1
|
Zhou H, Li Y, Chen X, Miao D, Zhang L, Cao R, Li Q, Liu T. Association Between Neutrophil Percentage-to-Albumin Ratio and Periodontitis: A Cross-Sectional Study. Int Dent J 2025; 75:660-667. [PMID: 39710554 PMCID: PMC11976586 DOI: 10.1016/j.identj.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/21/2024] [Accepted: 10/02/2024] [Indexed: 12/24/2024] Open
Abstract
INTRODUCTION AND AIMS Neutrophil percentage-to-albumin ratio (NPAR) is a novel biomarker of systemic inflammation. The aim of this study was to explore the relationship between NPAR and periodontitis. METHODS Data from the National Health and Nutritional Examination Survey (NHANES) between 2009 and 2014 (N = 10,128) were utilized in this cross-sectional study. Periodontitis categories were defined according to the Centres for Disease Control and Prevention and American Academy of Periodontology (CDC/AAP) classification. The NPAR was calculated by dividing the neutrophil percentage by serum albumin. Covariates included age, sex, race, education level, annual household income, marital status, smoking status, BMI, recreational activity, work activity, diabetes mellitus, hypertension, and cardiovascular disease. Weighted logistic regression analysis was conducted to investigate the linkage between NPAR and moderate/severe periodontitis, and weighted linear regression analysis was performed to explore the relationship of NPAR with mean attachment loss (AL) and mean probing pocket depth (PPD). RESULTS Our analysis revealed a positive linear relationship between NPAR and periodontitis. Specifically, we found that the risk of moderate/severe periodontitis increased by 12% for each standard deviation increase in NPAR. Individuals in the highest tertile of NPAR were 28% more likely to have periodontitis compared to those in the lowest tertile (ORtertile3vs1 = 1.28, 95% CI: 1.10-1.49). These findings were consistent across different subgroups analysed. Furthermore, our study demonstrated that NPAR was also positively correlated with mean AL and PPD, which are key indicators of periodontal health. CONCLUSIONS Our results suggest that NPAR is significantly linked to poor periodontal health. However, owing to the cross-section design of this study, additional longitudinal studies are necessary to further enhance our comprehension of the impact of NPAR on periodontal status. CLINICAL RELEVANCE Elevated neutrophil counts and low albumin levels correlate with moderate/severe periodontitis. Monitoring these markers may aid in assessing periodontitis risk.
Collapse
Affiliation(s)
- Huan Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yong Li
- Department of Stomatology, Hunan University of Medicine, Hunan, China
| | - Xin Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Di Miao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Zhang
- Department of Orthopaedic Surgery, Xi'an Children's Hospital, Xi'an, China
| | - Ruoyan Cao
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qiulan Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Tangsheng Liu
- Department of Stomatology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China.
| |
Collapse
|
2
|
Ji Y, Zhang Q, Li H, Chen L, Wu Y, Lin S. Platelet Factor 4: A Mysterious Chemokine in Inflammatory Regulation Diseases. J Inflamm Res 2025; 18:4481-4495. [PMID: 40166592 PMCID: PMC11956735 DOI: 10.2147/jir.s504673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Platelet factor 4 (PF4), also referred to as CXCL4, is a significant component of the C-X-C chemokine family, predominantly localized within the alpha granules of platelets. It is recognized for its anti-heparin and anti-angiogenic properties. However, the involvement of PF4 in inflammatory processes has not been extensively investigated. This article aims to explore the diverse functions of PF4 in the context of inflammatory diseases, emphasizing its potential dual regulatory roles across various immune cell types and pathological conditions. Recent research has enhanced our comprehension of PF4, revealing its production not only in platelets but also in macrophages and activated T cells, thereby extending its functional repertoire beyond its conventional roles. Consequently, this review provides a thorough analysis of PF4's influence on inflammatory diseases and offers perspectives and recommendations for future research endeavors.
Collapse
Affiliation(s)
- Yibing Ji
- College of Pharmacy, Shandong Second Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Qian Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, People’s Republic of China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, People’s Republic of China
| | - Yuzhuo Wu
- Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Sheng Lin
- College of Pharmacy, Shandong Second Medical University, Weifang, Shandong, 261053, People’s Republic of China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| |
Collapse
|
3
|
Zalghout S, Martinod K. Therapeutic potential of DNases in immunothrombosis: promising succor or uncertain future? J Thromb Haemost 2025; 23:760-778. [PMID: 39667687 DOI: 10.1016/j.jtha.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024]
Abstract
Sepsis, a life-threatening condition characterized by systemic inflammation and multiorgan dysfunction, is closely associated with the excessive formation of neutrophil extracellular traps (NETs) and the release of cell-free DNA. Both play a central role in sepsis progression, acting as major contributors to immunothrombosis and associated complications. Endogenous DNases play a pivotal role in degrading NETs and cell-free DNA, yet their activity is often dysregulated during thrombotic disease. Although exogenous DNase1 administration has shown potential in reducing NET burden and mitigating the detrimental effects of immunothrombosis, its therapeutic efficacy upon intravenous administration remains uncertain. The development of engineered DNase formulations and combination therapies may further enhance its therapeutic effectiveness by modifying its pharmacodynamic properties and avoiding the adverse effects associated with NET degradation, respectively. Although NETs are well-established targets of DNase1, it remains uncertain whether the positive effects of DNase1 on immunothrombosis are exclusively related to it's targeting of NETs or if other components contributing to immunothrombosis are also affected. This review examines the endogenous regulation of NETs in circulation and the therapeutic potential of DNases in immunothrombosis, underscoring the necessity for further investigation to optimize their clinical application.
Collapse
Affiliation(s)
- Sara Zalghout
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
4
|
Vappala S, Smith SA, Kizhakkedathu JN, Morrissey JH. Inhibitors of Polyphosphate and Neutrophil Extracellular Traps. Semin Thromb Hemost 2024; 50:970-977. [PMID: 37192652 PMCID: PMC10651799 DOI: 10.1055/s-0043-1768936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The contact pathway of blood clotting has received intense interest in recent years as studies have linked it to thrombosis, inflammation, and innate immunity. Because the contact pathway plays little to no role in normal hemostasis, it has emerged as a potential target for safer thromboprotection, relative to currently approved antithrombotic drugs which all target the final common pathway of blood clotting. Research since the mid-2000s has identified polyphosphate, DNA, and RNA as important triggers of the contact pathway with roles in thrombosis, although these molecules also modulate blood clotting and inflammation via mechanisms other than the contact pathway of the clotting cascade. The most significant source of extracellular DNA in many disease settings is in the form of neutrophil extracellular traps (NETs), which have been shown to contribute to incidence and severity of thrombosis. This review summarizes known roles of extracellular polyphosphate and nucleic acids in thrombosis, with an emphasis on novel agents under current development that target the prothrombotic activities of polyphosphate and NETs.
Collapse
Affiliation(s)
- Sreeparna Vappala
- Department of Pathology and Laboratory Medicine; and Centre for Blood Research, Life Science Institute; University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie A. Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Laboratory Medicine; and Centre for Blood Research, Life Science Institute; University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry; and School of Biomedical Engineering; University of British Columbia, Vancouver, British Columbia, Canada
| | - James H. Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Yada N, Zhang Q, Bignotti A, Gralnek SH, Sosnovske D, Hogan K, Ye Z, Zheng L, Zheng XL. Targeting neutrophil extracellular trap accumulation under flow in patients with immune-mediated thrombotic thrombocytopenic purpura. Blood Adv 2024; 8:2536-2551. [PMID: 38513079 PMCID: PMC11131081 DOI: 10.1182/bloodadvances.2023011617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT Neutrophil NETosis is a unique form of cell death, characterized by the release of decondensed chromatin and antimicrobial contents to the extracellular space, which is involved in inflammation and thrombosis. However, the role of NETosis in the pathogenesis of immune-mediated thrombotic thrombocytopenic purpura (iTTP) and how a targeted therapy affects the accumulation of neutrophil extracellular traps (NETs) under flow remain unknown. Flow cytometry demonstrated that the percentage of neutrophils undergoing NETosis in whole blood from patients with iTTP on admission was significantly increased, with a concurrent decrease in the capacity of inducible NETosis by shigatoxin. After therapy, the percentage of H3Cit+MPO+ neutrophils was significantly reduced, with an improvement in inducible NETosis in these patients. Additionally, little to no NET and thrombus formation was detected underflow in the whole blood from patients with iTTP when platelet counts were very low, but the NET and thrombus formation was dramatically increased following therapy when platelet counts rose to ≥50 × 109/L or were restored to normal with donor platelets. Similarly, there was no thrombus or NET accumulation under flow in the whole blood from vwf-/- mice, but NET accumulation was significantly higher in Adamts13-/- mice than in wild-type mice. Finally, recombinant ADAMTS13 or caplacizumab (or anfibatide) prevented NET and thrombus formation under flow in whole blood from patients with iTTP or from Adamts13-/- mice. These results indicate that neutrophil NETosis and NET formation depend on platelets and von Willebrand factor (VWF) in iTTP, and a targeted therapy such as recombinant ADAMTS13 or caplacizumab may prevent NET and thrombus formation under flow in iTTP.
