1
|
Bray JS, Thomas GR, Smith VM, Wright A, Jayne S, Dyer MJS, Walter HS. In vitro comparison of CD20xCD3 bispecific antibodies against diffuse large B-cell lymphoma (DLBCL) cell lines with different levels of expression of CD20. Br J Haematol 2025; 206:1350-1354. [PMID: 40032583 DOI: 10.1111/bjh.20033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Although CD20xCD3 bispecific antibodies (BsAbs) have demonstrated transformational activity in diffuse large B-cell lymphoma (DLBCL), some patients fail to respond and others relapse. To begin to explore possible limitations, we compared the in vitro activity of four CD20xCD3 biosimilar BsAbs against four DLBCL cell lines with CD20 expression ranging over a 100-fold. All four biosimilar BsAbs demonstrated superior in vitro activity to rituximab, with biosimilar glofitamab consistently being the most potent. Moreover, biosimilar glofitamab and odronextamab retained significant activity in the presence of low-level CD20 expression. Finally, one DLBCL cell line exhibited intrinsic resistance to all four CD20xCD3 BsAbs despite inducing marked T-cell and NK-cell activation.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Antibodies, Bispecific/pharmacology
- Antigens, CD20/immunology
- Antigens, CD20/biosynthesis
- Cell Line, Tumor
- Rituximab/pharmacology
- Antineoplastic Agents, Immunological/pharmacology
- Biosimilar Pharmaceuticals/pharmacology
- CD3 Complex
Collapse
Affiliation(s)
- Joshua S Bray
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Gethin R Thomas
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Victoria M Smith
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Adam Wright
- Respiratory Sciences, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Sandrine Jayne
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Martin J S Dyer
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Harriet S Walter
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Department of Oncology, University Hospitals Leicester, Leicester, UK
| |
Collapse
|
2
|
Rao J, Xia L, Li Q, Ma N, Li X, Li J, Zhu L, Zhao P, Zeng Y, Zhou S, Guo H, Lin S, Dong S, Lou S, Fan F, Wei J, Zhong JF, Gao L, Li SC, Zhang X. A 6-tsRNA signature for early detection, treatment response monitoring, and prognosis prediction in diffuse large B cell lymphoma. Blood Cancer J 2025; 15:79. [PMID: 40295511 PMCID: PMC12037784 DOI: 10.1038/s41408-025-01267-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/14/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) presents considerable clinical challenges due to its aggressive nature and diverse clinical progression. New molecular biomarkers are urgently needed for outcome prediction. We analyzed blood samples from DLBCL patients and healthy individuals using short, non-coding RNA sequencing. A classifier based on six tsRNAs was developed through random forest and primary component analysis. This classifier, established using Cox proportional hazards modeling with repeated 10-fold cross-validation on an internal cohort of 100 samples analyzed using RT-qPCR, effectively identified high-risk patients with significantly lower overall survival compared to low-risk patients (Hazard ratio: 6.657, 95%CI 2.827-15.68, P = 0.0006). Validation in an external cohort of 160 samples using RT-qPCR confirmed the classifier's robust performance. High-risk status was strongly associated with disease histological subtype, stage, and International Prognostic Index scores. Integration of the classifier into the IPI model enhanced the precision and consistency of prognostic predictions. A dynamic study revealed that patients experiencing a 1.06-fold decrease after one therapy cycle (early molecular response) exhibited better treatment outcomes and prognosis. Furthermore, the 6-tsRNA signature accurately differentiated healthy individuals from DLBCL (AUC 0.882, 95%CI 0.826-0.939). These findings underscore the potential of the identified 6-tsRNA profile as a biomarker for monitoring treatment effectiveness and predicting DLBCL outcomes.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Prognosis
- Male
- Female
- Middle Aged
- Aged
- Biomarkers, Tumor/genetics
- Adult
- Aged, 80 and over
- Gene Expression Profiling
- Early Detection of Cancer
Collapse
Affiliation(s)
- Jun Rao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Lin Xia
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Qiong Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - NaYa Ma
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Xinlei Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Jiali Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Lidan Zhu
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Pan Zhao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Yunjing Zeng
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Sha Zhou
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Huanping Guo
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Shijia Lin
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Song Dong
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Shifeng Lou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fangyi Fan
- Department of Hematology, General Hospital of Chengdu Military Region, Chengdu, Chongqing, China
| | - Jin Wei
- Department of Hematology, North Sichuan Medical College, Nanchong, China
| | - Jiang F Zhong
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, CA, USA
| | - Li Gao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Shengwen Calvin Li
- CHOC Children's Research Institute, Children's Hospital of Orange County (CHOC®), part of Rady Children's Heath, Orange, CA, USA.
- Department of Neurology, University of California-Irvine School of Medicine, Orange, CA, USA.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Soochow, China.
- Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|
3
|
Bock TJ, Colonne CK, Fiorenza S, Turtle CJ. Outcome correlates of approved CD19-targeted CAR T cells for large B cell lymphoma. Nat Rev Clin Oncol 2025; 22:241-261. [PMID: 39966627 DOI: 10.1038/s41571-025-00992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/20/2025]
Abstract
CD19-targeted chimeric antigen receptor (CAR) T cells have provided a breakthrough in the treatment of patients with relapsed and/or refractory large B cell lymphoma (LBCL). Currently, three CD19-targeted CAR T cell products are approved by the FDA and various other regulators for the treatment of patients with LBCL: axicabtagene ciloleucel, tisagenlecleucel and lisocabtagene maraleucel. Response rates following infusion of these CD19-targeted CAR T cells have been promising; however, approximately half of treated patients show relapse within 2 years. Furthermore, receiving these agents can be associated with serious toxicities, including cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. In this Review, we summarize the factors associated with the efficacy, including response and survival outcomes, and toxicity of CD19-targeted CAR T cells in pivotal clinical trials and large real-world datasets describing the outcomes of patients with LBCL who received treatment with these products.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Antigens, CD19/immunology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/mortality
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/therapeutic use
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/therapeutic use
- Treatment Outcome
- Biological Products
Collapse
Affiliation(s)
- Tamara J Bock
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia.
| | - Chanukya K Colonne
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Salvatore Fiorenza
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Cameron J Turtle
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Royal North Shore Hospital, Sydney, New South Wales, Australia
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
4
|
Jean-Louis G, Cherng HJJ. Measurable Residual Disease Testing During Treatment with Bispecific Antibodies for Lymphoma. Cancers (Basel) 2025; 17:1153. [PMID: 40227652 PMCID: PMC11988116 DOI: 10.3390/cancers17071153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025] Open
Abstract
The introduction of bispecific antibodies (BsAbs) has led to significant improvements in survival for patients with relapsed and refractory B-cell lymphomas. Despite these advances, there remains a significant number of patients who experience disease progression after these novel therapies. Predicting which patients may respond to certain treatments and the durability of their responses remains challenging. Measurable residual disease (MRD) has become easier to detect and quantify through the use of genomic next-generation sequencing tools and has been studied as a possible biomarker to predict long-term outcomes and risk-stratify patients after BsAb therapy in several lymphoma subtypes. Here, we review recent data demonstrating that MRD negativity is associated with radiographic response and improved progression-free survival. Because of heterogeneity in assay choice, assessment timing, and technical parameters, further work is needed before MRD testing is ready to be incorporated into clinical practice in the context of BsAb treatment for B-cell lymphomas.
Collapse
Affiliation(s)
| | - Hua-Jay J. Cherng
- Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA;
| |
Collapse
|
5
|
Newsam AD, Ziccheddu B, Gowda Saralamma VV, Coughlin CA, Goretsky YE, Youssfi AA, Russo MV, Gallego NC, Fattakhov N, Coffey DG, Tsai DE, Carmona-Berrio D, Suissa DM, Manara P, Sondhi AK, Roberts ER, Sheffield-Veney I, Spiegel JY, Amador C, Alderuccio JP, Bilbao D, Jain MD, Maura F, Locke FL, Schatz JH. RHOA Loss of Function Impairs the IFNγ Response and Promotes CD19 Antigen Escape to Drive CAR-T Resistance in Diffuse Large B-cell Lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640687. [PMID: 40093149 PMCID: PMC11908125 DOI: 10.1101/2025.02.27.640687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
CD19-directed chimeric antigen receptor (CAR)-T cells are breakthrough therapies for aggressive B-cell lymphomas, but less than half of patients achieve durable responses. We previously showed through whole-genome sequencing of tumors from CAR-T-treated patients that deletions of RHOA (3p21.31) are enriched in cases progressing after treatment. RHOA 's roles in resistance and pathogenesis are poorly defined, despite loss-of-function alterations that occur in ~20% of newly diagnosed diffuse large B-cell lymphoma (DLBCL) cases. To evaluate mechanisms of CAR-T resistance, we created RHOA-deficient DLBCL systems and confirmed cell-intrinsic loss of response to CAR-19 in vitro and in vivo. RHOA loss promotes AKT activation that impairs cell-intrinsic responses to interferon gamma (IFNγ). Moreover, expression of the CAR target CD19 is consistently down-regulated accompanied by a drive toward plasmablast differentiation. RHOA deficient tumors demonstrate greatly increased sensitivity to AKT-pathway inhibitors, which reverse impaired IFNγ responses. Lymphoma microenvironments in vivo in immunocompetent mice reveal that RHOA loss promotes decreased infiltration by cytotoxic T cells and enrichment of M2-polarized macrophages, known markers of CAR-T resistance in lymphoma clinical cases. Overall, we characterize RHOA deficiency as an AKT-mediated CAR-T resistance driver and implicate avoidance of T-cell mediated killing as a likely reason for RHOA's frequent loss in DLBCL pathogenesis.
