1
|
Huang YJ, Liu HC, Kuo MC, Yeh TC, Lin TL, Chen SH, Jaing TH, Wang SC, Chang TK, Yen HJ, Sheen JM, Wang MC, Lin TH, Huang TY, Kao HW, Ou CW, Hung YS, Hsiao CC, Shih LY. Frequency and prognostic value of unconventional genetic subtypes in paediatric and young adult B-cell precursor acute lymphoblastic leukaemia in Taiwan. Br J Haematol 2025; 206:1699-1709. [PMID: 40132994 DOI: 10.1111/bjh.20057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
Unconventional genetic subtypes of B-cell precursor acute lymphoblastic leukaemia (B-ALL) were analysed to compare their frequency and their impact on outcomes between children and young adults in Taiwan. Unconventional subtypes were found in 23.0% of 456 paediatric B-ALL and 24.5% of 139 young adult B-ALL. The most frequently unconventional subtype both in children and young adults was BCR::ABL1-like, which could be subdivided into different kinase-altering aberrations in 67.3% of children and 78.6% of young adults. CRLF2-R was more frequent in children, while IL7R mutations were more common in young adults. In children, favourable outcomes were observed in patients with DUX4-R and PAX5alt, whereas those with BCR::ABL1-like and MEF2D-R had inferior outcomes. BCR::ABL1-like and MEF2D-R were also the independent predictors of inferior event-free survival in children. Conversely, most unconventional subtypes in young adults were associated with adverse outcomes except for DUX4-R. We found a lower incidence of BCR::ABL1-like and a better prognosis for paediatric PAX5alt in Taiwan compared to the West. Additionally, genetic differences were identified between paediatric and young adult BCR::ABL1-like subtypes. The extremely poor prognosis for unclassified young adults highlights the potential use of further subdivision of unfavourable genetic subtypes in refining risk classification and treatment optimization.
Collapse
Affiliation(s)
- Ying-Jung Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsi-Che Liu
- Department of Hematology-Oncology, MacKay Children's Hospital and MacKay Medical College, Taipei, Taiwan
| | - Ming-Chung Kuo
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Chi Yeh
- Department of Hematology-Oncology, MacKay Children's Hospital and MacKay Medical College, Taipei, Taiwan
| | - Tung-Liang Lin
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Hsiang Chen
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Hematology-Oncology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan
| | - Tang-Her Jaing
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Hematology-Oncology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Chung Wang
- Division of Pediatric Hematology-Oncology, Changhua Christian Children's Hospital, Changhua, Taiwan
| | - Te-Kau Chang
- Division of Pediatric Hematology and Oncology, China Medical University Children's Hospital, Taichung, Taiwan
| | - Hsiu-Ju Yen
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jiunn-Ming Sheen
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan
| | - Ming-Chung Wang
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Internal Medicine, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan
| | - Tung-Huei Lin
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ting-Yu Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsiao-Wen Kao
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Che-Wei Ou
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Shin Hung
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Cheng Hsiao
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Benjamin M, Singh J, Pandey AK, Thukral N, Kumari S, Kumar Palanichamy J, Bakhshi S, Pushpam D, Kumar A, Gupta AK, Meena JP, Singh A, Tanwar P, Singh AR, Bhalla S, Chopra A. Integrative Genetic and Transcriptomic Subtyping Improves Prognosis Prediction in B-Lineage Acute Lymphoblastic Leukemia. J Transl Med 2025; 105:104201. [PMID: 40449797 DOI: 10.1016/j.labinv.2025.104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 05/08/2025] [Accepted: 05/22/2025] [Indexed: 06/03/2025] Open
Abstract
Whole-transcriptomic sequencing (WTS) has remarkably advanced our understanding of B-lineage acute lymphoblastic leukemia (B-ALL), allowing for detailed gene expression profiling and discovery of novel therapeutically relevant subtypes. The aim of this study was to evaluate the diagnostic and prognostic relevance of combining WTS with traditional genetic methods in risk-stratifying B-ALL. In a cohort of 394 patients (301 children and 93 adults), conventional techniques such as fluorescence in situ hybridization, cytogenetics, and reverse-transcription PCR identified sentinel chromosomal abnormalities like BCR::ABL1, TCF3::PBX1, ETV6::RUNX1, and KMT2A-R (rearranged), and ploidy status. WTS was performed on selected 257 patients to identify subtypes such as Ph-like, DUX4-R, PAX5-altered (PAX5-ALT), MEF2D-R, BCL2-R, UBTF-R, PAX5 P80R, NUTM1-R, ZNF384-R, ZNF384-like, ETV6::RUNX1-like, IKZF1 N159Y, and HLF-R. We used a multipronged strategy to identify the borderline subtypes such as Ph-like, PAX5-ALT, and CRLF2 (non-Ph-like), by integrating gene expression signatures using t-distributed stochastic neighbor embedding, subtype-defining mutations, gene fusions, and copy number assessments. Our integrated approach not only identifies prognostically relevant sentinel molecular subtypes but also increases subtype assignment in upto ∼95% of B-ALL patients. The pro-B immunophenotype was found to be more frequent in UBTF-R and MEF2D-R ALL. Ph-like ALL was associated with poor remission rates and higher minimal residual disease positivity, while DUX4-R showed favorable prognosis. We further categorized pediatric patients into 3 risk groups: favorable (hyperdiploid, ETV6::RUNX1, and DUX4-R), poor (BCR::ABL1, Ph-like, KMT2A-R, TCF3::PBX1, iAMP21, and hypodiploid), and intermediate (PAX5-ALT, PAX5 P80R, NUTM1-R, MEF2D-R, CRLF2 [non-Ph-like], UBTF-R, ZNF384-R, ZNF384-like, BCL2-R, IKZF1 N159Y, ETV6::RUNX1-like, and B-rest). Event-free survival and overall survival were significantly associated with this risk stratification. In adults, Ph-like ALL showed worse prognosis, particularly, in BCR::ABL1-negative ALL patients. Among the DUX4-R B-ALL, those with IKZF1 deletion had worse event-free survival and overall survival. We also identified several novel gene rearrangements in different subtypes of B-ALL. Our study demonstrated that integrating WTS with traditional methods provides a comprehensive, accurate, and cost-effective strategy for risk assessment and treatment planning for B-ALL.
Collapse
Affiliation(s)
| | - Jay Singh
- Laboratory Oncology, AIIMS, New Delhi, India
| | | | | | | | | | | | | | - Akash Kumar
- Department of Medical Oncology, AIIMS, New Delhi, India
| | | | | | - Amitabh Singh
- Department of Pediatrics, Safdarjung Hospital, New Delhi, India
| | | | | | - Sherry Bhalla
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | | |
Collapse
|
3
|
Passet M, Kim R, Clappier E. Genetic subtypes of B-cell acute lymphoblastic leukemia in adults. Blood 2025; 145:1451-1463. [PMID: 39786374 DOI: 10.1182/blood.2023022919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT B-cell acute lymphoblastic leukemia (B-ALL) is a rare malignancy in adults, with outcomes remaining poor, especially compared with children. Over the past 2 decades, extensive whole-genome studies have identified numerous genetic alterations driving leukemia, leading to the recognition of >20 distinct subtypes that are closely associated with treatment response and prognosis. In pediatric B-ALL, large correlation studies have made genetic classification a central component of risk-adapted treatment strategies. Notably, genetic subtypes are unevenly distributed according to age, and the spectrum of genetic alterations and their prognostic relevance in adult B-ALL have been less extensively studied, with treatment primarily based on the presence or absence of BCR::ABL1 fusion. This review provides an overview of genetic subtypes in adult B-ALL, including recent biological and clinical insights in well-established subtypes as well as data on newly recognized subtypes. Their relevance for risk classification, disease monitoring, and therapeutic management, including in the context of B-cell-directed therapies, is discussed. This review advocates for continuing efforts to further improve our understanding of the biology of adult B-ALL to establish the foundation of future precision medicine in B-ALL.
Collapse
Affiliation(s)
- Marie Passet
- Institut de Recherche Saint-Louis, Université Paris Cité, INSERM UMR1342, Paris, France
- Service d'Hématologie Biologique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Rathana Kim
- Institut de Recherche Saint-Louis, Université Paris Cité, INSERM UMR1342, Paris, France
- Service d'Hématologie Biologique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emmanuelle Clappier
- Institut de Recherche Saint-Louis, Université Paris Cité, INSERM UMR1342, Paris, France
- Service d'Hématologie Biologique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
4
|
Kurosawa S, Fukuda T, Ichinohe T, Hashii Y, Kanda J, Goto H, Kato K, Ishimaru F, Yoshimitsu M, Hino M, Matsuo K, Ito Y, Yanagisawa A, Ohbiki M, Tabuchi K, Atsuta Y, Arai Y. Center effect on outcomes of second allogeneic hematopoietic stem cell transplantation for B-cell acute lymphoblastic leukemia: a nationwide retrospective study. Cytotherapy 2025:S1465-3249(25)00071-4. [PMID: 40156598 DOI: 10.1016/j.jcyt.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/06/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
We evaluated the impact of center volume on outcomes in patients with B-cell acute lymphoblastic leukemia following their second allogeneic hematopoietic stem cell transplantation (allo-HSCT). Our cohort included 299 patients with relapse and 68 patients with graft failure after their first allo-HSCT between 2003 and 2017. Patients were stratified into low- and high-volume groups based on the number of allo-HSCT performed at each center. The primary endpoint was 5-year overall survival (OS) following the second allo-HSCT. In the relapse cohort, the high-volume group demonstrated significantly better 5-year OS (21.1% vs 13.6%, P = 0.0062) and progression-free survival (16.1% vs 10.6%, P = 0.010). Multivariate analysis showed that high-volume group was a favorable factor for OS (hazard ratio [HR]: 0.72, 95% confidence interval [CI]: 0.56-0.94, P = 0.016). This survival benefit was consistent in both Philadelphia chromosome-negative (HR: 0.71, 95% CI: 0.51-0.99, P = 0.042) and positive (HR: 0.61, 95% CI: 0.39-0.95, P = 0.030) subcohorts. In the graft failure cohort, the high-volume group showed a trend toward better 5-year OS (41.6% vs 24.4%, P = 0.098) and lower 5-year nonrelapse mortality (NRM) (55.9% vs 75.6%, P = 0.067). Multivariate analysis confirmed the protective effect of the high-volume group on NRM (HR: 0.55, 95% CI: 0.30-0.99, P = 0.044). Our findings demonstrate that center volume significantly impacts outcomes after the second allo-HSCT regardless of indication, highlighting the need for inter-center collaboration and standardized management strategies for this high-risk population.