Collapse
Affiliation(s)
- Noritaka Yada
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Quan Zhang
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Antonia Bignotti
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Sarah H. Gralnek
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Dennis Sosnovske
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Keenan Hogan
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Zhan Ye
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Liang Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
- Institute of Reproductive Medicine and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
- Institute of Reproductive Medicine and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
6
|
Liu Z, Li L, Zhang H, Pang X, Qiu Z, Xiang Q, Cui Y. Platelet factor 4(PF4) and its multiple roles in diseases. Blood Rev 2024; 64:101155. [PMID: 38008700 DOI: 10.1016/j.blre.2023.101155] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Platelet factor 4 (PF4) combines with heparin to form an antigen that could produce IgG antibodies and participate in heparin-induced thrombocytopenia (HIT). PF4 has attracted wide attention due to its role in novel coronavirus vaccine-19 (COVID-9)-induced immune thrombotic thrombocytopenia (VITT) and cognitive impairments. The electrostatic interaction between PF4 and negatively charged molecules is vital in the progression of VITT, which is similar to HIT. Emerging evidence suggests its multiple roles in hematopoietic and angiogenic inhibition, platelet coagulation interference, host inflammatory response promotion, vascular inhibition, and antitumor properties. The emerging pharmacological effects of PF4 may help deepen the exploration of its mechanism, thus accelerating the development of targeted therapies. However, due to its pleiotropic properties, the development of drugs targeting PF4 is at an early stage and faces many challenges. Herein, we discussed the characteristics and biological functions of PF4, summarized PF4-mediated signaling pathways, and discussed its multiple roles in diseases to inform novel approaches for successful clinical translational research.
Collapse
Affiliation(s)
- Zhiyan Liu
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, China.
| | - Longtu Li
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Hanxu Zhang
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, China
| | - Zhiwei Qiu
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, China.
| |
Collapse
|
7
|
Singh A, Ghosh R, Asuru TR, Prajapat SK, Joshi G, Gaur KK, Shrimali NM, Ojha A, Vikram NK, Poncz M, Kalia M, Guchhait P. Inhibition of cellular activation induced by platelet factor 4 via the CXCR3 pathway ameliorates Japanese encephalitis and dengue viral infections. J Thromb Haemost 2024; 22:818-833. [PMID: 38029855 DOI: 10.1016/j.jtha.2023.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Activated platelets secrete platelet factor 4 (PF4), which contributes to viral pathogenesis. Recently, we reported the proviral role of PF4 in replication of closely related flaviviruses, Japanese encephalitis virus (JEV) and dengue virus (DENV). OBJECTIVES This study aimed to investigate the detailed mechanism of PF4-mediated virus replication. METHODS PF4-/- or wild-type (WT) mice were infected with JEV, and host defense mechanisms, including autophagic/interferon (IFN) responses, were assessed. WT mice were pretreated with the CXCR3 antagonist AMG487 that inhibits PF4:CXCR3 pathway. This pathway was tested in PF4-/- monocytes infected with DENV or in monocytes isolated from patients with DENV infection. RESULTS PF4-/- mice infected with JEV showed reduced viral load and improved brain inflammation and survival. PF4-/- mice synthesized more IFN-α/β with higher expression of phosphorylated IRF3 in the brain. PF4 treatment decreased IRF-3/7/9 and IFN-α/β expression and suppressed autophagic LC3-II flux and lysosomal degradation of viral proteins in JEV-infected cells. PF4 increased the expression of P-mTOR, P-p38, and P-ULK1Ser757 and decreased expression of LC3-II. Decreased autophagosome-lysosome fusion in turn promoted DENV2 replication. The above processes were reversed by AMG487. Uninfected PF4-/- monocytes showed elevated LC3-II and autophagosome-lysosome fusion. Microglia of JEV-infected PF4-/- mice exhibited elevated LC3-II inversely related to viral load. Similarly, monocytes from PF4-/- mice showed reduced infection by DENV2. In patients with DENV infection, higher plasma PF4 and viral load were inversely correlated with LC3-II, LAMP-1, and lysosomal degradation of DENV-NS1 in monocytes during the febrile phase. CONCLUSION These studies suggest that PF4 deficiency or inhibition of the PF4:CXCR3 pathway prevents JEV and DENV infection. The studies also highlight the PF4:CXCR3 axis as a potential target to develop treatment regimens against flaviviruses.
Collapse
Affiliation(s)
- Anamika Singh
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Riya Ghosh
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Tejeswara Rao Asuru
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Surendra K Prajapat
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Garima Joshi
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Kishan K Gaur
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Nishith M Shrimali
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Amrita Ojha
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India; Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Naval K Vikram
- Division of Infectious Disease, All India Institute of Medical Sciences, New Delhi, India
| | - Mortimer Poncz
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Manjula Kalia
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
8
|
Ngo AT, Skidmore A, Oberg J, Yarovoi I, Sarkar A, Levine N, Bochenek V, Zhao G, Rauova L, Kowalska MA, Eckart K, Mangalmurti NS, Rux A, Cines DB, Poncz M, Gollomp K. Platelet factor 4 limits neutrophil extracellular trap- and cell-free DNA-induced thrombogenicity and endothelial injury. JCI Insight 2023; 8:e171054. [PMID: 37991024 PMCID: PMC10721321 DOI: 10.1172/jci.insight.171054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/02/2023] [Indexed: 11/23/2023] Open
Abstract
Plasma cell-free DNA (cfDNA), a marker of disease severity in sepsis, is a recognized driver of thromboinflammation and a potential therapeutic target. In sepsis, plasma cfDNA is mostly derived from neutrophil extracellular trap (NET) degradation. Proposed NET-directed therapeutic strategies include preventing NET formation or accelerating NET degradation. However, NET digestion liberates pathogens and releases cfDNA that promote thrombosis and endothelial cell injury. We propose an alternative strategy of cfDNA and NET stabilization with chemokine platelet factor 4 (PF4, CXCL4). We previously showed that human PF4 (hPF4) enhances NET-mediated microbial entrapment. We now show that hPF4 interferes with thrombogenicity of cfDNA and NETs by preventing their cleavage to short-fragment and single-stranded cfDNA that more effectively activates the contact pathway of coagulation. In vitro, hPF4 also inhibits cfDNA-induced endothelial tissue factor surface expression and von Willebrand factor release. In vivo, hPF4 expression reduced plasma thrombin-antithrombin (TAT) levels in animals infused with exogenous cfDNA. Following lipopolysaccharide challenge, Cxcl4-/- mice had significant elevation in plasma TAT, cfDNA, and cystatin C levels, effects prevented by hPF4 infusion. These results show that hPF4 interacts with cfDNA and NETs to limit thrombosis and endothelial injury, an observation of potential clinical benefit in the treatment of sepsis.