Collapse
|
6
|
Liaskas A, Dimopoulou MN, Piperidou A, Angelopoulou MK, Vassilakopoulos TP. Current Issues and Future Perspectives of Targeted Therapies in Primary Mediastinal Large B-Cell Lymphoma. J Clin Med 2025; 14:1191. [PMID: 40004722 PMCID: PMC11856677 DOI: 10.3390/jcm14041191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Primary mediastinal large B-cell lymphoma (PMLBCL) is a rare, aggressive B-cell lymphoma, sharing common features with diffuse large B-cell lymphoma (DLBCL) and Hodgkin lymphoma (HL). PMLBCL is usually cured with single-hit immunochemotherapy in the first-line setting. Relapses tend to be aggressive and may be unresponsive to conventional chemotherapy. Autologous stem cell transplant (ASCT) remains a viable option for chemosensitive patients; nevertheless, targeted therapies appear to be highly promising. Checkpoint inhibitors (CPIs) have already transformed the course of relapse/refractory disease, while CD-19-directed Chimeric Antigen Receptor (CAR) T-cell therapy may produce remarkably favorable outcomes. The exact position of CAR T-cells and CPIs in the treatment algorithm, along with the role of radiotherapy and ASCT, remains to be precisely determined. In the current review, we aim to present the recent research on targeted agents in PMLBCL and define their sequencing within the treatment algorithm, mainly in the relapse/refractory setting.
Collapse
Affiliation(s)
| | - Maria N. Dimopoulou
- Department of Hematology and Bone Marrow Transplantation, Medical School, National and Kapodistrian University of Athens, General Hospital of Athens “Laikon”, 11527 Athens, Greece; (A.L.); (A.P.); (M.K.A.); (T.P.V.)
| | | | | | | |
Collapse
|
7
|
Zhang X, Xu K, Gale RP, Pan B. Strategies following failure of CAR-T-cell therapy in non-Hodgkin lymphoma. Bone Marrow Transplant 2025; 60:182-190. [PMID: 39533016 DOI: 10.1038/s41409-024-02463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Several CD19 CAR-T-cell drugs are approved for safety and efficacy in advanced B-cell cancers with encouraging results. However, primary refractory and relapse are common. We critically analyze long-term data on efficacy of CD19 CAR-T-cell therapies in B-cell non-Hodgkin lymphomas from clinical trials with those of so-called real world data. We identify co-variates associated with efficacy, discuss mechanisms of relapse, summarize the data on the results of post-failure therapy including allotransplants, monoclonal and bi-specific antibodies, antibody-drug conjugates, immune checkpoint-inhibitors and repeat infusions of CAR-T-cells. We conclude, save for allotransplants, there are few data strongly supporting any of these interventions. Most trial are with few heterogeneously-treated subjects with diverse interventions and brief follow-up. Interventions need to be tailored to the cause(s) of CAR-T-cell failure. Prestly, there is not a convincingly safe and effective therapy of people failing initial CAR-T-cell therapy of B-cell non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, England
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
8
|
Kai J, Liu X, Wu M, Liu P, Lin M, Yang H, Zhao Q. Technological advances in clinical individualized medication for cancer therapy: from genes to whole organism. Per Med 2025; 22:45-58. [PMID: 39764674 DOI: 10.1080/17410541.2024.2447224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/23/2024] [Indexed: 02/13/2025]
Abstract
Efforts have been made to leverage technology to accurately identify tumor characteristics and predict how each cancer patient may respond to medications. This involves collecting data from various sources such as genomic data, histological information, functional drug profiling, and drug metabolism using techniques like polymerase chain reaction, sanger sequencing, next-generation sequencing, fluorescence in situ hybridization, immunohistochemistry staining, patient-derived tumor xenograft models, patient-derived organoid models, and therapeutic drug monitoring. The utilization of diverse detection technologies in clinical practice has made "individualized treatment" possible, but the desired level of accuracy has not been fully attained yet. Here, we briefly summarize the conventional and state-of-the-art technologies contributing to individualized medication in clinical settings, aiming to explore therapy options enhancing clinical outcomes.
Collapse
Affiliation(s)
- Jiejing Kai
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueling Liu
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meijia Wu
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meihua Lin
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyu Yang
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingwei Zhao
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Antoniolli M, Solovey M, Hildebrand JA, Freyholdt T, Strobl CD, Bararia D, Keay WD, Adolph L, Heide M, Passerini V, Winter L, Wange L, Enard W, Thieme S, Blum H, Rudelius M, Mergner J, Ludwig C, Bultmann S, Schmidt-Supprian M, Leonhardt H, Subklewe M, von Bergwelt-Baildon M, Colomé-Tatché M, Weigert O. ARID1A mutations protect follicular lymphoma from FAS-dependent immune surveillance by reducing RUNX3/ETS1-driven FAS-expression. Cell Death Differ 2025:10.1038/s41418-025-01445-3. [PMID: 39843653 DOI: 10.1038/s41418-025-01445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/29/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
The cell death receptor FAS and its ligand (FASLG) play crucial roles in the selection of B cells during the germinal center (GC) reaction. Failure to eliminate potentially harmful B cells via FAS can lead to lymphoproliferation and the development of B cell malignancies. The classic form of follicular lymphoma (FL) is a prototypic GC-derived B cell malignancy, characterized by the t(14;18)(q32;q21)IGH::BCL2 translocation and overexpression of antiapoptotic BCL2. Additional alterations were shown to be clinically relevant, including mutations in ARID1A. ARID1A is part of the SWI/SNF nucleosome remodeling complex that regulates DNA accessibility ("openness"). However, the mechanism how ARID1A mutations contribute to FL pathogenesis remains unclear. We analyzed 151 FL biopsies of patients with advanced-stage disease at initial diagnosis and found that ARID1A mutations were recurrent and mainly disruptive, with an overall frequency of 18%. Additionally, we observed that ARID1A mutant FL showed significantly lower FAS protein expression in the FL tumor cell population. Functional experiments in BCL2-translocated lymphoma cells demonstrated that ARID1A is directly involved in the regulation of FAS, and ARID1A loss leads to decreased FAS protein and gene expression. However, ARID1A loss did not affect FAS promotor openness. Instead, we identified and experimentally validated a previously unknown co-transcriptional complex consisting of RUNX3 and ETS1 that regulates FAS expression, and ARID1A loss leads to reduced RUNX3 promotor openness and gene expression. The reduced FAS levels induced by ARID1A loss rendered lymphoma cells resistant to both soluble and T cell membrane-anchored FASLG-induced apoptosis, and significantly diminished CAR T cell killing in functional experiments. In summary, we have identified a functionally and clinically relevant mechanism how FL cells can escape FAS-dependent immune surveillance, which may also impact the efficacy of T cell-based therapies, including CAR T cells.
Collapse
Affiliation(s)
- Martina Antoniolli
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), LMU University Hospital, Munich, Germany
- Department of Medicine III, LMU University Hospital, Munich, Germany
| | - Maria Solovey
- Biomedical Center (BMC), Department of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Munich, Germany
| | - Johannes Adrian Hildebrand
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), LMU University Hospital, Munich, Germany
- Department of Medicine III, LMU University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tabea Freyholdt
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), LMU University Hospital, Munich, Germany
- Department of Medicine III, LMU University Hospital, Munich, Germany
| | - Carolin Dorothea Strobl
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), LMU University Hospital, Munich, Germany
- Department of Medicine III, LMU University Hospital, Munich, Germany
| | - Deepak Bararia
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), LMU University Hospital, Munich, Germany
- Department of Medicine III, LMU University Hospital, Munich, Germany
| | - William David Keay
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), LMU University Hospital, Munich, Germany
- Department of Medicine III, LMU University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Louisa Adolph
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), LMU University Hospital, Munich, Germany
- Department of Medicine III, LMU University Hospital, Munich, Germany
| | - Michael Heide
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), LMU University Hospital, Munich, Germany
- Department of Medicine III, LMU University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena Passerini
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), LMU University Hospital, Munich, Germany
- Department of Medicine III, LMU University Hospital, Munich, Germany
| | - Lis Winter
- Department of Medicine III, LMU University Hospital, Munich, Germany
- Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Lucas Wange
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg, Germany
| | - Susanne Thieme
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Martina Rudelius
- Department of Medicine III, LMU University Hospital, Munich, Germany
- Institute of Pathology, LMU University Hospital, Munich, Germany
| | - Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at Klinikum Rechts der Isar (BayBioMS@MRI), Technical University Munich, Munich, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioM), TUM School of Life Science, Technical University Munich, Munich, Germany
| | - Sebastian Bultmann
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, LMU Munich, Planegg, Germany
| | - Marc Schmidt-Supprian
- German Cancer Consortium (DKTK), Munich, Germany; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Experimental Hematology, TranslaTUM, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Heinrich Leonhardt
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, LMU Munich, Planegg, Germany
| | - Marion Subklewe
- Department of Medicine III, LMU University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), LMU University Hospital, Munich, Germany
- Department of Medicine III, LMU University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Center Munich (CCCM), University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Centre (BZKF), Munich, Germany
| | - Maria Colomé-Tatché
- Biomedical Center (BMC), Department of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Munich, Germany.