Collapse
Affiliation(s)
- Shuhei Kurosawa
- Department of Hematology, Yokohama Municipal Citizen's Hospital, Yokohama, Japan; Division of Transfusion and Cell Therapy, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan.
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | | | - Junya Kanda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Goto
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Koji Kato
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | | | - Makoto Yoshimitsu
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Moeko Hino
- Department of Pediatrics, School of Medicine, Chiba University, Chiba, Japan
| | - Keitaro Matsuo
- Division Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yuri Ito
- Department of Medical Statistics, Research & Development Center, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Atsumi Yanagisawa
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
| | - Marie Ohbiki
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan; Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan; Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ken Tabuchi
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan; Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yasuyuki Arai
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Fu H, Mo X, Ivanov AA. Decoding the functional impact of the cancer genome through protein-protein interactions. Nat Rev Cancer 2025; 25:189-208. [PMID: 39810024 DOI: 10.1038/s41568-024-00784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
Acquisition of genomic mutations enables cancer cells to gain fitness advantages under selective pressure and, ultimately, leads to oncogenic transformation. Interestingly, driver mutations, even within the same gene, can yield distinct phenotypes and clinical outcomes, necessitating a mutation-focused approach. Conversely, cellular functions are governed by molecular machines and signalling networks that are mostly controlled by protein-protein interactions (PPIs). The functional impact of individual genomic alterations could be transmitted through regulated nodes and hubs of PPIs. Oncogenic mutations may lead to modified residues of proteins, enabling interactions with other proteins that the wild-type protein does not typically interact with, or preventing interactions with proteins that the wild-type protein usually interacts with. This can result in the rewiring of molecular signalling cascades and the acquisition of an oncogenic phenotype. Here, we review the altered PPIs driven by oncogenic mutations, discuss technologies for monitoring PPIs and provide a functional analysis of mutation-directed PPIs. These driver mutation-enabled PPIs and mutation-perturbed PPIs present a new paradigm for the development of tumour-specific therapeutics. The intersection of cancer variants and altered PPI interfaces represents a new frontier for understanding oncogenic rewiring and developing tumour-selective therapeutic strategies.
Collapse
Affiliation(s)
- Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
6
|
Walter W, Iacobucci I, Meggendorfer M. Diagnosis of acute lymphoblastic leukaemia: an overview of the current genomic classification, diagnostic approaches, and future directions. Histopathology 2025; 86:134-145. [PMID: 39403021 DOI: 10.1111/his.15338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
B-acute lymphoblastic leukaemia (B-ALL) is a haematological disease resulting from haematopoietic system dysfunction, leading to the unchecked growth of immature B lymphoblasts. The disease's complexity is underscored by the spectrum of genetic aberrations that underlie B-ALL entities, necessitating advanced genetic analyses for precise classification and risk determination. Prior to the adoption of next-generation sequencing into standard diagnostic practices, up to 30% of B-ALL cases were not assigned to specific entities due to the limitations of traditional diagnostic methods. The advent of comprehensive genomic analysis, especially whole-genome transcriptome sequencing, has significantly enhanced our understanding of B-ALL's molecular heterogeneity, paving the way for the exploration of novel, tailored treatment strategies. Furthermore, recent technological innovations, such as optical genome mapping, methylation profiling, and single-cell sequencing, have propelled forward the fields of cancer research and B-ALL management. These innovations introduce novel diagnostic approaches and prognostic markers, facilitating a deeper, more nuanced understanding of individual patient disease profiles. This review focuses on the latest diagnostic standards and assays for B-ALL, the importance of new technologies and biomarkers in enhancing diagnostic accuracy, and the expected role of innovative advancements in the future diagnosis and treatment of B-ALL.
Collapse
Affiliation(s)
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
7
|
Navas-Acosta J, Hernández-Sánchez A, González T, Villaverde Ramiro Á, Santos S, Miguel C, Ribera J, Granada I, Morgades M, Sánchez R, Such E, Barrena S, Ciudad J, Dávila J, de Las Heras N, García-de Coca A, Labrador J, Queizán JA, Martín S, Orfao A, Ribera JM, Benito R, Hernández-Rivas JM. Preferential Genetic Pathways Lead to Relapses in Adult B-Cell Acute Lymphoblastic Leukemia. Cancers (Basel) 2024; 16:4200. [PMID: 39766099 PMCID: PMC11674736 DOI: 10.3390/cancers16244200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Adult B-cell acute lymphoblastic leukemia (B-ALL) is characterized by genetic heterogeneity and a high relapse rate, affecting over 40% of adults. However, the mechanisms leading to relapse in adults are poorly understood. Forty-four adult B-ALL patients were studied at both diagnosis and relapse by next-generation sequencing (NGS). Four main genetic pathways leading to relapse in adults were identified: IKZF1plus genetic profile, RAS mutations and TP53 alterations in Ph-negative B-ALL and acquisition of ABL1 mutations in Ph-positive patients. The most frequently deleted gene at diagnosis was IKZF1 (52%), and 70% of these patients had IKZF1plus profile. Notably, 88% of patients with IKZF1plus at diagnosis retained this genetic profile at relapse. Conversely, the acquisition of RAS mutations or the expansion of subclones (normalized variant allele frequency < 25%) present from diagnosis were observed in 24% of Ph-negative patients at relapse. In addition, 24% of relapses in the Ph-negative cohort could potentially be driven by TP53 alterations. Of these cases, five presented from diagnosis, and four emerged at relapse, mostly as "double-hit" events involving both TP53 deletion and mutation. In Ph-positive B-ALL, the main genetic finding at relapse was the acquisition of ABL1 mutations (86%). Three clonal evolution patterns were identified: the persistent clone trajectory (25%), the expanding clone trajectory (11%) and the therapy-boosted trajectory (48%). Our results reveal the presence of preferential biological pathways leading to relapse in adult B-ALL. These findings underscore the need for personalized therapeutic strategies to improve clinical outcomes in adult patients with B-ALL.
Collapse
Affiliation(s)
- Josgrey Navas-Acosta
- IBSAL, IBMCC, CSIC, Centro de Investigación del Cáncer, University of Salamanca, 37007 Salamanca, Spain; (J.N.-A.); (A.H.-S.); (T.G.); (Á.V.R.); (S.S.); (C.M.); (R.B.)
| | - Alberto Hernández-Sánchez
- IBSAL, IBMCC, CSIC, Centro de Investigación del Cáncer, University of Salamanca, 37007 Salamanca, Spain; (J.N.-A.); (A.H.-S.); (T.G.); (Á.V.R.); (S.S.); (C.M.); (R.B.)
- Department of Hematology, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Teresa González
- IBSAL, IBMCC, CSIC, Centro de Investigación del Cáncer, University of Salamanca, 37007 Salamanca, Spain; (J.N.-A.); (A.H.-S.); (T.G.); (Á.V.R.); (S.S.); (C.M.); (R.B.)
