1
|
Alijagic A, Russo R, Scuderi V, Ussia M, Scalese S, Taverna S, Engwall M, Pinsino A. Sea urchin immune cells and associated microbiota co-exposed to iron oxide nanoparticles activate cellular and molecular reprogramming that promotes physiological adaptation. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136808. [PMID: 39662349 DOI: 10.1016/j.jhazmat.2024.136808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
The innate immune system is the first player involved in the recognition/interaction with nanomaterials. Still, it is not the only system involved. The co-evolution of the microbiota with the innate immune system built an interdependence regulating immune homeostasis that is poorly studied. Herein, the simultaneous interaction of iron-oxide nanoparticles (Fe-oxide NPs), immune cells, and the microbiota associated with the blood of the sea urchin Paracentrotus lividus was explored by using a microbiota/immune cell model in vitro-ex vivo and a battery of complementary tools, including Raman spectroscopy, 16S Next-Generation Sequencing, high-content imaging, NanoString nCounter. Our findings highlight the P. lividus immune cells and microbiota dynamics in response to Fe-oxide NPs, including i) morphological rearrangement and immune cell health status maintenance (intracellular trafficking increasing, no phenotypic alterations or caspase 3/7 activation), ii) transcriptomic reprogramming in immune cells (Smad6, Lmo2, Univin, suPaxB, Frizzled-7, Fgfr2, Gp96 upregulation), iii) immune signaling unchanged (e.g., P-p38 MAPK, P-ERK, TLR4, IL-6 protein level unchanged), iv) enrichment in extracellular vesicle released in the co-culture medium, and v) a shift in the composition of microbial groups mainly in favor of Gram-positive bacteria (e.g., Firmicutes, Actinobacteria),. Our findings suggest that Fe-oxide NPs induce a multi-level immune cell-microbiota response restoring homeostasis.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro SE-701 82, Sweden.
| | - Roberta Russo
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, Via Ugo La Malfa 153, Palermo 90146, Italy
| | - Viviana Scuderi
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR), Ottava Strada n.5, Catania 95121, Italy
| | - Martina Ussia
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR), Ottava Strada n.5, Catania 95121, Italy
| | - Silvia Scalese
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR), Ottava Strada n.5, Catania 95121, Italy
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo 90146, Italy
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro SE-701 82, Sweden
| | - Annalisa Pinsino
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo 90146, Italy.
| |
Collapse
|
2
|
Chacon J, Faizuddin F, McKee JC, Sheikh A, Vasquez VM, Gadad SS, Mayer G, Siby S, McCabe M, Dhandayuthapani S. Unlocking the Microbial Symphony: The Interplay of Human Microbiota in Cancer Immunotherapy Response. Cancers (Basel) 2025; 17:813. [PMID: 40075661 PMCID: PMC11899421 DOI: 10.3390/cancers17050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
INTRODUCTION The emergence of cancer immunotherapy has revolutionized cancer treatment, offering remarkable outcomes for patients across various malignancies. However, the heterogeneous response to immunotherapy underscores the necessity of understanding additional factors influencing treatment efficacy. Among these factors, the human microbiota has garnered significant attention for its potential role in modulating immune response. Body: This review explores the intricate relationship between the human microbiota and cancer immunotherapy, highlighting recent advances and potential mechanisms underlying microbial influence on treatment outcomes. CONCLUSION Insights into the microbiome's impact on immunotherapy response not only deepen our understanding of cancer pathogenesis but also hold promise for personalized therapeutic strategies aimed at optimizing patient outcomes.
Collapse
Affiliation(s)
- Jessica Chacon
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Farah Faizuddin
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Jack C. McKee
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Aadil Sheikh
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Victor M. Vasquez
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Shrikanth S. Gadad
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ghislaine Mayer
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Sharon Siby
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Molly McCabe
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Subramanian Dhandayuthapani
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
3
|
Todor SB, Ichim C. Microbiome Modulation in Pediatric Leukemia: Impact on Graft-Versus-Host Disease and Treatment Outcomes: A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2025; 12:166. [PMID: 40003268 PMCID: PMC11854176 DOI: 10.3390/children12020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
The gut microbiome significantly influences the outcomes of pediatric leukemia, particularly in patients undergoing hematopoietic stem cell transplantation (HSCT). Dysbiosis, caused by chemotherapy, antibiotics, and immune system changes, contributes to complications such as graft-versus-host disease (GVHD), gastrointestinal issues, and infections. Various microbiome-related interventions, including prebiotics, probiotics, postbiotics, and fecal microbiota transplantation (FMT), have shown potential in mitigating these complications. Specific microbial signatures have been linked to GVHD risk, and interventions like inulin, Lactobacillus, and SCFAs (short-chain fatty acids), particularly butyrate, may help modulate the immune system and improve outcomes. FMT, while showing promising results in restoring microbial balance and alleviating GVHD, still requires careful monitoring due to potential risks in immunocompromised patients. Despite positive findings, more research is needed to optimize microbiome-based therapies and ensure their safety and efficacy in pediatric leukemia care.
Collapse
Affiliation(s)
- Samuel Bogdan Todor
- Faculty of Medicine, University Lucian Blaga of Sibiu, 550024 Sibiu, Romania;
| | | |
Collapse
|
4
|
Azhar Ud Din M, Lin Y, Lyu C, Yi C, Fang A, Mao F. Advancing therapeutic strategies for graft-versus-host disease by targeting gut microbiome dynamics in allogeneic hematopoietic stem cell transplantation: current evidence and future directions. Mol Med 2025; 31:2. [PMID: 39754054 PMCID: PMC11699782 DOI: 10.1186/s10020-024-01060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a highly effective therapy for malignant blood illnesses that pose a high risk, as well as diseases that are at risk due to other variables, such as genetics. However, the prevalence of graft-versus-host disease (GVHD) has impeded its widespread use. Ensuring the stability of microbial varieties and associated metabolites is crucial for supporting metabolic processes, preventing pathogen intrusion, and modulating the immune system. Consequently, it significantly affects the overall well-being and susceptibility of the host to disease. Patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) may experience a disruption in the balance between the immune system and gut bacteria when treated with medicines and foreign cells. This can lead to secondary intestinal inflammation and GVHD. Thus, GM is both a reliable indicator of post-transplant mortality and a means of enhancing GVHD prevention and treatment after allo-HSCT. This can be achieved through various strategies, including nutritional support, probiotics, selective use of antibiotics, and fecal microbiota transplantation (FMT) to target gut microbes. This review examines research advancements and the practical use of intestinal bacteria in GVHD following allo-HSCT. These findings may offer novel insights into the prevention and treatment of GVHD after allo-HSCT.
Collapse
Affiliation(s)
- Muhammad Azhar Ud Din
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, 212002, Jiangsu, People's Republic of China
- Institute of Hematology, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yan Lin
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, 212399, Jiangsu, People's Republic of China
| | - Changkun Lyu
- School of Medical Technology, Shangqiu Medical College Shangqiu, Shangqiu, 476100, Henan, People's Republic of China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang, 212028, Jiangsu, People's Republic of China
| | - Anning Fang
- Basic Medical School, Anhui Medical College, 632 Furong Road, Economic and Technological Development Zone, Hefei, 230061, Anhui, People's Republic of China.
| | - Fei Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, 212002, Jiangsu, People's Republic of China.
- Institute of Hematology, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Benga L, Rehm A, Gougoula C, Westhoff P, Wachtmeister T, Benten WPM, Engelhardt E, Weber APM, Köhrer K, Sager M, Janssen S. The host genotype actively shapes its microbiome across generations in laboratory mice. MICROBIOME 2024; 12:256. [PMID: 39639355 PMCID: PMC11619136 DOI: 10.1186/s40168-024-01954-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND The microbiome greatly affects health and wellbeing. Evolutionarily, it is doubtful that a host would rely on chance alone to pass on microbial colonization to its offspring. However, the literature currently offers only limited evidence regarding two alternative hypotheses: active microbial shaping by host genetic factors or transmission of a microbial maternal legacy. RESULTS To further dissect the influence of host genetics and maternal inheritance, we collected two-cell stage embryos from two representative wild types, C57BL6/J and BALB/c, and transferred a mixture of both genotype embryos into hybrid recipient mice to be inoculated by an identical microbiome at birth. CONCLUSIONS Observing the offspring for six generations unequivocally emphasizes the impact of host genetic factors over maternal legacy in constant environments, akin to murine laboratory experiments. Interestingly, maternal legacy solely controlled the microbiome in the first offspring generation. However, current evidence supporting maternal legacy has not extended beyond this initial generation, resolving the aforementioned debate. Video Abstract.
Collapse
Affiliation(s)
- Laurentiu Benga
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Anna Rehm
- Algorithmic Bioinformatics, Justus Liebig University Giessen, Giessen, Germany
| | - Christina Gougoula
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Westhoff
- Cluster of Excellence on Plant Science, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Center, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - W Peter M Benten
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Eva Engelhardt
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas P M Weber
- Cluster of Excellence on Plant Science, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Center, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martin Sager
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Janssen
- Algorithmic Bioinformatics, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
6
|
Yang Q, Wang Z, Liu M, Gan L. Causal Relationship Between Gut Microbiota and Leukemia: Future Perspectives. Oncol Ther 2024; 12:663-683. [PMID: 39217582 PMCID: PMC11573970 DOI: 10.1007/s40487-024-00300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The gut microbiota plays a crucial role in maintaining homeostasis in the human gastrointestinal tract. Numerous studies have shown a strong association between the gut microbiota and the emergence and progression of various diseases. Leukemia is one of the most common hematologic malignancies. Although standardized protocols and expert consensus have been developed for routine diagnosis and treatment, limitations remain due to individual differences. Nevertheless, a large number of studies have established a link between the gut microbiota and leukemia, with disturbances in the gut microbiota directly or indirectly affecting the development of leukemia. However, the causal relationship between the two remains unclear, and studying and exploring the causal relationship may open up entirely new avenues and protocols for use in the prevention and/or treatment of leukemia, offering new insights into diagnosis and treatment. In this review, the intricate relationship between the gut microbiota and leukemia is explored in depth, including causal associations, metabolite effects, therapeutic applications, and complications. Based on the characteristics of the gut microbiota, the future applications and prospects of gut microbiota are discussed to provide useful information for clinical treatment of leukemia.