Collapse
Affiliation(s)
- Anh T.P. Ngo
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Abigail Skidmore
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jenna Oberg
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Irene Yarovoi
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amrita Sarkar
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nate Levine
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Veronica Bochenek
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Guohua Zhao
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lubica Rauova
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M. Anna Kowalska
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Institute of Medical Biology, Polish Academy of Science, Lodz, Poland
| | | | | | - Ann Rux
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas B. Cines
- Department of Medicine, and
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mortimer Poncz
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kandace Gollomp
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Platelet factor 4 (PF4, CXCL4), the most abundant α-granule platelet-specific chemokine, forms tetramers with an equatorial ring of high positive charge that bind to a wide range of polyanions, after which it changes conformation to expose antigenic epitopes. Antibodies directed against PF4 not only help to clear infection but can also lead to the development of thrombotic disorders such as heparin-induced thrombocytopenia (HIT) and vaccine-induced thrombocytopenia and thrombosis (VITT). This review will outline the different mechanisms through which PF4 engagement with polyanions combats infection but also contributes to the pathogenesis of inflammatory and thrombotic disease states. RECENT FINDINGS Recent work has shown that PF4 binding to microbial polyanions may improve outcomes in infection by enhancing leukocyte-bacterial binding, tethering pathogens to neutrophil extracellular traps (NETs), decreasing the thrombotic potential of NET DNA, and modulating viral infectivity. However, PF4 binding to nucleic acids may enhance their recognition by innate immune receptors, leading to autoinflammation. Lastly, while HIT is induced by platelet activating antibodies that bind to PF4/polyanion complexes, VITT, which occurs in a small subset of patients treated with COVID-19 adenovirus vector vaccines, is characterized by prothrombotic antibodies that bind to PF4 alone. SUMMARY Investigating the complex interplay of PF4 and polyanions may provide insights relevant to the treatment of infectious disease while also improving our understanding of the pathogenesis of thrombotic disorders driven by anti-PF4/polyanion and anti-PF4 antibodies.
Collapse
Affiliation(s)
- Anh T P Ngo
- Division of Hematology, Children's Hospital of Philadelphia
| | | | - Kandace Gollomp
- Division of Hematology, Children's Hospital of Philadelphia
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Leberzammer J, von Hundelshausen P. Chemokines, molecular drivers of thromboinflammation and immunothrombosis. Front Immunol 2023; 14:1276353. [PMID: 37954596 PMCID: PMC10637585 DOI: 10.3389/fimmu.2023.1276353] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Blood clotting is a finely regulated process that is essential for hemostasis. However, when dysregulated or spontaneous, it promotes thrombotic disorders. The fact that these are triggered, accompanied and amplified by inflammation is reflected in the term thromboinflammation that includes chemokines. The role of chemokines in thrombosis is therefore illuminated from a cellular perspective, where endothelial cells, platelets, red blood cells, and leukocytes may be both the source and target of chemokines. Chemokine-dependent prothrombotic processes may thereby occur independently of chemokine receptors or be mediated by chemokine receptors, although the binding and activation of classical G protein-coupled receptors and their signaling pathways differ from those of atypical chemokine receptors, which do not function via cell activation and recruitment. Regardless of binding to their receptors, chemokines can induce thrombosis by forming platelet-activating immune complexes with heparin or other polyanions that are pathognomonic for HIT and VITT. In addition, chemokines can bind to NETs and alter their structure. They also change the electrical charge of the cell surface of platelets and interact with coagulation factors, thereby modulating the balance of fibrinolysis and coagulation. Moreover, CXCL12 activates CXCR4 on platelets independently of classical migratory chemokine activity and causes aggregation and thrombosis via the PI3Kβ and Btk signaling pathways. In contrast, typical chemokine-chemokine receptor interactions are involved in the processes that contribute to the adhesiveness of the endothelium in the initial phase of venous thrombosis, where neutrophils and monocytes subsequently accumulate in massive numbers. Later, the reorganization and resolution of a thrombus require coordinated cell migration and invasion of the thrombus, and, as such, indeed, chemokines recruit leukocytes to existing thrombi. Therefore, chemokines contribute in many independent ways to thrombosis.
Collapse
Affiliation(s)
- Julian Leberzammer
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
- Department of Cardiology and Angiology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Philipp von Hundelshausen
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
11
|
Podolnikova NP, Lishko VK, Roberson R, Koh Z, Derkach D, Richardson D, Sheller M, Ugarova TP. Platelet factor 4 improves survival in a murine model of antibiotic-susceptible and methicillin-resistant Staphylococcus aureus peritonitis. Front Cell Infect Microbiol 2023; 13:1217103. [PMID: 37868353 PMCID: PMC10585365 DOI: 10.3389/fcimb.2023.1217103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/13/2023] [Indexed: 10/24/2023] Open
Abstract
The complement receptor CR3, also known as integrin Mac-1 (CD11b/CD18), is one of the major phagocytic receptors on the surface of neutrophils and macrophages. We previously demonstrated that in its protein ligands, Mac-1 binds sequences enriched in basic and hydrophobic residues and strongly disfavors negatively charged sequences. The avoidance by Mac-1 of negatively charged surfaces suggests that the bacterial wall and bacterial capsule possessing net negative electrostatic charge may repel Mac-1 and that the cationic Mac-1 ligands can overcome this evasion by acting as opsonins. Indeed, we previously showed that opsonization of Gram-negative Escherichia coli with several cationic peptides, including PF4 (Platelet Factor 4), strongly augmented phagocytosis by macrophages. Here, we investigated the effect of recombinant PF4 (rPF4) on phagocytosis of Gram-positive Staphylococcus aureus in vitro and examined its impact in a mouse model of S. aureus peritonitis. Characterization of the interaction of rPF4 with nonencapsulated and encapsulated S. aureus showed that rPF4 localizes on the bacterial surface, thus making it available for Mac-1. Furthermore, rPF4 did not have direct bactericidal and bacteriostatic activity and was not toxic to host cells. rPF4 enhanced phagocytosis of S. aureus bioparticles by various primary and cultured Mac-1-expressing leukocytes by several folds. It also increased phagocytosis of live nonencapsulated and encapsulated bacteria. Notably, the augmentation of phagocytosis by rPF4 did not compromise the intracellular killing of S. aureus by macrophages. Using a murine S. aureus peritonitis model, we showed that treatment of infected mice with rPF4 caused a significant increase in the clearance of antibiotic-susceptible S. aureus and its methicillin-resistant (MRSA) variant and markedly improved survival. These findings indicate that rPF4 binding to the bacterial surface circumvents its antiphagocytic properties, improving host defense against antibiotic-susceptible and antibiotic-resistant bacteria.
Collapse
Affiliation(s)
| | - Valeryi K. Lishko
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Robert Roberson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Zhiqian Koh
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | | | - Michael Sheller
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Tatiana P. Ugarova
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
12
|
Li X, Xiao S, Filipczak N, Yalamarty SSK, Shang H, Zhang J, Zheng Q. Role and Therapeutic Targeting Strategies of Neutrophil Extracellular Traps in Inflammation. Int J Nanomedicine 2023; 18:5265-5287. [PMID: 37746050 PMCID: PMC10516212 DOI: 10.2147/ijn.s418259] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are large DNA reticular structures secreted by neutrophils and decorated with histones and antimicrobial proteins. As a key mechanism for neutrophils to resist microbial invasion, NETs play an important role in the killing of microorganisms (bacteria, fungi, and viruses). Although NETs are mostly known for mediating microbial killing, increasing evidence suggests that excessive NETs induced by stimulation of physical and chemical components, microorganisms, and pathological factors can exacerbate inflammation and organ damage. This review summarizes the induction and role of NETs in inflammation and focuses on the strategies of inhibiting NETosis and the mechanisms involved in pathogen evasion of NETs. Furthermore, herbal medicine inhibitors and nanodelivery strategies improve the efficiency of inhibition of excessive levels of NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | | | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
13
|
Podolnikova NP, Lishko VK, Roberson R, Koh Z, Derkach D, Richardson D, Sheller M, Ugarova TP. PLATELET FACTOR 4 (PF4) IMPROVES SURVIVAL IN A MURINE MODEL OF ANTIBIOTIC-SUSCEPTIBLE AND METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS PERITONITIS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554865. [PMID: 37662328 PMCID: PMC10473751 DOI: 10.1101/2023.08.25.554865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The complement receptor CR3, also known as integrin Mac-1 (CD11b/CD18), is one of the major phagocytic receptors on the surface of neutrophils and macrophages. We previously demonstrated that in its protein ligands, Mac-1 binds sequences enriched in basic and hydrophobic residues and strongly disfavors negatively charged sequences. The avoidance by Mac-1 of negatively charged surfaces suggests that the bacterial wall and bacterial capsule possessing net negative electrostatic charge may repel Mac-1 and that the cationic Mac-1 ligands can overcome this evasion by acting as opsonins. Indeed, we previously showed that opsonization of Gram-negative Escherichia coli with several cationic peptides, including PF4 (Platelet Factor 4), strongly augmented phagocytosis by macrophages. Here, we investigated the effect of recombinant PF4 (rPF4) on phagocytosis of Gram-positive Staphylococcus aureus in vitro and examined its impact in a mouse model of S. aureus peritonitis. Characterization of the interaction of rPF4 with nonencapsulated and encapsulated S. aureus showed that rPF4 localizes on the bacterial surface, thus making it available for Mac-1. Furthermore, rPF4 did not have direct bactericidal and bacteriostatic activity and was not toxic to host cells. rPF4 enhanced phagocytosis of S. aureus bioparticles by various primary and cultured Mac-1-expressing leukocytes by several folds. It also increased phagocytosis of live nonencapsulated and encapsulated bacteria. Notably, the augmentation of phagocytosis by rPF4 did not compromise the intracellular killing of S. aureus by macrophages. Using a murine S. aureus peritonitis model, we showed that treatment of infected mice with rPF4 caused a significant increase in the clearance of antibiotic-susceptible S. aureus and its methicillin-resistant (MRSA) variant and markedly improved survival. These findings indicate that rPF4 binding to the bacterial surface circumvents its antiphagocytic properties, improving host defense against antibiotic-susceptible and antibiotic-resistant bacteria.
