1
|
Handa S, Schaniel C, Tripodi J, Ahire D, Mia MB, Klingborg S, Tremblay D, Marcellino BK, Hoffman R, Najfeld V. HMGA2 overexpression with specific chromosomal abnormalities predominate in CALR and ASXL1 mutated myelofibrosis. Leukemia 2025; 39:663-674. [PMID: 39715853 PMCID: PMC11879852 DOI: 10.1038/s41375-024-02496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024]
Abstract
Although multiple genetic events are thought to play a role in promoting progression of the myeloproliferative neoplasms (MPN), the individual events that are associated with the development of more aggressive disease phenotypes remain poorly defined. Here, we report that novel genomic deletions at chromosome 12q14.3, as detected by a high-resolution array comparative genomic hybridization plus single nucleotide polymorphisms platform, occur in 11% of MPN patients with myelofibrosis (MF) and MPN-accelerated/blast phase (AP/BP) but was not detected in patients with polycythemia vera or essential thrombocythemia. These 12q14.3 deletions resulted in the loss of most of the non-coding region of exon 5 and MIRLET7 binding sites in the 3'UTR of the high mobility group AT hook 2 (HMGA2), which negatively regulate HMGA2 expression. These acquired 12q14.3 deletions were predominately detected in MF patients with CALR and ASXL1 co-mutations and led to a greater degree of HMGA2 transcript overexpression, independent of the presence of an ASXL1 mutation. Patients with 12q structural abnormalities involving HMGA2 exhibited a more aggressive clinical course, with a higher frequency of MPN-AP/BP evolution. These findings indicate that HMGA2 overexpression associated with genomic deletion of its 3'UTR region is a newly recognized genetic event that contributes to MPN progression.
Collapse
Affiliation(s)
- Shivani Handa
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Christoph Schaniel
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph Tripodi
- Department of Pathology and Molecular Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daiva Ahire
- Department of Pathology and Molecular Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Md Babu Mia
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophie Klingborg
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas Tremblay
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bridget K Marcellino
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald Hoffman
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Vesna Najfeld
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology and Molecular Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Resar LMS, Luo LZ. High Mobility Group A1 Chromatin Keys: Unlocking the Genome During MPN Progression. Int J Mol Sci 2025; 26:2125. [PMID: 40076747 PMCID: PMC11899949 DOI: 10.3390/ijms26052125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Patients with chronic, indolent myeloproliferative neoplasms (MPNs) are at risk for transformation to highly lethal leukemia, although targetable mechanisms driving progression remain elusive. We discovered that the High Mobility Group A1 (HMGA1) gene is up-regulated with MPN progression in patients and required for evolution into myelofibrosis (MF) or acute myeloid leukemia (AML) in preclinical models. HMGA1 encodes the HMGA1 epigenetic regulators that modulate the chromatin state during embryogenesis and tissue regeneration. While HMGA1 is silenced in most differentiated cells, it becomes aberrantly re-expressed in JAK2 mutant (JAK2-V617F) MPN, with the highest levels after transformation to secondary MF or AML. Here, we review recent work highlighting HMGA1 function in MPN progression. Though underlying mechanisms continue to emerge, increasing evidence suggests that HMGA1 functions as a "chromatin key" required to "unlock" regions of the genome involved in clonal expansion and progression in MPN. Together, these findings illuminate HMGA1 as a driver of MPN progression and a promising therapeutic target.
Collapse
Affiliation(s)
- Linda M. S. Resar
- Departments of Medicine (Hematology), Oncology, Pathology and Institute for Cellular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | | |
Collapse
|
3
|
Luo LZ, Kim JH, Herrera I, Wu S, Wu X, Park SS, Cho J, Cope L, Xian L, West BE, Calderon-Espinosa J, Kim J, Thompson Z, Maloo I, Larman T, Reddy KL, Feng Y, Fearon ER, Sears CL, Resar L. HMGA1 acts as an epigenetic gatekeeper of ASCL2 and Wnt signaling during colon tumorigenesis. J Clin Invest 2025; 135:e184442. [PMID: 39895630 PMCID: PMC11785931 DOI: 10.1172/jci184442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/27/2024] [Indexed: 02/04/2025] Open
Abstract
Mutated tumor cells undergo changes in chromatin accessibility and gene expression, resulting in aberrant proliferation and differentiation, although how this occurs is unclear. HMGA1 chromatin regulators are abundant in stem cells and oncogenic in diverse tissues; however, their role in colon tumorigenesis is only beginning to emerge. Here, we uncover a previously unknown epigenetic program whereby HMGA1 amplifies Wnt signaling during colon tumorigenesis driven by inflammatory microbiota and/or Adenomatous polyposis coli (Apc) inactivation. Mechanistically, HMGA1 "opens" chromatin to upregulate the stem cell regulator, Ascl2, and downstream Wnt effectors, promoting stem and Paneth-like cell states while depleting differentiated enterocytes. Loss of just one Hmga1 allele within colon epithelium restrains tumorigenesis and Wnt signaling driven by mutant Apc and inflammatory microbiota. However, HMGA1 deficiency has minimal effects in colon epithelium under homeostatic conditions. In human colon cancer cells, HMGA1 directly induces ASCL2 by recruiting activating histone marks. Silencing HMGA1 disrupts oncogenic properties, whereas reexpression of ASCL2 partially rescues these phenotypes. Further, HMGA1 and ASCL2 are coexpressed and upregulated in human colorectal cancer. Together, our results establish HMGA1 as an epigenetic gatekeeper of Wnt signals and cell state under conditions of APC inactivation, illuminating HMGA1 as a potential therapeutic target in colon cancer.
Collapse
Affiliation(s)
- Li Z. Luo
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jung-Hyun Kim
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Research Institute, National Cancer Center, Goyang-si, Gyeonggido, Republic of Korea
| | - Iliana Herrera
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shaoguang Wu
- Division of Infectious Diseases, Department of Medicine
| | - Xinqun Wu
- Division of Infectious Diseases, Department of Medicine
| | - Seong-Sik Park
- Research Institute, National Cancer Center, Goyang-si, Gyeonggido, Republic of Korea
| | - Juyoung Cho
- Research Institute, National Cancer Center, Goyang-si, Gyeonggido, Republic of Korea
| | - Leslie Cope
- Sidney Kimmel Comprehensive Cancer Center, Division of Biostatistics
| | - Lingling Xian
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bailey E. West
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Pathobiology Graduate Program, Department of Pathology, and
| | - Julian Calderon-Espinosa
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Human Genetics Graduate Program, Department of Genetics and Molecular Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph Kim
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zanshé Thompson
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Isha Maloo
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Biochemistry and Molecular Biology Program, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Karen L. Reddy
- Department of Biological Chemistry, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ying Feng
- Department of Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric R. Fearon
- Department of Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cynthia L. Sears
- Division of Infectious Diseases, Department of Medicine
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and
- Molecular Immunology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Linda Resar
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Division of Biostatistics
- Pathobiology Graduate Program, Department of Pathology, and
- Human Genetics Graduate Program, Department of Genetics and Molecular Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Biochemistry and Molecular Biology Program, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Pathology and
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and
| |
Collapse
|
4
|
Zhao S, Chen X, Chang B, Tian B. HMGA1 influence on iron-induced cell death in Tfh cells of SLE patients. Cell Biol Toxicol 2024; 41:6. [PMID: 39707065 PMCID: PMC11662042 DOI: 10.1007/s10565-024-09955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/20/2024] [Indexed: 12/23/2024]
Abstract
The autoimmune disorder known as Systemic Lupus Erythematosus (SLE) exhibits intricate features with abnormal immune responses leading to tissue injury. The generation of antibodies and the disruption of immune regulation heavily depend on the pivotal function of T follicular helper (Tfh) cells. Iron dysregulation is significant in autoimmune diseases, impacting immune cell function and disease progression. Our study investigates the role of the HMGA1/EZH2/STAT3/GPX4 axis in modulating Tfh cells and iron homeostasis in SLE. Abnormal Tfh cell populations in SLE patients demonstrate reduced susceptibility to iron-induced cell death, with HMGA1 identified as a key player in Tfh cell proliferation and sensitivity to iron-induced death. Experimental interventions reveal the inhibitory role of the HMGA1 axis in Tfh cells' susceptibility to iron-induced death, suggesting therapeutic avenues for SLE and related autoimmune disorders. Our study underscores the importance of iron homeostasis in autoimmune conditions, providing novel insights and treatment strategies for further research in this field.