Collapse
Affiliation(s)
- Qiang Yang
- Mianyang Central Hospital, Fucheng District, Mianyang City, 621000, Sichuan Province, China
| | - Zexin Wang
- Mianyang Central Hospital, Fucheng District, Mianyang City, 621000, Sichuan Province, China.
| | - Miao Liu
- Mianyang Central Hospital, Fucheng District, Mianyang City, 621000, Sichuan Province, China
| | - Lingling Gan
- Mianyang Central Hospital, Fucheng District, Mianyang City, 621000, Sichuan Province, China
| |
Collapse
|
7
|
Faitova T, Coelho M, Da Cunha-Bang C, Ozturk S, Kartal E, Bork P, Seiffert M, Niemann CU. The diversity of the microbiome impacts chronic lymphocytic leukemia development in mice and humans. Haematologica 2024; 109:3237-3250. [PMID: 38721725 PMCID: PMC11443378 DOI: 10.3324/haematol.2023.284693] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/30/2024] [Indexed: 10/02/2024] Open
Abstract
The gut microbiota plays a critical role in maintaining a healthy human body and its dysregulation is associated with various diseases. In this study, we investigated the influence of gut microbiome diversity on the development of chronic lymphocytic leukemia (CLL). Analysis of stool samples from 59 CLL patients revealed individual and heterogeneous microbiome compositions, but allowed for grouping of patients according to their microbiome diversity. Interestingly, CLL patients with lower microbiome diversity and an enrichment of bacteria linked to poor health suffered from a more advanced or aggressive form of CLL. In the Eµ-TCL1 mouse model of CLL, we observed a faster course of disease when mice were housed in high hygiene conditions. Shotgun DNA sequencing of fecal samples showed that this was associated with a lower microbiome diversity which was dominated by Mucispirillum and Parabacteroides genera in comparison to mice kept under lower hygiene conditions. In conclusion, we applied taxonomic microbiome analyses to demonstrate a link between gut microbiome diversity and the clinical course of CLL in humans, as well as the development of CLL in mice. Our novel data serve as a basis for further investigations to decipher the pathological and mechanistic role of intestinal microbiota in CLL development.
Collapse
Affiliation(s)
| | - Mariana Coelho
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences of the University of Heidelberg, Heidelberg
| | | | - Selcen Ozturk
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg
| | - Ece Kartal
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; Department of Bioinformatics, Biocenter, University of Wurzburg, Wurzburg, Germany; Yonsei Frontier Lab (YFL), Yonsei University, Seoul, South Korea; Max Delbruck Center for Molecular Medicine, Berlin
| | - Martina Seiffert
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg. m.seiffert@dkfzheidelberg
| | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen.
| |
Collapse
|
8
|
Cobaleda C, Vicente-Dueñas C, Nichols KE, Sanchez-Garcia I. Childhood B cell leukemia: Intercepting the paths to progression. Bioessays 2024; 46:e2400033. [PMID: 39058907 PMCID: PMC11864036 DOI: 10.1002/bies.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
B-cell Acute Lymphoblastic Leukemia (B-ALL) is the most common pediatric cancer, arising most often in children aged 2-5 years. This distinctive age distribution hints at an association between B-ALL development and disrupted immune system function during a susceptible period during childhood, possibly triggered by early exposure to infection. While cure rates for childhood B-ALL surpass 90% in high-income nations, survivors suffer from diminished quality of life due to the side effects of treatment. Consequently, understanding the origins and evolution of B-ALL, and how to prevent this prevalent childhood cancer, is paramount to alleviate this substantial health burden. This article provides an overview of our current understanding of the etiology of childhood B-ALL and explores how this knowledge can inform preventive strategies.
Collapse
Affiliation(s)
- Cesar Cobaleda
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM, CSIC-UAM), Madrid, Spain
| | - Carolina Vicente-Dueñas
- Institute for Biomedical Research of Salamanca (IBSAL), Department of Pediatrics, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Kim E. Nichols
- Division of Cancer Predisposition, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Isidro Sanchez-Garcia
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
9
|
Farrokhi A, Atre T, Salitra S, Aletaha M, Márquez AC, Gynn M, Fidanza M, Jo S, Rolf N, Simmons K, Duque-Afonso J, Cleary ML, Seif AE, Kollmann T, Gantt S, Reid GSD. Early-life infection depletes preleukemic cells in a mouse model of hyperdiploid B-cell acute lymphoblastic leukemia. Blood 2024; 144:809-821. [PMID: 38875504 PMCID: PMC11375503 DOI: 10.1182/blood.2024025038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
ABSTRACT Epidemiological studies report opposing influences of infection on childhood B-cell acute lymphoblastic leukemia (B-ALL). Although infections in the first year of life appear to exert the largest impact on leukemia risk, the effect of early pathogen exposure on the fetal preleukemia cells (PLC) that lead to B-ALL has yet to be reported. Using cytomegalovirus (CMV) infection as a model early-life infection, we show that virus exposure within 1 week of birth induces profound depletion of transplanted E2A-PBX1 and hyperdiploid B-ALL cells in wild-type recipients and in situ-generated PLC in Eμ-ret mice. The age-dependent depletion of PLC results from an elevated STAT4-mediated cytokine response in neonates, with high levels of interleukin (IL)-12p40-driven interferon (IFN)-γ production inducing PLC death. Similar PLC depletion can be achieved in adult mice by impairing viral clearance. These findings provide mechanistic support for potential inhibitory effects of early-life infection on B-ALL progression and could inform novel therapeutic or preventive strategies.
Collapse
Affiliation(s)
- Ali Farrokhi
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Tanmaya Atre
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Samuel Salitra
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Maryam Aletaha
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Ana Citlali Márquez
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Matthew Gynn
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Mario Fidanza
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Sumin Jo
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Nina Rolf
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Karen Simmons
- Division of Infectious Diseases, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Jesus Duque-Afonso
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA
| | - Michael L. Cleary
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA
| | - Alix E. Seif
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Tobias Kollmann
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Soren Gantt
- Department of Microbiology, Infection, and Immunology, Université de Montreal, Montreal, QC, Canada
| | - Gregor S. D. Reid
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Oncology, Hematology and Bone Marrow Transplant, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Cobaleda C, Sánchez-García I. Childhood leukemia prevention within reach. Blood 2024; 144:799-800. [PMID: 39172445 DOI: 10.1182/blood.2024025622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
|
11
|
Xu Y, Gao H, Li H. The gut microbiome: an important factor influencing therapy for pediatric acute lymphoblastic leukemia. Ann Hematol 2024; 103:2621-2635. [PMID: 37775598 DOI: 10.1007/s00277-023-05480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most prevalent form of pediatric leukemia. The gut microbiome (GM) is crucial for proper nutrition, immunity, and biological conflict. Since the relationship between ALL and GM is bidirectional, ALL occurrence and treatment are closely related to GM destruction and the development of impaired immunity. Studies have discovered significant GM alterations in patients with ALL, including decreased diversity, that are likely directly caused by the development of ALL. Chemotherapy, antibiotic therapy, and hematopoietic stem cell transplantation (HSCT) are the mainstays of treatment for pediatric ALL. These approaches affect the composition, diversity, and abundance of intestinal microorganisms, which in turn affects therapeutic efficiency and can cause a variety of complications. Modulating the GM can aid the recovery of patients with ALL. This article discusses the various treatment modalities for pediatric ALL and their corresponding effects on the GM, as well as the changes in the GM that occur in children with ALL from diagnosis to treatment. Gaining a greater understanding of the link between ALL and the GM is expected to help improve treatment for pediatric ALL in the future.
Collapse
Affiliation(s)
- Yafang Xu
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Hui Gao
- Department of Hematology and Oncology, Dalian Medical Center for Women and Children, Dalian, China
| | - Huajun Li
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
12
|
D'Afonseca V, Muñoz EV, Leal AL, Soto PMAS, Parra-Cid C. Implications of the microbiome and metabolic intermediaries produced by bacteria in breast cancer. Genet Mol Biol 2024; 47Suppl 1:e20230316. [PMID: 39037373 PMCID: PMC11262001 DOI: 10.1590/1678-4685-gmb-2023-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/10/2024] [Indexed: 07/23/2024] Open
Abstract
The breast microbiome presents a diverse microbial community that could affects health and disease states, in the context of breast cancer. Sequencing technologies have allowed describing the diversity and abundance of microbial communities among individuals. The complex tumoral microenvironment that includes the microbial composition could influence tumor growth. The imbalance of diversity and abundance inside the microbial community, known as dysbiosis plays a crucial role in this context. One the most prevalent bacterial genera described in breast invasive carcinoma are Bacillus, Pseudomonas, Brevibacillus, Mycobacterium, Thermoviga, Acinetobacter, Corynebacterium, Paenibacillus, Ensifer, and Bacteroides. Paenibacills genus shows a relation with patient survival. When the Paenibacills genus increases its abundance in patients with breast cancer, the survival probability decreases. Within this dysbiotic environment, various bacterial metabolites could play a pivotal role in the progression and modulation of breast cancer. Key bacterial metabolites, such as cadaverine, lipopolysaccharides (LPS), and trimethylamine N-oxide (TMAO), have been found to exhibit potential interactions within breast tissue microenvironments. Understanding the intricate relationships between dysbiosis and these metabolites in breast cancer may open new avenues for diagnostic biomarkers and therapeutic targets. Further research is essential to unravel the specific roles and mechanisms of these microbial metabolites in breast cancer progression.
Collapse
Affiliation(s)
- Vívian D'Afonseca
- Universidad Católica del Maule, Facultad de Medicina, Departamento de Ciencias Preclinicas, Laboratorio de Microbiología y Parasitología, Talca, Chile
| | - Elizabeth Valdés Muñoz
- Universidad Católica del Maule, Centro de Biotecnología de los Recursos Naturales (CENBIO), Programa de Doctorado en Biotecnología Traslacional, Talca, Chile
| | - Alan López Leal
- Universidad Católica del Maule, Centro de Biotecnología de los Recursos Naturales (CENBIO), Talca, Chile
| | | | - Cristóbal Parra-Cid
- Universitat de Barcelona, Facultad de Farmacia y Ciencias de la Alimentación, Programa de Máster en Biotecnología Molecular, Barcelona, España
| |
Collapse
|
13
|
Wells C, Robertson T, Sheth P, Abraham S. How aging influences the gut-bone marrow axis and alters hematopoietic stem cell regulation. Heliyon 2024; 10:e32831. [PMID: 38984298 PMCID: PMC11231543 DOI: 10.1016/j.heliyon.2024.e32831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
The gut microbiome has come to prominence across research disciplines, due to its influence on major biological systems within humans. Recently, a relationship between the gut microbiome and hematopoietic system has been identified and coined the gut-bone marrow axis. It is well established that the hematopoietic system and gut microbiome separately alter with age; however, the relationship between these changes and how these systems influence each other demands investigation. Since the hematopoietic system produces immune cells that help govern commensal bacteria, it is important to identify how the microbiome interacts with hematopoietic stem cells (HSCs). The gut microbiota has been shown to influence the development and outcomes of hematologic disorders, suggesting dysbiosis may influence the maintenance of HSCs with age. Short chain fatty acids (SCFAs), lactate, iron availability, tryptophan metabolites, bacterial extracellular vesicles, microbe associated molecular patterns (MAMPs), and toll-like receptor (TLR) signalling have been proposed as key mediators of communication across the gut-bone marrow axis and will be reviewed in this article within the context of aging.
