antigen-specific T cells with nivolumab are safe and persist in vivo in relapsed/refractory Hodgkin lymphoma. Blood Adv 2022; 6:473-485. [PMID: 34495306 PMCID: PMC8791594 DOI: 10.1182/bloodadvances.2021005343] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/25/2021] [Indexed: 11/20/2022] Open
Abstract
Hodgkin lymphoma (HL) Reed Sternberg cells express tumor-associated antigens (TAA) that are potential targets for cellular therapies. We recently demonstrated that TAA-specific T cells (TAA-Ts) targeting WT1, PRAME, and Survivin were safe and associated with prolonged time to progression in solid tumors. Hence, we evaluated whether TAA-Ts when given alone or with nivolumab were safe and could elicit antitumor effects in vivo in patients with relapsed/refractory (r/r) HL. Ten patients were infused with TAA-Ts (8 autologous and 2 allogeneic) for active HL (n = 8) or as adjuvant therapy after hematopoietic stem cell transplant (n = 2). Six patients received nivolumab priming before TAA-Ts and continued until disease progression or unacceptable toxicity. All 10 products recognized 1 or more TAAs and were polyfunctional. Patients were monitored for safety for 6 weeks after the TAA-Ts and for response until disease progression. The infusions were safe with no clear dose-limiting toxicities. Patients receiving TAA-Ts as adjuvant therapy remain in continued remission at 3+ years. Of the 8 patients with active disease, 1 patient had a complete response and 7 had stable disease at 3 months, 3 of whom remain with stable disease at 1 year. Antigen spreading and long-term persistence of TAA-Ts in vivo were observed in responding patients. Nivolumab priming impacted TAA-T recognition and persistence. In conclusion, treatment of patients with r/r HL with TAA-Ts alone or in combination with nivolumab was safe and produced promising results. This trial was registered at www.clinicaltrials.gov as #NCT022039303 and #NCT03843294.
Collapse
Affiliation(s)
- Hema Dave
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
- Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC
| | - Madeline Terpilowski
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
| | - Mimi Mai
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
| | - Keri Toner
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
- Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC
| | - Melanie Grant
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Maja Stanojevic
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
| | - Christopher Lazarski
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
| | - Abeer Shibli
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
| | | | - Philip Maglo
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
| | - Fahmida Hoq
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
- Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC
| | - Reuven Schore
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
- Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC
| | - Martha Glenn
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute/University of Utah, Salt Lake City, UT; and
| | - Boyu Hu
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute/University of Utah, Salt Lake City, UT; and
| | - Patrick J. Hanley
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
- Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC
| | | | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC
- Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
36
|
Abstract
Although CAR T-cell therapy is US Food and Drug Administration-approved for B-cell non-Hodgkin lymphomas, the development of adoptive immunotherapy for the treatment of classic Hodgkin lymphoma (cHL) has not accelerated at a similar pace. Adoptive T-cell therapy with Epstein-Barr virus-specific cytotoxic T lymphocytes and CD30 CAR T cells have demonstrated significant clinical responses in early clinical trials of patients with cHL. Additionally, CD19 and CD123 CAR T cells that target the immunosuppressive tumor microenvironment in cHL have also been investigated. Here we discuss the landscape of clinical trials of adoptive immunotherapy for patients with cHL with a view toward current challenges and novel strategies to improve the development of CAR T-cell therapy for cHL.
Collapse
|
37
|
High risk of relapsed disease in patients with NK/T cell chronic active Epstein-Barr virus disease outside of Asia. Blood Adv 2021; 6:452-459. [PMID: 34670275 PMCID: PMC8791566 DOI: 10.1182/bloodadvances.2021005291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/26/2021] [Indexed: 11/26/2022] Open
Abstract
Stem cell transplant improves long-term survival in T/NK CAEBV, though mortality remains high. Development of T/NK lymphoma showed a trend with increased mortality.