- Institute of Computational Biology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Oliver Weigert
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), LMU University Hospital, Munich, Germany.
- Department of Medicine III, LMU University Hospital, Munich, Germany.
- German Cancer Consortium (DKTK), Munich, Germany; and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Bavarian Cancer Research Centre (BZKF), Munich, Germany.
| |
Collapse
|
10
|
Kearl TJ, Furqan F, Shah NN. CAR T-cell therapy for B-cell lymphomas: outcomes and resistance mechanisms. Cancer Metastasis Rev 2024; 44:12. [PMID: 39617795 DOI: 10.1007/s10555-024-10228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/01/2024] [Indexed: 12/13/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are an exciting curative intent approach to the treatment of non-Hodgkin lymphomas (NHLs). Several products have received FDA approval for 2nd or 3rd line indications, and studies are underway for their use earlier in the disease course. These CAR T cells are ex vivo manufactured autologous cell products that specifically target tumor antigens to optimize tumor specificity and minimize off-tumor side effects-in NHLs, this is typically achieved by targeting B-cell antigens. Engagement of the CAR and corresponding antigen is designed to result in T-cell activation and subsequent tumor clearance. While curative for many NHL patients, too many patients fail to respond to or relapse following CAR T-cell treatment, and salvage options post CAR T-cell therapy are limited. Treatment failures occur because of myriad resistance mechanisms including CAR T-cell dysfunction, generalized immune dysregulation, and intrinsic tumor resistance. Focusing on patients with NHL, we review the clinical outcomes of CAR T-cell therapy and the major resistance mechanisms that lead to poor outcomes. We also review the many innovative and encouraging strategies that are being developed to improve CAR T-cell therapy for NHL.
Collapse
Affiliation(s)
- Tyce J Kearl
- BMT & Cellular Therapy Program, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fateeha Furqan
- BMT & Cellular Therapy Program, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nirav N Shah
- BMT & Cellular Therapy Program, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
11
|
Grégoire C, Coutinho de Oliveira B, Caimi PF, Caers J, Melenhorst JJ. Chimeric antigen receptor T-cell therapy for haematological malignancies: Insights from fundamental and translational research to bedside practice. Br J Haematol 2024; 205:1699-1713. [PMID: 39262037 DOI: 10.1111/bjh.19751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Autologous chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of lymphoid malignancies, leading to the approval of CD19-CAR T cells for B-cell lymphomas and acute leukaemia, and more recently, B-cell maturation antigen-CAR T cells for multiple myeloma. The long-term follow-up of patients treated in the early clinical trials demonstrates the possibility for long-term remission, suggesting a cure. This is associated with a low incidence of significant long-term side effects and a rapid improvement in the quality of life for responders. In contrast, other types of immunotherapies require prolonged treatments or carry the risk of long-term side effects impairing the quality of life. Despite impressive results, some patients still experience treatment failure or ultimately relapse, underscoring the imperative to improve CAR T-cell therapies and gain a better understanding of their determinants of efficacy to maximize positive outcomes. While the next-generation of CAR T cells will undoubtingly be more potent, there are already opportunities for optimization when utilizing the currently available CAR T cells. This review article aims to summarize the current evidence from clinical, translational and fundamental research, providing clinicians with insights to enhance their understanding and use of CAR T cells.
Collapse
Affiliation(s)
- Céline Grégoire
- Center for ImmunoTherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Clinical Hematology and Laboratory of Hematology (GIGA I3), University Hospital Center of Liège and University of Liège, Liège, Belgium
| | - Beatriz Coutinho de Oliveira
- Center for ImmunoTherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Paolo F Caimi
- Department of Hematology and Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, USA
| | - Jo Caers
- Department of Clinical Hematology and Laboratory of Hematology (GIGA I3), University Hospital Center of Liège and University of Liège, Liège, Belgium
| | - Jan Joseph Melenhorst
- Center for ImmunoTherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Sýkorová A, Folber F, Polgárová K, Móciková H, Ďuraš J, Steinerová K, Obr A, Heindorfer A, Ladická M, Lukáčová Ľ, Čellárová E, Plameňová I, Belada D, Janíková A, Trněný M, Jančárková T, Procházka V, Vranovský A, Králiková M, Vydra J, Smolej L, Drgoňa Ľ, Sedmina M, Čermáková E, Pytlík R. Several factors that predict the outcome of large B-cell lymphoma patients who relapse/progress after chimeric antigen receptor (CAR) T-cell therapy can be identified before cell administration. Cancer Med 2024; 13:e70138. [PMID: 39248284 PMCID: PMC11382134 DOI: 10.1002/cam4.70138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/13/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
AIM The aim of this study was to analyse the outcomes of patients with large B-cell lymphoma (LBCL) treated with chimeric antigen receptor T-cell therapy (CAR-Tx), with a focus on outcomes after CAR T-cell failure, and to define the risk factors for rapid progression and further treatment. METHODS We analysed 107 patients with LBCL from the Czech Republic and Slovakia who were treated in ≥3rd-line with tisagenlecleucel or axicabtagene ciloleucel between 2019 and 2022. RESULTS The overall response rate (ORR) was 60%, with a 50% complete response (CR) rate. The median progression-free survival (PFS) and overall survival (OS) were 4.3 and 26.4 months, respectively. Sixty-three patients (59%) were refractory or relapsed after CAR-Tx. Of these patients, 39 received radiotherapy or systemic therapy, with an ORR of 22% (CR 8%). The median follow-up of surviving patients in whom treatment failed was 10.6 months. Several factors predicting further treatment administration and outcomes were present even before CAR-Tx. Risk factors for not receiving further therapy after CAR-Tx failure were high lactate dehydrogenase (LDH) levels before apheresis, extranodal involvement (EN), high ferritin levels before lymphodepletion (LD) and ECOG PS >1 at R/P. The median OS-2 (from R/P after CAR-Tx) was 6.7 months (6-month 57.9%) for treated patients and 0.4 months (6-month 4.2%) for untreated patients (p < 0.001). The median PFS-2 (from R/P after CAR-Tx) was 3.2 months (6-month 28.5%) for treated patients. The risk factors for a shorter PFS-2 (n = 39) included: CRP > limit of the normal range (LNR) before LD, albumin < LNR and ECOG PS > 1 at R/P. All these factors, together with LDH > LNR before LD and EN involvement at R/P, predicted OS-2 for treated patients. CONCLUSION Our findings allow better stratification of CAR-Tx candidates and stress the need for a proactive approach (earlier restaging, intervention after partial remission achievement).
Collapse
MESH Headings
- Humans
- Male
- Female
- Middle Aged
- Immunotherapy, Adoptive/methods
- Aged
- Adult
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/immunology
- Neoplasm Recurrence, Local
- Biological Products/therapeutic use
- Receptors, Chimeric Antigen/immunology
- Young Adult
- Risk Factors
- Czech Republic
- Aged, 80 and over
- Slovakia
- Treatment Outcome
- Antigens, CD19/immunology
- Progression-Free Survival
- Disease Progression
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Alice Sýkorová
- 4th Department of Internal Medicine - Haematology, University Hospital and Faculty of Medicine, Hradec Králové, Czech Republic
| | - František Folber
- Department of Internal Medicine, Haematology and Oncology, Masaryk University Hospital, Brno, Czech Republic
| | - Kamila Polgárová
- 1st Department of Medicine-Department of Haematology, Charles University, General University Hospital, Prague, Czech Republic
| | - Heidi Móciková
- Department of Haematology, University Hospital Královské Vinohrady and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Juraj Ďuraš
- Department of Haemato-oncology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Kateřina Steinerová
- Department of Haematology and Oncology, University Hospital, Pilsen, Czech Republic
| | - Aleš Obr
- Department of Haemato-Oncology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | | | - Miriam Ladická
- Clinic of Oncohaematology, Medical Faculty of Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Ľubica Lukáčová
- Oncology Clinic, J.A. Reiman Faculty Hospital, Prešov, Slovakia
| | - Erika Čellárová
- Department of Haematology, F.D. Roosevelt University Hospital, Banská Bystrica, Slovakia
| | - Ivana Plameňová
- Clinic of Haematology and Transfusion Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - David Belada
- 4th Department of Internal Medicine - Haematology, University Hospital and Faculty of Medicine, Hradec Králové, Czech Republic
| | - Andrea Janíková
- Department of Internal Medicine, Haematology and Oncology, Masaryk University Hospital, Brno, Czech Republic
| | - Marek Trněný
- 1st Department of Medicine-Department of Haematology, Charles University, General University Hospital, Prague, Czech Republic
| | - Tereza Jančárková
- Department of Haematology, University Hospital Královské Vinohrady and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vít Procházka
- Department of Haemato-Oncology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Andrej Vranovský
- Clinic of Oncohaematology, Medical Faculty of Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Margaréta Králiková
- Department of Haematology, F.D. Roosevelt University Hospital, Banská Bystrica, Slovakia
| | - Jan Vydra
- Institute of Haematology and Blood Transfusion, Prague, Czech Republic
| | - Lukáš Smolej
- 4th Department of Internal Medicine - Haematology, University Hospital and Faculty of Medicine, Hradec Králové, Czech Republic
| | - Ľuboš Drgoňa
- Clinic of Oncohaematology, Medical Faculty of Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Martin Sedmina
- Department of Haematology, F.D. Roosevelt University Hospital, Banská Bystrica, Slovakia
| | - Eva Čermáková
- Department of Medical Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Robert Pytlík
- Institute of Haematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
13
|
Zhang S, Wang X, Yang Z, Ding M, Zhang M, Young KH, Zhang X. Minimal residual disease detection in lymphoma: methods, procedures and clinical significance. Front Immunol 2024; 15:1430070. [PMID: 39188727 PMCID: PMC11345172 DOI: 10.3389/fimmu.2024.1430070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Lymphoma is a highly heterogeneous lymphohematopoietic tumor. As our understanding of the biological and pathological characteristics of lymphoma improves, we are identifying an increasing number of lymphoma subtypes. Genotyping has enhanced our ability to diagnose, treat, and monitor the prognosis of lymphoma. Despite significant improvements in treatment effectiveness, traditional methods for assessing disease response and monitoring prognosis are imperfect, and there is no significant improvement in overall remission rates for lymphoma patients. Minimal Residual Disease (MRD) is often indicative of refractory disease or early relapse. For lymphoma patients, personalized MRD monitoring techniques offer an efficient means to estimate disease remission levels, predict early relapse risk, and assess the effectiveness of new drug regimens. In this review, we delve into the MRD procedures in lymphoma, including sample selection and requirements, detection methods and their limitations and advantages, result interpretation. Besides, we also introduce the clinical applications of MRD detection in lymphoma.