Collapse
Affiliation(s)
- Christopher Wells
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tristan Robertson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Prameet Sheth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Division of Microbiology, Queen's University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Kingston, Ontario, Canada
| | - Sheela Abraham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
14
|
Garcia C, Miller-Awe MD, Witkowski MT. Concepts in B cell acute lymphoblastic leukemia pathogenesis. J Leukoc Biol 2024; 116:18-32. [PMID: 38243586 PMCID: PMC11869204 DOI: 10.1093/jleuko/qiae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
B cell acute lymphoblastic leukemia (B-ALL) arises from genetic alterations impacting B cell progenitors, ultimately leading to clinically overt disease. Extensive collaborative efforts in basic and clinical research have significantly improved patient prognoses. Nevertheless, a subset of patients demonstrate resistance to conventional chemotherapeutic approaches and emerging immunotherapeutic interventions. This review highlights the mechanistic underpinnings governing B-ALL transformation. Beginning with exploring normative B cell lymphopoiesis, we delineate the influence of recurrent germline and somatic genetic aberrations on the perturbation of B cell progenitor differentiation and protumorigenic signaling, thereby facilitating the neoplastic transformation underlying B-ALL progression. Additionally, we highlight recent advances in the multifaceted landscape of B-ALL, encompassing metabolic reprogramming, microbiome influences, inflammation, and the discernible impact of socioeconomic and racial disparities on B-ALL transformation and patient survival.
Collapse
Affiliation(s)
- Clarissa Garcia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| | - Megan D. Miller-Awe
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| | - Matthew T. Witkowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| |
Collapse
|
15
|
Benítez L, Castro-Barquero S, Crispi F, Youssef L, Crovetto F, Fischer U, Kameri E, Bueno C, Camos M, Menéndez P, Heinäniemi M, Borkhardt A, Gratacós E. Maternal Lifestyle and Prenatal Risk Factors for Childhood Leukemia: A Review of the Existing Evidence. Fetal Diagn Ther 2024; 51:395-410. [PMID: 38710162 DOI: 10.1159/000539141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Acute leukemia is the most common pediatric cancer, with an incidence peak at 2-5 years of age. Despite the medical advances improving survival rates, children suffer from significant side effects of treatments as well as its high social and economic impact. The frequent prenatal origin of this developmental disease follows the two-hit carcinogenesis model established in the 70s: a first hit in prenatal life with the creation of genetic fusion lesions or aneuploidy in hematopoietic progenitor/stem cells, and usually a second hit in the pediatric age that converts the preleukemic clone into clinical leukemia. Previous research has mostly focused on postnatal environmental factors triggering the second hit. SUMMARY There is scarce evidence on prenatal risk factors associated with the first hit. Mainly retrospective case-control studies suggested several environmental and lifestyle determinants as risk factors. If these associations could be confirmed, interventions focused on modifying prenatal factors might influence the subsequent risk of leukemia during childhood and reveal unexplored research avenues for the future. In this review, we aim to comprehensively summarize the currently available evidence on prenatal risk factors for the development of childhood leukemia. According to the findings of this review, parental age, ethnicity, maternal diet, folate intake, alcohol consumption, X-ray exposure, pesticides, perinatal infections, and fetal growth may have a significant role in the appearance of preleukemic lesions during fetal life. Other factors such as socioeconomic status, consumption of caffeinated beverages, and smoking consumption have been suggested with inconclusive evidence. Additionally, investigating the association between prenatal factors and genetic lesions associated with childhood leukemia at birth is crucial. Prospective studies evaluating the link between lifestyle factors and genetic alterations could provide indirect evidence supporting new research avenues for leukemia prevention. Maternal diet and lifestyle factors are modifiable determinants associated with adverse perinatal outcomes that could be also related to preleukemic lesions. KEY MESSAGES Parental age, ethnicity, maternal diet, folate intake, alcohol consumption, X-ray exposure, pesticides, perinatal infections, and fetal growth may have a significant role in the appearance of preleukemic lesions during fetal life. Dedicating efforts to studying maternal lifestyle during pregnancy and its association with genetic lesions leading to childhood leukemia could lead to novel prevention strategies.
Collapse
Affiliation(s)
- Leticia Benítez
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain,
| | - Sara Castro-Barquero
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Fàtima Crispi
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Lina Youssef
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Francesca Crovetto
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Ersen Kameri
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Clara Bueno
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- RICORS-TERAV Network, ISCIII, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, Barcelona, Spain
| | - Mireia Camos
- Department of Pediatric Oncology and Hematology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Pablo Menéndez
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- RICORS-TERAV Network, ISCIII, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, Barcelona, Spain
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Finland, Kuopio, Finland
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Eduard Gratacós
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Yu X, Li W, Li Z, Wu Q, Sun S. Influence of Microbiota on Tumor Immunotherapy. Int J Biol Sci 2024; 20:2264-2294. [PMID: 38617537 PMCID: PMC11008264 DOI: 10.7150/ijbs.91771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
The role of the microbiome in immunotherapy has recently garnered substantial attention, with molecular studies and clinical trials providing emerging evidence on the pivotal influence of the microbiota in enhancing therapeutic outcomes via immune response modulation. However, the impact of microbial communities can considerably vary across individuals and different immunotherapeutic approaches, posing prominent challenges in harnessing their potential. In this comprehensive review, we outline the current research applications in tumor immunotherapy and delve into the possible mechanisms through which immune function is influenced by microbial communities in various body sites, encompassing those in the gut, extraintestinal barrier, and intratumoral environment. Furthermore, we discuss the effects of diverse microbiome-based strategies, including probiotics, prebiotics, fecal microbiota transplantation, and the targeted modulation of specific microbial taxa, and antibiotic treatments on cancer immunotherapy. All these strategies potentially have a profound impact on immunotherapy and pave the way for personalized therapeutic approaches and predictive biomarkers.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Wenge Li
- Department of Oncology, Shanghai Artemed Hospital, Shanghai, P. R. China
| | - Zhi Li
- Department of Orthopedics, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| |
Collapse
|
17
|
Søegaard SH, Andersen MM, Rostgaard K, Davidsson OB, Olsen SF, Schmiegelow K, Hjalgrim H. Exclusive Breastfeeding Duration and Risk of Childhood Cancers. JAMA Netw Open 2024; 7:e243115. [PMID: 38530315 PMCID: PMC10966412 DOI: 10.1001/jamanetworkopen.2024.3115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/25/2024] [Indexed: 03/27/2024] Open
Abstract
Importance Breastfeeding has been suggested to protect against childhood cancers, particularly acute lymphoblastic leukemia (ALL). However, the evidence stems from case-control studies alone. Objective To investigate whether longer duration of exclusive breastfeeding is associated with decreased risk of childhood ALL and other childhood cancers. Design, Setting, and Participants This population-based cohort study used administrative data on exclusive breastfeeding duration from the Danish National Child Health Register. All children born in Denmark between January 2005 and December 2018 with available information on duration of exclusive breastfeeding were included. Children were followed up from age 1 year until childhood cancer diagnosis, loss to follow-up or emigration, death, age 15 years, or December 31, 2020. Data were analyzed from March to October 2023. Exposure Duration of exclusive breastfeeding in infancy. Main Outcomes and Measures Associations between duration of exclusive breastfeeding and risk of childhood cancer overall and by subtypes were estimated as adjusted hazard ratios (AHRs) with 95% CIs using stratified Cox proportional hazards regression models. Results A total of 309 473 children were included (51.3% boys). During 1 679 635 person-years of follow-up, 332 children (0.1%) were diagnosed with cancer at ages 1 to 14 years (mean [SD] age at diagnosis, 4.24 [2.67] years; 194 boys [58.4%]). Of these, 124 (37.3%) were diagnosed with hematologic cancers (81 [65.3%] were ALL, 74 [91.4%] of which were B-cell precursor [BCP] ALL), 44 (13.3%) with central nervous system tumors, 80 (24.1%) with solid tumors, and 84 (25.3%) with other and unspecified malignant neoplasms. Compared with exclusive breastfeeding duration of less than 3 months, exclusive breastfeeding for 3 months or longer was associated with a decreased risk of hematologic cancers (AHR, 0.66; 95% CI, 0.46-0.95), which was largely attributable to decreased risk of BCP-ALL (AHR, 0.62; 95% CI, 0.39-0.99), but not with risk of central nervous system tumors (AHR, 0.96; 95% CI, 0.51-1.88) or solid tumors (AHR, 0.87; 95% CI, 0.55-1.41). Conclusions and Relevance In this cohort study, longer duration of exclusive breastfeeding was associated with reduced risk of childhood BCP-ALL, corroborating results of previous case-control investigations in this field. To inform future preemptive interventions, continued research should focus on the potential biologic mechanisms underlying the observed association.
Collapse
Affiliation(s)
- Signe Holst Søegaard
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Mie Mølgaard Andersen
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Klaus Rostgaard
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Olafur Birgir Davidsson
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Sjurdur Frodi Olsen
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- University of the Faroe Islands, Torshavn, Faroe Islands
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Hjalgrim
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
18
|
Filipek-Gorzała J, Kwiecińska P, Szade A, Szade K. The dark side of stemness - the role of hematopoietic stem cells in development of blood malignancies. Front Oncol 2024; 14:1308709. [PMID: 38440231 PMCID: PMC10910019 DOI: 10.3389/fonc.2024.1308709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024] Open
Abstract
Hematopoietic stem cells (HSCs) produce all blood cells throughout the life of the organism. However, the high self-renewal and longevity of HSCs predispose them to accumulate mutations. The acquired mutations drive preleukemic clonal hematopoiesis, which is frequent among elderly people. The preleukemic state, although often asymptomatic, increases the risk of blood cancers. Nevertheless, the direct role of preleukemic HSCs is well-evidenced in adult myeloid leukemia (AML), while their contribution to other hematopoietic malignancies remains less understood. Here, we review the evidence supporting the role of preleukemic HSCs in different types of blood cancers, as well as present the alternative models of malignant evolution. Finally, we discuss the clinical importance of preleukemic HSCs in choosing the therapeutic strategies and provide the perspective on further studies on biology of preleukemic HSCs.
Collapse
Affiliation(s)
- Jadwiga Filipek-Gorzała
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Patrycja Kwiecińska
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
19
|
Huang X, Cai H, Zhao Y, Kang Y. The Gut Microbiome and Acute Leukemia: Implications for Early Diagnostic and New Therapies. Mol Nutr Food Res 2024; 68:e2300551. [PMID: 38059888 DOI: 10.1002/mnfr.202300551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/04/2023] [Indexed: 12/08/2023]
Abstract
Acute leukemia (AL), one of the hematological malignancies, shows high heterogeneity. Tremendous progresses are achieved in treating AL with novel targeted drugs and allogeneic hematopoietic stem cell transplantation, there are numerous issues including pathogenesis, early diagnosis, and therapeutic efficacy of AL to be solved. In recent years, an increasing number of studies regarding microbiome have shed more lights on the role of gut microbiota in promoting AL progression. Mechanisms related to the role of gut microbiota in enhancing AL genesis are summarized in the present work, especially on critical pathways like leaky gut, bacterial dysbiosis, microorganism-related molecular patterns, and bacterial metabolites, resulting in AL development. Additionally, the potential of gut microbiota as the biomarker for early AL diagnosis is discussed. It also outlooks therapies targeting gut microbiota for preventing AL development.