Collapse
Affiliation(s)
- Shan Zhao
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Xiaotong Chen
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Bohan Chang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Bailing Tian
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
5
|
Lei XY, He KY, Li QT, Zhang L, Wu DH, Yang JY, Guo JR, Liu MJ, Zhao ZL, Li JQ, Liu H, Zhao Y, Li YJ, Sun QH, Wu CG, Wang YF, Cao GS, Wang G, Jian YP, Xu ZX. PARylation of HMGA1 desensitizes esophageal squamous cell carcinoma to olaparib. Clin Transl Med 2024; 14:e70111. [PMID: 39690136 DOI: 10.1002/ctm2.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
As a chromatin remodelling factor, high mobility group A1 (HMGA1) plays various roles in both physiological and pathological conditions. However, its role in DNA damage response and DNA damage-based chemotherapy remains largely unexplored. In this study, we report the poly ADP-ribosylation (PARylation) of HMGA1 during DNA damage, leading to desensitization of esophageal squamous cell carcinoma (ESCC) cells to the poly(ADP-ribose) polymerase 1 (PARP1) inhibitor, olaparib. We found that HMGA1 accumulates at sites of DNA damage, where it interacts with PARP1 and undergoes PARylation at residues E47 and E50 in its conserved AT-hook domain. This modification enhances the accumulation of Ku70/Ku80 at the site of DNA damage and activates the DNA-dependent protein kinase catalytic subunit, facilitating nonhomologous end-joining repair. In both subcutaneous tumour models and genetically engineered mouse models of in situ esophageal cancer, HMGA1 interference increased tumour sensitivity to olaparib. Moreover, HMGA1 was highly expressed in ESCC tissues and positively correlated with PARP1 levels as well as poor prognosis in ESCC patients. Taken together, these findings reveal a mechanistic link between HMGA1 and PARP1 in regulating cell responses to DNA damage and suggest that targeting HMGA1 could be a promising strategy to increase cancer cell sensitivity to olaparib.
Collapse
Affiliation(s)
- Xin-Yuan Lei
- School of Life Sciences, Henan University, Kaifeng, China
| | - Kai-Yue He
- School of Life Sciences, Henan University, Kaifeng, China
| | - Qiu-Tong Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Lei Zhang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Dan-Hui Wu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jing-Yu Yang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jin-Rong Guo
- School of Life Sciences, Henan University, Kaifeng, China
| | - Meng-Jie Liu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Zi-Long Zhao
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jun-Qi Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Huai Liu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yuan Zhao
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yu-Jia Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Qian-Hui Sun
- School of Life Sciences, Henan University, Kaifeng, China
| | - Chen-Guang Wu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yun-Fan Wang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Geng-Sheng Cao
- School of Life Sciences, Henan University, Kaifeng, China
| | - Gang Wang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yong-Ping Jian
- School of Life Sciences, Henan University, Kaifeng, China
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
6
|
Tian H, Zhai Y, Sun S, Zhang W, Zhao Z. The transcription factor HMGB2 indirectly regulates APRIL expression and Gd-IgA1 production in patients with IgA nephropathy. Ren Fail 2024; 46:2338931. [PMID: 38622929 PMCID: PMC11022921 DOI: 10.1080/0886022x.2024.2338931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Proliferation-inducing ligand (APRIL) was identified as an important cause of glycosylation deficiency of IgA1 (Gd-IgA1), which can 'trigger' IgAN. Our previous study indicated that high migration group protein B2 (HMGB2) in peripheral blood mononuclear cells from patients with IgAN was associated with disease severity, but the underlying mechanism remains unclear. MATERIALS AND METHODS The location of HMGB2 was identified by immunofluorescence. qRT-PCR and Western blotting were used to measure HMGB2, HMGA1, and APRIL expression. Gd-IgA1 levels were detected by enzyme-linked immunosorbent assay (ELISA). In addition, we used DNA pull-down, protein profiling, and transcription factor prediction software to identify proteins bound to the promoter region of the APRIL gene. RNA interference and coimmunoprecipitation (Co-IP) were used to verify the relationships among HMGB2, high mobility group AT-hook protein 1 (HMGA1), and APRIL. RESULTS HMGB2 expression was greater in IgAN patients than in HCs and was positively associated with APRIL expression in B cells. DNA pull-down and protein profiling revealed that HMGB2 and HMGA1 bound to the promoter region of the APRIL gene. The expression levels of HMGA1, APRIL, and Gd-IgA1 were downregulated after HMGB2 knockdown. Co-IP indicated that HMGB2 binds to HMGA1. The Gd-IgA1 concentration in the supernatant was reduced after HMGA1 knockdown. HMGA1 binding sites were predicted in the promoter region of the APRIL gene. CONCLUSION HMGB2 expression is greater in IgAN patients than in healthy controls; it promotes APRIL expression by interacting with HMGA1, thereby inducing Gd-IgA1 overexpression and leading to IgAN.
Collapse
Affiliation(s)
- Huijuan Tian
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| | - Yaling Zhai
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| | - Shuaigang Sun
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| | - Wenhui Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Renal Research Institution of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Zhao Y, Liu MJ, Zhang L, Yang Q, Sun QH, Guo JR, Lei XY, He KY, Li JQ, Yang JY, Jian YP, Xu ZX. High mobility group A1 (HMGA1) promotes the tumorigenesis of colorectal cancer by increasing lipid synthesis. Nat Commun 2024; 15:9909. [PMID: 39548107 PMCID: PMC11568219 DOI: 10.1038/s41467-024-54400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
Metabolic reprogramming is a hallmark of cancer, enabling tumor cells to meet the high energy and biosynthetic demands required for their proliferation. High mobility group A1 (HMGA1) is a structural transcription factor and frequently overexpressed in human colorectal cancer (CRC). Here, we show that HMGA1 promotes CRC progression by driving lipid synthesis in a AOM/DSS-induced CRC mouse model. Using conditional knockout (Hmga1△IEC) and knock-in (Hmga1IEC-OE/+) mouse models, we demonstrate that HMGA1 enhances CRC cell proliferation and accelerates tumor development by upregulating fatty acid synthase (FASN). Mechanistically, HMGA1 increases the transcriptional activity of sterol regulatory element-binding protein 1 (SREBP1) on the FASN promoter, leading to increased lipid accumulation in intestinal epithelial cells. Moreover, a high-fat diet exacerbates CRC progression in Hmga1△IEC mice, while pharmacological inhibition of FASN by orlistat reduces tumor growth in Hmga1IEC-OE/+ mice. Our findings suggest that targeting lipid metabolism could offer a promising therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Meng-Jie Liu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Lei Zhang
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Qi Yang
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Qian-Hui Sun
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Jin-Rong Guo
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Xin-Yuan Lei
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Kai-Yue He
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Jun-Qi Li
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Jing-Yu Yang
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yong-Ping Jian
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China.