Collapse
Affiliation(s)
| | | | - Robert Roberson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - Zhqian Koh
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | | | | | - Michael Sheller
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | | |
Collapse
|
14
|
Sarkar A, Khandelwal S, Koma GT, Kim H, Gruel Y, Rollin J, Passam F, Wool GD, Arepally GM, Cines DB, Rauova L, Poncz M. Treatment of thrombocytopenia and thrombosis in HIT in mice using deglycosylated KKO: a novel therapeutic? Blood Adv 2023; 7:4112-4123. [PMID: 37196641 PMCID: PMC10388731 DOI: 10.1182/bloodadvances.2023009661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023] Open
Abstract
Heparin-induced thrombocytopenia (HIT) is characterized by thrombocytopenia associated with a highly prothrombotic state due to the development of pathogenic antibodies that recognize human platelet factor 4 (hPF4) complexed with various polyanions. Although nonheparin anticoagulants are the mainstay of care in HIT, subsequent bleeding may develop, and the risk of developing new thromboembolic events remain. We previously described a mouse immunoglobulin G2bκ (IgG2bκ) antibody KKO that mimics the sentinel features of pathogenic HIT antibodies, including binding to the same neoepitope on hPF4-polyanion complexes. KKO, like HIT IgGs, activates platelets through FcγRIIA and induces complement activation. We then questioned whether Fc-modified KKO could be used as a novel therapeutic to prevent or treat HIT. Using the endoglycosidase EndoS, we created deglycosylated KKO (DGKKO). Although DGKKO retained binding to PF4-polyanion complexes, it inhibited FcγRIIA-dependent activation of PF4-treated platelets triggered by unmodified KKO, 5B9 (another HIT-like monoclonal antibody), and IgGs isolated from patients with HIT. DGKKO also decreased complement activation and deposition of C3c on platelets. Unlike the anticoagulant fondaparinux, injection of DGKKO into HIT mice lacking mouse PF4, but transgenic for hPF4 and FcγRIIA, prevented and reversed thrombocytopenia when injected before or after unmodified KKO, 5B9, or HIT IgG. DGKKO also reversed antibody-induced thrombus growth in HIT mice. In contrast, DGKKO was ineffective in preventing thrombosis induced by IgG from patients with the HIT-related anti-PF4 prothrombotic disorder, vaccine-induced immune thrombotic thrombocytopenia. Thus, DGKKO may represent a new class of therapeutics for targeted treatment of patients with HIT.
Collapse
Affiliation(s)
- Amrita Sarkar
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Gavin T. Koma
- Department of Bioengineering, Temple University, Philadelphia, PA
| | - Hyunjun Kim
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Yves Gruel
- Department of Hemostasis, University Hospital Center of Tours, and EA4245 T2i, University of Tours, Tours, France
| | - Jerome Rollin
- Department of Hemostasis, University Hospital Center of Tours, and EA4245 T2i, University of Tours, Tours, France
| | - Freda Passam
- Central Clinical School, Faculty Medicine Health, University of Sydney, Sydney, Australia
| | | | | | - Douglas B. Cines
- Department of Pathology and Clinical Laboratories, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Lubica Rauova
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mortimer Poncz
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
15
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
16
|
Colicchia M, Perrella G, Gant P, Rayes J. Novel mechanisms of thrombo-inflammation during infection: spotlight on neutrophil extracellular trap-mediated platelet activation. Res Pract Thromb Haemost 2023; 7:100116. [PMID: 37063765 PMCID: PMC10099327 DOI: 10.1016/j.rpth.2023.100116] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 03/13/2023] Open
Abstract
A state-of-the-art lecture titled "novel mechanisms of thrombo-inflammation during infection" was presented at the ISTH Congress in 2022. Platelet, neutrophil, and endothelial cell activation coordinate the development, progression, and resolution of thrombo-inflammatory events during infection. Activated platelets and neutrophil extracellular traps (NETs) are frequently observed in patients with sepsis and COVID-19, and high levels of NET-derived damage-associated molecular patterns (DAMPs) correlate with thrombotic complications. NET-associated DAMPs induce direct and indirect platelet activation, which in return potentiates neutrophil activation and NET formation. These coordinated interactions involve multiple receptors and signaling pathways contributing to vascular and organ damage exacerbating disease severity. This state-of-the-art review describes the main mechanisms by which platelets support NETosis and the key mechanisms by which NET-derived DAMPs trigger platelet activation and the formation of procoagulant platelets leading to thrombosis. We report how these DAMPs act through multiple receptors and signaling pathways differentially regulating cell activation and disease outcome, focusing on histones and S100A8/A9 and their contribution to the pathogenesis of sepsis and COVID-19. We further discuss the complexity of platelet activation during NETosis and the potential benefit of targeting selective or multiple NET-associated DAMPs to limit thrombo-inflammation during infection. Finally, we summarize relevant new data on this topic presented during the 2022 ISTH Congress.
Collapse
Affiliation(s)
- Martina Colicchia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Poppy Gant
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, U.K
| |
Collapse
|
17
|
Hudock KM, Collins MS, Imbrogno MA, Kramer EL, Brewington JJ, Ziady A, Zhang N, Snowball J, Xu Y, Carey BC, Horio Y, O’Grady SM, Kopras EJ, Meeker J, Morgan H, Ostmann AJ, Skala E, Siefert ME, Na CL, Davidson CR, Gollomp K, Mangalmurti N, Trapnell BC, Clancy JP. Alpha-1 antitrypsin limits neutrophil extracellular trap disruption of airway epithelial barrier function. Front Immunol 2023; 13:1023553. [PMID: 36703990 PMCID: PMC9872031 DOI: 10.3389/fimmu.2022.1023553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/30/2022] [Indexed: 01/12/2023] Open
Abstract
Neutrophil extracellular traps contribute to lung injury in cystic fibrosis and asthma, but the mechanisms are poorly understood. We sought to understand the impact of human NETs on barrier function in primary human bronchial epithelial and a human airway epithelial cell line. We demonstrate that NETs disrupt airway epithelial barrier function by decreasing transepithelial electrical resistance and increasing paracellular flux, partially by NET-induced airway cell apoptosis. NETs selectively impact the expression of tight junction genes claudins 4, 8 and 11. Bronchial epithelia exposed to NETs demonstrate visible gaps in E-cadherin staining, a decrease in full-length E-cadherin protein and the appearance of cleaved E-cadherin peptides. Pretreatment of NETs with alpha-1 antitrypsin (A1AT) inhibits NET serine protease activity, limits E-cadherin cleavage, decreases bronchial cell apoptosis and preserves epithelial integrity. In conclusion, NETs disrupt human airway epithelial barrier function through bronchial cell death and degradation of E-cadherin, which are limited by exogenous A1AT.