Collapse
Affiliation(s)
- Xinwei Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Haibo Cai
- Department of Oncology, Yunfeng Hospital, Xuanwei City, Yunnan Province, 655400, China
| | - Yanqin Zhao
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| |
Collapse
|
20
|
Monovich AC, Gurumurthy A, Ryan RJH. The Diverse Roles of ETV6 Alterations in B-Lymphoblastic Leukemia and Other Hematopoietic Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:291-320. [PMID: 39017849 DOI: 10.1007/978-3-031-62731-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Genetic alterations of the repressive ETS family transcription factor gene ETV6 are recurrent in several categories of hematopoietic malignancy, including subsets of B-cell and T-cell acute lymphoblastic leukemias (B-ALL and T-ALL), myeloid neoplasms, and mature B-cell lymphomas. ETV6 is essential for adult hematopoietic stem cells (HSCs), contributes to specific functions of some mature immune cells, and plays a key role in thrombopoiesis as demonstrated by familial ETV6 mutations associated with thrombocytopenia and predisposition to hematopoietic cancers, particularly B-ALL. ETV6 appears to have a tumor suppressor role in several hematopoietic lineages, as demonstrated by recurrent somatic loss-of-function (LoF) and putative dominant-negative alterations in leukemias and lymphomas. ETV6 rearrangements contribute to recurrent fusion oncogenes such as the B-ALL-associated transcription factor (TF) fusions ETV6::RUNX1 and PAX5::ETV6, rare drivers such as ETV6::NCOA6, and a spectrum of tyrosine kinase gene fusions encoding hyperactive signaling proteins that self-associate via the ETV6 N-terminal pointed domain. Another subset of recurrent rearrangements involving the ETV6 gene locus appear to function primarily to drive overexpression of the partner gene. This review surveys what is known about the biochemical and genome regulatory properties of ETV6 as well as our current understanding of how alterations in these functions contribute to hematopoietic and nonhematopoietic cancers.
Collapse
Affiliation(s)
- Alexander C Monovich
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Aishwarya Gurumurthy
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Russell J H Ryan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Kandalai S, Li H, Zhang N, Peng H, Zheng Q. The human microbiome and cancer: a diagnostic and therapeutic perspective. Cancer Biol Ther 2023; 24:2240084. [PMID: 37498047 PMCID: PMC10376920 DOI: 10.1080/15384047.2023.2240084] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Recent evidence has shown that the human microbiome is associated with various diseases, including cancer. The salivary microbiome, fecal microbiome, and circulating microbial DNA in blood plasma have all been used experimentally as diagnostic biomarkers for many types of cancer. The microbiomes present within local tissue, other regions, and tumors themselves have been shown to promote and restrict the development and progression of cancer, most often by affecting cancer cells or the host immune system. These microbes have also been shown to impact the efficacy of various cancer therapies, including radiation, chemotherapy, and immunotherapy. Here, we review the research advances focused on how microbes impact these different facets and why they are important to the clinical care of cancer. It is only by better understanding the roles these microbes play in the diagnosis, development, progression, and treatment of cancer, that we will be able to catch and treat cancer early.
Collapse
Affiliation(s)
- Shruthi Kandalai
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Huapeng Li
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Haidong Peng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
22
|
Rashidi A, Ebadi M, Rehman TU, Elhusseini H, Kazadi D, Halaweish H, Khan MH, Hoeschen A, Cao Q, Luo X, Kabage AJ, Lopez S, Holtan SG, Weisdorf DJ, Khoruts A, Staley C. Randomized Double-Blind Phase II Trial of Fecal Microbiota Transplantation Versus Placebo in Allogeneic Hematopoietic Cell Transplantation and AML. J Clin Oncol 2023; 41:5306-5319. [PMID: 37235836 PMCID: PMC10691796 DOI: 10.1200/jco.22.02366] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/03/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
PURPOSE Gut microbiota injury in allogeneic hematopoietic cell transplantation (HCT) recipients and patients with AML has been associated with adverse clinical outcomes. Previous studies in these patients have shown improvements in various microbiome indices after fecal microbiota transplantation (FMT). However, whether microbiome improvements translate into improved clinical outcomes remains unclear. We examined this question in a randomized, double-blind, placebo-controlled phase II trial. METHODS Two independent cohorts of allogeneic HCT recipients and patients with AML receiving induction chemotherapy were randomly assigned in a 2:1 ratio to receive standardized oral encapsulated FMT versus placebo upon neutrophil recovery. After each course of antibacterial antibiotics, patients received a study treatment. Up to three treatments were administered within 3 months. The primary end point was 4-month all-cause infection rate. Patients were followed for 9 months. RESULTS In the HCT cohort (74 patients), 4-month infection density was 0.74 and 0.91 events per 100 patient-days in FMT and placebo arms, respectively (infection rate ratio, 0.83; 95% CI, 0.48 to 1.42; P = .49). In the AML cohort (26 patients), 4-month infection density was 0.93 in the FMT arm and 1.25 in the placebo arm, with an infection rate ratio of 0.74 (95% CI, 0.32 to 1.71; P = .48). Unique donor bacterial sequences comprised 25%-30% of the fecal microbiota after FMT. FMT improved postantibiotic recovery of microbiota diversity, restored several depleted obligate anaerobic commensals, and reduced the abundance of expanded genera Enterococcus, Streptococcus, Veillonella, and Dialister. CONCLUSION In allogeneic HCT recipients and patients with AML, third-party FMT was safe and ameliorated intestinal dysbiosis, but did not decrease infections. Novel findings from this trial will inform future development of FMT trials.
Collapse
Affiliation(s)
- Armin Rashidi
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
- Clinical Research Division, Fred Hutchinson Cancer Center; and Division of Oncology, University of Washington, Seattle, WA
| | - Maryam Ebadi
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - Tauseef Ur Rehman
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Heba Elhusseini
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - David Kazadi
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | | | | | - Andrea Hoeschen
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Qing Cao
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Xianghua Luo
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | | | - Sharon Lopez
- Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Shernan G. Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Daniel J. Weisdorf
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Alexander Khoruts
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN
- Biotechnology Institute, University of Minnesota, St Paul, MN
| | | |
Collapse
|
23
|
Fitch BA, Situ J, Wiemels JL, Kogan SC, Zhou M. Impact of pinworm infection on the development of murine B-cell leukemia/lymphoma in the presence and absence of ETV6::RUNX1. Haematologica 2023; 108:3480-3484. [PMID: 37345483 PMCID: PMC10690896 DOI: 10.3324/haematol.2022.282591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Affiliation(s)
- Briana A Fitch
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jamilla Situ
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Scott C Kogan
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Mi Zhou
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA.
| |
Collapse
|
24
|
Atre T, Farrokhi A, Jo S, Salitra S, Duque-Afonso J, Cleary ML, Rolf N, Reid GSD. Age and ligand specificity influence the outcome of pathogen engagement on preleukemic and leukemic B-cell precursor populations. Blood Adv 2023; 7:7087-7099. [PMID: 37824841 PMCID: PMC10694525 DOI: 10.1182/bloodadvances.2023010782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Common infections have long been proposed to play a role in the development of pediatric B-cell acute lymphoblastic leukemia (B-ALL). However, epidemiologic studies report contradictory effects of infection exposure on subsequent B-ALL risk, and no specific pathogen has been definitively linked to the disease. A unifying mechanism to explain the divergent outcomes could inform disease prevention strategies. We previously reported that the pattern recognition receptor (PRR) ligand Poly(I:C) exerted effects on B-ALL cells that were distinct from those observed with other nucleic acid-based PRR ligands. Here, using multiple double-stranded RNA (dsRNA) moieties, we show that the overall outcome of exposure to Poly(I:C) reflects the balance of opposing responses induced by its ligation to endosomal and cytoplasmic receptors. This PRR response biology is shared between mouse and human B-ALL and can increase leukemia-initiating cell burden in vivo during the preleukemia phase of B-ALL, primarily through tumor necrosis factor α signaling. The age of the responding immune system further influences the impact of dsRNA exposure on B-ALL cells in both mouse and human settings. Overall, our study demonstrates that potentially proleukemic and antileukemic effects can each be generated by the stimulation of pathogen recognition pathways and indicates a mechanistic explanation for the contrasting epidemiologic associations reported for infection exposure and B-ALL.
Collapse
Affiliation(s)
- Tanmaya Atre
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Ali Farrokhi
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Sumin Jo
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Samuel Salitra
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jesus Duque-Afonso
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA
| | - Michael L. Cleary
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA
| | - Nina Rolf
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Gregor S. D. Reid
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
25
|
Libura M, Karabin K, Tyrna P, Czyż A, Makuch-Łasica H, Jaźwiec B, Paluszewska M, Piątkowska-Jakubas B, Zawada M, Gniot M, Trubicka J, Szymańska M, Borg K, Więsik M, Czekalska S, Florek I, Król M, Paszkowska-Kowalewska M, Gil L, Kapelko-Słowik K, Patkowska E, Tomaszewska A, Mądry K, Machowicz R, Czerw T, Piekarska A, Dutka M, Kopińska A, Helbig G, Gromek T, Lewandowski K, Zacharczuk M, Pastwińska A, Wróbel T, Haus O, Basak G, Hołowiecki J, Juszczyński P, Lech-Marańda E, Giebel S, Jędrzejczak WW. Prognostic Impact of Copy Number Alterations' Profile and AID/RAG Signatures in Acute Lymphoblastic Leukemia (ALL) with BCR::ABL and without Recurrent Genetic Aberrations (NEG ALL) Treated with Intensive Chemotherapy. Cancers (Basel) 2023; 15:5431. [PMID: 38001691 PMCID: PMC10670434 DOI: 10.3390/cancers15225431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Adult acute lymphoblastic leukemia (ALL) is associated with poor outcomes. ALL is initiated by primary aberrations, but secondary genetic lesions are necessary for overt ALL. In this study, we reassessed the value of primary and secondary aberrations in intensively treated ALL patients in relation to mutator enzyme expression. RT-PCR, genomic PCR, and sequencing were applied to evaluate primary aberrations, while qPCR was used to measure the expression of RAG and AID mutator enzymes in 166 adult ALL patients. Secondary copy number alterations (CNA) were studied in 94 cases by MLPA assay. Primary aberrations alone stratified 30% of the patients (27% high-risk, 3% low-risk cases). The remaining 70% intermediate-risk patients included BCR::ABL1pos subgroup and ALL lacking identified genetic markers (NEG ALL). We identified three CNA profiles: high-risk bad-CNA (CNAhigh/IKZF1pos), low-risk good-CNA (all other CNAs), and intermediate-risk CNAneg. Furthermore, based on RAG/AID expression, we report possible mechanisms underlying the CNA profiles associated with poor outcome: AID stratified outcome in CNAneg, which accompanied most likely a particular profile of single nucleotide variations, while RAG in CNApos increased the odds for CNAhigh/IKZF1pos development. Finally, we integrated primary genetic aberrations with CNA to propose a revised risk stratification code, which allowed us to stratify 75% of BCR::ABL1pos and NEG patients.