Chronic active Epstein-Barr virus (EBV) disease (CAEBV) is characterized by high levels of EBV predominantly in T and/or natural killer cells with lymphoproliferation, organ failure due to infiltration of tissues with virus-infected cells, hemophagocytic lymphohistiocytosis, and/or lymphoma. The disease is more common in Asia than in the United States and Europe. Although allogeneic hematopoietic stem cell transplantation (HSCT) is considered the only curative therapy for CAEBV, its efficacy and the best treatment modality to reduce disease severity prior to HSCT is unknown. Here, we retrospectively assessed an international cohort of 57 patients outside of Asia. Treatment of the disease varied widely, although most patients ultimately proceeded to HSCT. Though patients undergoing HSCT had better survival than those who did not (55% vs 25%, P < .01), there was still a high rate of death in both groups. Mortality was largely not affected by age, ethnicity, cell-type involvement, or disease complications, but development of lymphoma showed a trend with increased mortality (56% vs 35%, P = .1). The overwhelming majority (75%) of patients who died after HSCT succumbed to relapsed disease. CAEBV remains challenging to treat when advanced disease is present. Outcomes would likely improve with better disease control strategies, earlier referral for HSCT, and close follow-up after HSCT including aggressive management of rising EBV DNA levels in the blood.
Collapse
|
38
|
Simpson RJ, Boßlau TK, Weyh C, Niemiro GM, Batatinha H, Smith KA, Krüger K. Exercise and adrenergic regulation of immunity. Brain Behav Immun 2021; 97:303-318. [PMID: 34302965 DOI: 10.1016/j.bbi.2021.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/07/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
Exercise training has a profound impact on immunity, exerting a multitude of positive effects in indications such as immunosenescence, cancer, viral infections and inflammatory diseases. The immune, endocrine and central nervous systems work in a highly synergistic manner and it has become apparent that catecholamine signaling through leukocyte β-adrenergic receptors (β-ARs) is a key mechanism by which exercise mediates improvements in immune function to help mitigate numerous disease conditions. Central to this is the preferential mobilization and redistribution of effector lymphocytes with potent anti-viral and anti-tumor activity, their interaction with muscle-derived cytokines, and the effects of catecholamine signaling on mitochondrial biogenesis, immunometabolism and the resulting inflammatory response. Here, we review the impact of acute and chronic exercise on adrenergic regulation of immunity in the context of aging, cancer, viral infections and inflammatory disease. We also put forth our contention that exercise interventions designed to improve immunity, prevent disease and reduce inflammation should consider the catecholamine-AR signaling axis as a therapeutic target and ask whether or not the adrenergic signaling machinery can be 'trained' to improve immune responses to stress, disease or during the normal physiological process of aging. Finally, we discuss potential strategies to augment leukocyte catecholamine signaling to boost the effects of exercise on immunity in individuals with desensitized β-ARs or limited exercise tolerance.
Collapse
Affiliation(s)
- Richard J Simpson
- University of Arizona, Department of Nutritional Sciences, Tucson, AZ, USA; University of Arizona, Department of Pediatrics, Tucson, AZ, USA; University of Arizona, Department of Immunobiology, Tucson, AZ, USA; University of Arizona Cancer Center, Tucson, AZ, USA.
| | - Tim K Boßlau
- University of Gießen, Department of Exercise Physiology and Sports Therapy, Gießen, Germany
| | - Christopher Weyh
- University of Gießen, Department of Exercise Physiology and Sports Therapy, Gießen, Germany
| | - Grace M Niemiro
- University of Arizona, Department of Pediatrics, Tucson, AZ, USA; University of Arizona Cancer Center, Tucson, AZ, USA
| | - Helena Batatinha
- University of Arizona, Department of Pediatrics, Tucson, AZ, USA
| | - Kyle A Smith
- University of Arizona, Department of Nutritional Sciences, Tucson, AZ, USA; University of Arizona, Department of Pediatrics, Tucson, AZ, USA
| | - Karsten Krüger
- University of Gießen, Department of Exercise Physiology and Sports Therapy, Gießen, Germany.