- Department of Hematology, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Ángela Villaverde Ramiro
- IBSAL, IBMCC, CSIC, Centro de Investigación del Cáncer, University of Salamanca, 37007 Salamanca, Spain; (J.N.-A.); (A.H.-S.); (T.G.); (Á.V.R.); (S.S.); (C.M.); (R.B.)
| | - Sandra Santos
- IBSAL, IBMCC, CSIC, Centro de Investigación del Cáncer, University of Salamanca, 37007 Salamanca, Spain; (J.N.-A.); (A.H.-S.); (T.G.); (Á.V.R.); (S.S.); (C.M.); (R.B.)
| | - Cristina Miguel
- IBSAL, IBMCC, CSIC, Centro de Investigación del Cáncer, University of Salamanca, 37007 Salamanca, Spain; (J.N.-A.); (A.H.-S.); (T.G.); (Á.V.R.); (S.S.); (C.M.); (R.B.)
| | - Jordi Ribera
- ICO-Hospital Germans Trias i Pujol, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), 08916 Badalona, Spain; (J.R.); (I.G.); (M.M.); (J.-M.R.)
| | - Isabel Granada
- ICO-Hospital Germans Trias i Pujol, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), 08916 Badalona, Spain; (J.R.); (I.G.); (M.M.); (J.-M.R.)
| | - Mireia Morgades
- ICO-Hospital Germans Trias i Pujol, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), 08916 Badalona, Spain; (J.R.); (I.G.); (M.M.); (J.-M.R.)
| | - Ricardo Sánchez
- Department of Hematology, Hospital Doce de Octubre Hospital, 28041 Madrid, Spain;
| | - Esperanza Such
- Department of Hematology, Hospital Universitari i Politecnic La Fe, 46026 Valencia, Spain;
| | - Susana Barrena
- Department of Cytometry, University of Salamanca, 37007 Salamanca, Spain; (S.B.); (J.C.); (A.O.)
| | - Juana Ciudad
- Department of Cytometry, University of Salamanca, 37007 Salamanca, Spain; (S.B.); (J.C.); (A.O.)
| | - Julio Dávila
- Service of Hematology, Hospital Nuestra Señora de Sonsoles, 05004 Ávila, Spain;
| | | | | | - Jorge Labrador
- Department of Hematology, Hospital Universitario Burgos, 09006 Burgos, Spain;
| | | | - Sandra Martín
- Molecular Biology Unit, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Alberto Orfao
- Department of Cytometry, University of Salamanca, 37007 Salamanca, Spain; (S.B.); (J.C.); (A.O.)
| | - Josep-María Ribera
- ICO-Hospital Germans Trias i Pujol, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), 08916 Badalona, Spain; (J.R.); (I.G.); (M.M.); (J.-M.R.)
| | - Rocío Benito
- IBSAL, IBMCC, CSIC, Centro de Investigación del Cáncer, University of Salamanca, 37007 Salamanca, Spain; (J.N.-A.); (A.H.-S.); (T.G.); (Á.V.R.); (S.S.); (C.M.); (R.B.)
| | - Jesús María Hernández-Rivas
- IBSAL, IBMCC, CSIC, Centro de Investigación del Cáncer, University of Salamanca, 37007 Salamanca, Spain; (J.N.-A.); (A.H.-S.); (T.G.); (Á.V.R.); (S.S.); (C.M.); (R.B.)
- Department of Hematology, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
8
|
Huang G, Zhang J, Xu Y, Wu F, Fu Y, Zhang X, Yin H, You Y, Zhao P, Liu W, Shen J, Yin J. SNPs Give LACTB Oncogene-Like Functions and Prompt Tumor Progression via Dual-Regulating p53. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405907. [PMID: 39324579 DOI: 10.1002/advs.202405907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/03/2024] [Indexed: 09/27/2024]
Abstract
LACTB is identified as a tumor suppressor in several tumors. However, preliminary study reveals that LACTB is overexpressed in osteosarcoma and indicates poor prognosis. Two missense mutations (rs34317102 and rs2729835) exist simultaneously in 92.31% of osteosarcoma patients and cause M5L and R469K double mutations in LACTB, suggesting the biologic function of LACTB protein may be altered in osteosarcoma. Moreover, LACTBM5L+R469K overexpression can promote malignant progression in different tumors, which suggests that the M5L and R469K mutations confer oncogene-like functions to LACTB. Mechanistically, LACTBM5L+R469K not only reduces the wild type p53 via enhancing PSMB7 catalytic activity, but also protects p53R156P protein from lysosomal degradation, which suggesting LACTBM5L+R469K is a dual-regulator for wt-p53 and mutant p53, and derive oncogene-like functions. More importantly, clavulanate potassium, a bacterial β-lactamase inhibitor, can inhibit osteosarcoma proliferation and sensitize osteosarcoma to cisplatin by binding and blocking LACTBM5L+R469K. These findings revealed that the M5L and R469K double mutations can diminish the tumor suppressive ability of wild type LACTB and provide oncogene-like functions to LACTB. Inhibiting LACTBM5L+R469K can suppress the progression of osteosarcoma harbouring wild-type or mutant p53. Clavulanate potassium is a promising drug by targeting LACTBM5L+R469K-p53 pathway for the treatment of osteosarcoma patients.
Collapse
Affiliation(s)
- Guanyu Huang
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiajun Zhang
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yu Xu
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fei Wu
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yiwei Fu
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xuelin Zhang
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hanxiao Yin
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuanyuan You
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weihai Liu
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Kurosawa S, Fukuda T, Ichinohe T, Hashii Y, Kanda J, Goto H, Kato K, Yoshimitsu M, Ishimaru F, Sato A, Onizuka M, Matsuo K, Ito Y, Yanagisawa A, Ohbiki M, Tabuch K, Atsuta Y, Arai Y. Center effect on allogeneic hematopoietic stem cell transplantation outcomes for B-cell acute lymphoblastic leukemia. Cytotherapy 2024; 26:1185-1192. [PMID: 38804991 DOI: 10.1016/j.jcyt.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
This nationwide study retrospectively examined the center effect on allogeneic hematopoietic stem cell transplantation (allo-HSCT) for adult B-cell acute lymphoblastic leukemia. The cohort analyses were separated into Philadelphia chromosome (Ph)-positive and -negative cases. The patients were divided into low- and high-volume groups according to the number of allo-HSCTs at each facility. The primary endpoint was 5-year overall survival (OS). This study included 1156 low-volume and 1329 high-volume Ph-negative and 855 low-volume and 926 high-volume Ph-positive cases. In Ph-negative cases, 5-year OS was significantly higher in the high-volume centers at 52.7% (95% confidence interval [CI]: 49.9-55.5) versus 46.8% (95% CI: 43.8-49.7) for the low-volume centers (P < 0.01). Multivariate analysis identified high volume as a favorable prognostic factor (hazard ratio [HR]: 0.81 [95% CI: 0.72-0.92], P < 0.01). Subgroup analysis in Ph-negative cases revealed that the center effects were more evident in patients aged ≥40 years (HR: 0.72, 95% CI: 0.61-0.86, P < 0.01) and those receiving cord blood transplantation (HR: 0.62, 95% CI: 0.48-0.79, P < 0.01). In Ph-positive cases, no significant difference was observed between the high and low-volume centers for 5-year OS (59.5% [95% CI: 56.2-62.7] vs. 54.9% [95% CI: 51.3-58.3], P = 0.054). In multivariate analysis, center volume did not emerge as a significant prognostic indicator. This study showed center effects on survival in Ph-negative but not in Ph-positive cases, highlighting the heterogeneity of the center effect in allo-HSCT for B-cell acute lymphoblastic leukemia. Collaborative efforts among transplant centers and further validation are essential to improve outcomes.
Collapse
Affiliation(s)
- Shuhei Kurosawa
- Department of Hematology, Yokohama Municipal Citizen's Hospital, Yokohama, Japan.
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | | | - Junya Kanda
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Goto
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Koji Kato
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Makoto Yoshimitsu
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Fumihiko Ishimaru
- Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | - Atsushi Sato
- Department of Hematology and Oncology, Miyagi Children's Hospital, Sendai, Japan
| | - Makoto Onizuka
- Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Keitaro Matsuo
- Division Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Isehara, Japan
| | - Yuri Ito
- Department of Medical Statistics, Research & Development Center, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Atsumi Yanagisawa
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
| | - Marie Ohbiki
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan; Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan; Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ken Tabuch
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan; Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yasuyuki Arai
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Ushijima Y, Naruse S, Ishikawa Y, Kawashima N, Sanada M, Nakashima M, Kim JH, Terakura S, Kihara R, Watamoto K, Nishiyama T, Kitamura K, Matsushita T, Kiyoi H. Initiating-clone analysis in patients with acute myeloid leukemia secondary to essential thrombocythemia. Sci Rep 2024; 14:15906. [PMID: 38987297 PMCID: PMC11237009 DOI: 10.1038/s41598-024-66461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Most of essential thrombocythemia (ET) patients have the clone harboring a mutation in one of the JAK2, CALR, or MPL gene, and these clones generally acquire additional mutations at transformation to acute myeloid leukemia (AML). However, the proliferation of triple-negative clones has sometimes been observed at AML transformation. To clarify the clonal evolution of ET to AML, we analyzed paired samples at ET and AML transformation in eight patients. We identified that JAK2-unmutated AML clones proliferated at AML transformation in three patients in whom the JAK2-mutated clone was dominant at ET. In two patients, TET2-mutated, but not JAK2-mutated, clones might be common initiating clones for ET and transformed AML. In a patient with JAK2-mutated ET, SMARCC2, UBR4, and ZNF143, but not JAK2, -mutated clones proliferated at AML transformation. Precise analysis using single-cell sorted CD34+/CD38- fractions suggested that ET clone with JAK2-mutated and AML clone with TP53 mutation was derived from the common clone with these mutations. Although further study is required to clarify the biological significance of SMARCC2, UBR4, and ZNF143 mutations during disease progression of ET and AML transformation, the present results demonstrate the possibility of a common initial clone involved in both ET and transformed AML.