Collapse
Affiliation(s)
- Marta Libura
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Karolina Karabin
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Paweł Tyrna
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Anna Czyż
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Medical University of Wrocław, 50-137 Wrocław, Poland; (A.C.); (B.J.); (K.K.-S.); (M.Z.); (T.W.)
| | - Hanna Makuch-Łasica
- Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (H.M.-Ł.); (K.B.); (E.P.); (P.J.); (E.L.-M.)
| | - Bożena Jaźwiec
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Medical University of Wrocław, 50-137 Wrocław, Poland; (A.C.); (B.J.); (K.K.-S.); (M.Z.); (T.W.)
| | - Monika Paluszewska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Beata Piątkowska-Jakubas
- Department of Hematology, Jagiellonian University Medical College, 31-008 Cracow, Poland; (B.P.-J.); (M.Z.); (S.C.); (I.F.)
| | - Magdalena Zawada
- Department of Hematology, Jagiellonian University Medical College, 31-008 Cracow, Poland; (B.P.-J.); (M.Z.); (S.C.); (I.F.)
| | - Michał Gniot
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, 61-701 Poznań, Poland; (M.G.); (L.G.); (K.L.)
| | - Joanna Trubicka
- Children’s Memorial Health Institute, 04-736 Warsaw, Poland;
| | - Magdalena Szymańska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Katarzyna Borg
- Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (H.M.-Ł.); (K.B.); (E.P.); (P.J.); (E.L.-M.)
| | - Marta Więsik
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Sylwia Czekalska
- Department of Hematology, Jagiellonian University Medical College, 31-008 Cracow, Poland; (B.P.-J.); (M.Z.); (S.C.); (I.F.)
| | - Izabela Florek
- Department of Hematology, Jagiellonian University Medical College, 31-008 Cracow, Poland; (B.P.-J.); (M.Z.); (S.C.); (I.F.)
| | - Maria Król
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Małgorzata Paszkowska-Kowalewska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Lidia Gil
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, 61-701 Poznań, Poland; (M.G.); (L.G.); (K.L.)
| | - Katarzyna Kapelko-Słowik
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Medical University of Wrocław, 50-137 Wrocław, Poland; (A.C.); (B.J.); (K.K.-S.); (M.Z.); (T.W.)
| | - Elżbieta Patkowska
- Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (H.M.-Ł.); (K.B.); (E.P.); (P.J.); (E.L.-M.)
| | - Agnieszka Tomaszewska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Krzysztof Mądry
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Rafał Machowicz
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Tomasz Czerw
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (T.C.); (J.H.); (S.G.)
| | - Agnieszka Piekarska
- Department of Hematology and Transplantology, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (A.P.); (M.D.)
| | - Magdalena Dutka
- Department of Hematology and Transplantology, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (A.P.); (M.D.)
| | - Anna Kopińska
- Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, 40-032 Katowice, Poland; (A.K.); (G.H.)
| | - Grzegorz Helbig
- Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, 40-032 Katowice, Poland; (A.K.); (G.H.)
| | - Tomasz Gromek
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, 61-701 Poznań, Poland; (M.G.); (L.G.); (K.L.)
| | - Marta Zacharczuk
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Medical University of Wrocław, 50-137 Wrocław, Poland; (A.C.); (B.J.); (K.K.-S.); (M.Z.); (T.W.)
| | - Anna Pastwińska
- Department of Tumor Biology and Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland;
| | - Tomasz Wróbel
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Medical University of Wrocław, 50-137 Wrocław, Poland; (A.C.); (B.J.); (K.K.-S.); (M.Z.); (T.W.)
| | - Olga Haus
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Jerzy Hołowiecki
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (T.C.); (J.H.); (S.G.)
| | - Przemysław Juszczyński
- Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (H.M.-Ł.); (K.B.); (E.P.); (P.J.); (E.L.-M.)
| | - Ewa Lech-Marańda
- Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (H.M.-Ł.); (K.B.); (E.P.); (P.J.); (E.L.-M.)
| | - Sebastian Giebel
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (T.C.); (J.H.); (S.G.)
| | - Wiesław Wiktor Jędrzejczak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| |
Collapse
|
26
|
Li J, Malouf C, Miles LA, Willis MB, Pietras EM, King KY. Chronic inflammation can transform the fate of normal and mutant hematopoietic stem cells. Exp Hematol 2023; 127:8-13. [PMID: 37647982 DOI: 10.1016/j.exphem.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Chronic inflammation, although subtle, puts the body in a constant state of alertness and is associated with many diseases, including cancer and cardiovascular diseases. It leads hematopoietic cells to produce and release proinflammatory cytokines, which trigger specific signaling pathways in hematopoietic stem cells (HSCs) that cause changes in proliferation, differentiation, and migration. This response is essential when HSCs are needed to produce specific blood cells to eliminate an intruder, such as a pathogenic virus, but mutant HSCs can use these proinflammatory signals to their advantage and accelerate the development of hematologic disease or malignancy. Understanding this complex process is vital for monitoring and controlling disease progression in patients. In the 2023 International Society for Experimental Hematology winter webinar, Dr. Eric Pietras (University of Colorado Anschutz Medical Campus, United States) and Dr. Katherine Y. King (Baylor College of Medicine, United States) gave a presentation on this topic, which is summarized in this review article.
Collapse
Affiliation(s)
- Jingjing Li
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia.
| | | | - Linde A Miles
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH; Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Mara B Willis
- Center for Cell and Gene Therapy and Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX
| | - Eric M Pietras
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Katherine Y King
- Center for Cell and Gene Therapy and Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX
| |
Collapse
|
27
|
Casado-García A, Isidro-Hernández M, Alemán-Arteaga S, Ruiz-Corzo B, Riesco S, Prieto-Matos P, Sánchez L, Sánchez-García I, Vicente-Dueñas C. Lessons from mouse models in the impact of risk factors on the genesis of childhood B-cell leukemia. Front Immunol 2023; 14:1285743. [PMID: 37901253 PMCID: PMC10602728 DOI: 10.3389/fimmu.2023.1285743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) stands as the primary contributor to childhood cancer-related mortality on a global scale. The development of the most conventional forms of this disease has been proposed to be conducted by two different steps influenced by different types of risk factors. The first step is led by a genetic insult that is presumably acquired before birth that transforms a healthy cell into a preleukemic one, which is maintained untransformed until the second step takes place. This necessary next step to leukemia development will be triggered by different risk factors to which children are exposed after birth. Murine models that recap the stepwise progression of B-ALL have been instrumental in identifying environmental and genetic factors that contribute to disease risk. Recent evidence from these models has demonstrated that specific environmental risk factors, such as common infections or gut microbiome dysbiosis, induce immune stress, driving the transformation of preleukemic cells, and harboring genetic alterations, into fully transformed leukemic cells. Such models serve as valuable tools for investigating the mechanisms underlying preleukemic events and can aid in the development of preventive approaches for leukemia in child. Here, we discuss the existing knowledge, learned from mouse models, of the impact of genetic and environmental risk factors on childhood B-ALL evolution and how B-ALL prevention could be reached by interfering with preleukemic cells.
Collapse
Affiliation(s)
- Ana Casado-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Marta Isidro-Hernández
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Silvia Alemán-Arteaga
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Belén Ruiz-Corzo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Susana Riesco
- Department of Pediatrics, Hospital Universitario de Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Pablo Prieto-Matos
- Department of Pediatrics, Hospital Universitario de Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Lucía Sánchez
- School of Law, University of Salamanca, Salamanca, Spain
| | - Isidro Sánchez-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Carolina Vicente-Dueñas
- Department of Pediatrics, Hospital Universitario de Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
28
|
Furci F, Cicero N, Allegra A, Gangemi S. Microbiota, Diet and Acute Leukaemia: Tips and Tricks on Their Possible Connections. Nutrients 2023; 15:4253. [PMID: 37836537 PMCID: PMC10574113 DOI: 10.3390/nu15194253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Acute leukaemia is probably one of the most recurrent cancers in children and younger adults, with an incidence of acute lymphoblastic leukaemia in 80% of cases and an incidence of acute myeloid leukaemia in 15% of cases. Yet, while incidence is common in children and adolescents, acute leukaemia is a rare disease whose aetiology still requires further analysis. Many studies have investigated the aetiology of acute leukaemia, reporting that the formation of gut microbiota may be modified by the start and development of many diseases. Considering that in patients affected by acute lymphoblastic leukaemia, there is an inherent disequilibrium in the gut microbiota before treatment compared with healthy patients, increasing evidence shows how dysbiosis of the gut microbiota provokes an inflammatory immune response, contributing to the development of cancer. Our analysis suggeststhe key role of gut microbiota in the modulation of the efficacy of leukaemia treatment as well as in the progress of many cancers, such as acute leukaemia. Therefore, in this paper, we present an examination of information found in literature regarding the role of dietary factors and gut microbiota alterations in the development of leukaemia and suggest possible future preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Fabiana Furci
- Provincial Healthcare Unit, Section of Allergy, 89900 Vibo Valentia, Italy;
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
29
|
Sun J, Chen F, Wu G. Potential effects of gut microbiota on host cancers: focus on immunity, DNA damage, cellular pathways, and anticancer therapy. THE ISME JOURNAL 2023; 17:1535-1551. [PMID: 37553473 PMCID: PMC10504269 DOI: 10.1038/s41396-023-01483-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023]
Abstract
The symbiotic bacteria that live in the human gut and the metabolites they produce have long influenced local and systemic physiological and pathological processes of the host. The gut microbiota are increasingly being recognized for its impact on a range of human diseases, including cancer, it may play a key role in the occurrence, progression, treatment, and prognosis of many types of cancer. Understanding the functional role of the gut microbiota in cancer is crucial for the development of the era of personalized medicine. Here, we review recent advances in research and summarize the important associations and clear experimental evidence for the role of the gut microbiota in a variety of human cancers, focus on the application and possible challenges associated with the gut microbiota in antitumor therapy. In conclusion, our research demonstrated the multifaceted mechanisms of gut microbiota affecting human cancer and provides directions and ideas for future clinical research.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Feng Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
30
|
Fortman DD, Hurd D, Davar D. The Microbiome in Advanced Melanoma: Where Are We Now? Curr Oncol Rep 2023; 25:997-1016. [PMID: 37269504 PMCID: PMC11090495 DOI: 10.1007/s11912-023-01431-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent data linking gut microbiota composition to ICI outcomes and gut microbiota-specific interventional clinical trials in melanoma. RECENT FINDINGS Preclinical and clinical studies have demonstrated the effects of the gut microbiome modulation upon ICI response in advanced melanoma, with growing evidence supporting the ability of the gut microbiome to restore or improve ICI response in advanced melanoma through dietary fiber, probiotics, and FMT. Immune checkpoint inhibitors (ICI) targeting the PD-1, CTLA-4, and LAG-3 negative regulatory checkpoints have transformed the management of melanoma. ICIs are FDA-approved in advanced metastatic disease, stage III resected melanoma, and high-risk stage II melanoma and are being investigated more recently in the management of high-risk resectable melanoma in the peri-operative setting. The gut microbiome has emerged as an important tumor-extrinsic modulator of both response and immune-related adverse event (irAE) development in ICI-treated cancer in general, and melanoma in particular.