| |
Collapse
|
39
|
Olson A, Lin R, Marin D, Rafei H, Bdaiwi MH, Thall PF, Basar R, Abudayyeh A, Banerjee P, Aung FM, Kaur I, Abueg G, Rao S, Chemaly R, Mulanovich V, Al-Atrash G, Alousi AM, Andersson BS, Anderlini P, Bashir Q, Castro KM, Daher M, Galvan IM, Hosing C, Im JS, Jones RB, Kebriaei P, Khouri I, Mehta R, Molldrem J, Nieto Y, Oran B, Popat U, Qazilbash M, Rondon G, Saini N, Spencer B, Srour S, Washington D, Barnett M, Champlin RE, Shpall EJ, Rezvani K. Third-Party BK Virus-Specific Cytotoxic T Lymphocyte Therapy for Hemorrhagic Cystitis Following Allotransplantation. J Clin Oncol 2021; 39:2710-2719. [PMID: 33929874 PMCID: PMC10166368 DOI: 10.1200/jco.20.02608] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/06/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE BK virus-associated hemorrhagic cystitis (BKV-HC) is a common complication of allogenic hematopoietic stem cell transplantation (AHSCT), particularly in recipients of alternative donor transplants, which are being performed in increasing numbers. BKV-HC typically results in painful hematuria, urinary obstruction, and renal dysfunction, without a definitive therapeutic option. METHODS We performed a clinical trial (ClinicalTrials.gov identifier: NCT02479698) to assess the feasibility, safety, and efficacy of administering most closely HLA-matched third-party BKV-specific cytotoxic T lymphocytes (CTLs), generated from 26 healthy donors and banked for off-the-shelf use. The cells were infused into 59 patients who developed BKV-HC following AHSCT. Comprehensive clinical assessments and correlative studies were performed. RESULTS Response to BKV-CTL infusion was rapid; the day 14 overall response rate was 67.7% (40 of 59 evaluable patients), which increased to 81.6% among evaluable patients at day 45 (40 of 49 evaluable patients). No patient lost a previously achieved response. There were no cases of de novo grade 3 or 4 graft-versus-host disease, graft failure, or infusion-related toxicities. BKV-CTLs were identified in patient blood samples up to 3 months postinfusion and their in vivo expansion predicted for clinical response. A matched-pair analysis revealed that, compared with standard of care, after accounting for prognostic covariate effects, treatment with BKV-CTLs resulted in higher probabilities of response at all follow-up timepoints as well as significantly lower transfusion requirement. CONCLUSION Off-the-shelf BKV-CTLs are a safe and effective therapy for the management of patients with BKV-HC after AHSCT.