Collapse
Affiliation(s)
- Sijun Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, China
| | - Xiangyu Wang
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenzhen Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, China
| | - Mengjie Ding
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, China
| | - Ken H. Young
- Division of Hematopathology, Duke University Medicine Center, Duke Cancer Institute, Durham, NC, United States
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Shi X, Wu Y, Yao X, Du B, Du X. Case report: Dual-targeted BCMA and CS1 CAR-T-cell immunotherapy in recurrent and refractory extramedullary multiple myeloma. Front Immunol 2024; 15:1422478. [PMID: 39139556 PMCID: PMC11319262 DOI: 10.3389/fimmu.2024.1422478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Background The development of CAR-T-cell immunotherapy has notably elevated the efficacy of treating multiple myeloma. Currently, a variety of targets, including BCMA, CS1, CD38, FcRH5, and GPRC5D, are being investigated. Despite these significant advancements, challenges such as antigen escape, limited persistence of CAR-T cells, and the intricate nature of the tumor microenvironment persist, leading to relapses following treatment. Case presentation We report the case of a patient with recurrent and refractory multiple myeloma (RRMM) who developed a substantial extramedullary plasmacytoma in the muscles of the lower limb following multiple rounds of radiotherapy and chemotherapy. The patient underwent CAR-T-cell immunotherapy targeting BCMA and CS1; however, the tumor progressed despite treatment. Surgical resection of the extramedullary plasmacytoma was subsequently performed. Upon comparison of the tumor tissue with the adjacent tissue, increased expression of MYBL2 was noted in the tumor tissue, potentially contributing to the lack of improvement in extramedullary relapse after dual-targeted CAR-T cell therapy. Conclusions In patients with recurrent and refractory multiple myeloma who underwent multiple cycles of chemotherapy and radiotherapy, dual-targeted CAR-T cell therapy aimed at BCMA and CS1 failed to effectively manage extramedullary relapse. Elevated expression of MYBL2 in multiple myeloma correlates with a poorer prognosis.
Collapse
Affiliation(s)
- Xiangjun Shi
- Department of Rheumatology and Immunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Wu
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xingchen Yao
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Boran Du
- Department of Pharmacy, Capital Medical University, Beijing Obstetrics and Gynecology Hospital, Beijing, China
| | - Xinru Du
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Olejarz W, Sadowski K, Szulczyk D, Basak G. Advancements in Personalized CAR-T Therapy: Comprehensive Overview of Biomarkers and Therapeutic Targets in Hematological Malignancies. Int J Mol Sci 2024; 25:7743. [PMID: 39062986 PMCID: PMC11276786 DOI: 10.3390/ijms25147743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy is a novel anticancer therapy using autologous or allogeneic T-cells. To date, six CAR-T therapies for specific B-cell acute lymphoblastic leukemia (B-ALL), non-Hodgkin lymphomas (NHL), and multiple myeloma (MM) have been approved by the Food and Drug Administration (FDA). Significant barriers to the effectiveness of CAR-T therapy include cytokine release syndrome (CRS), neurotoxicity in the case of Allogeneic Stem Cell Transplantation (Allo-SCT) graft-versus-host-disease (GVHD), antigen escape, modest antitumor activity, restricted trafficking, limited persistence, the immunosuppressive microenvironment, and senescence and exhaustion of CAR-Ts. Furthermore, cancer drug resistance remains a major problem in clinical practice. CAR-T therapy, in combination with checkpoint blockades and bispecific T-cell engagers (BiTEs) or other drugs, appears to be an appealing anticancer strategy. Many of these agents have shown impressive results, combining efficacy with tolerability. Biomarkers like extracellular vesicles (EVs), cell-free DNA (cfDNA), circulating tumor (ctDNA) and miRNAs may play an important role in toxicity, relapse assessment, and efficacy prediction, and can be implicated in clinical applications of CAR-T therapy and in establishing safe and efficacious personalized medicine. However, further research is required to fully comprehend the particular side effects of immunomodulation, to ascertain the best order and combination of this medication with conventional chemotherapy and targeted therapies, and to find reliable predictive biomarkers.
Collapse
Affiliation(s)
- Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Karol Sadowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Daniel Szulczyk
- Chair and Department of Biochemistry, The Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
16
|
Lownik J, Boiarsky J, Birhiray R, Merchant A, Mead M. Sequencing of Anti-CD19 Therapies in the Management of Diffuse Large B-Cell Lymphoma. Clin Cancer Res 2024; 30:2895-2904. [PMID: 38661647 PMCID: PMC11247318 DOI: 10.1158/1078-0432.ccr-23-1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/01/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Several second- and third-line immunotherapeutic options for patients with relapsed or refractory diffuse large B-cell lymphoma ineligible for autologous stem cell transplant are directed against the B-cell antigen cluster of differentiation 19 (CD19). The anti-CD19 monoclonal antibody tafasitamab, paired with the immunomodulator lenalidomide, mediates antibody-dependent cellular toxicity and phagocytosis; the antibody-drug conjugate loncastuximab tesirine delivers the DNA cross-linking agent tesirine via CD19 binding and internalization; and CD19-directed chimeric antigen receptor T-cell therapy (CAR-T) products are engineered from autologous T cells. Although CD19 expression is assessed at diagnosis, clinically relevant thresholds of CD19 expression-which may not be detectable using current routine methodologies-have not been defined and may vary between CD19-directed treatment modalities. Determining optimal treatment sequencing strategies for CD19-directed therapy is hampered by the exclusion of patients who have received prior CD19-directed therapies from major clinical trials. Antigen escape, which is attributed to mechanisms including epitope loss and defective cell surface trafficking of CD19, is an important cause of CAR-T failure. Limited data suggest that CD19 expression may be maintained after non-CAR-T CD19-directed therapy, and retrospective analyses indicate that some patients with disease relapse after CAR-T may benefit from subsequent CD19-directed therapy. To date, clinical evidence on the effect of anti-CD19 therapy prior to CAR-T has been limited to small case series. Prospective studies and detailed analyses are needed to understand how pretreatment and posttreatment CD19 expression correlates with clinical responses to subsequent CD19-directed therapy to fully maximize treatment strategies.
Collapse
MESH Headings
- Humans
- Antigens, CD19/immunology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Immunotherapy, Adoptive/methods
- Disease Management
Collapse
Affiliation(s)
- Joseph Lownik
- Cedars Sinai Medical Center, Samuel Oschin Cancer Center, Los Angeles, California.
| | | | - Ruemu Birhiray
- Hematology Oncology of Indiana/American Oncology Network, Indianapolis, Indiana.
| | - Akil Merchant
- Cedars Sinai Medical Center, Samuel Oschin Cancer Center, Los Angeles, California.
| | - Monica Mead
- UCLA, Santa Monica Cancer Care, Santa Monica, California.
| |
Collapse
|
17
|
Zhou D, Zhu X, Xiao Y. Advances in research on factors affecting chimeric antigen receptor T-cell efficacy. Cancer Med 2024; 13:e7375. [PMID: 38864474 PMCID: PMC11167615 DOI: 10.1002/cam4.7375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy is becoming an effective technique for the treatment of patients with relapsed/refractory hematologic malignancies. After analyzing patients with tumor progression and sustained remission after CAR-T cell therapy, many factors were found to be associated with the efficacy of CAR-T therapy. This paper reviews the factors affecting the effect of CAR-T such as tumor characteristics, tumor microenvironment and immune function of patients, CAR-T cell structure, construction method and in vivo expansion values, lymphodepletion chemotherapy, and previous treatment, and provides a preliminary outlook on the corresponding therapeutic strategies.