Collapse
Affiliation(s)
- Yoko Ushijima
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Tsurumai-Cho 65, Showa-Ku, Nagoya, 466-8550, Japan
| | - Seara Naruse
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Tsurumai-Cho 65, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yuichi Ishikawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Tsurumai-Cho 65, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Naomi Kawashima
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Tsurumai-Cho 65, Showa-Ku, Nagoya, 466-8550, Japan
| | - Masashi Sanada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Marie Nakashima
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Tsurumai-Cho 65, Showa-Ku, Nagoya, 466-8550, Japan
| | - Jeong Hui Kim
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Tsurumai-Cho 65, Showa-Ku, Nagoya, 466-8550, Japan
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Tsurumai-Cho 65, Showa-Ku, Nagoya, 466-8550, Japan
| | - Rika Kihara
- Department of Hematology and Oncology, Konan Kosei Hospital, Konan, Japan
- Department of Hematology, Komaki City Hospital, Komaki, Japan
| | - Koichi Watamoto
- Department of Hematology, Komaki City Hospital, Komaki, Japan
| | - Takahiro Nishiyama
- Division of Hematology, Ichinomiya Municipal Hospital, Ichinomiya, Japan
| | - Kunio Kitamura
- Division of Hematology, Ichinomiya Municipal Hospital, Ichinomiya, Japan
| | - Tadashi Matsushita
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Tsurumai-Cho 65, Showa-Ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
11
|
Yamada C, Okada K, Odaira K, Tokoro M, Iwamoto E, Sanada M, Noura M, Okamoto S, Yasuda T, Tsuzuki S, Kiyoi H, Hayakawa F. RGS1 and CREB5 are direct and common transcriptional targets of ZNF384-fusion proteins. Cancer Med 2024; 13:e7471. [PMID: 39015025 PMCID: PMC11252495 DOI: 10.1002/cam4.7471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND ZNF384-fusion (Z-fusion) genes were recently identified in B-cell acute lymphoblastic leukemia (B-ALL) and are frequent in Japanese adult patients. The frequency is about 20% in those with Philadelphia chromosome-negative B-ALL. ZNF384 is a transcription factor and Z-fusion proteins have increased transcriptional activity; however, the detailed mechanisms of leukemogenesis of Z-fusion proteins have yet to be clarified. METHODS We established three transfectants of cell lines expressing different types of Z-fusion proteins, and analyzed their gene expression profile (GEP) by RNA-seq. We also analyzed the GEP of clinical ALL samples using our previous RNA-seq data of 323 Japanese ALL patients. We selected upregulated genes in both Z-fusion gene-expressing transfectants and Z-fusion gene-positive ALL samples, and investigated the binding of Z-fusion proteins to regulatory regions of the candidate genes by ChIP-qPCR. RESULTS We selected six commonly upregulated genes. After the investigation by ChIP-qPCR, we finally identified CREB5 and RGS1 as direct and common target genes. RGS1 is an inhibitor of CXCL12-CXCR4 signaling that is required for the homing of hematopoietic progenitor cells to the bone marrow microenvironment and development of B cells. Consistent with this, Z-fusion gene transfectants showed impaired migration toward CXCL12. CONCLUSIONS We identified CREB5 and RGS1 as direct and common transcriptional targets of Z-fusion proteins. The present results provide novel insight into the aberrant transcriptional regulation by Z-fusion proteins.
Collapse
Affiliation(s)
- Chiharu Yamada
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Kentaro Okada
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Koya Odaira
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Mahiru Tokoro
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Eisuke Iwamoto
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Masashi Sanada
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Mina Noura
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Syuichi Okamoto
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Takahiko Yasuda
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Shinobu Tsuzuki
- Department of BiochemistryAichi Medical University School of MedicineNagakuteJapan
| | - Hitoshi Kiyoi
- Department of Hematology and OncologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
12
|
Pagliaro L, Chen SJ, Herranz D, Mecucci C, Harrison CJ, Mullighan CG, Zhang M, Chen Z, Boissel N, Winter SS, Roti G. Acute lymphoblastic leukaemia. Nat Rev Dis Primers 2024; 10:41. [PMID: 38871740 DOI: 10.1038/s41572-024-00525-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Acute lymphoblastic leukaemia (ALL) is a haematological malignancy characterized by the uncontrolled proliferation of immature lymphoid cells. Over past decades, significant progress has been made in understanding the biology of ALL, resulting in remarkable improvements in its diagnosis, treatment and monitoring. Since the advent of chemotherapy, ALL has been the platform to test for innovative approaches applicable to cancer in general. For example, the advent of omics medicine has led to a deeper understanding of the molecular and genetic features that underpin ALL. Innovations in genomic profiling techniques have identified specific genetic alterations and mutations that drive ALL, inspiring new therapies. Targeted agents, such as tyrosine kinase inhibitors and immunotherapies, have shown promising results in subgroups of patients while minimizing adverse effects. Furthermore, the development of chimeric antigen receptor T cell therapy represents a breakthrough in ALL treatment, resulting in remarkable responses and potential long-term remissions. Advances are not limited to treatment modalities alone. Measurable residual disease monitoring and ex vivo drug response profiling screening have provided earlier detection of disease relapse and identification of exceptional responders, enabling clinicians to adjust treatment strategies for individual patients. Decades of supportive and prophylactic care have improved the management of treatment-related complications, enhancing the quality of life for patients with ALL.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Cristina Mecucci
- Department of Medicine, Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nicolas Boissel
- Hôpital Saint-Louis, APHP, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Stuart S Winter
- Children's Minnesota Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy.
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
13
|
Gökbuget N, Boissel N, Chiaretti S, Dombret H, Doubek M, Fielding A, Foà R, Giebel S, Hoelzer D, Hunault M, Marks DI, Martinelli G, Ottmann O, Rijneveld A, Rousselot P, Ribera J, Bassan R. Diagnosis, prognostic factors, and assessment of ALL in adults: 2024 ELN recommendations from a European expert panel. Blood 2024; 143:1891-1902. [PMID: 38295337 DOI: 10.1182/blood.2023020794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/02/2024] Open
Abstract
ABSTRACT Working groups of the European LeukemiaNet have published several important consensus guidelines. Acute lymphoblastic leukemia (ALL) has many different clinical and biological subgroups and the knowledge on disease biology and therapeutic options is increasing exponentially. The European Working Group for Adult ALL has therefore summarized the current state of the art and provided comprehensive consensus recommendations for diagnostic approaches, biologic and clinical characterization, prognostic factors, and risk stratification as well as definitions of endpoints and outcomes. Aspects of treatment, management of subgroups and specific situations, aftercare, and supportive care are covered in a separate publication. The present recommendation intends to provide guidance for the initial management of adult patients with ALL and to define principles as a basis for future collaborative research.
Collapse
Affiliation(s)
- Nicola Gökbuget
- Department of Medicine II, Hematology/Oncology, Goethe University, University Hospital, Frankfurt, Germany
| | - Nicolas Boissel
- Hospital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Hervé Dombret
- Leukemia Department, University Hospital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Saint-Louis Research Institute, Université Paris Cité, Paris, France
| | - Michael Doubek
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | | | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Sebastian Giebel
- Department of Bone Marrow Transplantation and Onco-Hematology, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Dieter Hoelzer
- Department of Medicine II, Hematology/Oncology, Goethe University, University Hospital, Frankfurt, Germany
| | - Mathilde Hunault
- Maladies du Sang University Hospital of Angers, FHU Goal, INSERM, National Centre for Scientific Research, Angers, France
| | - David I Marks
- University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori Dino Amadori, Meldola, Italy
| | - Oliver Ottmann
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | | | - Philippe Rousselot
- Clinical Hematology Department, Centre Hospitalier de Versailles, Université Paris-Saclay, Versailles, France
| | - Josep Ribera
- Clinical Hematology Department, Institut Catala d'Oncologia-Hospital Germans Trias I Pujol, Josep Carreras Research Institute, Badalona, Spain
| | - Renato Bassan
- Division of Hematology, Ospedale dell'Angelo, Mestre-Venice, Italy
| |
Collapse
|
14
|
Ling RE, Cross JW, Roy A. Aberrant stem cell and developmental programs in pediatric leukemia. Front Cell Dev Biol 2024; 12:1372899. [PMID: 38601080 PMCID: PMC11004259 DOI: 10.3389/fcell.2024.1372899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Hematopoiesis is a finely orchestrated process, whereby hematopoietic stem cells give rise to all mature blood cells. Crucially, they maintain the ability to self-renew and/or differentiate to replenish downstream progeny. This process starts at an embryonic stage and continues throughout the human lifespan. Blood cancers such as leukemia occur when normal hematopoiesis is disrupted, leading to uncontrolled proliferation and a block in differentiation of progenitors of a particular lineage (myeloid or lymphoid). Although normal stem cell programs are crucial for tissue homeostasis, these can be co-opted in many cancers, including leukemia. Myeloid or lymphoid leukemias often display stem cell-like properties that not only allow proliferation and survival of leukemic blasts but also enable them to escape treatments currently employed to treat patients. In addition, some leukemias, especially in children, have a fetal stem cell profile, which may reflect the developmental origins of the disease. Aberrant fetal stem cell programs necessary for leukemia maintenance are particularly attractive therapeutic targets. Understanding how hijacked stem cell programs lead to aberrant gene expression in place and time, and drive the biology of leukemia, will help us develop the best treatment strategies for patients.