Collapse
Affiliation(s)
- Amanda Olson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ruitao Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mustafa H. Bdaiwi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Peter F. Thall
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ala Abudayyeh
- Division of Internal Medicine, Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Pinaki Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Fleur M. Aung
- Department of Laboratory Medicine, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Indresh Kaur
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Glorette Abueg
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sheetal Rao
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Roy Chemaly
- Department of Infectious Disease, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Victor Mulanovich
- Department of Infectious Disease, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Amin M. Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Borje S. Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Paolo Anderlini
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Qaiser Bashir
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Karla M. Castro
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Isabel M. Galvan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chitra Hosing
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jin S. Im
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Roy B. Jones
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Issa Khouri
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rohtesh Mehta
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jeffrey Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yago Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Betul Oran
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Uday Popat
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Muzaffar Qazilbash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Neeraj Saini
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bryan Spencer
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Samer Srour
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dominique Washington
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Melissa Barnett
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Richard E. Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
40
|
Lulla PD, Naik S, Vasileiou S, Tzannou I, Watanabe A, Kuvalekar M, Lulla S, Carrum G, Ramos CA, Kamble R, Hill L, Randhawa J, Gottschalk S, Krance R, Wang T, Wu M, Robertson C, Gee AP, Chung B, Grilley B, Brenner MK, Heslop HE, Vera JF, Leen AM. Clinical effects of administering leukemia-specific donor T cells to patients with AML/MDS after allogeneic transplant. Blood 2021; 137:2585-2597. [PMID: 33270816 PMCID: PMC8120140 DOI: 10.1182/blood.2020009471] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/20/2020] [Indexed: 01/11/2023] Open
Abstract
Relapse after allogeneic hematopoietic stem cell transplantation (HCT) is the leading cause of death in patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Infusion of unselected donor lymphocytes (DLIs) enhances the graft-versus-leukemia (GVL) effect. However, because the infused lymphocytes are not selected for leukemia specificity, the GVL effect is often accompanied by life-threatening graft-versus-host disease (GVHD), related to the concurrent transfer of alloreactive lymphocytes. Thus, to minimize GVHD and maximize GVL, we selectively activated and expanded stem cell donor-derived T cells reactive to multiple antigens expressed by AML/MDS cells (PRAME, WT1, Survivin, and NY-ESO-1). Products that demonstrated leukemia antigen specificity were generated from 29 HCT donors. In contrast to DLIs, leukemia-specific T cells (mLSTs) selectively recognized and killed leukemia antigen-pulsed cells, with no activity against recipient's normal cells in vitro. We administered escalating doses of mLSTs (0.5 to 10 × 107 cells per square meter) to 25 trial enrollees, 17 with high risk of relapse and 8 with relapsed disease. Infusions were well tolerated with no grade >2 acute or extensive chronic GVHD seen. We observed antileukemia effects in vivo that translated into not-yet-reached median leukemia-free and overall survival at 1.9 years of follow-up and objective responses in the active disease cohort (1 complete response and 1 partial response). In summary, mLSTs are safe and promising for the prevention and treatment of AML/MDS after HCT. This trial is registered at www.clinicaltrials.com as #NCT02494167.
Collapse
Affiliation(s)
- Premal D Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| | - Swati Naik
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| | | | - Ifigeneia Tzannou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| | - Ayumi Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| | - Manik Kuvalekar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| | - Suhasini Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| | - George Carrum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| | - Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| | - Rammurti Kamble
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| | - LaQuisa Hill
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| | - Jasleen Randhawa
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
- Department of Hematology, Houston Methodist Hospital, Houston, TX
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| | - Robert Krance
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| | - Tao Wang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| | - Mengfen Wu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| | - Catherine Robertson
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| | - Adrian P Gee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| | - Betty Chung