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China.
| |
Collapse
|
8
|
Battista S, Fedele M, Secco L, Ingo AMD, Sgarra R, Manfioletti G. Binding to the Other Side: The AT-Hook DNA-Binding Domain Allows Nuclear Factors to Exploit the DNA Minor Groove. Int J Mol Sci 2024; 25:8863. [PMID: 39201549 PMCID: PMC11354804 DOI: 10.3390/ijms25168863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
The "AT-hook" is a peculiar DNA-binding domain that interacts with DNA in the minor groove in correspondence to AT-rich sequences. This domain has been first described in the HMGA protein family of architectural factors and later in various transcription factors and chromatin proteins, often in association with major groove DNA-binding domains. In this review, using a literature search, we identified about one hundred AT-hook-containing proteins, mainly chromatin proteins and transcription factors. After considering the prototypes of AT-hook-containing proteins, the HMGA family, we review those that have been studied in more detail and that have been involved in various pathologies with a particular focus on cancer. This review shows that the AT-hook is a domain that gives proteins not only the ability to interact with DNA but also with RNA and proteins. This domain can have enzymatic activity and can influence the activity of the major groove DNA-binding domain and chromatin docking modules when present, and its activity can be modulated by post-translational modifications. Future research on the function of AT-hook-containing proteins will allow us to better decipher their function and contribution to the different pathologies and to eventually uncover their mutual influences.
Collapse
Affiliation(s)
- Sabrina Battista
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.B.); (M.F.)
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.B.); (M.F.)
| | - Luca Secco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| | | | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| | - Guidalberto Manfioletti
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| |
Collapse
|
9
|
Guo X, Jin W, Wen Y, Wang Z, Ren X, Liu Z, Fu R, Cai Z, Li L. Computing cell state discriminates the aberrant hematopoiesis and activated microenvironment in Myelodysplastic syndrome (MDS) through a single cell genomic study. J Transl Med 2024; 22:673. [PMID: 39033303 PMCID: PMC11265062 DOI: 10.1186/s12967-024-05496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Myelodysplastic syndrome (MDS) is a complicated hematopoietic malignancy characterized by bone marrow (BM) dysplasia with symptoms like anemia, neutropenia, or thrombocytopenia. MDS exhibits considerable heterogeneity in prognosis, with approximately 30% of patients progressing to acute myeloid leukemia (AML). Single cell RNA-sequencing (scRNA-seq) is a new and powerful technique to profile disease landscapes. However, the current available scRNA-seq datasets for MDS are only focused on CD34+ hematopoietic progenitor cells. We argue that using entire BM cell for MDS studies probably will be more informative for understanding the pathophysiology of MDS. METHODS Five MDS patients and four healthy donors were enrolled in the study. Unsorted cells from BM aspiration were collected for scRNA-seq analysis to profile overall alteration in hematopoiesis. RESULTS Standard scRNA-seq analysis of unsorted BM cells successfully profiles deficient hematopoiesis in all five MDS patients, with three classified as high-risk and two as low-risk. While no significant increase in mutation burden was observed, high-risk MDS patients exhibited T-cell activation and abnormal myelogenesis at the stages between hematopoietic stem and progenitor cells (HSPC) and granulocyte-macrophage progenitors (GMP). Transcriptional factor analysis on the aberrant myelogenesis suggests that the epigenetic regulator chromatin structural protein-encoding gene HMGA1 is highly activated in the high-risk MDS group and moderately activated in the low-risk MDS group. Perturbation of HMGA1 by CellOracle simulated deficient hematopoiesis in mouse Lineage-negative (Lin-) BM cells. Projecting MDS and AML cells on a BM cell reference by our newly developed MarcoPolo pipeline intuitively visualizes a connection for myeloid leukemia development and abnormalities of hematopoietic hierarchy, indicating that it is technically feasible to integrate all diseased bone marrow cells on a common reference map even when the size of the cohort reaches to 1,000 patients or more. CONCLUSION Through scRNA-seq analysis on unsorted cells from BM aspiration samples of MDS patients, this study systematically profiled the development abnormalities in hematopoiesis, heterogeneity of risk, and T-cell microenvironment at the single cell level.
Collapse
Affiliation(s)
- Xinyu Guo
- Department of Hematology, Tianjin Medical University Tianjin General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| | - Wenyan Jin
- National Key Laboratory of Experimental Hematology, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yuchen Wen
- Department of Hematology, Tianjin Medical University Tianjin General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| | - Zhiqin Wang
- National Key Laboratory of Experimental Hematology, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Xiaotong Ren
- Department of Hematology, Tianjin Medical University Tianjin General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| | - Zhaoyun Liu
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University Tianjin General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| | - Zhigang Cai
- Department of Hematology, Tianjin Medical University Tianjin General Hospital, Tianjin, China.
- National Key Laboratory of Experimental Hematology, Tianjin, China.
- Tianjin Key Laboratory of Inflammatory Biology, Tianjin, China.
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China.
- Department of Rheumatology and Immunology, Tianjin Medical University Tianjin General Hospital, Tianjin, China.
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University Tianjin General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Bone Marrow Failure Malignant Hemopoietic Clone Control, Tianjin, China.
- Tianjin Institute of Hematology, Tianjin, China.
| |
Collapse
|
10
|
Gobbo F, Martelli F, Di Virgilio A, Demaria E, Sarli G, Migliaccio AR. The Variation in the Traits Ameliorated by Inhibitors of JAK1/2, TGF-β, P-Selectin, and CXCR1/CXCR2 in the Gata1low Model Suggests That Myelofibrosis Should Be Treated by These Drugs in Combination. Int J Mol Sci 2024; 25:7703. [PMID: 39062946 PMCID: PMC11277099 DOI: 10.3390/ijms25147703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Studies conducted on animal models have identified several therapeutic targets for myelofibrosis, the most severe of the myeloproliferative neoplasms. Unfortunately, many of the drugs which were effective in pre-clinical settings had modest efficacy when tested in the clinic. This discrepancy suggests that treatment for this disease requires combination therapies. To rationalize possible combinations, the efficacy in the Gata1low model of drugs currently used for these patients (the JAK1/2 inhibitor Ruxolitinib) was compared with that of drugs targeting other abnormalities, such as p27kip1 (Aplidin), TGF-β (SB431542, inhibiting ALK5 downstream to transforming growth factor beta (TGF-β) signaling and TGF-β trap AVID200), P-selectin (RB40.34), and CXCL1 (Reparixin, inhibiting the CXCL1 receptors CXCR1/2). The comparison was carried out by expressing the endpoints, which had either already been published or had been retrospectively obtained for this study, as the fold change of the values in the corresponding vehicles. In this model, only Ruxolitinib was found to decrease spleen size, only Aplidin and SB431542/AVID200 increased platelet counts, and with the exception of AVID200, all the inhibitors reduced fibrosis and microvessel density. The greatest effects were exerted by Reparixin, which also reduced TGF-β content. None of the drugs reduced osteopetrosis. These results suggest that future therapies for myelofibrosis should consider combining JAK1/2 inhibitors with drugs targeting hematopoietic stem cells (p27Kip1) or the pro-inflammatory milieu (TGF-β or CXCL1).