Collapse
Affiliation(s)
- K. M. Hudock
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,*Correspondence: K. M. Hudock,
| | - M. S. Collins
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - M. A. Imbrogno
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - E. L. Kramer
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - J. J. Brewington
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - A. Ziady
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - N. Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - J. Snowball
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Y. Xu
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Divisions of Biomedical Informatics, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - B. C. Carey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Y. Horio
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto-shi, Kumamoto, Japan
| | - S. M. O’Grady
- Departments of Animal Science, University of Minnesota, St. Paul, MN, United States,Department of Integrative Biology and Physiology, University of Minnesota, St. Paul, MN, United States
| | - E. J. Kopras
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - J. Meeker
- Division of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - H. Morgan
- Division of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - A. J. Ostmann
- Division of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - E. Skala
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - M. E. Siefert
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - C. L. Na
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - C. R. Davidson
- Division of Pediatric Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - K. Gollomp
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - N. Mangalmurti
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States,Pennsylvania Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - B. C. Trapnell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - J. P. Clancy
- Cystic Fibrosis Foundation, Bethesda, MD, United States
| |
Collapse
|
18
|
Ngo ATP, Sarkar A, Yarovoi I, Levine ND, Bochenek V, Zhao G, Rauova L, Kowalska MA, Eckart K, Mangalmurti NS, Rux A, Cines DB, Poncz M, Gollomp K. Neutrophil extracellular trap stabilization by platelet factor 4 reduces thrombogenicity and endothelial cell injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.522931. [PMID: 36711969 PMCID: PMC9881987 DOI: 10.1101/2023.01.09.522931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neutrophil extracellular traps (NETs) are abundant in sepsis, and proposed NET-directed therapies in sepsis prevent their formation or accelerate degradation. Yet NETs are important for microbial entrapment, as NET digestion liberates pathogens and NET degradation products (NDPs) that deleteriously promote thrombosis and endothelial cell injury. We proposed an alternative strategy of NET-stabilization with the chemokine, platelet factor 4 (PF4, CXCL4), which we have shown enhances NET-mediated microbial entrapment. We now show that NET compaction by PF4 reduces their thrombogenicity. In vitro, we quantified plasma thrombin and fibrin generation by intact or degraded NETs and cell-free (cf) DNA fragments, and found that digested NETs and short DNA fragments were more thrombogenic than intact NETs and high molecular weight genomic DNA, respectively. PF4 reduced the thrombogenicity of digested NETs and DNA by interfering, in part, with contact pathway activation. In endothelial cell culture studies, short DNA fragments promoted von Willebrand factor release and tissue factor expression via a toll-like receptor 9-dependent mechanism. PF4 blocked these effects. Cxcl4-/- mice infused with cfDNA exhibited higher plasma thrombin anti-thrombin (TAT) levels compared to wild-type controls. Following challenge with bacterial lipopolysaccharide, Cxcl4-/- mice had similar elevations in plasma TAT and cfDNA, effects prevented by PF4 infusion. Thus, NET-stabilization by PF4 prevents the release of short fragments of cfDNA, limiting the activation of the contact coagulation pathway and reducing endothelial injury. These results support our hypothesis that NET-stabilization reduces pathologic sequelae in sepsis, an observation of potential clinical benefit.
Collapse
Affiliation(s)
- Anh T. P. Ngo
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amrita Sarkar
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Irene Yarovoi
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nate D. Levine
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Veronica Bochenek
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Guohua Zhao
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lubica Rauova
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - M. Anna Kowalska
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kaitlyn Eckart
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nilam S. Mangalmurti
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ann Rux
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas B. Cines
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mortimer Poncz
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kandace Gollomp
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Ngo ATP, Gollomp K. Building a better
NET
: Neutrophil extracellular trap targeted therapeutics in the treatment of infectious and inflammatory disorders. Res Pract Thromb Haemost 2022. [DOI: 10.1002/rth2.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Anh T. P. Ngo
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Kandace Gollomp
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Department of Pediatrics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
20
|
Abstract
Patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are prone to venous, cerebrovascular, and coronary thrombi, particularly those with severe coronavirus disease 2019 (COVID-19). The pathogenesis is multifactorial and likely involves proinflammatory cascades, development of coagulopathy, and neutrophil extracellular traps, although further investigations are needed. Elevated levels of D-dimers are common in patients with COVID-19 and cannot be used in isolation to predict venous thromboembolism in people with SARS-CoV-2. If given early in hospital admission, therapeutic-dose heparin improves clinical outcomes in patients with moderate COVID-19. To date, antithrombotics have not improved outcomes in patients with severe COVID-19.
Collapse
Affiliation(s)
- Derek V Gibbs
- Division of General Internal Medicine, Department of Medicine, University of Cincinnati School of Medicine, 231 Albert Sabin Way, MSB 6065, Cincinnati, OH 45267, USA
| | - Satya S Shreenivas
- Division of Cardiology, The Christ Hospital, 2139 Auburn Avenue, Cincinnati, OH 45219, USA
| | - Kristin M Hudock
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Cincinnati School of Medicine, 231 Albert Sabin Way, MSB 6053, Cincinnati, OH 45267, USA; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
21
|
Wen X, Xie B, Yuan S, Zhang J. The "Self-Sacrifice" of ImmuneCells in Sepsis. Front Immunol 2022; 13:833479. [PMID: 35572571 PMCID: PMC9099213 DOI: 10.3389/fimmu.2022.833479] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by the host’s malfunctioning response to infection. Due to its high mortality rate and medical cost, sepsis remains one of the world’s most intractable diseases. In the early stage of sepsis, the over-activated immune system and a cascade of inflammation are usually accompanied by immunosuppression. The core pathogenesis of sepsis is the maladjustment of the host’s innate and adaptive immune response. Many immune cells are involved in this process, including neutrophils, mononuclear/macrophages and lymphocytes. The immune cells recognize pathogens, devour pathogens and release cytokines to recruit or activate other cells in direct or indirect manner. Pyroptosis, immune cell-extracellular traps formation and autophagy are several novel forms of cell death that are different from apoptosis, which play essential roles in the progress of sepsis. Immune cells can initiate “self-sacrifice” through the above three forms of cell death to protect or kill pathogens. However, the exact roles and mechanisms of the self-sacrifice in the immune cells in sepsis are not fully elucidated. This paper mainly analyzes the self-sacrifice of several representative immune cells in the forms of pyroptosis, immune cell-extracellular traps formation and autophagy to reveal the specific roles they play in the occurrence and progression of sepsis, also to provide inspiration and references for further investigation of the roles and mechanisms of self-sacrifice of immune cells in the sepsis in the future, meanwhile, through this work, we hope to bring inspiration to clinical work.
Collapse
Affiliation(s)
- Xiaoyue Wen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
The Impact of Cytokines on Neutrophils' Phagocytosis and NET Formation during Sepsis-A Review. Int J Mol Sci 2022; 23:ijms23095076. [PMID: 35563475 PMCID: PMC9101385 DOI: 10.3390/ijms23095076] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/04/2023] Open
Abstract
Sepsis is an overwhelming inflammatory response to infection, resulting in multiple-organ injury. Neutrophils are crucial immune cells involved in innate response to pathogens and their migration and effector functions, such as phagocytosis and neutrophil extracellular trap (NET) formation, are dependent on cytokine presence and their concentration. In the course of sepsis, recruitment and migration of neutrophils to infectious foci gradually becomes impaired, thus leading to loss of a crucial arm of the innate immune response to infection. Our review briefly describes the sepsis course, the importance of neutrophils during sepsis, and explains dependence between cytokines and their activation. Moreover, we, for the first time, summarize the impact of cytokines on phagocytosis and NET formation. We highlight and discuss the importance of cytokines in modulation of both processes and emphasize the direction of further investigations.