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
- Department of Hematology, Houston Methodist Hospital, Houston, TX
| | - Bambi Grilley
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| | - Juan F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; and
| |
Collapse
|
41
|
McKenna DH, Stroncek DF. Cellular Engineering. Transfus Med 2021. [DOI: 10.1002/9781119599586.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Vasileiou S, Lulla PD, Tzannou I, Watanabe A, Kuvalekar M, Callejas WL, Bilgi M, Wang T, Wu MJ, Kamble R, Ramos CA, Rouce RH, Zeng Z, Gee AP, Grilley BJ, Vera JF, Bollard CM, Brenner MK, Heslop HE, Rooney CM, Leen AM, Carrum G. T-Cell Therapy for Lymphoma Using Nonengineered Multiantigen-Targeted T Cells Is Safe and Produces Durable Clinical Effects. J Clin Oncol 2021; 39:1415-1425. [PMID: 33507803 DOI: 10.1200/jco.20.02224] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Patients with relapsed lymphomas often fail salvage therapies including high-dose chemotherapy and mono-antigen-specific T-cell therapies, highlighting the need for nontoxic, novel treatments. To that end, we clinically tested an autologous T-cell product that targets multiple tumor-associated antigens (TAAs) expressed by lymphomas with the intent of treating disease and preventing immune escape. PATIENTS AND METHODS We expanded polyclonal T cells reactive to five TAAs: PRAME, SSX2, MAGEA4, SURVIVIN, and NY-ESO-1. Products were administered to 32 patients with Hodgkin lymphomas (n = 14) or non-Hodgkin lymphomas (n = 18) in a two-part phase I clinical trial, where the objective of the first phase was to establish the safety of targeting all five TAAs (fixed dose, 0.5 × 107 cells/m2) simultaneously and the second stage was to establish the maximum tolerated dose. Patients had received a median of three prior lines of therapy and either were at high risk for relapse (adjuvant arm, n = 17) or had chemorefractory disease (n = 15) at enrollment. RESULTS Infusions were safe with no dose-limiting toxicities observed in either the antigen- or dose-escalation phases. Although the maximum tolerated dose was not reached, the maximum tested dose at which efficacy was observed (two infusions, 2 × 107 cells/m2) was determined as the recommended phase II dose. Of the patients with chemorefractory lymphomas, two (of seven) with Hodgkin lymphomas and four (of eight) with non-Hodgkin lymphomas achieved durable complete remissions (> 3 years). CONCLUSION T cells targeting five TAAs and administered at doses of up to two infusions of 2 × 107 cells/m2 are well-tolerated by patients with lymphoma both as adjuvant and to treat chemorefractory lymphoma. Preliminary indicators of antilymphoma activity were seen in the chemorefractory cohort across both antigen- and dose-escalation phases.
Collapse
Affiliation(s)
- Spyridoula Vasileiou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Premal D Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Ifigeneia Tzannou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Ayumi Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Manik Kuvalekar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Wendy L Callejas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Mrinalini Bilgi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Tao Wang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Mengfen J Wu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Rammurti Kamble
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Rayne H Rouce
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Zihua Zeng
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Adrian P Gee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Bambi J Grilley
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Juan F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Catherine M Bollard
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - George Carrum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| |
Collapse
|
43
|
Ababneh E, Saad AM, Crane GM. The role of EBV in haematolymphoid proliferations: emerging concepts relevant to diagnosis and treatment. Histopathology 2021; 79:451-464. [PMID: 33829526 DOI: 10.1111/his.14379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/22/2021] [Accepted: 04/04/2021] [Indexed: 12/18/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus with >90% of the adult population worldwide harbouring latent infection. A small subset of those infected develop EBV-associated neoplasms, including a range of lymphoproliferative disorders (LPD). The diagnostic distinction of these entities appears increasingly relevant as our understanding of EBV-host interactions and mechanisms of EBV-driven lymphomagenesis improves. EBV may lower the mutational threshold for malignant transformation, create potential vulnerabilities related to viral alteration of cell metabolism and allow for improved immune targeting. However, these tumours may escape immune surveillance by affecting their immune microenvironment, limiting viral gene expression or potential loss of the viral episome. Methods to manipulate the latency state of the virus to enhance immunogenicity are emerging as well as the potential to detect so-called 'hit and run' cases where EBV has been lost. Finally, measurement of EBV DNA remains an important biomarker for screening and monitoring of LPD. Methods to distinguish EBV DNA derived from virions during lytic activation from latent, methylated EBV DNA present in EBV-associated neoplasms may broaden the utility of this testing, particularly in patients with compromised immune function. We highlight some of these emerging areas relevant to the diagnosis and treatment of EBV-associated LPD with potential applicability to other EBV-associated neoplasms.