Collapse
Affiliation(s)
- Rebecca E. Ling
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Joe W. Cross
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Anindita Roy
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| |
Collapse
|
15
|
Li L, Zhang D, Cao X. EBF1, PAX5, and MYC: regulation on B cell development and association with hematologic neoplasms. Front Immunol 2024; 15:1320689. [PMID: 38318177 PMCID: PMC10839018 DOI: 10.3389/fimmu.2024.1320689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
During lymphocyte development, a diverse repertoire of lymphocyte antigen receptors is produced to battle against pathogens, which is the basis of adaptive immunity. The diversity of the lymphocyte antigen receptors arises primarily from recombination-activated gene (RAG) protein-mediated V(D)J rearrangement in early lymphocytes. Furthermore, transcription factors (TFs), such as early B cell factor 1 (EBF1), paired box gene 5 (PAX5), and proto-oncogene myelocytomatosis oncogene (MYC), play critical roles in regulating recombination and maintaining normal B cell development. Therefore, the aberrant expression of these TFs may lead to hematologic neoplasms.
Collapse
Affiliation(s)
- Li Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Daiquan Zhang
- Department of Traditional Chinese Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xinmei Cao
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
16
|
Hu Z, Kovach AE, Yellapantula V, Ostrow D, Doan A, Ji J, Schmidt RJ, Gu Z, Bhojwani D, Raca G. Transcriptome Sequencing Allows Comprehensive Genomic Characterization of Pediatric B-Acute Lymphoblastic Leukemia in an Academic Clinical Laboratory. J Mol Diagn 2024; 26:49-60. [PMID: 37981088 PMCID: PMC10773144 DOI: 10.1016/j.jmoldx.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 11/21/2023] Open
Abstract
Studies have shown the power of transcriptome sequencing [RNA sequencing (RNA-Seq)] in identifying known and novel oncogenic drivers and molecular subtypes of B-acute lymphoblastic leukemia (B-ALL). The current study investigated whether the clinically validated RNA-Seq assay, coupled with a custom analysis pipeline, could be used for a comprehensive B-ALL classification. Following comprehensive clinical testing, RNA-Seq was performed on 76 retrospective B-ALL cases, 28 of which had known and 48 had undetermined subtype. Subtypes were accurately identified in all 28 known cases, and in 38 of 48 unknown cases (79%). The subtypes of the unknown cases included the following: PAX5alt (n = 12), DUX4-rearranged (n = 6), Philadelphia chromosome-like (n = 5), low hyperdiploid (n = 4), ETV6::RUNX1-like (n = 3), MEF2D-rearranged (n = 2), PAX5 P80R (n = 2), ZEB2/CEBP (n = 1), NUTM1-rearranged (n = 1), ZNF384-rearranged (n = 1), and TCF3::PBX1 (n = 1). In 15 of 38 cases (39%), classification based on expression profile was corroborated by detection of subtype-defining oncogenic drivers missed by clinical testing. RNA-Seq analysis also detected large copy number abnormalities, oncogenic hot-spot sequence variants, and intragenic IKZF1 deletions. This pilot study confirms the feasibility of implementing an RNA-Seq workflow for clinical diagnosis of molecular subtypes in pediatric B-ALL, reinforcing that RNA-Seq represents a promising global genomic assay for this heterogeneous leukemia.
Collapse
Affiliation(s)
- Zunsong Hu
- Department of Computational and Quantitative Medicine and Systems Biology, Beckman Research Institute of City of Hope, Duarte, California
| | - Alexandra E Kovach
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Venkata Yellapantula
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Dejerianne Ostrow
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Andrew Doan
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, California
| | - Jianling Ji
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Ryan J Schmidt
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Zhaohui Gu
- Department of Computational and Quantitative Medicine and Systems Biology, Beckman Research Institute of City of Hope, Duarte, California.
| | - Deepa Bhojwani
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, California
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California.
| |
Collapse
|
17
|
Ito M, Fukushima N, Fujii T, Numata M, Morikawa S, Kawamura Y, Goto M, Kohno A, Imahashi N, Yasuda T, Sanada M, Ishikawa Y, Kiyoi H, Ozeki K. Clonal hematopoiesis of a novel dic(18;20) clone following allogeneic hematopoietic stem cell transplantation. Int J Hematol 2024; 119:80-87. [PMID: 37980303 DOI: 10.1007/s12185-023-03673-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/30/2023] [Accepted: 10/19/2023] [Indexed: 11/20/2023]
Abstract
A 55-year-old man in first complete remission of acute myeloid leukemia with a normal karyotype underwent allogeneic hematopoietic stem cell transplantation from a human-leukocyte-antigen-matched sibling. Bone marrow examination on day 28 confirmed complete remission, but G-banding analysis revealed a novel chromosomal abnormality, including dic(18;20)(p11.2;q11.2). The patient developed moderate chronic graft-versus-host disease on day 174, and the abnormal clones identified by dic(18;20) significantly increased after that point. Chimerism testing repeatedly confirmed complete donor type. Although next-generation sequencing showed no clonal hematopoiesis-related gene mutations, copy number analysis of the donor and the recipient revealed copy number deletion of 18p, 18q, and 20q. The patient has maintained remission for more than 2 years to date without developing a hematologic neoplasm or cytopenia. The distinctive clonal hematopoiesis with a dicentric chromosome seemed to have undergone the breakage-fusion-bridge cycle, which could cause the complex events of deletion, amplification, and inversion. These copy number alterations might have increased the number of clones with growth advantage, and the highly inflammatory environment in the recipient due to graft-versus-host disease might have contributed to the clonal selection.
Collapse
Affiliation(s)
- Makoto Ito
- Department of Hematology and Oncology, Konan Kosei Hospital, 137 Omatsubara, Takaya-Cho, Konan, Aichi, 483-8704, Japan
- Department of Hematology, Tokoname City Hospital, Tokoname, Japan
| | - Nobuaki Fukushima
- Department of Hematology and Oncology, Konan Kosei Hospital, 137 Omatsubara, Takaya-Cho, Konan, Aichi, 483-8704, Japan
| | - Tomoki Fujii
- Department of Hematology and Oncology, Konan Kosei Hospital, 137 Omatsubara, Takaya-Cho, Konan, Aichi, 483-8704, Japan
| | - Masaya Numata
- Department of Hematology and Oncology, Konan Kosei Hospital, 137 Omatsubara, Takaya-Cho, Konan, Aichi, 483-8704, Japan
| | - Shiori Morikawa
- Department of Hematology and Oncology, Konan Kosei Hospital, 137 Omatsubara, Takaya-Cho, Konan, Aichi, 483-8704, Japan
| | - Yuma Kawamura
- Department of Hematology and Oncology, Konan Kosei Hospital, 137 Omatsubara, Takaya-Cho, Konan, Aichi, 483-8704, Japan
| | - Miyo Goto
- Department of Hematology and Oncology, Konan Kosei Hospital, 137 Omatsubara, Takaya-Cho, Konan, Aichi, 483-8704, Japan
| | - Akio Kohno
- Department of Hematology and Oncology, Konan Kosei Hospital, 137 Omatsubara, Takaya-Cho, Konan, Aichi, 483-8704, Japan
| | - Nobuhiko Imahashi
- Department of Hematology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Takahiko Yasuda
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Masashi Sanada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yuichi Ishikawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazutaka Ozeki
- Department of Hematology and Oncology, Konan Kosei Hospital, 137 Omatsubara, Takaya-Cho, Konan, Aichi, 483-8704, Japan.
| |
Collapse
|
18
|
Li D, Zhao S, Mao L, Jin J, Wang J. Salvage treatment in IDH1 mutated acute lymphoblastic leukemia with venetoclax plus methotrexate and pegaspargase: A case report. Genes Dis 2023; 10:2215-2217. [PMID: 37554212 PMCID: PMC10404947 DOI: 10.1016/j.gendis.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 02/08/2023] [Indexed: 08/10/2023] Open
Affiliation(s)
- Dan Li
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China
| | - Shuqi Zhao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Liping Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
19
|
Beder T, Hansen BT, Hartmann AM, Zimmermann J, Amelunxen E, Wolgast N, Walter W, Zaliova M, Antić Ž, Chouvarine P, Bartsch L, Barz MJ, Bultmann M, Horns J, Bendig S, Kässens J, Kaleta C, Cario G, Schrappe M, Neumann M, Gökbuget N, Bergmann AK, Trka J, Haferlach C, Brüggemann M, Baldus CD, Bastian L. The Gene Expression Classifier ALLCatchR Identifies B-cell Precursor ALL Subtypes and Underlying Developmental Trajectories Across Age. Hemasphere 2023; 7:e939. [PMID: 37645423 PMCID: PMC10461941 DOI: 10.1097/hs9.0000000000000939] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/26/2023] [Indexed: 08/31/2023] Open
Abstract
Current classifications (World Health Organization-HAEM5/ICC) define up to 26 molecular B-cell precursor acute lymphoblastic leukemia (BCP-ALL) disease subtypes by genomic driver aberrations and corresponding gene expression signatures. Identification of driver aberrations by transcriptome sequencing (RNA-Seq) is well established, while systematic approaches for gene expression analysis are less advanced. Therefore, we developed ALLCatchR, a machine learning-based classifier using RNA-Seq gene expression data to allocate BCP-ALL samples to all 21 gene expression-defined molecular subtypes. Trained on n = 1869 transcriptome profiles with established subtype definitions (4 cohorts; 55% pediatric / 45% adult), ALLCatchR allowed subtype allocation in 3 independent hold-out cohorts (n = 1018; 75% pediatric / 25% adult) with 95.7% accuracy (averaged sensitivity across subtypes: 91.1% / specificity: 99.8%). High-confidence predictions were achieved in 83.7% of samples with 98.9% accuracy. Only 1.2% of samples remained unclassified. ALLCatchR outperformed existing tools and identified novel driver candidates in previously unassigned samples. Additional modules provided predictions of samples blast counts, patient's sex, and immunophenotype, allowing the imputation in cases where these information are missing. We established a novel RNA-Seq reference of human B-lymphopoiesis using 7 FACS-sorted progenitor stages from healthy bone marrow donors. Implementation in ALLCatchR enabled projection of BCP-ALL samples to this trajectory. This identified shared proximity patterns of BCP-ALL subtypes to normal lymphopoiesis stages, extending immunophenotypic classifications with a novel framework for developmental comparisons of BCP-ALL. ALLCatchR enables RNA-Seq routine application for BCP-ALL diagnostics with systematic gene expression analysis for accurate subtype allocation and novel insights into underlying developmental trajectories.