Collapse
|
23
|
Ou Q, Tan L, Shao Y, Lei F, Huang W, Yang N, Qu Y, Cao Z, Niu L, Liu Y, Kou X, Shi S. Electrostatic Charge-Mediated Apoptotic Vesicle Biodistribution Attenuates Sepsis by Switching Neutrophil NETosis to Apoptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200306. [PMID: 35481721 DOI: 10.1002/smll.202200306] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/08/2022] [Indexed: 05/16/2023]
Abstract
Mesenchymal stem cell (MSC) therapy can attenuate organ damage and reduce mortality in sepsis; however, the detailed mechanism is not fully elucidated. In this study, it is shown that MSC-derived apoptotic vesicles (apoVs) can ameliorate multiple organ dysfunction and improve survival in septic mice. Mechanistically, it is found that tail vein-infused apoVs mainly accumulate in the bone marrow of septic mice via electrostatic charge interactions with positively charged neutrophil extracellular traps (NETs). Moreover, apoVs switch neutrophils NETosis to apoptosis via the apoV-Fas ligand (FasL)-activated Fas pathway. In summary, these findings uncover a previously unknown role of apoVs in sepsis treatment and an electrostatic charge-directed target therapeutic mechanism, suggesting that cell death is associated with disease development and therapy.
Collapse
Affiliation(s)
- Qianmin Ou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Lingping Tan
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Yiting Shao
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Fangcao Lei
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Weiying Huang
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Ning Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, 110122, P. R. China
| | - Yan Qu
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Zeyuan Cao
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Luhan Niu
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, 110122, P. R. China
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
- Key Laboratory of Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
- Key Laboratory of Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| |
Collapse
|
24
|
Margraf A, Lowell CA, Zarbock A. Neutrophils in acute inflammation: current concepts and translational implications. Blood 2022; 139:2130-2144. [PMID: 34624098 PMCID: PMC9728535 DOI: 10.1182/blood.2021012295] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Modulation of neutrophil recruitment and function is crucial for targeting inflammatory cells to sites of infection to combat invading pathogens while, at the same time, limiting host tissue injury or autoimmunity. The underlying mechanisms regulating recruitment of neutrophils, 1 of the most abundant inflammatory cells, have gained increasing interest over the years. The previously described classical recruitment cascade of leukocytes has been extended to include capturing, rolling, adhesion, crawling, and transmigration, as well as a reverse-transmigration step that is crucial for balancing immune defense and control of remote organ endothelial leakage. Current developments in the field emphasize the importance of cellular interplay, tissue environmental cues, circadian rhythmicity, detection of neutrophil phenotypes, differential chemokine sensing, and contribution of distinct signaling components to receptor activation and integrin conformations. The use of therapeutics modulating neutrophil activation responses, as well as mutations causing dysfunctional neutrophil receptors and impaired signaling cascades, have been defined in translational animal models. Human correlates of such mutations result in increased susceptibility to infections or organ damage. This review focuses on current advances in the understanding of the regulation of neutrophil recruitment and functionality and translational implications of current discoveries in the field with a focus on acute inflammation and sepsis.
Collapse
Affiliation(s)
- Andreas Margraf
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
- William Harvey Research Institute, Bart's and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
25
|
Zingerone Inhibits the Neutrophil Extracellular Trap Formation and Protects against Sepsis via Nrf2-Mediated ROS Inhibition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3990607. [PMID: 35126812 PMCID: PMC8816574 DOI: 10.1155/2022/3990607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/26/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022]
Abstract
Neutrophils release chromatin and antimicrobial proteins to trap and kill microbes, which is termed as neutrophil extracellular trap (NET) formation. NETs play a pivotal role in host defense against infection. However, emerging evidence indicated that NETs also contribute to an exaggerated inflammatory response and organic injuries in sepsis. Zingerone, a natural compound extracted from Zingiber officinale, exerts antioxidant, anti-inflammatory, and antioncogenic properties. In this study, we found that treatment with zingerone reduced organ injury and improved the outcome in a cecal ligation puncture- (CLP-) induced polymicrobial sepsis model. Administration of zingerone also alleviates reactive oxygen species (ROS) accumulation and systematic inflammation in septic mice and inhibits neutrophil extracellular traps (NETs) formation in vivo and in vitro. Furthermore, inhibition of nuclear factor erythroid 2-related factor 2 (Nrf2) with its specific antagonist significantly counteracted the suppressive effects of zingerone on ROS and NETs and retarded the protective role of zingerone against sepsis-associated organ injury. In addition, exposure to zingerone does not affect phagocytic activity of neutrophils in vitro and bacterial dissemination in vivo. Above all, our results indicate that zingerone treatment obviously attenuates NET formation and inflammatory response via Nrf2-mediated ROS inhibition, thus providing a novel therapeutic strategy against sepsis-induced injury.
Collapse
|
26
|
Mauro KD, Lambert MP, Kowalska MA, Thawley VJ, Poncz M, Otto CM. Dose Escalation Trial of Desulfated Heparin (ODSH) in Septic Peritonitis. Front Vet Sci 2022; 9:862308. [PMID: 35498738 PMCID: PMC9043859 DOI: 10.3389/fvets.2022.862308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
Objective Septic peritonitis is associated with significant morbidity and mortality. As a potential therapeutic agent in the treatment of sepsis, 2-O, 3-O desulfated heparin (ODSH) reduces histones and platelet factor 4 (PF4) in mouse sepsis models. This pilot clinical trial evaluated the safety and effect of ODSH in client-owned dogs with septic peritonitis. Interventions In an IACUC-approved, open-label, prospective, dose-escalation clinical trial in 6 dogs with spontaneous septic peritonitis, ODSH administration was initiated following surgical explore to achieve source control. Acute patient physiology and laboratory evaluation (APPLEfast and APPLEfull) scores on admission, source of septic peritonitis, requirement for vasopressors, the administration of blood products, and survival to discharge were recorded. Platelet count, cell free DNA (cfDNA) concentration, and platelet factor 4 (PF4) concentrations were measured at the time of each ODSH dosage. A dose of ODSH was administered every 8 hs for a total of 4 doses (maximum total dosage 75 mg/kg) based on a pre-determined escalation protocol. Patients were monitored in the ICU following administration for evidence of clinical hemorrhage. Main Results The mean APPLEfast and APPLEfull scores on admission were 22 +/- 6 and 32 +/-10, respectively. Four dogs received 4 total dosages of ODSH and 2 dogs received 3 total dosages of ODSH intravenously. The mean total dosage of ODSH administered during the study period was 48.3 +/- 21.6 mg/kg. No dog required dose de-escalation or had any evidence of bleeding. Four dogs survived to discharge. Conclusions No adverse effects of ODSH administration were documented in dogs with septic peritonitis. A randomized controlled trial is necessary to evaluate ODSH as a novel therapeutic in the treatment of septic peritonitis.
Collapse
Affiliation(s)
- Katie D Mauro
- Matthew J. Ryan Hospital, Department of Clinical Science and Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michele P Lambert
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - M Anna Kowalska
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Vincent J Thawley
- Matthew J. Ryan Hospital, Department of Clinical Science and Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mortimer Poncz
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Cynthia M Otto
- Matthew J. Ryan Hospital, Department of Clinical Science and Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
27
|
Li Z, Chen J, Tian H, Chen X. Sepsis Treatment Strategies Based on Nanomaterials ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Khismatullin RR, Ponomareva AA, Nagaswami C, Ivaeva RA, Montone KT, Weisel JW, Litvinov RI. Pathology of lung-specific thrombosis and inflammation in COVID-19. J Thromb Haemost 2021; 19:3062-3072. [PMID: 34538029 PMCID: PMC8646730 DOI: 10.1111/jth.15532] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/29/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Infection by SARS-CoV-2 produces significant pulmonary pathology including endothelial damage with resultant thrombotic events. While pathologic features were described, there are limited data on the relationship of these changes to the inflammatory response and the production of thromboses. OBJECTIVE To investigate pathology of COVID-19-related immunothrombosis. PATIENTS/METHODS Tissue samples from lung, kidney, brain and heart that were collected from 45 patients who died of COVID-19. Histopathological examination was performed after H&E and Picro-Mallory staining in combination with (immuno)fluorescence to visualize neutrophil extracellular traps. Ultrastructural alterations in lungs were studied with scanning and transmission electron microscopy. RESULTS Inflammatory changes and thrombosis were substantially more pronounced in the lung than in the kidney, heart, and brain. The most common pathologic finding was diffuse alveolar damage. In addition, most lung samples showed thrombi in vessels. The cause of death in single cases was massive pulmonary embolism. Ultrastructural examination revealed neutrophils attached to endothelium, perhaps as a step towards transendothelial migration. In addition, platelets were identified in the midst of fibrin as individual procoagulant balloon-like cells. Ultrastructural examination demonstrated numerous virion-like particles. CONCLUSIONS Studying (ultra)structural features of the autopsy lung samples from patients with COVID-19 has provided evidence for a pathogenic link between inflammation and thrombosis. The major features in the lungs of COVID-19 patients comprised primary inflammatory thrombosis associated with diffuse alveolar damage. The lungs had pronounced circulatory changes with inflammation-dependent intravascular blood clotting, whereas heart, brain, and kidneys had predominantly degenerative changes that were distinct from the lung pathology.