Collapse
Affiliation(s)
- Francesca Gobbo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University, 40126 Bologna, Italy; (F.G.); (G.S.)
| | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.M.); (A.D.V.)
| | - Antonio Di Virgilio
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.M.); (A.D.V.)
| | - Elena Demaria
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University, 40126 Bologna, Italy;
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University, 40126 Bologna, Italy; (F.G.); (G.S.)
| | - Anna Rita Migliaccio
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
- Institute of Nanotechnology, National Research Council (Cnr-NANOTEC), c/o Campus Ecotekne, 73100 Lecce, Italy
| |
Collapse
|
11
|
Wang Q, Chen F, He Y, Gao Y, Wang J, Chu S, Xie P, Zhong J, Shan H, Bai J, Hou P. Polypyrimidine tract-binding protein 3/insulin-like growth factor 2 mRNA-binding proteins 3/high-mobility group A1 axis promotes renal cancer growth and metastasis. iScience 2024; 27:109158. [PMID: 38405614 PMCID: PMC10884747 DOI: 10.1016/j.isci.2024.109158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/05/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024] Open
Abstract
Polypyrimidine tract-binding protein 3 (PTBP3) plays an important role in the post-transcriptional regulation of gene expression, including mRNA splicing, translation, and stability. Increasing evidence has shown that PTBP3 promotes cancer progression in several tumor types. However, the molecular mechanisms of PTBP3 in renal cell carcinoma (RCC) remain unknown. Here, tissue microarrays (TMAs) suggested that PTBP3 expression was increased in human RCC and that high PTBP3 expression was correlated with poor five-year overall survival and disease-free survival. We also showed that PTBP3 binds with HMGA1 mRNA in the 3'UTR region and let-7 miRNAs. PTBP3 interacted with IGF2BP3, and the PTBP3/IGF2BP3 axis prevented let-7 mediated HMGA1 mRNA silencing. PTBP3 promotes renal cancer cell growth and metastasis in vitro and in vivo. Taken together, our findings indicate PTBP3 serves as a regulator of HMGA1 and suggest its potential as a therapeutic agent for RCC.
Collapse
Affiliation(s)
- Qianqing Wang
- Department of Gynecology Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Fang Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yu He
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yue Gao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiawen Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Pei Xie
- Department of Gynecology Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Jiateng Zhong
- Department of Gynecology Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Haixia Shan
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China
| | - Jin Bai
- Department of Gynecology Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, China
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Pingfu Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
12
|
Yang JY, Lei XY, He KY, Guo JR, Liu MJ, Li JQ, Li QT, Jiang ZH, Zhang L, Wu DH, Li YJ, Sun QH, Jian YP, Xu ZX. HMGA1 drives chemoresistance in esophageal squamous cell carcinoma by suppressing ferroptosis. Cell Death Dis 2024; 15:158. [PMID: 38383528 PMCID: PMC10881472 DOI: 10.1038/s41419-024-06467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/23/2024]
Abstract
Chemotherapy is a primary treatment for esophageal squamous cell carcinoma (ESCC). Resistance to chemotherapeutic drugs is an important hurdle to effective treatment. Understanding the mechanisms underlying chemotherapy resistance in ESCC is an unmet medical need to improve the survival of ESCC. Herein, we demonstrate that ferroptosis triggered by inhibiting high mobility group AT-hook 1 (HMGA1) may provide a novel opportunity to gain an effective therapeutic strategy against chemoresistance in ESCC. HMGA1 is upregulated in ESCC and works as a key driver for cisplatin (DDP) resistance in ESCC by repressing ferroptosis. Inhibition of HMGA1 enhances the sensitivity of ESCC to ferroptosis. With a transcriptome analysis and following-up assays, we demonstrated that HMGA1 upregulates the expression of solute carrier family 7 member 11 (SLC7A11), a key transporter maintaining intracellular glutathione homeostasis and inhibiting the accumulation of malondialdehyde (MDA), thereby suppressing cell ferroptosis. HMGA1 acts as a chromatin remodeling factor promoting the binding of activating transcription factor 4 (ATF4) to the promoter of SLC7A11, and hence enhancing the transcription of SLC7A11 and maintaining the redox balance. We characterized that the enhanced chemosensitivity of ESCC is primarily attributed to the increased susceptibility of ferroptosis resulting from the depletion of HMGA1. Moreover, we utilized syngeneic allograft tumor models and genetically engineered mice of HMGA1 to induce ESCC and validated that depletion of HMGA1 promotes ferroptosis and restores the sensitivity of ESCC to DDP, and hence enhances the therapeutic efficacy. Our finding uncovers a critical role of HMGA1 in the repression of ferroptosis and thus in the establishment of DDP resistance in ESCC, highlighting HMGA1-based rewiring strategies as potential approaches to overcome ESCC chemotherapy resistance. Schematic depicting that HMGA1 maintains intracellular redox homeostasis against ferroptosis by assisting ATF4 to activate SLC7A11 transcription, resulting in ESCC resistance to chemotherapy.
Collapse
Affiliation(s)
- Jing-Yu Yang
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Xin-Yuan Lei
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Kai-Yue He
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Jin-Rong Guo
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Meng-Jie Liu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Jun-Qi Li
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Qiu-Tong Li
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Zhi-Hao Jiang
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Lei Zhang
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Dan-Hui Wu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yu-Jia Li
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Qian-Hui Sun
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yong-Ping Jian
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China.
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China.