Collapse
Affiliation(s)
- Emad Ababneh
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland, OH, USA
| | - Anas M Saad
- Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Genevieve M Crane
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland, OH, USA
| |
Collapse
|
44
|
Huisman W, Leboux DAT, van der Maarel LE, Hageman L, Amsen D, Falkenburg JHF, Jedema I. Magnitude of Off-Target Allo-HLA Reactivity by Third-Party Donor-Derived Virus-Specific T Cells Is Dictated by HLA-Restriction. Front Immunol 2021; 12:630440. [PMID: 33854504 PMCID: PMC8039299 DOI: 10.3389/fimmu.2021.630440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
T-cell products derived from third-party donors are clinically applied, but harbor the risk of off-target toxicity via induction of allo-HLA cross-reactivity directed against mismatched alleles. We used third-party donor-derived virus-specific T cells as model to investigate whether virus-specificity, HLA restriction and/or HLA background can predict the risk of allo-HLA cross-reactivity. Virus-specific CD8pos T cells were isolated from HLA-A*01:01/B*08:01 or HLA-A*02:01/B*07:02 positive donors. Allo-HLA cross-reactivity was tested using an EBV-LCL panel covering 116 allogeneic HLA molecules and confirmed using K562 cells retrovirally transduced with single HLA-class-I alleles of interest. HLA-B*08:01-restricted T cells showed the highest frequency and diversity of allo-HLA cross-reactivity, regardless of virus-specificity, which was skewed toward multiple recurrent allogeneic HLA-B molecules. Thymic selection for other HLA-B alleles significantly influenced the level of allo-HLA cross-reactivity mediated by HLA-B*08:01-restricted T cells. These results suggest that the degree and specificity of allo-HLA cross-reactivity by T cells follow rules. The risk of off-target toxicity after infusion of incompletely matched third-party donor-derived virus-specific T cells may be reduced by selection of T cells with a specific HLA restriction and background.
Collapse
Affiliation(s)
- Wesley Huisman
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands.,Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory for Blood Cell Research, Amsterdam, Netherlands
| | - Didier A T Leboux
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Lois Hageman
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Derk Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory for Blood Cell Research, Amsterdam, Netherlands
| | | | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
45
|
Abstract
Purpose of Review Virus-associated malignancies are a global health burden, constituting 10-12% of cancers worldwide. As these tumors express foreign viral antigens that can elicit specific T cell responses, virus-directed immunotherapies are a promising treatment strategy. Specifically, adoptive cell transfer of virus-specific T cells (VSTs) has demonstrated the potential to eradicate cancers associated with certain viruses. Recent Findings Initial studies in 1990s first showed that VSTs specific for the Epstein-Barr virus (EBVSTs) can induce complete remissions in patients with post-transplant lymphoproliferative disease. Since then, studies have validated the specificity and safety of VSTs in multiple lymphomas and solid malignancies. However, challenges remain to optimize this platform for widespread use, including enhancing potency and persistence, overcoming the immunosuppressive tumor microenvironment, and streamlining manufacturing processes that comply with regulatory requirements. Summary This review focuses on data from clinical trials evaluating VSTs directed against three viruses (EBV, HPV and MCPyV), as well as recent preclinical and clinical advances, and potential future directions.
Collapse
|
46
|
Ohmoto A, Fuji S. Clinical features and treatment strategies for post-transplant and iatrogenic immunodeficiency-associated lymphoproliferative disorders. Blood Rev 2021; 49:100807. [PMID: 33579543 DOI: 10.1016/j.blre.2021.100807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/17/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
A specific category termed immunodeficiency-associated lymphoproliferative disorders (LPD) exists in the 2016 revised WHO classification concerning lymphoid neoplasms. This category is defined by etiology and includes LPD developing in association with organ transplantation or immunosuppressive/immunomodulatory agents including methotrexate. The functional mechanism is chiefly explained by the autonomous proliferation of Epstein-Barr virus (EBV)-infected lymphocytes induced by host-immune suppression. This category ranges from reactive lymphocyte hyperplasia to monomorphic lymphoma. Its clinical behavior varies depending on host immunity and pathological features; pathological confirmation by biopsy is thus important for deciding treatment strategies. Owing to the spontaneous regression observed in some patients, uniform chemotherapy is not recommended. The main initial treatment options include the reduction in immunosuppressive drugs, immunotherapy with the anti-CD20 antibody rituximab, chemotherapy, or a combination of these. Other novel treatments such as adoptive immunotherapy with EBV-specific cytotoxic T cells, could be an alternative for relapsed/refractory diseases in clinical trials.