Collapse
Affiliation(s)
- Rafael R Khismatullin
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Anastasia A Ponomareva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
- Kazan Institute of Biochemistry and Biophysics, FRC KSC of RAS, Kazan, Russian Federation
| | - Chandrasekaran Nagaswami
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rozalina A Ivaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Kathleen T Montone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
29
|
Zhu S, Yu Y, Ren Y, Xu L, Wang H, Ling X, Jin L, Hu Y, Zhang H, Miao C, Guo K. The emerging roles of neutrophil extracellular traps in wound healing. Cell Death Dis 2021; 12:984. [PMID: 34686654 PMCID: PMC8536667 DOI: 10.1038/s41419-021-04294-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Abstract
Delayed wound healing causes problems for many patients both physically and psychologically, contributing to pain, economic burden, loss of function, and even amputation. Although many factors affect the wound healing process, abnormally prolonged or augmented inflammation in the wound site is a common cause of poor wound healing. Excessive neutrophil extracellular trap (NET) formation during this phase may amplify inflammation and hinder wound healing. However, the roles of NETs in wound healing are still unclear. Herein, we briefly introduce NET formation and discuss the possible NET-related mechanisms in wound healing. We conclude with a discussion of current studies, focusing on the roles of NETs in diabetic and normoglycemic wounds and the effectiveness of NET-targeting treatments in wound healing.
Collapse
Affiliation(s)
- Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Yu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Ren
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liying Xu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huilin Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaomin Ling
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Jin
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Hu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
30
|
Yehya N. Potential therapeutics in pediatric acute respiratory distress syndrome: what does the immune system have to offer? A narrative review. Transl Pediatr 2021; 10:2689-2699. [PMID: 34765494 PMCID: PMC8578784 DOI: 10.21037/tp-20-341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/22/2021] [Indexed: 11/09/2022] Open
Abstract
Since first described, acute respiratory distress syndrome (ARDS) has been understood to be an inflammatory disease with a dysregulated hyperinflammatory response. While fewer investigations have studied these phenomena in pediatric ARDS (PARDS), similar pathways are believed to be involved. Significant attention has been paid to the innate immune system, particularly neutrophils and neutrophil-related signaling, more recent studies have provided additional nuance regarding the role of upstream damage-associated molecular patterns (DAMPs) and subsequent neutrophil-mediated inflammation, lung permeability, and alveolar epithelial damage. For example, neutrophil extracellular traps (NETs) and inflammasome signaling have been identified as critical mediators existing at the junction of DAMPs and downstream inflammation. We demonstrate how the conclusions obtained from pre-clinical studies of lung injury are highly dependent upon the model chosen, and how this can lead us astray when developing therapies. More recently the adaptive immune system, specifically select T cell subpopulations, have also been implicated in ARDS. This raises the possibility of antigen-specific immunomodulation as a potential therapeutic avenue in ARDS. Finally, we briefly review randomized controlled trials attempting to manipulate the immune dysregulation in ARDS, including pleiotropic immunomodulators like corticosteroids and interferon-β, and what these studies can teach us about the design of novel therapeutics and the design of future trials.
Collapse
Affiliation(s)
- Nadir Yehya
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
31
|
Neutrophil extracellular traps and organ dysfunction in sepsis. Clin Chim Acta 2021; 523:152-162. [PMID: 34537216 DOI: 10.1016/j.cca.2021.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022]
Abstract
Sepsis is a clinical syndrome resulting from infection followed by inflammation and is one of the significant causes of mortality worldwide. The underlying reason is the host's uncontrolled inflammatory response due to an infection led to multiple organ dysfunction/failure. Neutrophils, an innate immune cell, are forerunners to reach the site of infection/inflammation for clearing the infection and resolute the inflammation during sepsis. A relatively new neutrophil effector function, neutrophil extracellular traps (NETs), have been demonstrated to kill the pathogens by releasing DNA decorated with histone and granular proteins. A growing number of pieces of shreds of evidence suggest that unregulated incidence of NETs have a significant influence on the pathogenesis of sepsis-induced multiple organ damage, including arterial hypotension, hypoxemia, coagulopathy, renal, neurological, and hepatic dysfunction. Thus, excessive production and improper resolution of NETs are of significant therapeutic value in combating sepsis-induced multiple organ failure. The purpose of this review is intended to highlight the role of NETs in sepsis-induced organ failure. Furthermore, the current status of therapeutic strategies to intersect the harmful effects of NETs to restore organ functions is discussed.
Collapse
|
32
|
Yin H, Zhou M, Chen X, Wan TF, Jin L, Rao SS, Tan YJ, Duan R, Zhang Y, Wang ZX, Wang YY, He ZH, Luo MJ, Hu XK, Wang Y, Situ WY, Tang SY, Liu WE, Chen CY, Xie H. Fructose-coated Ångstrom silver prevents sepsis by killing bacteria and attenuating bacterial toxin-induced injuries. Am J Cancer Res 2021; 11:8152-8171. [PMID: 34373734 PMCID: PMC8344005 DOI: 10.7150/thno.55334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/28/2021] [Indexed: 11/29/2022] Open
Abstract
Serious infection caused by multi-drug-resistant bacteria is a major threat to human health. Bacteria can invade the host tissue and produce various toxins to damage or kill host cells, which may induce life-threatening sepsis. Here, we aimed to explore whether fructose-coated Ångstrom-scale silver particles (F-AgÅPs), which were prepared by our self-developed evaporation-condensation system and optimized coating approach, could kill bacteria and sequester bacterial toxins to attenuate fatal bacterial infections. Methods: A series of in vitro assays were conducted to test the anti-bacterial efficacy of F-AgÅPs, and to investigate whether F-AgÅPs could protect against multi-drug resistant Staphylococcus aureus (S. aureus)- and Escherichia coli (E. coli)-induced cell death, and suppress their toxins (S. aureus hemolysin and E. coli lipopolysaccharide)-induced cell injury or inflammation. The mouse models of cecal ligation and puncture (CLP)- or E. coli bloodstream infection-induced lethal sepsis were established to assess whether the intravenous administration of F-AgÅPs could decrease bacterial burden, inhibit inflammation, and improve the survival rates of mice. The levels of silver in urine and feces of mice were examined to evaluate the excretion of F-AgÅPs. Results: F-AgÅPs efficiently killed various bacteria that can cause lethal infections and also competed with host cells to bind with S. aureus α-hemolysin, thus blocking its cytotoxic activity. F-AgÅPs inhibited E. coli lipopolysaccharide-induced endothelial injury and macrophage inflammation, but not by directly binding to lipopolysaccharide. F-AgÅPs potently reduced bacterial burden, reversed dysregulated inflammation, and enhanced survival in mice with CLP- or E. coli bloodstream infection-induced sepsis, either alone or combined with antibiotic therapy. After three times injections within 48 h, 79.18% of F-AgÅPs were excreted via feces at the end of the 14-day observation period. Conclusion: This study suggests the prospect of F-AgÅPs as a promising intravenous agent for treating severe bacterial infections.