Collapse
Affiliation(s)
- Delian Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
18
|
Bátai B, Kiss L, Varga L, Nagy Á, Househam J, Baker AM, László T, Udvari A, Horváth R, Nagy T, Csomor J, Szakonyi J, Schneider T, Graham TA, Alpár D, Fitzgibbon J, Szepesi Á, Bödör C. Profiling of Copy Number Alterations Using Low-Coverage Whole-Genome Sequencing Informs Differential Diagnosis and Prognosis in Primary Cutaneous Follicle Center Lymphoma. Mod Pathol 2024; 37:100465. [PMID: 38460675 PMCID: PMC11092316 DOI: 10.1016/j.modpat.2024.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Primary cutaneous follicle center lymphoma (PCFCL) has an excellent prognosis using local treatment, whereas nodal follicular lymphoma (nFL), occasionally presenting with cutaneous spread, often requires systemic therapy. Distinction of the 2 diseases based on histopathology alone might be challenging. Copy number alterations (CNAs) have scarcely been explored on a genome-wide scale in PCFCL; however, they might serve as potential biomarkers during differential diagnosis and risk stratification. Low-coverage whole-genome sequencing is a robust, high-throughput method for genome-wide copy number profiling. In this study, we analyzed 28 PCFCL samples from 20 patients and compared the copy number profiles with a cohort of diagnostic samples of 64 nFL patients. Although the copy number profile of PCFCL was similar to that of nFL, PCFCL lacked amplifications of 18q, with the frequency peaking at 18q21.33 in nFL cases involving the BCL2 locus (PCFCL: 5.0% vs nFL: 31.3%, P = .018, Fisher exact test). Development of distant cutaneous spread was significantly associated with higher genomic instability including the proportion of genome altered (0.02 vs 0.13, P = .033) and number of CNAs (2 vs 9 P = .017), as well as the enrichment of 2p22.2-p15 amplification involving REL and XPO1 (6.3% vs 60.0%, P = .005), 3q23-q24 amplification (0.0% vs 50.0%, P = .004), 6q16.1-q23.3 deletion (6.3% vs 50.0%, P = .018), and 9p21.3 deletion covering CDKN2A and CDKN2B loci (0.0% vs 40.0%, P = .014, all Fisher exact test) in PCFCL. Analysis of sequential tumor samples in 2 cases harboring an unfavorable clinical course pointed to the acquisition of 2p amplification in the earliest common progenitor underlining its pivotal role in malignant transformation. By performing genome-wide copy number profiling on the largest patient cohort to date, we identified distinctive CNA alterations conceivably facilitating the differential diagnosis of PCFCL and secondary cutaneous involvement of nFL and potentially aiding the risk stratification of patients with PCFCL in the future.
Collapse
Affiliation(s)
- Bence Bátai
- HCEMM-SU Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Laura Kiss
- HCEMM-SU Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Luca Varga
- HCEMM-SU Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ákos Nagy
- HCEMM-SU Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Jacob Househam
- Genomics and Evolutionary Dynamics Team, Centre for Evolution and Cancer, The Institute for Cancer Research, London, United Kingdom
| | - Ann-Marie Baker
- Genomics and Evolutionary Dynamics Team, Centre for Evolution and Cancer, The Institute for Cancer Research, London, United Kingdom
| | - Tamás László
- HCEMM-SU Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Anna Udvari
- HCEMM-SU Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Róbert Horváth
- HCEMM-SU Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Tibor Nagy
- HCEMM-SU Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Csomor
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - József Szakonyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Tamás Schneider
- Department of Hematology and Lymphoma, National Institute of Oncology, Budapest, Hungary
| | - Trevor A Graham
- Genomics and Evolutionary Dynamics Team, Centre for Evolution and Cancer, The Institute for Cancer Research, London, United Kingdom
| | - Donát Alpár
- HCEMM-SU Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Jude Fitzgibbon
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Ágota Szepesi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | - Csaba Bödör
- HCEMM-SU Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
19
|
Cherng HJJ, Herrera A. Circulating Tumor DNA in Diffuse Large B-Cell Lymphoma: from Bench to Bedside? Curr Treat Options Oncol 2024; 25:659-678. [PMID: 38656685 DOI: 10.1007/s11864-024-01201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
OPINION STATEMENT Diffuse large B-cell lymphoma (DLBCL) is a curable disease with variable outcomes due to underlying heterogeneous clinical and molecular features-features that are insufficiently characterized with our current tools. Due to these limitations, treatment largely remains a "one-size-fits-all" approach. Circulating tumor DNA (ctDNA) is a novel biomarker in cancers that is increasingly utilized for risk stratification and response assessment. ctDNA is readily detectable from the plasma of patients with DLBCL but has not yet been incorporated into clinical care to guide treatment. Here, we describe how ctDNA sequencing represents a promising technology in development to personalize the care of patients with DLBCL. We will review the different types of ctDNA assays being studied and the rapidly growing body of evidence supporting the utility of ctDNA in different treatment settings in DLBCL. Risk stratification by estimation of tumor burden and liquid genotyping, molecular response assessment during treatment, and monitoring for measurable residual disease (MRD) to identify therapy resistance and predict clinical relapse are all potential applications of ctDNA. It is time for clinical trials in DLBCL to utilize ctDNA as an integral biomarker for patient selection, response-adapted designs, and surrogate endpoints. As more ctDNA assays become commercially available for routine use, clinicians should consider liquid biopsy when treatment response is equivocal on imaging. Incorporating MRD may also guide decision-making if patients experience severe treatment toxicities. Though important barriers remain, we believe that ctDNA will soon be ready to transition from bench to bedside to individualize treatment for our patients with DLBCL.
Collapse
MESH Headings
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/blood
- Lymphoma, Large B-Cell, Diffuse/genetics
- Humans
- Circulating Tumor DNA/blood
- Biomarkers, Tumor/blood
- Liquid Biopsy/methods
- Disease Management
- Translational Research, Biomedical
- Precision Medicine/methods
- Prognosis
- Clinical Decision-Making
- Disease Susceptibility
Collapse
Affiliation(s)
- Hua-Jay J Cherng
- Lymphoma Service, Division of Hematology & Oncology, Columbia University Irving Medical Center, 177 Fort Washington Avenue, 6GN-Rm 435, New York, NY, 10032, USA.
| | - Alex Herrera
- Division of Lymphoma, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
20
|
Voltin CA, Paccagnella A, Winkelmann M, Heger JM, Casadei B, Beckmann L, Herrmann K, Dekorsy FJ, Kutsch N, Borchmann P, Fanti S, Kunz WG, Subklewe M, Kobe C, Zinzani PL, Stelljes M, Roth KS, Drzezga A, Noppeney R, Rahbar K, Reinhardt HC, von Tresckow B, Seifert R, Albring JC, Blumenberg V, Farolfi A, Flossdorf S, Gödel P, Hanoun C. Multicenter development of a PET-based risk assessment tool for product-specific outcome prediction in large B-cell lymphoma patients undergoing CAR T-cell therapy. Eur J Nucl Med Mol Imaging 2024; 51:1361-1370. [PMID: 38114616 PMCID: PMC10957657 DOI: 10.1007/s00259-023-06554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE The emergence of chimeric antigen receptor (CAR) T-cell therapy fundamentally changed the management of individuals with relapsed and refractory large B-cell lymphoma (LBCL). However, real-world data have shown divergent outcomes for the approved products. The present study therefore set out to evaluate potential risk factors in a larger cohort. METHODS Our analysis set included 88 patients, treated in four German university hospitals and one Italian center, who had undergone 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (PET) before CAR T-cell therapy with tisagenlecleucel or axicabtagene ciloleucel. We first determined the predictive value of conventional risk factors, treatment lines, and response to bridging therapy for progression-free survival (PFS) through forward selection based on Cox regression. In a second step, the additive potential of two common PET parameters was assessed. Their optimal dichotomizing thresholds were calculated individually for each CAR T-cell product. RESULTS Extra-nodal involvement emerged as the most relevant of the conventional tumor and patient characteristics. Moreover, we found that inclusion of metabolic tumor volume (MTV) further improves outcome prediction. The hazard ratio for a PFS event was 1.68 per unit increase of our proposed risk score (95% confidence interval [1.20, 2.35], P = 0.003), which comprised both extra-nodal disease and lymphoma burden. While the most suitable MTV cut-off among patients receiving tisagenlecleucel was 11 mL, a markedly higher threshold of 259 mL showed optimal predictive performance in those undergoing axicabtagene ciloleucel treatment. CONCLUSION Our analysis demonstrates that the presence of more than one extra-nodal lesion and higher MTV in LBCL are associated with inferior outcome after CAR T-cell treatment. Based on an assessment tool including these two factors, patients can be assigned to one of three risk groups. Importantly, as shown by our study, metabolic tumor burden might facilitate CAR T-cell product selection and reflect the individual need for bridging therapy.