| |
Collapse
|
13
|
Pavlovic ZJ, Hsin-Yu Pai A, Hsiao TT, Yen CF, Alhasan H, Ozmen A, New EP, Guo X, Imudia AN, Guzeloglu-Kayisli O, Lockwood CJ, Kayisli UA. Dysregulated expression of GATA2 and GATA6 transcription factors in adenomyosis: implications for impaired endometrial receptivity. F&S SCIENCE 2024; 5:92-103. [PMID: 37972693 DOI: 10.1016/j.xfss.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE To study the effect of adenomyosis on the localized expression of the GATA binding proteins 2 and 6 (GATA2 and GATA6) zinc-finger transcription factors that are involved in proliferation of hematopoietic and endocrine cell lineages, cell differentiation, and organogenesis, potentially leading to impaired endometrial implantation. DESIGN Laboratory based experimental study. SETTING Academic hospital and laboratory. PATIENTS Human endometrial stromal cells (HESCs) of reproductive age patients, 18-45 years of age, with adenomyosis were compared with patients with no pathology and leiomyomatous uteri as controls (n = 4 in each group, respectively). Additionally, midsecretory phase endometrial sections were obtained from patients with adenomyosis and control patients with leiomyoma (n = 8 in each group, respectively). INTERVENTIONS GATA2 and GATA6 immunohistochemistry and H-SCORE were performed on the midsecretory phase endometrial sections from adenomyosis and leiomyoma control patients (n = 8 each, respectively). Control and adenomyosis patient HESC cultures were treated with placebo or 10-8 M estradiol (E2), or decidualization media (EMC) containing 10-8 M E2, 10-7 M medroxyprogesterone acetate, and 5 × 10-5 M cAMP for 6 and 10 days. Additionally, control HESC cultures (n = 4) were transfected with scrambled small interfering RNA (siRNA) (control) or GATA2-specific siRNAs for 6 days while adenomyosis HESC cultures (n = 4) were transfected with human GATA2 expression vectors to silence or induce GATA2 overexpression. MAIN OUTCOME MEASURES Immunohistochemistry was performed to obtain GATA2 and GATA6 H-SCORES in adenomyosis vs. control patient endometrial tissue. Expression of GATA2, GATA6, insulin-like growth factor-binding protein 1 (IGFBP1), prolactin (PRL), progesterone receptor (PGR), estrogen receptor 1 (ESR1), leukemia inhibitory factor (LIF), and Interleukin receptor 11 (IL11R) messenger RNA (mRNA) levels were analyzed using by qPCR with normalization to ACTB. Silencing and overexpression experiments also had the corresponding mRNA levels of the above factors analyzed. Western blot analysis was performed on isolated proteins from transfection experiments. RESULTS Immunohistochemistry revealed an overall fourfold lower GATA2 and fourfold higher GATA6 H-SCORE level in the endometrial stromal cells of patients with adenomyosis vs. controls. Decidual induction with EMC resulted in significantly lower GATA2, PGR, PRL and IGFBP1 mRNA levels in HESC cultures from patients with adenomyosis patient vs. controls. Leukemia inhibitory factor and IL11R mRNA levels were also significantly dysregulated in adenomyosis HESCs compared with controls. . Silencing of GATA2 expression in control HESCs induced an adenomyosis-like state with significant reductions in GATA2, increases in GATA6 and accompanying aberrations in PGR, PRL, ESR1 and LIF levels. Conversely, GATA2 overexpression via vector in adenomyosis HESCs caused partial restoration of the defective decidual response with significant increases in GATA2, PGR, PRL and LIF expression. CONCLUSION In-vivo and in-vitro experiment results demonstrate that there is an overall inverse relationship between endometrial GATA2 and GATA6 levels in patients with adenomyosis who have diminished GATA2 levels and concurrently elevated GATA6 levels. Additionally, lower GATA2 and higher GATA6 levels, together with aberrant levels of important receptors and implantation factors, such as ESR1, PGR, IGFBP1, PRL, LIF, and IL11R mRNA in HESCs from patients with adenomyosis or GATA2-silenced control HESCs, support impaired decidualization. These effects were partially restored with GATA2 overexpression in adenomyosis HESCs, demonstrating a potential therapeutic target.
Collapse
Affiliation(s)
- Zoran Jason Pavlovic
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida.
| | - Angel Hsin-Yu Pai
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Tzu-Ti Hsiao
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Chih-Feng Yen
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Hasan Alhasan
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Asli Ozmen
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Erika P New
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Xiaofang Guo
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Anthony N Imudia
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida; Shady Grove Fertility, Tampa, Florida
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
14
|
Ueda K, Ikeda K. Cellular carcinogenesis in preleukemic conditions:drivers and defenses. Fukushima J Med Sci 2024; 70:11-24. [PMID: 37952978 PMCID: PMC10867434 DOI: 10.5387/fms.2023-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023] Open
Abstract
Acute myeloid leukemia (AML) arises from preleukemic conditions. We have investigated the pathogenesis of typical preleukemia, myeloproliferative neoplasms, and clonal hematopoiesis. Hematopoietic stem cells in both preleukemic conditions harbor recurrent driver mutations; additional mutation provokes further malignant transformation, leading to AML onset. Although genetic alterations are defined as the main cause of malignant transformation, non-genetic factors are also involved in disease progression. In this review, we focus on a non-histone chromatin protein, high mobility group AT-hook2 (HMGA2), and a physiological p53 inhibitor, murine double minute X (MDMX). HMGA2 is mainly overexpressed by dysregulation of microRNAs or mutations in polycomb components, and provokes expansion of preleukemic clones through stem cell signature disruption. MDMX is overexpressed by altered splicing balance in myeloid malignancies. MDMX induces leukemic transformation from preleukemia via suppression of p53 and p53-independent activation of WNT/β-catenin signaling. We also discuss how these non-genetic factors can be targeted for leukemia prevention therapy.
Collapse
Affiliation(s)
- Koki Ueda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University
| | - Kazuhiko Ikeda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University
| |
Collapse
|
15
|
Sun Y, Yu H, Han S, Ran R, Yang Y, Tang Y, Wang Y, Zhang W, Tang H, Fu B, Fu B, Weng X, Liu SM, Deng H, Peng S, Zhou X. Method for the extraction of circulating nucleic acids based on MOF reveals cell-free RNA signatures in liver cancer. Natl Sci Rev 2024; 11:nwae022. [PMID: 38348130 PMCID: PMC10860518 DOI: 10.1093/nsr/nwae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 02/15/2024] Open
Abstract
Cell-free RNA (cfRNA) allows assessment of health, status, and phenotype of a variety of human organs and is a potential biomarker to non-invasively diagnose numerous diseases. Nevertheless, there is a lack of highly efficient and bias-free cfRNA isolation technologies due to the low abundance and instability of cfRNA. Here, we developed a reproducible and high-efficiency isolation technology for different types of cell-free nucleic acids (containing cfRNA and viral RNA) in serum/plasma based on the inclusion of nucleic acids by metal-organic framework (MOF) materials, which greatly improved the isolation efficiency and was able to preserve RNA integrity compared with the most widely used research kit method. Importantly, the quality of cfRNA extracted by the MOF method is about 10-fold that of the kit method, and the MOF method isolates more than three times as many different RNA types as the kit method. The whole transcriptome mapping characteristics of cfRNA in serum from patients with liver cancer was described and a cfRNA signature with six cfRNAs was identified to diagnose liver cancer with high diagnostic efficiency (area under curve = 0.905 in the independent validation cohort) using this MOF method. Thus, this new MOF isolation technique will advance the field of liquid biopsy, with the potential to diagnose liver cancer.
Collapse
Affiliation(s)
- Yuqing Sun
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Haixin Yu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaoqing Han
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Ruoxi Ran
- Department of Clinical Laboratory, Center for Gene Diagnosis and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ying Yang
- Department of Clinical Laboratory, Center for Gene Diagnosis and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yongling Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yuhao Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Wenhao Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Heng Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Boqiao Fu
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Boshi Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hexiang Deng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
16
|
Qi L, Yin Y, Sun M. m6A-mediated lncRNA NEAT1 plays an oncogenic role in non-small cell lung cancer by upregulating the HMGA1 expression through binding miR-361-3p. Genes Genomics 2023; 45:1537-1547. [PMID: 37688756 DOI: 10.1007/s13258-023-01442-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Lung cancer is the most common primary malignant tumor of the lung, and 85% of lung cancer is non-small cell lung cancer (NSCLC). The N6-methyladenosine (m6A) and long noncoding RNAs (lncRNAs) have been widely reported to participate in the development of non-small cell lung cancer. OBJECTIVE However, the potential molecular mechanisms of m6A-regulated lncRNAs in NSCLC still need further investigation. METHODS The expression levels and the role of lncRNA NEAT1 in NSCLC tissues or cells were measured by RT-qPCR, Western blot, cell counting kit 8 (CCK-8), flow cytometry assay. RNA immunoprecipitation (RIP) was used to measure the levels of m6A modification of NEAT1. Bioinformatics analysis and dual-luciferase reporter gene assay were detected the relationship between miR-361-3p and NEAT1/HMGA1. Mouse xenograft tumor models were established to confirm the effects of lncRNA NEAT1 in vivo. RESULTS In this study, we verified whether m6A-modified lncRNA nuclear enriched abundant transcript 1 (NEAT1) is involved in NSCLC progression via miR-361-3p/HMGA1 axis. Firstly, we found that lncRNA NEAT1 was upregulated in NSCLC, and was associated with a poor survival in NSCLC patients. Methyltransferase like 3 (METTL3)-mediated m6A modification stabilized and upregulated NEAT1 expression. Next, function experiment indicated that depletion of METTL3 and NEAT1 induced cell apoptosis and inhibited cell proliferation, epithelial-mesenchymal transition (EMT). Likewise, in vivo experiments further supported the oncogenic role of NEAT1 in NSCLC. In addition, the molecular mechanism was uncovered in our study, and we found that lncRNA NEAT1 promoted the expression of high-mobility group AT-hook 1 (HMGA1) by sponging miR-361-3p and then promoted tumorigenesis of NSCLC. CONCLUSION In conclusion, our findings demonstrated that METTL3-mediated m6A modification accelerated NSCLC progression by regulating the NEAT1/miR-361-3p/HMGA1 axis, which provides important targets for the treatment of NSCLC.