Collapse
Affiliation(s)
- Akihiro Ohmoto
- Division of Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 1358550, Japan
| | - Shigeo Fuji
- Department of Hematology, Osaka International Cancer Institute, Osaka 5418567, Japan.
| |
Collapse
|
47
|
Heslop HE, Sharma S, Rooney CM. Adoptive T-Cell Therapy for Epstein-Barr Virus-Related Lymphomas. J Clin Oncol 2021; 39:514-524. [PMID: 33434061 DOI: 10.1200/jco.20.01709] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX
| | - Sandhya Sharma
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX
| |
Collapse
|
48
|
Xue W, Zhang M. Updating targets for natural killer/T-cell lymphoma immunotherapy. Cancer Biol Med 2021; 18:52-62. [PMID: 33628584 PMCID: PMC7877170 DOI: 10.20892/j.issn.2095-3941.2020.0400] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/24/2020] [Indexed: 12/29/2022] Open
Abstract
Natural killer/T-cell lymphoma (NKTCL) is a highly invasive subtype of non-Hodgkin lymphoma, typically positive for cytoplasmic CD3, CD56, cytotoxic markers, including granzyme B and TIA1, and Epstein-Barr virus (EBV). The current treatment methods for NKTCL are associated with several drawbacks. For example, chemotherapy can lead to drug resistance, while treatment with radiotherapy alone is inadequate and results in frequent relapses. Moreover, hematopoietic stem cell transplantation exhibits limited efficacy and is not well recognized by domestic and foreign experts. In recent years, immunotherapy has shown good clinical results and has become a hot spot in cancer research. Clinical activity of targeted antibodies, such as daratumumab (anti-CD38 antibody) and brentuximab vedotin (anti-CD30 antibody), have been reported in NKTCL. Additionally, dacetuzumab and Campath-1H have demonstrated promising results. Further encouraging data have been obtained using checkpoint inhibitors. The success of these immunotherapy agents is attributed to high expression levels of programmed death-ligand 1 in NKTCL. Furthermore, anti-CCR4 monoclonal antibodies (mAbs) exert cytotoxic actions on both CCR4+ tumor cells and regulatory T cells. Depletion of these cells and the long half-life of anti-CCR4 mAbs result in enhanced induction of antitumor effector T cells. The role of IL10 in NKTCL has also been investigated. It has been proposed that exploitation of this cytokine might provide potential novel therapeutic strategies. Cellular immunotherapy with engineered cytotoxic T lymphocytes targeted against LMP1 and LMP2 has shown promising results and sustained remission. Cellular immunotherapy may be used either as maintenance therapy following initial induction chemotherapy or in cases of relapsed/refractory disease. The present review outlines the known immunotherapy targets for the treatment of NKTCL.