Collapse
Affiliation(s)
- Conrad-Amadeus Voltin
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Andrea Paccagnella
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Michael Winkelmann
- Department of Radiology, University Hospital Munich, Ludwig Maximilian University Munich, Munich, Germany
| | - Jan-Michel Heger
- Department of Internal Medicine I, Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
| | - Beatrice Casadei
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- 'L. e A. Seràgnoli' Institute of Hematology, Scientific Institute for Research, Hospitalization, and Healthcare (IRCCS) 'Azienda Ospedaliero-Universitaria Di Bologna', University of Bologna, Bologna, Italy
| | - Laura Beckmann
- Department of Internal Medicine I, Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
| | - Franziska J Dekorsy
- Department of Nuclear Medicine, University Hospital Munich, Ludwig Maximilian University Munich, Munich, Germany
| | - Nadine Kutsch
- Department of Internal Medicine I, Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
| | - Peter Borchmann
- Department of Internal Medicine I, Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
| | - Stefano Fanti
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Division of Nuclear Medicine, Scientific Institute for Research, Hospitalization, and Healthcare (IRCCS) 'Azienda Ospedaliero-Universitaria Di Bologna', University of Bologna, Bologna, Italy
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital Munich, Ludwig Maximilian University Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, Comprehensive Cancer Center Munich (CCCM), University Hospital Munich, Ludwig Maximilian University Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, Gene Center Munich, Ludwig Maximilian University Munich, Munich, Germany
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF) Partner Site Munich, Munich, Germany
| | - Carsten Kobe
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Pier Luigi Zinzani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- 'L. e A. Seràgnoli' Institute of Hematology, Scientific Institute for Research, Hospitalization, and Healthcare (IRCCS) 'Azienda Ospedaliero-Universitaria Di Bologna', University of Bologna, Bologna, Italy
| | - Matthias Stelljes
- Department of Medicine A-Hematology, Oncology, and Pneumology, West German Cancer Center (WTZ) Network Partner Site, University Hospital Münster, University of Münster, Münster, Germany
| | - Katrin S Roth
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Richard Noppeney
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kambiz Rahbar
- Department of Nuclear Medicine, University Hospital Münster, University of Münster, Münster, Germany
| | - H Christian Reinhardt
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bastian von Tresckow
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
- Department of Nuclear Medicine, University Hospital Münster, University of Münster, Münster, Germany
| | - Jörn C Albring
- Department of Medicine A-Hematology, Oncology, and Pneumology, West German Cancer Center (WTZ) Network Partner Site, University Hospital Münster, University of Münster, Münster, Germany
| | - Viktoria Blumenberg
- Department of Medicine III, Comprehensive Cancer Center Munich (CCCM), University Hospital Munich, Ludwig Maximilian University Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, Gene Center Munich, Ludwig Maximilian University Munich, Munich, Germany
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF) Partner Site Munich, Munich, Germany
| | - Andrea Farolfi
- Division of Nuclear Medicine, Scientific Institute for Research, Hospitalization, and Healthcare (IRCCS) 'Azienda Ospedaliero-Universitaria Di Bologna', University of Bologna, Bologna, Italy
| | - Sarah Flossdorf
- Institute for Medical Informatics, Biometry, and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Philipp Gödel
- Department of Internal Medicine I, Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
| | - Christine Hanoun
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
21
|
Zou H, Liu W, Wang X, Wang Y, Wang C, Qiu C, Liu H, Shan D, Xie T, Huang W, Sui W, Yi S, An G, Xu Y, Ma T, Wang J, Qiu L, Zou D. Dynamic monitoring of circulating tumor DNA reveals outcomes and genomic alterations in patients with relapsed or refractory large B-cell lymphoma undergoing CAR T-cell therapy. J Immunother Cancer 2024; 12:e008450. [PMID: 38443094 PMCID: PMC11146396 DOI: 10.1136/jitc-2023-008450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Over 50% of patients with relapsed or refractory large B-cell lymphoma (r/r LBCL) receiving CD19-targeted chimeric antigen receptor (CAR19) T-cell therapy fail to achieve durable remission. Early identification of relapse or progression remains a significant challenge. In this study, we prospectively investigate the prognostic value of dynamic circulating tumor DNA (ctDNA) and track genetic evolution non-invasively, for the first time in an Asian population of r/r patients undergoing CAR19 T-cell therapy. METHODS Longitudinal plasma samples were prospectively collected both before lymphodepletion and at multiple timepoints after CAR19 T-cell infusion. ctDNA was detected using a capture-based next-generation sequencing which has been validated in untreated LBCL. RESULTS The study enrolled 23 patients with r/r LBCL and collected a total of 101 ctDNA samples. Higher pretreatment ctDNA levels were associated with inferior progression-free survival (PFS) (p=0.031) and overall survival (OS) (p=0.023). Patients with undetectable ctDNA negative (ctDNA-) at day 14 (D14) achieved an impressive 3-month complete response rate of 77.8% vs 22.2% (p=0.015) in patients with detectable ctDNA positive (ctDNA+), similar results observed for D28. CtDNA- at D28 predicted significantly longer 1-year PFS (90.9% vs 27.3%; p=0.004) and OS (90.9% vs 49.1%; p=0.003) compared with patients who remained ctDNA+. Notably, it is the first time to report that shorter ctDNA fragments (<170 base pairs) were significantly associated with poorer PFS (p=0.031 for D14; p=0.002 for D28) and OS (p=0.013 for D14; p=0.008 for D28) in patients with LBCL receiving CAR T-cell therapy. Multiple mutated genes exhibited an elevated prevalence among patients with progressive disease, including TP53, IGLL5, PIM1, BTG1, CD79B, GNA13, and P2RY8. Notably, we observed a significant correlation between IGLL5 mutation and inferior PFS (p=0.008) and OS (p=0.014). CONCLUSIONS Our study highlights that dynamic ctDNA monitoring during CAR T-cell therapy can be a promising non-invasive method for early predicting treatment response and survival outcomes. Additionally, the ctDNA mutational profile provides novel insights into the mechanisms of tumor-intrinsic resistance to CAR19 T-cell therapy.
Collapse
Affiliation(s)
- Hesong Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaojuan Wang
- Jichen Biotechnology Co, Ltd, Hangzhou, Zhejiang, China
- Genecn-Biotech Co, Ltd, Hangzhou, Zhejiang, China
| | - Yi Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Chunyang Wang
- Jichen Biotechnology Co, Ltd, Hangzhou, Zhejiang, China
- Genecn-Biotech Co, Ltd, Hangzhou, Zhejiang, China
| | - Chen Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Huimin Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Dandan Shan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ting Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wenyang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shuhua Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Tonghui Ma
- Jichen Biotechnology Co, Ltd, Hangzhou, Zhejiang, China
- Genecn-Biotech Co, Ltd, Hangzhou, Zhejiang, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
22
|
Ong SY, Chen Y, Tan MSY, Ho AYL, Hwang WYK, Lim FLWI. Current perspectives on resistance to chimeric antigen receptor T-cell therapy and strategies to improve efficacy in B-cell lymphoma. Eur J Haematol 2024; 112:144-152. [PMID: 36987995 DOI: 10.1111/ejh.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Although chimeric antigen receptor (CAR) T-cell therapy has demonstrated remarkable efficacy in patients with chemo-refractory B-cell lymphoma, a significant portion is refractory or relapse. Resistance is a major barrier to improving treatment efficacy and long-term survival in CAR T-cell therapy, and clinicians have very limited tools to discriminate a priori patients who will or will not respond to treatment. While CD19-negative relapses due to loss of target antigen is well described, it accounts for only about 30% of cases with treatment failure. Recent efforts have shed light on mechanisms of CD19-positive relapse due to tumor intrinsic resistance, T-cell quality/manufacturing, or CAR T-cell exhaustion mediated by hostile tumor microenvironment. Here, we review the latest updates of preclinical and clinical trials to investigate the mechanisms of resistance and relapse post CAR T-cell therapy in B cell lymphoma and discuss novel treatment strategies to overcome resistance as well as advances that are useful for a CAR T therapist to optimize and personalize CAR T-cell therapy.
Collapse
Affiliation(s)
- Shin Yeu Ong
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Yunxin Chen
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Melinda Si Yun Tan
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | | | - William Ying Khee Hwang
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | | |
Collapse
|
23
|
Zhai Y, Du Y, Li G, Yu M, Hu H, Pan C, Wang D, Shi Z, Yan X, Li X, Jiang T, Zhang W. Trogocytosis of CAR molecule regulates CAR-T cell dysfunction and tumor antigen escape. Signal Transduct Target Ther 2023; 8:457. [PMID: 38143263 PMCID: PMC10749292 DOI: 10.1038/s41392-023-01708-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/19/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has demonstrated clinical response in treating both hematologic malignancies and solid tumors. Although instances of rapid tumor remissions have been observed in animal models and clinical trials, tumor relapses occur with multiple therapeutic resistance mechanisms. Furthermore, while the mechanisms underlying the long-term therapeutic resistance are well-known, short-term adaptation remains less understood. However, more views shed light on short-term adaptation and hold that it provides an opportunity window for long-term resistance. In this study, we explore a previously unreported mechanism in which tumor cells employ trogocytosis to acquire CAR molecules from CAR-T cells, a reversal of previously documented processes. This mechanism results in the depletion of CAR molecules and subsequent CAR-T cell dysfunction, also leading to short-term antigen loss and antigen masking. Such type of intercellular communication is independent of CAR downstream signaling, CAR-T cell condition, target antigen, and tumor cell type. However, it is mainly dependent on antigen density and CAR sensitivity, and is associated with tumor cell cholesterol metabolism. Partial mitigation of this trogocytosis-induced CAR molecule transfer can be achieved by adaptively administering CAR-T cells with antigen density-individualized CAR sensitivities. Together, our study reveals a dynamic process of CAR molecule transfer and refining the framework of clinical CAR-T therapy for solid tumors.