Collapse
|
33
|
Complement mediates binding and procoagulant effects of ultra-large HIT immune complexes. Blood 2021; 138:2106-2116. [PMID: 34189574 DOI: 10.1182/blood.2020009487] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/02/2021] [Indexed: 01/19/2023] Open
Abstract
Heparin-induced thrombocytopenia (HIT) is a prothrombotic disorder mediated by ultra-large immune complexes (ULICs) containing IgG antibodies to a multivalent antigen composed of platelet factor 4 (PF4) and heparin. The limitations of current anti-thrombotic therapy in HIT supports the need to identify additional pathways that may be targets for therapy. Activation of FcgRIIA by HIT ULICs initiates diverse procoagulant cellular effector functions. HIT ULICs are also known to activate complement, but the contribution of this pathway to the pathogenesis of HIT has not been studied in detail. We observed that HIT ULICs physically interact with C1q in buffer and plasma, activate complement via the classical pathway, promote co-deposition of IgG and activated C3 complement fragments (C3c) on neutrophil and monocyte cell surfaces. Complement activation by ULICs, in turn, facilitates Fcg receptor(R)-independent monocyte tissue factor expression, enhances IgG binding to the cell surface FcgRs and promotes platelet adhesion to injured endothelium. Inhibition of the proximal, but not terminal, steps in the complement pathway, abrogates monocyte tissue factor expression by HIT ULICs. Together, these studies suggest a major role for complement activation in regulating Fc-dependent effector functions of HIT ULICs, identify potential non-anticoagulant targets for therapy, and provide insights into the broader roles of complement in immune complex-mediated thrombotic disorders.
Collapse
|
34
|
Shen X, Cao K, Zhao Y, Du J. Targeting Neutrophils in Sepsis: From Mechanism to Translation. Front Pharmacol 2021; 12:644270. [PMID: 33912055 PMCID: PMC8072352 DOI: 10.3389/fphar.2021.644270] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a life-threatening condition caused by a dysregulated host response to infection. Although our understanding in the pathophysiological features of sepsis has increased significantly during the past decades, there is still lack of specific treatment for sepsis. Neutrophils are important regulators against invading pathogens, and their role during sepsis has been studied extensively. It has been suggested that the migration, the antimicrobial activity, and the function of neutrophil extracellular traps (NETs) have all been impaired during sepsis, which results in an inappropriate response to primary infection and potentially increase the susceptibility to secondary infection. On the other hand, accumulating evidence has shown that the reversal or restoration of neutrophil function can promote bacterial clearance and improve sepsis outcome, supporting the idea that targeting neutrophils may be a promising strategy for sepsis treatment. In this review, we will give an overview of the role of neutrophils during sepsis and discuss the potential therapeutic strategy targeting neutrophils.
Collapse
Affiliation(s)
- Xiaofei Shen
- Faculty of Hepato-Biliary-Pancreatic Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ke Cao
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Junfeng Du
- Medical Department of General Surgery, The 1st Medical Center of Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China.,The Second School of Clinical Medicine, Southern Medical University, Guangdong, China
| |
Collapse
|
35
|
Klopf J, Brostjan C, Eilenberg W, Neumayer C. Neutrophil Extracellular Traps and Their Implications in Cardiovascular and Inflammatory Disease. Int J Mol Sci 2021; 22:ijms22020559. [PMID: 33429925 PMCID: PMC7828090 DOI: 10.3390/ijms22020559] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Neutrophils are primary effector cells of innate immunity and fight infection by phagocytosis and degranulation. Activated neutrophils also release neutrophil extracellular traps (NETs) in response to a variety of stimuli. These NETs are net-like complexes composed of cell-free DNA, histones and neutrophil granule proteins. Besides the evolutionarily conserved mechanism to capture and eliminate pathogens, NETs are also associated with pathophysiological processes of various diseases. Here, we elucidate the mechanisms of NET formation and their different implications in disease. We focused on autoinflammatory and cardiovascular disorders as the leading cause of death. Neutrophil extracellular traps are not only present in various cardiovascular diseases but play an essential role in atherosclerotic plaque formation, arterial and venous thrombosis, as well as in the development and progression of abdominal aortic aneurysms. Furthermore, NETosis can be considered as a source of autoantigens and maintains an inflammatory milieu promoting autoimmune diseases. Indeed, there is further need for research into the balance between NET induction, inhibition, and degradation in order to pharmacologically target NETs and their compounds without impairing the patient’s immune defense. This review may be of interest to both basic scientists and clinicians to stimulate translational research and innovative clinical approaches.
Collapse
|
36
|
Arepally GM, Cines DB. Pathogenesis of heparin-induced thrombocytopenia. Transl Res 2020; 225:131-140. [PMID: 32417430 PMCID: PMC7487042 DOI: 10.1016/j.trsl.2020.04.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 01/19/2023]
Abstract
There are currently no effective substitutes for high intensity therapy with unfractionated heparin (UFH) for cardiovascular procedures based on its rapid onset of action, ease of monitoring and reversibility. The continued use of UFH in these and other settings requires vigilance for its most serious nonhemorrhagic complication, heparin induced thrombocytopenia (HIT). HIT is an immune prothrombotic disorder caused by antibodies that recognize complexes between platelet factor 4 (PF4) and polyanions such as heparin (H).The pathogenicity of anti-PF4/H antibodies is likely due to the formation of immune complexes that initiate intense procoagulant responses by vascular and hematopoietic cells that lead to the generation of platelet microparticles, monocyte and endothelial cell procoagulant activity, and neutrophil extracellular traps, among other outcomes. The development of anti-PF4/H antibodies after exposure to UFH greatly exceeds the incidence of clinical disease, but the biochemical features that distinguish pathogenic from nonpathogenic antibodies have not been identified. Diagnosis relies on pretest clinical probability, screening for anti-PF4/H antibodies and documentation of their platelet activating capacity. However, both clinical algorithms and test modalities have limited predictive values making diagnosis and management challenging. Given the unacceptable rates of recurrent thromboembolism and bleeding associated with current therapies, there is an unmet need for novel rational nonanticoagulant therapeutics based on the pathogenesis of HIT. We will review recent developments in our understanding of the pathogenesis of HIT and its implications for future approaches to diagnosis and management.
Collapse
Affiliation(s)
- Gowthami M Arepally
- Division of Hematology, Duke University Medical Center, Durham, North Carolina.
| | - Douglas B Cines
- Department of Pathology and Laboratory Medicine, Perelman-University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
37
|
|
38
|
Lasola JJM, Kamdem H, McDaniel MW, Pearson RM. Biomaterial-Driven Immunomodulation: Cell Biology-Based Strategies to Mitigate Severe Inflammation and Sepsis. Front Immunol 2020; 11:1726. [PMID: 32849612 PMCID: PMC7418829 DOI: 10.3389/fimmu.2020.01726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammation is an essential component of a wide variety of disease processes and oftentimes can increase the deleterious effects of a disease. Finding ways to modulate this essential immune process is the basis for many therapeutics under development and is a burgeoning area of research for both basic and translational immunology. In addition to developing therapeutics for cellular and molecular targets, the use of biomaterials to modify innate and adaptive immune responses is an area that has recently sparked significant interest. In particular, immunomodulatory activity can be engineered into biomaterials to elicit heightened or dampened immune responses for use in vaccines, immune tolerance, or anti-inflammatory applications. Importantly, the inherent physicochemical properties of the biomaterials play a significant role in determining the observed effects. Properties including composition, molecular weight, size, surface charge, and others affect interactions with immune cells (i.e., nano-bio interactions) and allow for differential biological responses such as activation or inhibition of inflammatory signaling pathways, surface molecule expression, and antigen presentation to be encoded. Numerous opportunities to open new avenues of research to understand the ways in which immune cells interact with and integrate information from their environment may provide critical solutions needed to treat a variety of disorders and diseases where immune dysregulation is a key inciting event. However, to elicit predictable immune responses there is a great need for a thorough understanding of how the biomaterial properties can be tuned to harness a designed immunological outcome. This review aims to systematically describe the biological effects of nanoparticle properties-separate from additional small molecule or biologic delivery-on modulating innate immune cell responses in the context of severe inflammation and sepsis. We propose that nanoparticles represent a potential polypharmacological strategy to simultaneously modify multiple aspects of dysregulated immune responses where single target therapies have fallen short for these applications. This review intends to serve as a resource for immunology labs and other associated fields that would like to apply the growing field of rationally designed biomaterials into their work.
Collapse
Affiliation(s)
- Jackline Joy Martín Lasola
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Henry Kamdem
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Michael W. McDaniel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Ryan M. Pearson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|