Collapse
Affiliation(s)
- Dylan D Fortman
- Division of General Internal Medicine, Department of Medicine, University of Pittsburgh Medical Center (UPMC) and University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Drew Hurd
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh, Pavilion, Suite 1.32d, 5115, Center Avenue, Pittsburgh, PA, 15213, USA
| | - Diwakar Davar
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh, Pavilion, Suite 1.32d, 5115, Center Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
31
|
Isidro-Hernández M, Casado-García A, Oak N, Alemán-Arteaga S, Ruiz-Corzo B, Martínez-Cano J, Mayado A, Sánchez EG, Blanco O, Gaspar ML, Orfao A, Alonso-López D, De Las Rivas J, Riesco S, Prieto-Matos P, González-Murillo Á, Criado FJG, Cenador MBG, Ramírez-Orellana M, de Andrés B, Vicente-Dueñas C, Cobaleda C, Nichols KE, Sánchez-García I. Immune stress suppresses innate immune signaling in preleukemic precursor B-cells to provoke leukemia in predisposed mice. Nat Commun 2023; 14:5159. [PMID: 37620322 PMCID: PMC10449887 DOI: 10.1038/s41467-023-40961-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
The initial steps of B-cell acute lymphoblastic leukemia (B-ALL) development usually pass unnoticed in children. Several preclinical studies have shown that exposure to immune stressors triggers the transformation of preleukemic B cells to full-blown B-ALL, but how this takes place is still a longstanding and unsolved challenge. Here we show that dysregulation of innate immunity plays a driving role in the clonal evolution of pre-malignant Pax5+/- B-cell precursors toward leukemia. Transcriptional profiling reveals that Myd88 is downregulated in immune-stressed pre-malignant B-cell precursors and in leukemic cells. Genetic reduction of Myd88 expression leads to a significant increase in leukemia incidence in Pax5+/-Myd88+/- mice through an inflammation-dependent mechanism. Early induction of Myd88-independent Toll-like receptor 3 signaling results in a significant delay of leukemia development in Pax5+/- mice. Altogether, these findings identify a role for innate immunity dysregulation in leukemia, with important implications for understanding and therapeutic targeting of the preleukemic state in children.
Collapse
Affiliation(s)
- Marta Isidro-Hernández
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Campus M. de Unamuno s/n, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Ana Casado-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Campus M. de Unamuno s/n, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Ninad Oak
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Silvia Alemán-Arteaga
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Campus M. de Unamuno s/n, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Belén Ruiz-Corzo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Campus M. de Unamuno s/n, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Jorge Martínez-Cano
- Immune system development and function Unit, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas -Universidad Autónoma de Madrid), Madrid, Spain
| | - Andrea Mayado
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Servicio de Citometría, Departamento de Medicina, Biomedical Research Networking Centre on Cancer CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, and Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Elena G Sánchez
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain
| | - Oscar Blanco
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Departamento de Anatomía Patológica, Universidad de Salamanca, Salamanca, Spain
| | - Ma Luisa Gaspar
- Immunobiology Department, Carlos III Health Institute, 28220, Majadahonda (Madrid), Spain
| | - Alberto Orfao
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Servicio de Citometría, Departamento de Medicina, Biomedical Research Networking Centre on Cancer CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, and Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Diego Alonso-López
- Bioinformatics Unit, Cancer Research Center (CSIC-USAL), Salamanca, Spain
| | - Javier De Las Rivas
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Bioinformatics and Functional Genomics Research Group, Cancer Research Center (CSIC-USAL), Salamanca, Spain
| | - Susana Riesco
- Department of Pediatrics, Hospital Universitario de Salamanca, Paseo de San Vicente, 58-182, Salamanca, 37007, Spain
| | - Pablo Prieto-Matos
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Pediatrics, Hospital Universitario de Salamanca, Paseo de San Vicente, 58-182, Salamanca, 37007, Spain
| | - África González-Murillo
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Javier García Criado
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Departamento de Cirugía, , Universidad de Salamanca, Salamanca, Spain
| | - María Begoña García Cenador
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Departamento de Cirugía, , Universidad de Salamanca, Salamanca, Spain
| | - Manuel Ramírez-Orellana
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain
| | - Belén de Andrés
- Immunobiology Department, Carlos III Health Institute, 28220, Majadahonda (Madrid), Spain
| | - Carolina Vicente-Dueñas
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.
- Department of Pediatrics, Hospital Universitario de Salamanca, Paseo de San Vicente, 58-182, Salamanca, 37007, Spain.
| | - César Cobaleda
- Immune system development and function Unit, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas -Universidad Autónoma de Madrid), Madrid, Spain.
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Isidro Sánchez-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Campus M. de Unamuno s/n, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
32
|
Colom Díaz PA, Mistry JJ, Trowbridge JJ. Hematopoietic stem cell aging and leukemia transformation. Blood 2023; 142:533-542. [PMID: 36800569 PMCID: PMC10447482 DOI: 10.1182/blood.2022017933] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
With aging, hematopoietic stem cells (HSCs) have an impaired ability to regenerate, differentiate, and produce an entire repertoire of mature blood and immune cells. Owing to dysfunctional hematopoiesis, the incidence of hematologic malignancies increases among elderly individuals. Here, we provide an update on HSC-intrinsic and -extrinsic factors and processes that were recently discovered to contribute to the functional decline of HSCs during aging. In addition, we discuss the targets and timing of intervention approaches to maintain HSC function during aging and the extent to which these same targets may prevent or delay transformation to hematologic malignancies.
Collapse
|
33
|
Peppas I, Ford AM, Furness CL, Greaves MF. Gut microbiome immaturity and childhood acute lymphoblastic leukaemia. Nat Rev Cancer 2023; 23:565-576. [PMID: 37280427 PMCID: PMC10243253 DOI: 10.1038/s41568-023-00584-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/08/2023]
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common cancer of childhood. Here, we map emerging evidence suggesting that children with ALL at the time of diagnosis may have a delayed maturation of the gut microbiome compared with healthy children. This finding may be associated with early-life epidemiological factors previously identified as risk indicators for childhood ALL, including caesarean section birth, diminished breast feeding and paucity of social contacts. The consistently observed deficiency in short-chain fatty-acid-producing bacterial taxa in children with ALL has the potential to promote dysregulated immune responses and to, ultimately, increase the risk of transformation of preleukaemic clones in response to common infectious triggers. These data endorse the concept that a microbiome deficit in early life may contribute to the development of the major subtypes of childhood ALL and encourage the notion of risk-reducing microbiome-targeted intervention in the future.
Collapse
Affiliation(s)
- Ioannis Peppas
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Paediatric Oncology, The Royal Marsden Hospital Sutton, Surrey, UK
| | - Anthony M Ford
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Caroline L Furness
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Paediatric Oncology, The Royal Marsden Hospital Sutton, Surrey, UK
| | - Mel F Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
34
|
Liu Y, Feng Y, Yang X, Lv Z, Li P, Zhang M, Wei F, Jin X, Hu Y, Guo Y, Liu D. Mining chicken ileal microbiota for immunomodulatory microorganisms. THE ISME JOURNAL 2023; 17:758-774. [PMID: 36849630 PMCID: PMC10119185 DOI: 10.1038/s41396-023-01387-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
The gut microbiota makes important contributions to host immune system development and resistance to pathogen infections, especially during early life. However, studies addressing the immunomodulatory functions of gut microbial individuals or populations are limited. In this study, we explore the systemic impact of the ileal microbiota on immune cell development and function of chickens and identify the members of the microbiota involved in immune system modulation. We initially used a time-series design with six time points to prove that ileal microbiota at different succession stages is intimately connected to immune cell maturation. Antibiotics perturbed the microbiota succession and negatively affected immune development, whereas early exposure to the ileal commensal microbiota from more mature birds promoted immune cell development and facilitated pathogen elimination after Salmonella Typhimurium infection, illustrating that early colonization of gut microbiota is an important driver of immune development. Five bacterial strains, Blautia coccoides, Bacteroides xylanisolvens, Fournierella sp002159185, Romboutsia lituseburensis, and Megamonas funiformis, which are closely related to the immune system development of broiler chickens, were then screened out and validated for their immunomodulatory properties. Our results provide insight into poultry immune system-microbiota interactions and also establish a foundation for targeted immunological interventions aiming to combat infectious diseases and promote poultry health and production.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Zhengtian Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Peng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Meihong Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Fuxiao Wei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
35
|
Xia C, Su J, Liu C, Mai Z, Yin S, Yang C, Fu L. Human microbiomes in cancer development and therapy. MedComm (Beijing) 2023; 4:e221. [PMID: 36860568 PMCID: PMC9969057 DOI: 10.1002/mco2.221] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
Colonies formed by bacteria, archaea, fungi, and viral groups and their genomes, metabolites, and expressed proteins constitute complex human microbiomes. An increasing evidences showed that carcinogenesis and disease progression were link to microbiomes. Different organ sources, their microbial species, and their metabolites are different; the mechanisms of carcinogenic or procancerous are also different. Here, we summarize how microbiomes contribute to carcinogenesis and disease progression in cancers of the skin, mouth, esophagus, lung, gastrointestinal, genital, blood, and lymph malignancy. We also insight into the molecular mechanisms of triggering, promoting, or inhibiting carcinogenesis and disease progress induced by microbiomes or/and their secretions of bioactive metabolites. And then, the strategies of application of microorganisms in cancer treatment were discussed in detail. However, the mechanisms by which human microbiomes function are still poorly understood. The bidirectional interactions between microbiotas and endocrine systems need to be clarified. Probiotics and prebiotics are believed to benefit human health via a variety of mechanisms, in particular, in tumor inhibition. It is largely unknown how microbial agents cause cancer or how cancer progresses. We expect this review may open new perspectives on possible therapeutic approaches of patients with cancer.