Collapse
Affiliation(s)
- Li Qi
- Department of Oncology and Radiotherapy, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150001, China.
| | - Yue Yin
- Department of Oncology and Radiotherapy, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150001, China
| | - Mengqi Sun
- Department of Oncology and Radiotherapy, Shenzhen People's Hospital, Shenzhen, 518020, China
| |
Collapse
|
17
|
Calledda FR, Malara A, Balduini A. Inflammation and bone marrow fibrosis: novel immunotherapeutic targets. Curr Opin Hematol 2023; 30:237-244. [PMID: 37548363 DOI: 10.1097/moh.0000000000000778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
PURPOSE OF REVIEW Myelofibrosis (MF) is primarily driven by constitutive activation of the Janus kinase/signal transducer of activators of transcription (JAK/STAT) pathway. While JAK inhibitors have shown to alleviate disease symptoms, their disease-modifying effects in MF are limited. The only curative treatment remains allogeneic stem cell transplantation, which can be applied to a minority of patients. As a result, there is a need to explore novel targets in MF to facilitate appropriate drug development and therapeutic pathways. RECENT FINDINGS Recent research has focused on identifying novel signals that contribute to the abnormal cross-talk between hematopoietic and stromal cells, which promotes MF and disease progression. Inflammation and immune dysregulation have emerged as key drivers of both the initiation and progression of MF. A growing number of actionable targets has been identified, including cytokines, transcription factors, signalling networks and cell surface-associated molecules. These targets exhibit dysfunctions in malignant and nonmalignant hematopoietic cells, but also in nonhematopoietic cells of the bone marrow. The study of these inflammation-related molecules, in preclinical models and MF patient's samples, is providing novel therapeutic targets. SUMMARY The identification of immunotherapeutic targets is expanding the therapeutic landscape of MF. This review provides a summary of the most recent advancements in the study of immunotherapeutic targets in MF.
Collapse
|
18
|
Greenfield G, McMullin MF. Epigenetics in myeloproliferative neoplasms. Front Oncol 2023; 13:1206965. [PMID: 37519812 PMCID: PMC10373880 DOI: 10.3389/fonc.2023.1206965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
The myeloproliferative neoplasms (MPNs) are a group of acquired clonal disorders where mutations drive proliferative disease resulting in increased blood counts and in some cases end-stage myelofibrosis. Epigenetic changes are the reversible modifications to DNA- and RNA-associated proteins that impact gene activity without changing the DNA sequence. This review summarizes mechanisms of epigenetic changes and the nucleosome. The drivers and epigenetic regulators in MPNs are outlined. In MPNs, distinct patterns of epigenetic dysregulation have been seen in chronic and in advanced phases. Methylation age and histone modification are altered in MPNs and by further treatment. The alterations found in methylation age in MPNs and with treatment are discussed, and the changes in histone modification with Janus kinase (JAK) inhibition are evaluated. Currently available therapeutic areas where the epigenome can be altered are outlined. Thus, we review the current knowledge and understanding of epigenetics in MPN and consider further management options. Understanding the epigenome and its alteration in MPNs and epigenetic changes associated with the progression of disease will lead to advances in therapeutic options.
Collapse
|
19
|
Liu Y, Cao Y, Yang X, Chen H, Yang H, Liu Y, Gu W. High expression of miR-107 and miR-17 predicts poor prognosis and guides treatment selection in acute myeloid leukemia. Transl Cancer Res 2023; 12:913-927. [PMID: 37180663 PMCID: PMC10174997 DOI: 10.21037/tcr-22-2484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/19/2023] [Indexed: 03/21/2023]
Abstract
Background The prognostic significance of miR-107 and miR-17 in patients with acute myeloid leukemia (AML) remains unclear. Methods A total of 173 patients with de novo AML from the Cancer Genome Atlas database were enrolled in this study and further divided into a chemotherapy group (98 cases) and an allogeneic hematopoietic stem cell transplantation (allo-HSCT) group (75 cases) according to their therapy regimen. Results In the chemotherapy cohort, high miR-107 or miR-17 expression was associated with poorer overall survival (OS) and event-free survival (EFS). On the other hand, there were no significant differences in OS and EFS between the high- and low-expression subgroups in the allo-HSCT group. Next, we stratified the total number of patients with AML into high- and low-expression groups according to the median expression levels of miR-107 or miR-17. In the high miR-107 or miR-17 expression group, patients treated with allo-HSCT had longer OS than those treated with chemotherapy. In the low miR-107 or miR-17 expression group, no significant differences in OS and EFS were observed between the two therapy subgroups. When patients were further clustered into three groups (both low miR-107 and low miR-17, either high miR-107 or high miR-17, and both high miR-107 and high miR-17), patients with both high miR-107 and high miR-17 expression had the worst OS and EFS of the entire group and of the chemotherapy group. On the other hand, there were no significant differences in OS and EFS among the three subgroups in the allo-HSCT group. Cox regression confirmed the concurrence of high expression of miR-107 and miR-17 might act as an independent prognostic factor for EFS and OS in the entire group and the chemotherapy group. Bioinformatics analysis showed differentially expressed genes (DEGs) associated with miR-107 and miR-17 expression were mainly enriched in multiple metabolic processes. Conclusions The combination of miR-107 and miR-17 provides prognostic significance for patients with AML and should be considered in the clinical selection of the optimal treatment regimen when deciding between chemotherapy and allo-HSCT.