Collapse
Affiliation(s)
- Thomas Beder
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Björn-Thore Hansen
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alina M Hartmann
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
| | - Johannes Zimmermann
- Institute of Experimental Medicine, Research Group Medical Systems Biology, Christian-Albrechts-University Kiel, Germany
| | - Eric Amelunxen
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nadine Wolgast
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
| | | | - Marketa Zaliova
- Childhood Leukaemia Investigation Prague, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Željko Antić
- Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Philippe Chouvarine
- Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Lorenz Bartsch
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Malwine J Barz
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
| | - Miriam Bultmann
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Johanna Horns
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sonja Bendig
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
| | - Jan Kässens
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christoph Kaleta
- Institute of Experimental Medicine, Research Group Medical Systems Biology, Christian-Albrechts-University Kiel, Germany
| | - Gunnar Cario
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
- Department of Pediatrics, University Hospital Schleswig-Holstein Kiel, Germany
| | - Martin Schrappe
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
- Department of Pediatrics, University Hospital Schleswig-Holstein Kiel, Germany
| | - Martin Neumann
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
| | - Nicola Gökbuget
- Department of Medicine II, Hematology/Oncology, Goethe University Hospital, Frankfurt/M., Germany
| | | | - Jan Trka
- Childhood Leukaemia Investigation Prague, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | | | - Monika Brüggemann
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
| | - Claudia D Baldus
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
| | - Lorenz Bastian
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
| |
Collapse
|
20
|
Leongamornlert D, Gutiérrez-Abril J, Lee S, Barretta E, Creasey T, Gundem G, Levine MF, Arango-Ossa JE, Liosis K, Medina-Martinez JS, Zuborne Alapi K, Kirkwood AA, Clifton-Hadley L, Patrick P, Jones D, O’Neill L, Butler AP, Harrison CJ, Campbell P, Patel B, Moorman AV, Fielding AK, Papaemmanuil E. Diagnostic utility of whole genome sequencing in adults with B-other acute lymphoblastic leukemia. Blood Adv 2023; 7:3862-3873. [PMID: 36867579 PMCID: PMC10405200 DOI: 10.1182/bloodadvances.2022008992] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/12/2023] [Indexed: 03/04/2023] Open
Abstract
Genomic profiling during the diagnosis of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in adults is used to guide disease classification, risk stratification, and treatment decisions. Patients for whom diagnostic screening fails to identify disease-defining or risk-stratifying lesions are classified as having B-other ALL. We screened a cohort of 652 BCP-ALL cases enrolled in UKALL14 to identify and perform whole genome sequencing (WGS) of paired tumor-normal samples. For 52 patients with B-other, we compared the WGS findings with data from clinical and research cytogenetics. WGS identified a cancer-associated event in 51 of 52 patients, including an established subtype defining genetic alterations that were previously missed with standard-of-care (SoC) genetics in 5 of them. Of the 47 true B-other ALL, we identified a recurrent driver in 87% (41). A complex karyotype via cytogenetics emerges as a heterogeneous group, including distinct genetic alterations associated with either favorable (DUX4-r) or poor outcomes (MEF2D-r and IGK::BCL2). For a subset of 31 cases, we integrated the findings from RNA sequencing (RNA-seq) analysis to include fusion gene detection and classification based on gene expression. Compared with RNA-seq, WGS was sufficient to detect and resolve recurrent genetic subtypes; however, RNA-seq can provide orthogonal validation of findings. In conclusion, we demonstrated that WGS can identify clinically relevant genetic abnormalities missed with SoC testing as well as identify leukemia driver events in virtually all cases of B-other ALL.
Collapse
Affiliation(s)
- Daniel Leongamornlert
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Jesús Gutiérrez-Abril
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - SooWah Lee
- Department of Haematology, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Emilio Barretta
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas Creasey
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gunes Gundem
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Max F. Levine
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Juan E. Arango-Ossa
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Konstantinos Liosis
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Juan S. Medina-Martinez
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Krisztina Zuborne Alapi
- Department of Haematology, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Amy A. Kirkwood
- Cancer Research UK & UCL Cancer Trials Centre, UCL Cancer Institute, UCL, London, United Kingdom
| | - Laura Clifton-Hadley
- Cancer Research UK & UCL Cancer Trials Centre, UCL Cancer Institute, UCL, London, United Kingdom
| | - Pip Patrick
- Cancer Research UK & UCL Cancer Trials Centre, UCL Cancer Institute, UCL, London, United Kingdom
| | - David Jones
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Laura O’Neill
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Adam P. Butler
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Christine J. Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Peter Campbell
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Bela Patel
- Department of Haemato-Oncology, Barts Cancer Institute, Queen Mary University, London, United Kingdom
| | - Anthony V. Moorman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Adele K. Fielding
- Department of Haematology, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Elli Papaemmanuil
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
21
|
Mayumi A, Imamura T, Yoshida H, Osone S, Yasuda T, Iehara T. Leukaemic cells expressing ETV6::FRK are sensitive to dasatinib in vivo. EJHAEM 2023; 4:751-755. [PMID: 37601849 PMCID: PMC10435712 DOI: 10.1002/jha2.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 08/22/2023]
Abstract
ETV6::Fyn-related kinase (FRK), which is a Src family tyrosine-kinase-related fusion gene and firstly identified in our patient with paediatric high risk B cell precursor acute lymphoblastic leukaemia (B-ALL), has no evidence of efficacy of tyrosine kinase inhibitor in vivo. We performed functional analysis of ETV6::FRK to establish molecular targeting therapy and determined that dasatinib could abrogate proliferation activity of ETV6::FRK through the repression of FRK-STAT3/STAT5 pathway in vitro and significantly extended the survival time of the xenografted mice in vivo (p < 0.01). Our data support the potential of dasatinib as a therapeutic option for patients with B-ALL harboring FRK rearrangements.
Collapse
Affiliation(s)
- Azusa Mayumi
- Department of PaediatricsKyoto Prefectural University of MedicineKyotoJapan
| | - Toshihiko Imamura
- Department of PaediatricsKyoto Prefectural University of MedicineKyotoJapan
| | - Hideki Yoshida
- Department of PaediatricsKyoto Prefectural University of MedicineKyotoJapan
| | - Shinya Osone
- Department of PaediatricsKyoto Prefectural University of MedicineKyotoJapan
| | - Takahiko Yasuda
- Clinical Research CenterNagoya Medical CentreNational Hospital OrganizationNagoyaJapan
| | - Tomoko Iehara
- Department of PaediatricsKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
22
|
Kojima Y, Kawashima F, Yasuda T, Odaira K, Inagaki Y, Yamada C, Muraki A, Noura M, Okamoto S, Tamura S, Iwamoto E, Sanada M, Matsumura I, Miyazaki Y, Kojima T, Kiyoi H, Tsuzuki S, Hayakawa F. EBF1-JAK2 inhibits the PAX5 function through physical interaction with PAX5 and kinase activity. Int J Hematol 2023:10.1007/s12185-023-03585-z. [PMID: 37149540 DOI: 10.1007/s12185-023-03585-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
Gene aberrations of B-cell regulators and growth signal components such as the JAK-STAT pathway are frequently found in B-cell acute lymphoblastic leukemia (B-ALL). EBF1 is a B-cell regulator that regulates the expression of PAX5 and co-operates with PAX5 to regulate B-cell differentiation. Here, we analyzed the function of the fusion protein of EBF1 and JAK2, EBF1-JAK2 (E-J). E-J caused constitutive activation of JAK-STAT and MAPK pathways and induced autonomous cell growth in a cytokine-dependent cell line. E-J did not affect the transcriptional activity of EBF1 but inhibited that of PAX5. Both the physical interaction of E-J with PAX5 and kinase activity of E-J were required for E-J to inhibit PAX5 function, although the detailed mechanism of inhibition remains unclear. Importantly, gene set enrichment analysis using the results of our previous RNA-seq data of 323 primary BCR-ABL1-negative ALL samples demonstrated repression of the transcriptional target genes of PAX5 in E-J-positive ALL cells, which suggests that E-J also inhibited PAX5 function in ALL cells. Our results shed new light on the mechanisms of differentiation block by kinase fusion proteins.