Collapse
Affiliation(s)
- Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Jiyan Su
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Chuansheng Yang
- Department of Head‐Neck and Breast SurgeryYuebei People's Hospital of Shantou UniversityShaoguanChina
| | - Liwu Fu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| |
Collapse
|
36
|
Proof-of-principle: targeted childhood leukemia prevention. Oncotarget 2023; 14:190-192. [PMID: 36913308 PMCID: PMC10010625 DOI: 10.18632/oncotarget.28371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
|
37
|
Ernst MPT, Pronk E, van Dijk C, van Strien PMH, van Tienhoven TVD, Wevers MJW, Sanders MA, Bindels EMJ, Speck NA, Raaijmakers MHGP. Hematopoietic Cell Autonomous Disruption of Hematopoiesis in a Germline Loss-of-function Mouse Model of RUNX1-FPD. Hemasphere 2023; 7:e824. [PMID: 36741355 PMCID: PMC9891454 DOI: 10.1097/hs9.0000000000000824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/29/2022] [Indexed: 02/01/2023] Open
Abstract
RUNX1 familial platelet disorder (RUNX1-FPD) is a hematopoietic disorder caused by germline loss-of-function mutations in the RUNX1 gene and characterized by thrombocytopathy, thrombocytopenia, and an increased risk of developing hematologic malignancies, mostly of myeloid origin. Disease pathophysiology has remained incompletely understood, in part because of a shortage of in vivo models recapitulating the germline RUNX1 loss of function found in humans, precluding the study of potential contributions of non-hematopoietic cells to disease pathogenesis. Here, we studied mice harboring a germline hypomorphic mutation of one Runx1 allele with a loss-of-function mutation in the other Runx1 allele (Runx1 L148A/- mice), which display many hematologic characteristics found in human RUNX1-FPD patients. Runx1 L148A/- mice displayed robust and pronounced thrombocytopenia and myeloid-biased hematopoiesis, associated with an HSC intrinsic reconstitution defect in lymphopoiesis and expansion of myeloid progenitor cell pools. We demonstrate that specific deletion of Runx1 from bone marrow stromal cells in Prrx1-cre;Runx1 fl/fl mice did not recapitulate these abnormalities, indicating that the hematopoietic abnormalities are intrinsic to the hematopoietic lineage, and arguing against a driving role of the bone marrow microenvironment. In conclusion, we report a RUNX1-FPD mouse model faithfully recapitulating key characteristics of human disease. Findings do not support a driving role of ancillary, non-hematopoietic cells in the disruption of hematopoiesis under homeostatic conditions.
Collapse
Affiliation(s)
- Martijn P. T. Ernst
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eline Pronk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Claire van Dijk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | | | - Michiel J. W. Wevers
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Mathijs A. Sanders
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eric M. J. Bindels
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Nancy A. Speck
- Abramson Family Cancer Research Institute and Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
38
|
Garcia-Gimenez A, Richardson SE. The role of microenvironment in the initiation and evolution of B-cell precursor acute lymphoblastic leukemia. Front Oncol 2023; 13:1150612. [PMID: 36959797 PMCID: PMC10029760 DOI: 10.3389/fonc.2023.1150612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
B cell precursor acute lymphoblastic leukemia (BCP-ALL) is a malignant disorder of immature B lineage immune progenitors and is the commonest cancer in children. Despite treatment advances it remains a leading cause of death in childhood and response rates in adults remain poor. A preleukemic state predisposing children to BCP-ALL frequently arises in utero, with an incidence far higher than that of transformed leukemia, offering the potential for early intervention to prevent disease. Understanding the natural history of this disease requires an appreciation of how cell-extrinsic pressures, including microenvironment, immune surveillance and chemotherapy direct cell-intrinsic genetic and epigenetic evolution. In this review, we outline how microenvironmental factors interact with BCP-ALL at different stages of tumorigenesis and highlight emerging therapeutic avenues.
Collapse
Affiliation(s)
- Alicia Garcia-Gimenez
- Department of Haematology, Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Simon E. Richardson
- Department of Haematology, Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Cambridge, United Kingdom
- *Correspondence: Simon E. Richardson,
| |
Collapse
|
39
|
Villemin C, Six A, Neville BA, Lawley TD, Robinson MJ, Bakdash G. The heightened importance of the microbiome in cancer immunotherapy. Trends Immunol 2023; 44:44-59. [PMID: 36464584 DOI: 10.1016/j.it.2022.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
The human microbiome is recognized as a key factor in health and disease. This has been further corroborated by identifying changes in microbiome composition and function as a novel hallmark in cancer. These effects are exerted through microbiome interactions with host cells, impacting a wide variety of developmental and physiological processes. In this review, we discuss some of the latest findings on how the bacterial component of the microbiome can influence outcomes for different cancer immunotherapy modalities, highlighting identified mechanisms of action. We also address the clinical efforts to utilize this knowledge to achieve better responses to immunotherapy. A refined understanding of microbiome variations in patients and microbiome-host interactions with cancer therapies is essential to realize optimal clinical responses.
Collapse
Affiliation(s)
| | - Anne Six
- Microbiotica Ltd., Cambridge, UK
| | | | - Trevor D Lawley
- Microbiotica Ltd., Cambridge, UK; Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | | | | |
Collapse
|
40
|
Zhou Y, Zhou C, Zhang A. Gut microbiota in acute leukemia: Current evidence and future directions. Front Microbiol 2022; 13:1045497. [PMID: 36532458 PMCID: PMC9751036 DOI: 10.3389/fmicb.2022.1045497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/09/2022] [Indexed: 08/18/2023] Open
Abstract
Gut microbiota includes a large number of microorganisms inhabiting the human gastrointestinal tract, which show a wide range of physiological functions, including digestion, metabolism, immunity, neural development, etc., and are considered to play an increasingly important role in health and disease. A large number of studies have shown that gut microbiota are closely associated with the onset and development of several diseases. In particular, the interaction between gut microbiota and cancer has recently attracted scholars' attention. Acute leukemia (AL) is a common hematologic malignancy, especially in children. Microbiota can affect hematopoietic function, and the effects of chemotherapy and immunotherapy on AL are noteworthy. The composition and diversity of gut microbiota are important factors that influence and predict the complications and prognosis of AL after chemotherapy or hematopoietic stem cell transplantation. Probiotics, prebiotics, fecal microbiota transplantation, and dietary regulation may reduce side effects of leukemia therapy, improve response to treatment, and improve prognosis. This review concentrated on the role of the gut microbiota in the onset and development of AL, the response and side effects of chemotherapy drugs, infection during treatment, and therapeutic efficacy. According to the characteristics of gut microbes, the applications and prospects of microbial preparations were discussed.
Collapse
Affiliation(s)
| | | | - Aijun Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
41
|
Microbial and host factors contribute to bloodstream infection in a pediatric acute lymphocytic leukemia mouse model. Heliyon 2022; 8:e11340. [PMID: 36345525 PMCID: PMC9636473 DOI: 10.1016/j.heliyon.2022.e11340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/15/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Background Hematological malignancies are the most common cancers in the pediatric population, and T-cell acute lymphocytic leukemia (T-ALL) is the most common hematological malignancy in children. Bloodstream infection (BSI) is a commonly occurring complication in leukemia due to underlying conditions and therapy-induced neutropenia. Several studies identified the gut microbiome as a major source of BSI due to bacterial translocation. This study aimed to investigate changes in the intestinal and fecal microbiome, and their roles in the pathophysiology of BSI in a pediatric T-ALL mouse model using high-throughput shotgun metagenomics sequencing, and metabolomics. Results Our results show that BSI in ALL is characterized by an increase of a mucin degrading bacterium (Akkermansia muciniphila) and a decrease of butyrate producer Clostridia spp., along with a decrease in short-chain fatty acid (SCFA) concentrations and differential expression of tight junction proteins in the small intestine. Functional analysis of the small intestinal microbiome indicated a reduced capability of SCFA synthesis, while SCFA supplementation ameliorated the development of BSI in ALL. Conclusions Our data indicates that changes in the microbiome, and the resulting changes in levels of SCFAs contribute significantly to the pathogenesis of bloodstream infection in ALL. Our study provides tailored preventive or therapeutic approaches to reduce BSI-associated mortality in ALL.
Collapse
|
42
|
Davar D, Zarour HM. Facts and Hopes for Gut Microbiota Interventions in Cancer Immunotherapy. Clin Cancer Res 2022; 28:4370-4384. [PMID: 35748749 PMCID: PMC9561605 DOI: 10.1158/1078-0432.ccr-21-1129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 01/07/2023]
Abstract
Immune checkpoint inhibitors (ICI) targeting cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) proteins transformed the management of advanced cancers. Many tumor-intrinsic factors modulate immunological and clinical responses to such therapies, but ample evidence also implicates the gut microbiome in responses. The gut microbiome, comprising the bacteria, archaea, fungi, and viruses that live in the human digestive tract, is an established determinant of host immunity, but its impact on response to ICI therapy in mice and humans with cancer has only recently been appreciated. Therapeutic interventions to optimize microbiota composition to improve immunotherapy outcomes show promise in mice and humans with cancer. In this review, we discuss the rationale for gut microbiome-based cancer therapies, the results from early-phase clinical trials, and possible future developments.
Collapse
Affiliation(s)
- Diwakar Davar
- Department of Medicine and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hassane M. Zarour
- Department of Medicine and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
D’Amico F, Decembrino N, Muratore E, Turroni S, Muggeo P, Mura R, Perruccio K, Vitale V, Zecca M, Prete A, Venturelli F, Leardini D, Brigidi P, Masetti R, Cesaro S, Zama D. Oral Lactoferrin Supplementation during Induction Chemotherapy Promotes Gut Microbiome Eubiosis in Pediatric Patients with Hematologic Malignancies. Pharmaceutics 2022; 14:1705. [PMID: 36015331 PMCID: PMC9416448 DOI: 10.3390/pharmaceutics14081705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 12/19/2022] Open
Abstract
Induction chemotherapy is the first-line treatment for pediatric patients with hematologic malignancies. However, several complications may arise, mainly infections and febrile neutropenia, with a strong impact on patient morbidity and mortality. Such complications have been shown to be closely related to alterations of the gut microbiome (GM), making the design of strategies to foster its eubiosis of utmost clinical importance. Here, we evaluated the impact of oral supplementation of lactoferrin (LF), a glycoprotein endowed with anti-inflammatory, immunomodulatory and antimicrobial activities, on GM dynamics in pediatric oncohematologic patients during induction chemotherapy. Specifically, we conducted a double blind, placebo-controlled trial in which GM was profiled through 16S rRNA gene sequencing before and after two weeks of oral supplementation with LF or placebo. LF was safely administered with no adverse effects and promoted GM homeostasis by favoring the maintenance of diversity and preventing the bloom of pathobionts (e.g., Enterococcus). LF could, therefore, be a promising adjunct to current therapeutic strategies in these fragile individuals to reduce the risk of GM-related complications.
Collapse
Affiliation(s)
- Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Nunzia Decembrino
- Neonatal Intensive Care Unit-AOU Policlinico “Rodolico-San Marco”, University of Catania, 95131 Catania, Italy
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Edoardo Muratore
- Pediatric Hematology and Oncology Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Paola Muggeo
- Pediatric Hematology and Oncology Department, University of Bari, 70121 Bari, Italy
| | - Rosamaria Mura
- Pediatric Hematology and Oncology Department, “A Cao” Microcitemic Pediatric Hospital, “Botzu” Medical Center, 09100 Cagliari, Italy
| | - Katia Perruccio
- Pediatric Hematology and Oncology Department, “Santa Maria della Misericordia” Hospital, 06132 Perugia, Italy
| | - Virginia Vitale
- Pediatric Hematology and Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Arcangelo Prete
- Pediatric Hematology and Oncology Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Francesco Venturelli
- Pediatric Hematology and Oncology Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
| | - Davide Leardini
- Pediatric Hematology and Oncology Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Riccardo Masetti
- Pediatric Hematology and Oncology Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Simone Cesaro
- Pediatric Hematology and Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy
| | - Daniele Zama
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
44
|
Childhood B-Cell Preleukemia Mouse Modeling. Int J Mol Sci 2022; 23:ijms23147562. [PMID: 35886910 PMCID: PMC9317949 DOI: 10.3390/ijms23147562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Leukemia is the most usual childhood cancer, and B-cell acute lymphoblastic leukemia (B-ALL) is its most common presentation. It has been proposed that pediatric leukemogenesis occurs through a “multi-step” or “multi-hit” mechanism that includes both in utero and postnatal steps. Many childhood leukemia-initiating events, such as chromosomal translocations, originate in utero, and studies so far suggest that these “first-hits” occur at a far higher frequency than the incidence of childhood leukemia itself. The reason why only a small percentage of the children born with such preleukemic “hits” will develop full-blown leukemia is still a mystery. In order to better understand childhood leukemia, mouse modeling is essential, but only if the multistage process of leukemia can be recapitulated in the model. Therefore, mouse models naturally reproducing the “multi-step” process of childhood B-ALL will be essential to identify environmental or other factors that are directly linked to increased risk of disease.