Collapse
Affiliation(s)
- Yue Liu
- Department of Hematology, The First People’s Hospital of Changzhou and The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yang Cao
- Department of Hematology, The First People’s Hospital of Changzhou and The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaojun Yang
- Department of Blood Transfusion, The First People’s Hospital of Changzhou and The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Huijuan Chen
- Department of Hematology, The First People’s Hospital of Changzhou and The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Haonan Yang
- Department of Hematology, The First People’s Hospital of Changzhou and The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yan Liu
- Department of Hematology, The First People’s Hospital of Changzhou and The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Weiying Gu
- Department of Hematology, The First People’s Hospital of Changzhou and The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
20
|
Luque Paz D, Kralovics R, Skoda RC. Genetic basis and molecular profiling in myeloproliferative neoplasms. Blood 2023; 141:1909-1921. [PMID: 36347013 PMCID: PMC10646774 DOI: 10.1182/blood.2022017578] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
BCR::ABL1-negative myeloproliferative neoplasms (MPNs) are clonal diseases originating from a single hematopoietic stem cell that cause excessive production of mature blood cells. The 3 subtypes, that is, polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), are diagnosed according to the World Health Organization (WHO) and international consensus classification (ICC) criteria. Acquired gain-of-function mutations in 1 of 3 disease driver genes (JAK2, CALR, and MPL) are the causative events that can alone initiate and promote MPN disease without requiring additional cooperating mutations. JAK2-p.V617F is present in >95% of PV patients, and also in about half of the patients with ET or PMF. ET and PMF are also caused by mutations in CALR or MPL. In ∼10% of MPN patients, those referred to as being "triple negative," none of the known driver gene mutations can be detected. The common theme between the 3 driver gene mutations and triple-negative MPN is that the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway is constitutively activated. We review the recent advances in our understanding of the early events after the acquisition of a driver gene mutation. The limiting factor that determines the frequency at which MPN disease develops with a long latency is not the acquisition of driver gene mutations, but rather the expansion of the clone. Factors that control the conversion from clonal hematopoiesis to MPN disease include inherited predisposition, presence of additional mutations, and inflammation. The full extent of knowledge of the mutational landscape in individual MPN patients is now increasingly being used to predict outcome and chose the optimal therapy.
Collapse
Affiliation(s)
- Damien Luque Paz
- Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, CRCI2NA, Angers, France
| | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Radek C. Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
21
|
Moliterno AR, Kaizer H, Reeves BN. JAK2 V617F allele burden in polycythemia vera: burden of proof. Blood 2023; 141:1934-1942. [PMID: 36745865 PMCID: PMC10163319 DOI: 10.1182/blood.2022017697] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Polycythemia vera (PV) is a hematopoietic stem cell neoplasm defined by activating somatic mutations in the JAK2 gene and characterized clinically by overproduction of red blood cells, platelets, and neutrophils; a significant burden of disease-specific symptoms; high rates of vascular events; and evolution to a myelofibrosis phase or acute leukemia. The JAK2V617F variant allele frequency (VAF) is a key determinant of outcomes in PV, including thrombosis and myelofibrotic progression. Here, we critically review the dynamic role of JAK2V617F mutation burden in the pathogenesis and natural history of PV, the suitability of JAK2V617F VAF as a diagnostic and prognostic biomarker, and the utility of JAK2V617F VAF reduction in PV treatment.
Collapse
Affiliation(s)
- Alison R. Moliterno
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hannah Kaizer
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Brandi N. Reeves
- Division of Hematology, Department of Medicine, Blood Research Center, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
22
|
Jung MM, Shen S, Botten GA, Olender T, Katsumura KR, Johnson KD, Soukup AA, Liu P, Zhang Q, Jensvold ZD, Lewis PW, Beagrie RA, Low JK, Yang L, Mackay JP, Godley LA, Brand M, Xu J, Keles S, Bresnick EH. Pathogenic human variant that dislocates GATA2 zinc fingers disrupts hematopoietic gene expression and signaling networks. J Clin Invest 2023; 133:e162685. [PMID: 36809258 PMCID: PMC10065080 DOI: 10.1172/jci162685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Although certain human genetic variants are conspicuously loss of function, decoding the impact of many variants is challenging. Previously, we described a patient with leukemia predisposition syndrome (GATA2 deficiency) with a germline GATA2 variant that inserts 9 amino acids between the 2 zinc fingers (9aa-Ins). Here, we conducted mechanistic analyses using genomic technologies and a genetic rescue system with Gata2 enhancer-mutant hematopoietic progenitor cells to compare how GATA2 and 9aa-Ins function genome-wide. Despite nuclear localization, 9aa-Ins was severely defective in occupying and remodeling chromatin and regulating transcription. Variation of the inter-zinc finger spacer length revealed that insertions were more deleterious to activation than repression. GATA2 deficiency generated a lineage-diverting gene expression program and a hematopoiesis-disrupting signaling network in progenitors with reduced granulocyte-macrophage colony-stimulating factor (GM-CSF) and elevated IL-6 signaling. As insufficient GM-CSF signaling caused pulmonary alveolar proteinosis and excessive IL-6 signaling promoted bone marrow failure and GATA2 deficiency patient phenotypes, these results provide insight into mechanisms underlying GATA2-linked pathologies.
Collapse
Affiliation(s)
- Mabel Minji Jung
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Siqi Shen
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Giovanni A. Botten
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas Olender
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute–General Hospital, Ottawa, Ontario, Canada
| | - Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Kirby D. Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Alexandra A. Soukup
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Peng Liu
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Qingzhou Zhang
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute–General Hospital, Ottawa, Ontario, Canada
| | - Zena D. Jensvold
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peter W. Lewis
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Robert A. Beagrie
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jason K.K. Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lihua Yang
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Joel P. Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lucy A. Godley
- Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois, USA
| | - Marjorie Brand
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jian Xu
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sunduz Keles
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| |
Collapse
|
23
|
Liu P, Luo J, Tan N, Li C, Xu J, Yang X. Establishing a prognostic model of chromatin modulators and identifying potential drug candidates in renal clear cell patients. BMC Bioinformatics 2023; 24:104. [PMID: 36941564 PMCID: PMC10029171 DOI: 10.1186/s12859-023-05229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Renal carcinoma is a common malignant tumor of the urinary system. Advanced renal carcinoma has a low 5-year survival rate and a poor prognosis. More and more studies have confirmed that chromatin regulators (CRs) can regulate the occurrence and development of cancer. This article investigates the functional and prognostic value of CRs in renal carcinoma patients. METHODS mRNA expression and clinical information were obtained from The Cancer Genome Atlas database. Univariate Cox regression analysis and LASSO regression analysis were used to select prognostic chromatin-regulated genes and use them to construct a risk model for predicting the prognosis of renal cancer. Differences in prognosis between high-risk and low-risk groups were compared using Kaplan-Meier analysis. In addition, we analyzed the relationship between chromatin regulators and tumor immune infiltration, and explored differences in drug sensitivity between risk groups. RESULTS We constructed a model consisting of 11 CRs to predict the prognosis of renal cancer patients. We not only successfully validated its feasibility, but also found that the 11 CR-based model was an independent prognostic factor. Functional analysis showed that CRs were mainly enriched in cancer development-related signalling pathways. We also found through the TIMER database that CR-based models were also associated with immune cell infiltration and immune checkpoints. At the same time, the genomics of drug sensitivity in cancer database was used to analyze the commonly used drugs of renal clear cell carcinoma patients. It was found that patients in the low-risk group were sensitive to medicines such as axitinib, pazopanib, sorafenib, and gemcitabine. In contrast, those in the high-risk group may be sensitive to sunitinib. CONCLUSION The chromatin regulator-related prognostic model we constructed can be used to assess the prognostic risk of patients with clear cell renal cell carcinoma. The results of this study can bring new ideas for targeted therapy of clear cell renal carcinoma, helping doctors to take corresponding measures in advance for patients with different risks.