Collapse
Affiliation(s)
- Yukino Kojima
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-0047, Japan
| | - Fumika Kawashima
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-0047, Japan
| | - Takahiko Yasuda
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Koya Odaira
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-0047, Japan
| | - Yuichiro Inagaki
- Department of Hematology and Oncology, Anjo Kosei Hospital, Anjo, Japan
| | - Chiharu Yamada
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-0047, Japan
| | - Ami Muraki
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-0047, Japan
| | - Mina Noura
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-0047, Japan
| | - Shuichi Okamoto
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-0047, Japan
| | - Shogo Tamura
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-0047, Japan
| | - Eisuke Iwamoto
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Masashi Sanada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kindai University School of Medicine, Osaka, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tetsuhito Kojima
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-0047, Japan
- Aichi Health Promotion Foundation, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-0047, Japan.
| |
Collapse
|
23
|
Cai Y, Chen X, Lu T, Yu Z, Hu S, Liu J, Zhou X, Wang X. Single-cell transcriptome analysis profiles the expression features of TMEM173 in BM cells of high-risk B-cell acute lymphoblastic leukemia. BMC Cancer 2023; 23:372. [PMID: 37095455 PMCID: PMC10123968 DOI: 10.1186/s12885-023-10830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/08/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND As an essential regulator of type I interferon (IFN) response, TMEM173 participates in immune regulation and cell death induction. In recent studies, activation of TMEM173 has been regarded as a promising strategy for cancer immunotherapy. However, transcriptomic features of TMEM173 in B-cell acute lymphoblastic leukemia (B-ALL) remain elusive. METHODS Quantitative real-time PCR (qRT-PCR) and western blotting (WB) were applied to determine the mRNA and protein levels of TMEM173 in peripheral blood mononuclear cells (PBMCs). TMEM173 mutation status was assessed by Sanger sequencing. Single-cell RNA sequencing (scRNA-seq) analysis was performed to explore the expression of TMEM173 in different types of bone marrow (BM) cells. RESULTS The mRNA and protein levels of TMEM173 were increased in PBMCs from B-ALL patients. Besides, frameshift mutation was presented in TMEM173 sequences of 2 B-ALL patients. ScRNA-seq analysis identified the specific transcriptome profiles of TMEM173 in the BM of high-risk B-ALL patients. Specifically, expression levels of TMEM173 in granulocytes, progenitor cells, mast cells, and plasmacytoid dendritic cells (pDCs) were higher than that in B cells, T cells, natural killer (NK) cells, and dendritic cells (DCs). Subset analysis further revealed that TMEM173 and pyroptosis effector gasdermin D (GSDMD) restrained in precursor-B (pre-B) cells with proliferative features, which expressed nuclear factor kappa-B (NF-κB), CD19, and Bruton's tyrosine kinase (BTK) during the progression of B-ALL. In addition, TMEM173 was associated with the functional activation of NK cells and DCs in B-ALL. CONCLUSIONS Our findings provide insights into the transcriptomic features of TMEM173 in the BM of high-risk B-ALL patients. Targeted activation of TMEM173 in specific cells might provide new therapeutic strategies for B-ALL patients.
Collapse
Affiliation(s)
- Yiqing Cai
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Xiaomin Chen
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Tiange Lu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Zhuoya Yu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Jiarui Liu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
24
|
Davis K, Sheikh T, Aggarwal N. Emerging molecular subtypes and therapies in acute lymphoblastic leukemia. Semin Diagn Pathol 2023; 40:202-215. [PMID: 37120350 DOI: 10.1053/j.semdp.2023.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/01/2023]
Abstract
Tremendous strides have been made in the molecular and cytogenetic classification of acute lymphoblastic leukemia based on gene expression profiling data, leading to an expansion of entities in the recent International Consensus Classification (ICC) of myeloid neoplasms and acute leukemias and 2022 WHO Classification of Tumours: Haematolymphoid Tumors, 5th edition. This increased diagnostic and therapeutic complexity can be overwhelming, and this review compares nomenclature differences between the ICC and WHO 5th edition publications, compiles key features of each entity, and provides a diagnostic algorithmic approach. In covering B-lymphoblastic leukemia (B-ALL), we divided the entities into established (those present in the revised 4th edition WHO) and novel (those added to either the ICC or WHO 5th edition) groups. The established B-ALL entities include B-ALL with BCR::ABL1 fusion, BCR::ABL1-like features, KMT2A rearrangement, ETV6::RUNX1 rearrangement, high hyperdiploidy, hypodiploidy (focusing on near haploid and low hypodiploid), IGH::IL3 rearrangement, TCF3::PBX1 rearrangement, and iAMP21. The novel B-ALL entities include B-ALL with MYC rearrangement; DUX4 rearrangement; MEF2D rearrangement; ZNF384 or ZNF362 rearrangement, NUTM1 rearrangement; HLF rearrangement; UBTF::ATXN7L3/PAN3,CDX2; mutated IKZF1 N159Y; mutated PAX5 P80R; ETV6::RUNX1-like features; PAX5 alteration; mutated ZEB2 (p.H1038R)/IGH::CEBPE; ZNF384 rearranged-like; KMT2A-rearranged-like; and CRLF2 rearrangement (non-Ph-like). Classification of T-ALL is complex with some variability in how the subtypes are defined in recent literature. It was classified as early T-precursor lymphoblastic leukemia/lymphoma and T-ALL, NOS in the WHO revised 4th edition and WHO 5th edition. The ICC added an entity into early T-cell precursor ALL, BCL11B-activated, and also added provisional entities subclassified based on transcription factor families that are aberrantly activated.
Collapse
Affiliation(s)
- Katelynn Davis
- Department of Hematopathology, School of Medicine and UPMC, University of Pittsburgh, USA
| | | | - Nidhi Aggarwal
- Department of Hematopathology, School of Medicine and UPMC, University of Pittsburgh, USA.
| |
Collapse
|
25
|
Odaira K, Yasuda T, Okada K, Shimooka T, Kojima Y, Noura M, Tamura S, Kurahashi S, Iwamoto E, Sanada M, Matsumura I, Miyazaki Y, Kojima T, Kiyoi H, Tsuzuki S, Hayakawa F. Functional inhibition of MEF2 by C/EBP is a possible mechanism of leukemia development by CEBP-IGH fusion gene. Cancer Sci 2023; 114:781-792. [PMID: 36341510 PMCID: PMC9986073 DOI: 10.1111/cas.15641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
CEBPA-IGH, a fusion gene of the immunoglobulin heavy-chain locus (IGH) and the CCAAT enhancer-binding protein α (C/EBPα) gene, is recurrently found in B-ALL cases and causes aberrant expression of C/EBPα, a master regulator of granulocyte differentiation, in B cells. Forced expression of C/EBPα in B cells was reported to cause loss of B-cell identity due to the inhibition of Pax5, a master regulator of B-cell differentiation; however, it is not known whether the same mechanism is applicable for B-ALL development by CEBPA-IGH. It is known that a full-length isoform of C/EBPα, p42, promotes myeloid differentiation, whereas its N-terminal truncated isoform, p30, inhibits myeloid differentiation through the inhibition of p42; however, the differential role between p42 and p30 in ALL development has not been clarified. In the present study, we examined the effect of the expression of p42 and p30 in B cells by performing RNA-seq of mRNA from LCL stably transfected with p42 or p30. Unexpectedly, suppression of PAX5 target genes was barely observed. Instead, both isoforms suppressed the target genes of MEF2 family members (MEF2s), other regulators of B-cell differentiation. Similarly, MEF2s target genes rather than PAX5 target genes were suppressed in CEBP-IGH-positive ALL (n = 8) compared with other B-ALL (n = 315). Furthermore, binding of both isoforms to MEF2s target genes and the reduction of surrounding histone acetylation were observed in ChIP-qPCR. Our data suggest that the inhibition of MEF2s by C/EBPα plays a role in the development of CEBPA-IGH-positive ALL and that both isoforms work co-operatively to achieve it.
Collapse
Affiliation(s)
- Koya Odaira
- Department of Integrated Health Sciences, Division of Cellular and Genetic Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiko Yasuda
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Kentaro Okada
- Department of Integrated Health Sciences, Division of Cellular and Genetic Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuya Shimooka
- Department of Integrated Health Sciences, Division of Cellular and Genetic Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukino Kojima
- Department of Integrated Health Sciences, Division of Cellular and Genetic Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mina Noura
- Department of Integrated Health Sciences, Division of Cellular and Genetic Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shogo Tamura
- Department of Integrated Health Sciences, Division of Cellular and Genetic Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shingo Kurahashi
- Division of Hematology and Oncology, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Eisuke Iwamoto
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Masashi Sanada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kindai University School of Medicine, Osaka, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tetsuhito Kojima
- Department of Integrated Health Sciences, Division of Cellular and Genetic Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Aichi Health Promotion Foundation, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Fumihiko Hayakawa
- Department of Integrated Health Sciences, Division of Cellular and Genetic Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
26
|
Duffield AS, Mullighan CG, Borowitz MJ. International Consensus Classification of acute lymphoblastic leukemia/lymphoma. Virchows Arch 2023; 482:11-26. [PMID: 36422706 PMCID: PMC10646822 DOI: 10.1007/s00428-022-03448-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022]
Abstract
The updated International Consensus Classification (ICC) of B-acute lymphoblastic leukemia (B-ALL) and T-acute lymphoblastic leukemia (T-ALL) includes both revisions to subtypes previously outlined in the 2016 WHO classification and several newly described entities. The ICC classification incorporates recent clinical, cytogenetic, and molecular data, with a particular emphasis on whole transcriptome analysis and gene expression (GEX) clustering studies. B-ALL classification is modified to further subclassify BCR::ABL1-positive B-ALL and hypodiploid B-ALL. Additionally, nine new categories of B-ALL are defined, including seven that contain distinguishing gene rearrangements, as well as two new categories that are characterized by a specific single gene mutation. Four provisional entities are also included in the updated B-ALL classification, although definitive identification of these subtypes requires GEX studies. T-ALL classification is also updated to incorporate BCL11B-activating rearrangements into early T-precursor (ETP) ALL taxonomy. Additionally, eight new provisional entities are added to the T-ALL subclassification. The clinical implications of the new entities are discussed, as are practical approaches to the use of different technologies in diagnosis. The enhanced specificity of the new classification will allow for improved risk stratification and optimized treatment plans for patients with ALL.