Collapse
|
45
|
The interplay between anticancer challenges and the microbial communities from the gut. Eur J Clin Microbiol Infect Dis 2022; 41:691-711. [PMID: 35353280 DOI: 10.1007/s10096-022-04435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/15/2022] [Indexed: 11/03/2022]
Abstract
Cancer being an increasing burden on human health, the use of anticancer drugs has risen over the last decades. The physiological effects of these drugs are not only perceived by the host's cells but also by the microbial cells it harbors as commensals, notably the gut microbiota. Since the early '50 s, the cytotoxicity of anticancer chemotherapy was evaluated on bacteria revealing some antimicrobial activities that result in an established perturbation of the gut microbiota. This perturbation can affect the host's health through dysbiosis, which can lead to multiple complications, but has also been shown to have a direct effect on the treatment efficiency.We, therefore, conducted a review of literature focusing on this triangular relationship involving the microbial communities from the gut, the host's disease, and the anticancer treatment. We focused specifically on the antimicrobial effects of anticancer chemotherapy, their impact on mutagenesis in bacteria, and the perspectives of using bacteria-based tools to help in the diagnostic and treatment of cancer.
Collapse
|
46
|
Pagani IS, Poudel G, Wardill HR. A Gut Instinct on Leukaemia: A New Mechanistic Hypothesis for Microbiota-Immune Crosstalk in Disease Progression and Relapse. Microorganisms 2022; 10:microorganisms10040713. [PMID: 35456764 PMCID: PMC9029211 DOI: 10.3390/microorganisms10040713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Despite significant advances in the treatment of Chronic Myeloid and Acute Lymphoblastic Leukaemia (CML and ALL, respectively), disease progression and relapse remain a major problem. Growing evidence indicates the loss of immune surveillance of residual leukaemic cells as one of the main contributors to disease recurrence and relapse. More recently, there was an appreciation for how the host’s gut microbiota predisposes to relapse given its potent immunomodulatory capacity. This is especially compelling in haematological malignancies where changes in the gut microbiota have been identified after treatment, persisting in some patients for years after the completion of treatment. In this hypothesis-generating review, we discuss the interaction between the gut microbiota and treatment responses, and its capacity to influence the risk of relapse in both CML and ALL We hypothesize that the gut microbiota contributes to the creation of an immunosuppressive microenvironment, which promotes tumour progression and relapse.
Collapse
Affiliation(s)
- Ilaria S. Pagani
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide 5000, Australia; (G.P.); (H.R.W.)
- Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide 5000, Australia
- Correspondence:
| | - Govinda Poudel
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide 5000, Australia; (G.P.); (H.R.W.)
- Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide 5000, Australia
| | - Hannah R. Wardill
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide 5000, Australia; (G.P.); (H.R.W.)
- Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide 5000, Australia
| |
Collapse
|
47
|
Casado-García A, Isidro-Hernández M, Oak N, Mayado A, Mann-Ran C, Raboso-Gallego J, Alemán-Arteaga S, Buhles A, Sterker D, Sánchez EG, Martínez-Cano J, Blanco O, Orfao A, Alonso-López D, De Las Rivas J, Riesco S, Prieto-Matos P, González-Murillo Á, García Criado FJ, García Cenador MB, Radimerski T, Ramírez-Orellana M, Cobaleda C, Yang JJ, Vicente-Dueñas C, Weiss A, Nichols KE, Sánchez-García I. Transient Inhibition of the JAK/STAT Pathway Prevents B-ALL Development in Genetically Predisposed Mice. Cancer Res 2022; 82:1098-1109. [PMID: 35131871 PMCID: PMC9359729 DOI: 10.1158/0008-5472.can-21-3386] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 01/07/2023]
Abstract
Preventing development of childhood B-cell acute lymphoblastic leukemia (B-ALL), a disease with devastating effects, is a longstanding and unsolved challenge. Heterozygous germline alterations in the PAX5 gene can lead to B-ALL upon accumulation of secondary mutations affecting the JAK/STAT signaling pathway. Preclinical studies have shown that this malignant transformation occurs only under immune stress such as exposure to infectious pathogens. Here we show in Pax5+/- mice that transient, early-life administration of clinically relevant doses of ruxolitinib, a JAK1/2 inhibitor, significantly mitigates the risk of B-ALL following exposure to infection; 1 of 29 animals treated with ruxolitinib developed B-ALL versus 8 of 34 untreated mice. Ruxolitinib treatment preferentially targeted Pax5+/- versus wild-type B-cell progenitors and exerted unique effects on the Pax5+/- B-cell progenitor transcriptional program. These findings provide the first in vivo evidence for a potential strategy to prevent B-ALL development. SIGNIFICANCE JAK/STAT inhibition suppresses tumorigenesis in a B-ALL-susceptible mouse model, presenting a novel approach to prevent B-ALL onset.
Collapse
Affiliation(s)
- Ana Casado-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Marta Isidro-Hernández
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Ninad Oak
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrea Mayado
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Servicio de Citometría, Departamento de Medicina, Biomedical Research Networking Centre on Cancer CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, and Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Christine Mann-Ran
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Javier Raboso-Gallego
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Silvia Alemán-Arteaga
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Alexandra Buhles
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Dario Sterker
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Elena G. Sánchez
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jorge Martínez-Cano
- Immune system development and function Unit, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas -Universidad Autónoma de Madrid), Madrid, Spain
| | - Oscar Blanco
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Departamento de Anatomía Patológica, Universidad de Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Servicio de Citometría, Departamento de Medicina, Biomedical Research Networking Centre on Cancer CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, and Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Diego Alonso-López
- Bioinformatics Unit, Cancer Research Center (CSIC-USAL), Salamanca, Spain
| | - Javier De Las Rivas
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Bioinformatics and Functional Genomics Research Group, Cancer Research Center (CSIC-USAL), Salamanca, Spain
| | - Susana Riesco
- Department of Pediatrics, Hospital Universitario de Salamanca, Paseo de San Vicente, 58–182, Salamanca, Spain
| | - Pablo Prieto-Matos
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Pediatrics, Hospital Universitario de Salamanca, Paseo de San Vicente, 58–182, Salamanca, Spain
| | - África González-Murillo
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Javier García Criado
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Departamento de Cirugía, Universidad de Salamanca, Salamanca, Spain
| | - María Begoña García Cenador
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Departamento de Cirugía, Universidad de Salamanca, Salamanca, Spain
| | - Thomas Radimerski
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Manuel Ramírez-Orellana
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain
| | - César Cobaleda
- Immune system development and function Unit, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas -Universidad Autónoma de Madrid), Madrid, Spain
| | - Jun J. Yang
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Carolina Vicente-Dueñas
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Pediatrics, Hospital Universitario de Salamanca, Paseo de San Vicente, 58–182, Salamanca, Spain
| | - Andreas Weiss
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Isidro Sánchez-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
48
|
Cardesa-Salzmann TM, Simon A, Graf N. Antibiotics in early life and childhood pre-B-ALL. Reasons to analyze a possible new piece in the puzzle. Discov Oncol 2022; 13:5. [PMID: 35201533 PMCID: PMC8777491 DOI: 10.1007/s12672-022-00465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer with precursor B-cell ALL (pB-ALL) accounting for ~ 85% of the cases. Childhood pB-ALL development is influenced by genetic susceptibility and host immune responses. The role of the intestinal microbiome in leukemogenesis is gaining increasing attention since Vicente-Dueñas' seminal work demonstrated that the gut microbiome is distinct in mice genetically predisposed to ALL and that the alteration of this microbiome by antibiotics is able to trigger pB-ALL in Pax5 heterozygous mice in the absence of infectious stimuli. In this review we provide an overview on novel insights on the role of the microbiome in normal and preleukemic hematopoiesis, inflammation, the effect of dysbiosis on hematopoietic stem cells and the emerging importance of the innate immune responses in the conversion from preleukemic to leukemic state in childhood ALL. Since antibiotics, which represent one of the most widely used medical interventions, alter the gut microbial composition and can cause a state of dysbiosis, this raises exciting epidemiological questions regarding the implications for antibiotic use in early life, especially in infants with a a preleukemic "first hit". Sheading light through a rigorous study on this piece of the puzzle may have broad implications for clinical practice.
Collapse
Affiliation(s)
- T. M. Cardesa-Salzmann
- Department of Pediatric Hematology and Oncology, Universitätsklinikum des Saarlandes, Homburg, Saarland Germany
| | - A. Simon
- Department of Pediatric Hematology and Oncology, Universitätsklinikum des Saarlandes, Homburg, Saarland Germany
| | - N. Graf
- Department of Pediatric Hematology and Oncology, Universitätsklinikum des Saarlandes, Homburg, Saarland Germany
| |
Collapse
|
49
|
Sharma R. Emerging Interrelationship Between the Gut Microbiome and Cellular Senescence in the Context of Aging and Disease: Perspectives and Therapeutic Opportunities. Probiotics Antimicrob Proteins 2022; 14:648-663. [PMID: 34985682 PMCID: PMC8728710 DOI: 10.1007/s12602-021-09903-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
The significance of diversity, composition, and functional attributes of the gut microbiota in shaping human health is well recognized. Studies have shown that gut microbiota is closely linked to human aging, and changes in the gut microbiome can predict human survival and longevity. In addition, a causal relationship between gut microbiota dysbiosis and chronic age-related disorders is also becoming apparent. Recent advances in our understanding of the cellular and molecular aspects of biological aging have revealed a cellular senescence-centric view of the aging process. However, the association between the gut microbiome and cellular senescence is only beginning to be understood. The present review provides an integrative view of the evolving relationship between the gut microbiome and cellular senescence in aging and disease. Evidence relating to microbiome-mediated modulation of senescent cells, as well as senescent cells-mediated changes in intestinal homeostasis and diseases, have been discussed. Unanswered questions and future research directions have also been deliberated to truly ascertain the relationship between the gut microbiome and cellular senescence for developing microbiome-based age-delaying and longevity-promoting therapies.
Collapse
Affiliation(s)
- Rohit Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India.
| |
Collapse
|
50
|
Chen Y, Li Y. Metabolic reprogramming and immunity in cancer. CANCER IMMUNOLOGY AND IMMUNOTHERAPY 2022:137-196. [DOI: 10.1016/b978-0-12-823397-9.00006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|