Collapse
Affiliation(s)
- You Zhai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Yicong Du
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, PR China
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Mingchen Yu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Changqing Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Di Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zhongfang Shi
- Department of Pathophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Xu Yan
- Department of Pathophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, PR China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
- China National Clinical Research Center for Neurological Diseases, Beijing, PR China.
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, PR China.
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing, PR China.
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, PR China.
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
- China National Clinical Research Center for Neurological Diseases, Beijing, PR China.
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, PR China.
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, PR China.
| |
Collapse
|
24
|
Mussetti A, Fabbri N, Sureda A. CAR T-cell therapy in aggressive lymphomas-identifying prognostic and predictive markers. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:357-363. [PMID: 38066912 PMCID: PMC10727003 DOI: 10.1182/hematology.2023000436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
We discuss different pre-infusion, post-infusion and post-CAR T-cell relapse prognostic factors influencing the outcomes of anti-CD19 CAR T-cell therapy in patients with relapsed or refractory large B-cell lymphomas. Despite the overall positive results of anti-CD19 CAR T-cell therapy, a significant percentage of patients relapse. We summarize the efforts made to identify predictive factors for response and durable remissions and survival. In the pre-infusion setting, the patient-related factors discussed include Eastern Cooperative Oncology Group performance status, age, and comorbidities. Disease-related factors like tumor burden, histology, and biological features are also considered. In addition, inflammation-related factors and CAR T-cell product-related factors are considered. After CAR T-cell infusion, factors such as disease response assessed by 18FDG-PET/CT scan, liquid biopsy monitoring, and CAR T-cell expansion become crucial in predicting survival outcomes. Response to 18FDG-PET/CT scan is a widely used test for confirming response and predicting survival. Liquid biopsy, in combination with 18FDG-PET/CT scan, has shown potential in predicting outcomes. CAR T-cell expansion and persistence have shown mixed effects on survival, with some studies indicating their association with response. In the setting of post-CAR T-cell relapse, prognostic factors include refractory disease, time of relapse, and elevated lactate dehydrogenase levels at CAR T-cell infusion. Enrollment in clinical trials is crucial for improving outcomes in these patients. Overall, we discuss a comprehensive overview of prognostic factors that can influence the outcomes of anti-CD19 CAR T-cell therapy in patients with relapsed or refractory large B-cell lymphomas, highlighting the need for personalized approaches in treatment decision-making.
Collapse
Affiliation(s)
- Alberto Mussetti
- Department of Hematology, Catalan Institute of Oncology, Hospital Duran i Reynals, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Nicole Fabbri
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Anna Sureda
- Department of Hematology, Catalan Institute of Oncology, Hospital Duran i Reynals, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Medicine Department, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Hamilton MP, Miklos DB. Chimeric Antigen Receptor T-Cell Therapy in Aggressive B-Cell Lymphoma. Hematol Oncol Clin North Am 2023; 37:1053-1075. [PMID: 37349153 DOI: 10.1016/j.hoc.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a revolutionary therapy increasingly used in the treatment of non-Hodgkin B-cell lymphoma. This review focuses on the use of CAR T-cell therapy in aggressive B-cell lymphoma including clinical indications, known short- and long-term toxicity, mechanisms of CAR T-cell efficacy and tumor resistance, and future directions in the treatment of aggressive lymphoma with CAR T-cell therapy.
Collapse
Affiliation(s)
- Mark P Hamilton
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - David B Miklos
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Newsam AD, Coughlin CA, Trabolsi A, Schatz JH. Functional drivers of resistance to anti-CD19 CAR-T cell therapy in diffuse large B cell lymphoma. Leuk Lymphoma 2023; 64:2217-2224. [PMID: 37933565 PMCID: PMC11195421 DOI: 10.1080/10428194.2023.2258244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/06/2023] [Indexed: 11/08/2023]
Abstract
Chimeric antigen receptor T-cell therapy targeting CD19 (CAR-19) promotes impressive durable remissions for relapsed or refractory (rel/ref) large B-cell lymphoma (LBCL) patients with historically poor prognoses. Despite this, over half of patients still fail to respond or eventually progress. Studies to reveal mechanisms of resistance have examined host clinical parameters, CAR-19 product composition, and tumor microenvironment (TME) alterations, while a relative paucity of studies has analyzed contributions by genomic alterations in tumor cells. Factors associated with outcome include increased tumor volume, specific characteristics of infused CAR-T products, infiltration by myeloid cells in tumor microenvironments, and markers of complexity in LBCL genomes. Functional laboratory studies of resistance are largely absent in the current literature, illustrating a need for experiments in genetically accurate immunocompetent systems to confirm candidate alterations' roles in resistance and inform future improvements. In this review, we highlight key studies that have elucidated biomarkers of resistance in hosts, CAR products, TMEs, and comparatively understudied tumor-intrinsic mediators encoded by tumor genomes. We conclude with an experimental framework suitable for CAR-19 resistance biomarker identification and laboratory functional validation.
Collapse
Affiliation(s)
- Austin D. Newsam
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of medicine, Miami, FL, USA
| | - Caroline A. Coughlin
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of medicine, Miami, FL, USA
| | - Asaad Trabolsi
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of medicine, Miami, FL, USA
- Hematology-Oncology Fellowship Training Program, Jackson Memorial Hospital, Miami, FL, USA
| | - Jonathan H. Schatz
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of medicine, Miami, FL, USA
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
27
|
Cuzzo B, Lipsky A, Cherng HJJ. Measurable Residual Disease Monitoring in Lymphoma. Curr Hematol Malig Rep 2023; 18:292-304. [PMID: 37930608 DOI: 10.1007/s11899-023-00715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE OF REVIEW The utility of analyzing circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and disease in the bone marrow as an adjunctive tool in caring for hematologic cancer patients is expanding. This holds true for lymphoma where these biomarkers are being explored as a means of genotyping and quantifying disease. Regarding the latter, they can be used to monitor measurable residual disease (MRD) during and after treatment. This holds potential for aiding clinical decisions amidst treatment, detecting earlier relapse, and improving prognostication. Here, we review the evidence to support these applications in a variety of lymphoma subtypes. RECENT FINDINGS Numerous clinical trials across a variety of lymphomas have demonstrated value in MRD monitoring. MRD monitoring is often prognostic for progression free survival (PFS) and even overall survival (OS) at several time points in a disease course, particularly when utilizing serial measurements. With regards to tailoring treatment, there are a growing number of trials examining MRD-adaptive treatment strategies to intensify or de-escalate treatment to individualize care. Lastly, MRD monitoring has been utilized successfully in detecting earlier relapse when compared to more standard methods of clinical surveillance such as radiographic assessment. Although not routinely implemented into clinical practice, MRD monitoring in lymphoma is helping shape the future landscape of this disease by aiding in prognostication, guiding therapy, and detecting earlier relapse. Steps to standardize and further examine this technology prospectively are being taken to bring MRD monitoring to the forefront of the field.
Collapse
Affiliation(s)
- Brian Cuzzo
- Columbia University Medical Center, 161 Fort Washington Ave, New York, NY, 10032, USA
| | - Andrew Lipsky
- Columbia University Medical Center, 161 Fort Washington Ave, New York, NY, 10032, USA
| | - Hua-Jay J Cherng
- Columbia University Medical Center, 161 Fort Washington Ave, New York, NY, 10032, USA.
| |
Collapse
|
28
|
Testa U, Leone G, Pelosi E, Castelli G, Hohaus S. CAR-T Cell Therapy in Large B Cell Lymphoma. Mediterr J Hematol Infect Dis 2023; 15:e2023066. [PMID: 38028399 PMCID: PMC10631715 DOI: 10.4084/mjhid.2023.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Large B-cell lymphomas (LBCLs) are among the most frequent (about 30%) non-Hodgkin's lymphoma. Despite the aggressive behavior of these lymphomas, more than 60% of patients can be cured with first-line chemoimmunotherapy using the R-CHOP regimen. Patients with refractory or relapsing disease show a poor outcome even when treated with second-line therapies. CD19-targeted chimeric antigen receptor (CAR) T-cells are emerging as an efficacious second-line treatment strategy for patients with LBCL. Three CD19-CAR-T-cell products received FDA and EMA approval. CAR-T cell therapy has also been explored for treating high-risk LBCL patients in the first-line setting and for patients with central nervous system involvement. Although CD19-CAR-T therapy has transformed the care of refractory/relapsed LBCL, about 60% of these patients will ultimately progress or relapse following CD19-CAR-T; therefore, it is fundamental to identify predictive criteria of response to CAR-T therapy and to develop salvage therapies for patients relapsing after CD19-CAR-T therapies. Moreover, ongoing clinical trials evaluate bispecific CAR-T cells targeting both CD19 and CD20 or CD19 and CD22 as a tool to improve the therapeutic efficacy and reduce the number of refractory/relapsing patients.