Collapse
Affiliation(s)
- Puyu Liu
- Department of Clinical Pathology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi City, 563000, Guizhou Province, China
| | - Jihang Luo
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Na Tan
- Department of Clinical Pathology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi City, 563000, Guizhou Province, China
| | - Chengfang Li
- Department of Clinical Pathology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi City, 563000, Guizhou Province, China
| | - Jieyu Xu
- Department of Clinical Pathology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi City, 563000, Guizhou Province, China
| | - Xiaorong Yang
- Department of Clinical Pathology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi City, 563000, Guizhou Province, China.
| |
Collapse
|
24
|
Chia L, Wang B, Kim JH, Luo LZ, Shuai S, Herrera I, Chen SY, Li L, Xian L, Huso T, Heydarian M, Reddy K, Sung WJ, Ishiyama S, Guo G, Jaffee E, Zheng L, Cope LM, Gabrielson K, Wood L, Resar L. HMGA1 induces FGF19 to drive pancreatic carcinogenesis and stroma formation. J Clin Invest 2023; 133:151601. [PMID: 36919699 PMCID: PMC10014113 DOI: 10.1172/jci151601] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/25/2023] [Indexed: 03/15/2023] Open
Abstract
High mobility group A1 (HMGA1) chromatin regulators are upregulated in diverse tumors where they portend adverse outcomes, although how they function in cancer remains unclear. Pancreatic ductal adenocarcinomas (PDACs) are highly lethal tumors characterized by dense desmoplastic stroma composed predominantly of cancer-associated fibroblasts and fibrotic tissue. Here, we uncover an epigenetic program whereby HMGA1 upregulates FGF19 during tumor progression and stroma formation. HMGA1 deficiency disrupts oncogenic properties in vitro while impairing tumor inception and progression in KPC mice and subcutaneous or orthotopic models of PDAC. RNA sequencing revealed HMGA1 transcriptional networks governing proliferation and tumor-stroma interactions, including the FGF19 gene. HMGA1 directly induces FGF19 expression and increases its protein secretion by recruiting active histone marks (H3K4me3, H3K27Ac). Surprisingly, disrupting FGF19 via gene silencing or the FGFR4 inhibitor BLU9931 recapitulates most phenotypes observed with HMGA1 deficiency, decreasing tumor growth and formation of a desmoplastic stroma in mouse models of PDAC. In human PDAC, overexpression of HMGA1 and FGF19 defines a subset of tumors with extremely poor outcomes. Our results reveal what we believe is a new paradigm whereby HMGA1 and FGF19 drive tumor progression and stroma formation, thus illuminating FGF19 as a rational therapeutic target for a molecularly defined PDAC subtype.
Collapse
Affiliation(s)
- Lionel Chia
- Pathobiology Graduate Program, Department of Pathology and.,Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bowen Wang
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Biochemistry and Molecular Biology Program, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jung-Hyun Kim
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Li Z Luo
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuai Shuai
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Iliana Herrera
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Liping Li
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lingling Xian
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tait Huso
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Woo Jung Sung
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shun Ishiyama
- Department of Pathology.,Department of Molecular and Comparative Pathobiology
| | - Gongbo Guo
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Leslie M Cope
- Department of Oncology, and.,Division of Biostatistics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Laura Wood
- Pathobiology Graduate Program, Department of Pathology and.,Department of Pathology.,Department of Oncology, and
| | - Linda Resar
- Pathobiology Graduate Program, Department of Pathology and.,Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Biochemistry and Molecular Biology Program, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Department of Pathology.,Department of Oncology, and
| |
Collapse
|
25
|
Verachi P, Gobbo F, Martelli F, Falchi M, di Virgilio A, Sarli G, Wilke C, Bruederle A, Prahallad A, Arciprete F, Zingariello M, Migliaccio AR. Preclinical studies on the use of a P-selectin-blocking monoclonal antibody to halt progression of myelofibrosis in the Gata1 low mouse model. Exp Hematol 2023; 117:43-61. [PMID: 36191885 PMCID: PMC10450205 DOI: 10.1016/j.exphem.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/10/2023]
Abstract
The bone marrow (BM) and spleen from patients with myelofibrosis (MF), as well as those from the Gata1low mouse model of the disease contain increased number of abnormal megakaryocytes. These cells express high levels of the adhesion receptor P-selectin on their surface, which triggers a pathologic neutrophil emperipolesis, leading to increased bioavailability of transforming growth factor-β (TGF-β) in the microenvironment and disease progression. With age, Gata1low mice develop a phenotype similar to that of patients with MF, which is the most severe of the Philadelphia-negative myeloproliferative neoplasms. We previously demonstrated that Gata1low mice lacking the P-selectin gene do not develop MF. In the current study, we tested the hypothesis that pharmacologic inhibition of P-selectin may normalize the phenotype of Gata1low mice that have already developed MF. To test this hypothesis, we have investigated the phenotype expressed by aged Gata1low mice treated with the antimouse monoclonal antibody RB40.34, alone and also in combination with ruxolitinib. The results indicated that RB40.34 in combination with ruxolitinib normalizes the phenotype of Gata1low mice with limited toxicity by reducing fibrosis and the content of TGF-β and CXCL1 (two drivers of fibrosis in this model) in the BM and spleen and by restoring hematopoiesis in the BM and the architecture of the spleen. In conclusion, we provide preclinical evidence that treatment with an antibody against P-selectin in combination with ruxolitinib may be more effective than ruxolitinib alone to treat MF in patients.
Collapse
Affiliation(s)
- Paola Verachi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Francesca Gobbo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - Fabrizio Martelli
- National Center for Preclinical and Clinical Research and Evaluation of Pharmaceutical Drugs, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National Center for HIV/AIDS Research, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio di Virgilio
- Center for Animal Experimentation and Well-being, Istituto Superiore di Santà, Rome, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | | | | | | | - Francesca Arciprete
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Anna Rita Migliaccio
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy; Altius Institute for Biomedical Sciences, Seattle, WA, USA.
| |
Collapse
|
26
|
High-mobility-group protein A1 in MPN progression. Blood 2022; 139:2730-2732. [PMID: 35511192 DOI: 10.1182/blood.2022016145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/20/2022] Open
|
27
|
Molecular Pathogenesis of Myeloproliferative Neoplasms: From Molecular Landscape to Therapeutic Implications. Int J Mol Sci 2022; 23:ijms23094573. [PMID: 35562964 PMCID: PMC9100530 DOI: 10.3390/ijms23094573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/27/2022] Open
Abstract
Despite distinct clinical entities, the myeloproliferative neoplasms (MPN) share morphological similarities, propensity to thrombotic events and leukemic evolution, and a complex molecular pathogenesis. Well-known driver mutations, JAK2, MPL and CALR, determining constitutive activation of JAK-STAT signaling pathway are the hallmark of MPN pathogenesis. Recent data in MPN patients identified the presence of co-occurrence somatic mutations associated with epigenetic regulation, messenger RNA splicing, transcriptional mechanism, signal transduction, and DNA repair mechanism. The integration of genetic information within clinical setting is already improving patient management in terms of disease monitoring and prognostic information on disease progression. Even the current therapeutic approaches are limited in disease-modifying activity, the expanding insight into the genetic basis of MPN poses novel candidates for targeted therapeutic approaches. This review aims to explore the molecular landscape of MPN, providing a comprehensive overview of the role of drive mutations and additional mutations, their impact on pathogenesis as well as their prognostic value, and how they may have future implications in therapeutic management.
Collapse
|