Collapse
Affiliation(s)
- Weili Xue
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan, Zhengzhou 450052, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan, Zhengzhou 450052, China
| |
Collapse
|
49
|
Cable J, Greenbaum B, Pe'er D, Bollard CM, Bruni S, Griffin ME, Allison JP, Wu CJ, Subudhi SK, Mardis ER, Brentjens R, Sosman JA, Cemerski S, Zavitsanou AM, Proia T, Egeblad M, Nolan G, Goswami S, Spranger S, Mackall CL. Frontiers in cancer immunotherapy-a symposium report. Ann N Y Acad Sci 2020; 1489:30-47. [PMID: 33184911 DOI: 10.1111/nyas.14526] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
Cancer immunotherapy has dramatically changed the approach to cancer treatment. The aim of targeting the immune system to recognize and destroy cancer cells has afforded many patients the prospect of achieving deep, long-term remission and potential cures. However, many challenges remain for achieving the goal of effective immunotherapy for all cancer patients. Checkpoint inhibitors have been able to achieve long-term responses in a minority of patients, yet improving response rates with combination therapies increases the possibility of toxicity. Chimeric antigen receptor T cells have demonstrated high response rates in hematological cancers, although most patients experience relapse. In addition, some cancers are notoriously immunologically "cold" and typically are not effective targets for immunotherapy. Overcoming these obstacles will require new strategies to improve upon the efficacy of current agents, identify biomarkers to select appropriate therapies, and discover new modalities to expand the accessibility of immunotherapy to additional tumor types and patient populations.
Collapse
Affiliation(s)
| | - Benjamin Greenbaum
- Computational Oncology, Program for Computational Immuno-Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer, New York, New York
| | - Dana Pe'er
- Program for Computational and Systems Biology, Sloan Kettering Institute and Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, The George Washington University, Washington, District of Columbia
| | - Sofia Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Matthew E Griffin
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University New York, New York, New York
| | - James P Allison
- Immunotherapy Platform and Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sumit K Subudhi
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elaine R Mardis
- The Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Renier Brentjens
- Department of Medicine and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeffry A Sosman
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cancer Center, New York, New York
| | - Garry Nolan
- Baxter Laboratory in Stem Cell Biology and Department of Microbiology and Immunology, Stanford University, Stanford, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Sangeeta Goswami
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research and Biology Department, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford, California.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California.,Department of Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
50
|
Shindiapina P, Ahmed EH, Mozhenkova A, Abebe T, Baiocchi RA. Immunology of EBV-Related Lymphoproliferative Disease in HIV-Positive Individuals. Front Oncol 2020; 10:1723. [PMID: 33102204 PMCID: PMC7556212 DOI: 10.3389/fonc.2020.01723] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein-Bar virus (EBV) can directly cause lymphoproliferative disease (LPD), including AIDS-defining lymphomas such as Burkitt’s lymphoma and other non-Hodgkin lymphomas (NHL), as well as human immunodeficiency virus (HIV)-related Hodgkin lymphoma (HL). The prevalence of EBV in HL and NHL is elevated in HIV-positive individuals compared with the general population. Rates of incidence of AIDS-defining cancers have been declining in HIV-infected individuals since initiation of combination anti-retroviral therapy (cART) use in 1996. However, HIV-infected persons remain at an increased risk of cancers related to infections with oncogenic viruses. Proposed pathogenic mechanisms of HIV-related cancers include decreased immune surveillance, decreased ability to suppress infection-related oncogenic processes and a state of chronic inflammation marked by alteration of the cytokine profile and expanded numbers of cytotoxic T lymphocytes with down-regulated co-stimulatory molecules and increased expression of markers of senescence in the setting of treated HIV infection. Here we discuss the cooperation of EBV-infected B cell- and environment-associated factors that may contribute to EBV-related lymphomagenesis in HIV-infected individuals. Environment-derived lymphomagenic factors include impaired host adaptive and innate immune surveillance, cytokine dysregulation and a pro-inflammatory state observed in the setting of chronic, cART-treated HIV infection. B cell factors include distinctive EBV latency patterns and host protein expression in HIV-associated LPD, as well as B cell-stimulating factors derived from HIV infection. We review the future directions for expanding therapeutic approaches in targeting the viral and immune components of EBV LPD pathogenesis.
Collapse
Affiliation(s)
- Polina Shindiapina
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Elshafa H Ahmed
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Anna Mozhenkova
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Tamrat Abebe
- Department of Microbiology, Immunology, and Parasitology, School of Medicine Tikur Anbessa Specialized Hospital, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|