Collapse
Affiliation(s)
- Amy S. Duffield
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
27
|
Yasuda T, Sanada M, Tsuzuki S, Hayakawa F. Oncogenic lesions and molecular subtypes in adults with B-cell acute lymphoblastic leukemia. Cancer Sci 2022; 114:8-15. [PMID: 36106363 PMCID: PMC9807527 DOI: 10.1111/cas.15583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/12/2022] [Accepted: 09/04/2022] [Indexed: 01/07/2023] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL), a genetically heterogeneous disease, is classified into different molecular subtypes that are defined by recurrent gene rearrangements, gross chromosomal abnormalities, or specific gene mutations. Cells with these genetic alterations acquire a leukemia-initiating ability and show unique expression profiles. The distribution of B-ALL molecular subtypes is greatly dependent on age, which also affects treatment responsiveness and long-term survival, partly accounting for the inferior outcome in adolescents and young adults (AYA) and (older) adults with B-ALL. Recent advances in sequencing technology, especially RNA sequencing and the application of these technologies in large B-ALL cohorts have uncovered B-ALL molecular subtypes prevalent in AYA and adults. These new insights supply more precise estimations of prognoses and targeted therapies informed by sequencing results, as well as a deeper understanding of the genetic basis of AYA/adult B-ALL. This article provides an account of these technological advances and an overview of the recent major findings of B-ALL molecular subtypes in adults.
Collapse
Affiliation(s)
- Takahiko Yasuda
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Masashi Sanada
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Shinobu Tsuzuki
- Department of BiochemistryAichi Medical University School of MedicineNagakuteJapan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
28
|
Improvements in allogeneic hematopoietic cell transplantation outcomes for adults with ALL over the past 3 decades. Blood Adv 2022; 6:4558-4569. [PMID: 35737870 PMCID: PMC9636313 DOI: 10.1182/bloodadvances.2022008032] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a promising treatment for adult acute lymphoblastic leukemia (ALL), an intractable hematological malignancy. The trends in allo-HCT outcomes over the past 30 years were examined to verify the efficacy of evolving treatment methods and to identify further challenges. We analyzed data from a registry database that included 8467 adult ALL patients who underwent their first allo-HCT between 1990 and 2019. The period was divided into three 10-year intervals for analysis. Five-year overall survival improved from 48.2% to 70.2% in the first complete remission (CR1), from 25.6% to 44.1% in subsequent CR, and from 10.0% to 22.7% in non-CR. Nonrelapse mortality improved over the 3 decades in each disease stage. However, the relapse rate only improved in CR1 every decade (26.3% to 15.9% in CR1, 33.4% to 32.8% in subsequent CR, and 53.6% to 54.8% in non-CR). Although there were continual improvements in adjusted survival for Philadelphia chromosome (Ph)-positive patients, the improvement was inadequate for Ph− patients with t(4;11), t(8;14), t(14;18), or hypodiploidy. Allo-HCT outcomes for adults with ALL have improved over the past 30 years. Improved outcomes in the future will require more effective prevention of relapse in patients with ALL not in CR1 and in those with high-risk chromosomal abnormalities.
Collapse
|
29
|
Why B(-)other? About the gap of unknowns in ALL. Blood 2022; 139:3455-3457. [PMID: 35708724 PMCID: PMC9203700 DOI: 10.1182/blood.2022015993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
|
30
|
Mäkinen VP, Rehn J, Breen J, Yeung D, White DL. Multi-Cohort Transcriptomic Subtyping of B-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2022; 23:4574. [PMID: 35562965 PMCID: PMC9099612 DOI: 10.3390/ijms23094574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
RNA sequencing provides a snapshot of the functional consequences of genomic lesions that drive acute lymphoblastic leukemia (ALL). The aims of this study were to elucidate diagnostic associations (via machine learning) between mRNA-seq profiles, independently verify ALL lesions and develop easy-to-interpret transcriptome-wide biomarkers for ALL subtyping in the clinical setting. A training dataset of 1279 ALL patients from six North American cohorts was used for developing machine learning models. Results were validated in 767 patients from Australia with a quality control dataset across 31 tissues from 1160 non-ALL donors. A novel batch correction method was introduced and applied to adjust for cohort differences. Out of 18,503 genes with usable expression, 11,830 (64%) were confounded by cohort effects and excluded. Six ALL subtypes (ETV6::RUNX1, KMT2A, DUX4, PAX5 P80R, TCF3::PBX1, ZNF384) that covered 32% of patients were robustly detected by mRNA-seq (positive predictive value ≥ 87%). Five other frequent subtypes (CRLF2, hypodiploid, hyperdiploid, PAX5 alterations and Ph-positive) were distinguishable in 40% of patients at lower accuracy (52% ≤ positive predictive value ≤ 73%). Based on these findings, we introduce the Allspice R package to predict ALL subtypes and driver genes from unadjusted mRNA-seq read counts as encountered in real-world settings. Two examples of Allspice applied to previously unseen ALL patient samples with atypical lesions are included.
Collapse
Affiliation(s)
- Ville-Petteri Mäkinen
- Computational and Systems Biology Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Australian Centre for Precision Health, UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Computational Medicine, Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland
| | - Jacqueline Rehn
- Blood Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (J.R.); (D.Y.); (D.L.W.)
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia;
| | - James Breen
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia;
- South Australian Genomics Centre, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - David Yeung
- Blood Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (J.R.); (D.Y.); (D.L.W.)
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia;
- Australian and New Zealand Children’s Oncology Group, Clayton, VIC 3168, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA 5000, Australia
| | - Deborah L. White
- Blood Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (J.R.); (D.Y.); (D.L.W.)
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia;
- Australian and New Zealand Children’s Oncology Group, Clayton, VIC 3168, Australia
- Faculty of Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Australian Genomics Health Alliance, Parkville, VIC 3052, Australia
| |
Collapse
|
31
|
CDX2 and IDH1/2: new potential players in ALL. Blood 2022; 139:1778-1779. [PMID: 35323882 DOI: 10.1182/blood.2021014429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/20/2022] Open
|
32
|
Concurrent CDX2 cis-deregulation and UBTF-ATXN7L3 fusion define a novel high-risk subtype of B-cell ALL. Blood 2022; 139:3505-3518. [PMID: 35316324 PMCID: PMC9203705 DOI: 10.1182/blood.2021014723] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/12/2022] [Indexed: 11/20/2022] Open
Abstract
CDX2 cis-deregulation and UBTF::ATXN7L3 fusion driven by focal deletions define a novel subtype of B-ALL. CDX2/UBTF::ATXN7L3 is a high-risk B-ALL subtype in young adults, which warrants improved therapeutic strategies.
Oncogenic alterations underlying B-cell acute lymphoblastic leukemia (B-ALL) in adults remain incompletely elucidated. To uncover novel oncogenic drivers, we performed RNA sequencing and whole-genome analyses in a large cohort of unresolved B-ALL. We identified a novel subtype characterized by a distinct gene expression signature and the unique association of 2 genomic microdeletions. The 17q21.31 microdeletion resulted in a UBTF::ATXN7L3 fusion transcript encoding a chimeric protein. The 13q12.2 deletion resulted in monoallelic ectopic expression of the homeobox transcription factor CDX2, located 138 kb in cis from the deletion. Using 4C-sequencing and CRISPR interference experiments, we elucidated the mechanism of CDX2 cis-deregulation, involving PAN3 enhancer hijacking. CDX2/UBTF ALL (n = 26) harbored a distinct pattern of additional alterations including 1q gain and CXCR4 activating mutations. Within adult patients with Ph− B-ALL enrolled in GRAALL trials, patients with CDX2/UBTF ALL (n = 17/723, 2.4%) were young (median age, 31 years) and dramatically enriched in females (male/female ratio, 0.2, P = .002). They commonly presented with a pro-B phenotype ALL and moderate blast cell infiltration. They had poor response to treatment including a higher risk of failure to first induction course (19% vs 3%, P = .017) and higher post-induction minimal residual disease (MRD) levels (MRD ≥ 10−4, 93% vs 46%, P < .001). This early resistance to treatment translated into a significantly higher cumulative incidence of relapse (75.0% vs 32.4%, P = .004) in univariate and multivariate analyses. In conclusion, we discovered a novel B-ALL entity defined by the unique combination of CDX2 cis-deregulation and UBTF::ATXN7L3 fusion, representing a high-risk disease in young adults.
Collapse
|
33
|
UBTF::ATXN7L3 gene fusion defines novel B cell precursor ALL subtype with CDX2 expression and need for intensified treatment. Leukemia 2022; 36:1676-1680. [PMID: 35397658 PMCID: PMC9162919 DOI: 10.1038/s41375-022-01557-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/23/2022] [Indexed: 11/24/2022]
|