Collapse
Affiliation(s)
| | - Giuseppe Leone
- Dipartimento Di Scienze Radiologiche Ed Ematologiche, Università Cattolica Del Sacro Cuore, Roma, Italy
| | | | | | - Stefan Hohaus
- Dipartimento Di Diagnostica per Immagini, Radioterapia Oncologica Ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy. Sezione Di Ematologia
- Dipartimento Di Scienze Radiologiche Ed Ematologiche, Università Cattolica Del Sacro Cuore, Roma, Italy
| |
Collapse
|
29
|
Rejeski K, Perez A, Iacoboni G, Blumenberg V, Bücklein VL, Völkl S, Penack O, Albanyan O, Stock S, Müller F, Karschnia P, Petrera A, Reid K, Faramand R, Davila ML, Modi K, Dean EA, Bachmeier C, von Bergwelt-Baildon M, Locke FL, Bethge W, Bullinger L, Mackensen A, Barba P, Jain MD, Subklewe M. Severe hematotoxicity after CD19 CAR-T therapy is associated with suppressive immune dysregulation and limited CAR-T expansion. SCIENCE ADVANCES 2023; 9:eadg3919. [PMID: 37738350 PMCID: PMC10516499 DOI: 10.1126/sciadv.adg3919] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
Prolonged cytopenias after chimeric antigen receptor (CAR) T cell therapy are a significant clinical problem and the underlying pathophysiology remains poorly understood. Here, we investigated how (CAR) T cell expansion dynamics and serum proteomics affect neutrophil recovery phenotypes after CD19-directed CAR T cell therapy. Survival favored patients with "intermittent" neutrophil recovery (e.g., recurrent neutrophil dips) compared to either "quick" or "aplastic" recovery. While intermittent patients displayed increased CAR T cell expansion, aplastic patients exhibited an unfavorable relationship between expansion and tumor burden. Proteomics of patient serum collected at baseline and in the first month after CAR-T therapy revealed higher markers of endothelial dysfunction, inflammatory cytokines, macrophage activation, and T cell suppression in the aplastic phenotype group. Prolonged neutrophil aplasia thus occurs in patients with systemic immune dysregulation at baseline with subsequently impaired CAR-T expansion and myeloid-related inflammatory changes. The association between neutrophil recovery and survival outcomes highlights critical interactions between host hematopoiesis and the immune state stimulated by CAR-T infusion.
Collapse
Affiliation(s)
- Kai Rejeski
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
| | - Ariel Perez
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
- Blood and Marrow Transplant Program, Miami Cancer Institute, Miami, FL, USA
| | - Gloria Iacoboni
- Department of Hematology, University Hospital Vall d’Hebron, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Viktoria Blumenberg
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
| | - Veit L. Bücklein
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
| | - Simon Völkl
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Olaf Penack
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Department of Hematology, Oncology and Tumorimmunology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
| | - Omar Albanyan
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
- Adult Hematology-Oncology and Stem Cell Transplantation, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Sophia Stock
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
| | - Fabian Müller
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Agnese Petrera
- Metabolomics and Proteomics Core Facility, Helmholtz Zentrum Munich – German Research Center for Environmental Health, Munich, Germany
| | - Kayla Reid
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Rawan Faramand
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Marco L. Davila
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Karnav Modi
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Erin A. Dean
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Christina Bachmeier
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Michael von Bergwelt-Baildon
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
| | - Frederick L Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Wolfgang Bethge
- Department of Hematology, Oncology, Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Lars Bullinger
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Department of Hematology, Oncology and Tumorimmunology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Mackensen
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Pere Barba
- Department of Hematology, University Hospital Vall d’Hebron, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Michael D. Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Marion Subklewe
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
| |
Collapse
|
30
|
Dean EA, Kimmel GJ, Frank MJ, Bukhari A, Hossain NM, Jain MD, Dahiya S, Miklos DB, Altrock PM, Locke FL. Circulating tumor DNA adds specificity to PET after axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv 2023; 7:4608-4618. [PMID: 37126659 PMCID: PMC10448428 DOI: 10.1182/bloodadvances.2022009426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/07/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023] Open
Abstract
We examined the meaning of metabolically active lesions on 1-month restaging nuclear imaging of patients with relapsed/refractory large B-cell lymphoma receiving axicabtagene ciloleucel (axi-cel) by assessing the relationship between total metabolic tumor volume (MTV) on positron emission tomography (PET) scans and circulating tumor DNA (ctDNA) in the plasma. In this prospective multicenter sample collection study, MTV was retrospectively calculated via commercial software at baseline, 1, and 3 months after chimeric antigen receptor (CAR) T-cell therapy; ctDNA was available before and after axi-cel administration. Spearman correlation coefficient (rs) was used to study the relationship between the variables, and a mathematical model was constructed to describe tumor dynamics 1 month after CAR T-cell therapy. The median time between baseline scan and axi-cel infusion was 33 days (range, 1-137 days) for all 57 patients. For 41 of the patients with imaging within 33 days of axi-cel or imaging before that time but no bridging therapy, the correlation at baseline became stronger (rs, 0.61; P < .0001) compared with all patients (rs, 0.38; P = .004). Excluding patients in complete remission with no measurable residual disease, ctDNA and MTV at 1 month did not correlate (rs, 0.28; P = .11) but correlated at 3 months (rs, 0.79; P = .0007). Modeling of tumor dynamics, which incorporated ctDNA and inflammation as part of MTV, recapitulated the outcomes of patients with positive radiologic 1-month scans. Our results suggested that nonprogressing hypermetabolic lesions on 1-month PET represent ongoing treatment responses, and their composition may be elucidated by concurrently examining the ctDNA.
Collapse
Affiliation(s)
- Erin A. Dean
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer and Research Institute, Tampa, FL
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL
| | - Gregory J. Kimmel
- Department of Integrated Mathematical Oncology, Moffitt Research Institute, Tampa, FL
| | - Matthew J. Frank
- Division of Blood and Stem Cell Transplantation, Department of Medicine, Stanford University, Stanford, CA
| | - Ali Bukhari
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD
- Division of Hematology and Oncology, Department of Internal Medicine, Wright-Patterson Medical Center, Wright-Patterson Air Force Base, OH
| | - Nasheed M. Hossain
- Cell Therapy and Transplant Program, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael D. Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer and Research Institute, Tampa, FL
| | - Saurabh Dahiya
- Division of Blood and Stem Cell Transplantation, Department of Medicine, Stanford University, Stanford, CA
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| | - David B. Miklos
- Division of Blood and Stem Cell Transplantation, Department of Medicine, Stanford University, Stanford, CA
| | - Philipp M. Altrock
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Frederick L. Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer and Research Institute, Tampa, FL
| |
Collapse
|
31
|
Bücklein V, Perez A, Rejeski K, Iacoboni G, Jurinovic V, Holtick U, Penack O, Kharboutli S, Blumenberg V, Ackermann J, Frölich L, Johnson G, Patel K, Arciola B, Mhaskar R, Wood A, Schmidt C, Albanyan O, Gödel P, Hoster E, Bullinger L, Mackensen A, Locke F, von Bergwelt M, Barba P, Subklewe M, Jain MD. Inferior Outcomes of EU Versus US Patients Treated With CD19 CAR-T for Relapsed/Refractory Large B-cell Lymphoma: Association With Differences in Tumor Burden, Systemic Inflammation, Bridging Therapy Utilization, and CAR-T Product Use. Hemasphere 2023; 7:e907. [PMID: 37449196 PMCID: PMC10337711 DOI: 10.1097/hs9.0000000000000907] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/03/2023] [Indexed: 07/18/2023] Open
Abstract
Real-world evidence suggests a trend toward inferior survival of patients receiving CD19 chimeric antigen receptor (CAR) T-cell therapy in Europe (EU) and with tisagenlecleucel. The underlying logistic, patient- and disease-related reasons for these discrepancies remain poorly understood. In this multicenter retrospective observational study, we studied the patient-individual journey from CAR-T indication to infusion, baseline features, and survival outcomes in 374 patients treated with tisagenlecleucel (tisa-cel) or axicabtagene-ciloleucel (axi-cel) in EU and the United States (US). Compared with US patients, EU patients had prolonged indication-to-infusion intervals (66 versus 50 d; P < 0.001) and more commonly received intermediary therapies (holding and/or bridging therapy, 94% in EU versus 74% in US; P < 0.001). Baseline lactate dehydrogenase (LDH) (median 321 versus 271 U/L; P = 0.02) and ferritin levels (675 versus 425 ng/mL; P = 0.004) were significantly elevated in the EU cohort. Overall, we observed inferior survival in EU patients (median progression-free survival [PFS] 3.1 versus 9.2 months in US; P < 0.001) and with tisa-cel (3.2 versus 9.2 months with axi-cel; P < 0.001). On multivariate Lasso modeling, nonresponse to bridging, elevated ferritin, and increased C-reactive protein represented independent risks for treatment failure. Weighing these variables into a patient-individual risk balancer (high risk [HR] balancer), we found higher levels in EU versus US and tisa-cel versus axi-cel cohorts. Notably, superior PFS with axi-cel was exclusively evident in patients at low risk for progression (according to the HR balancer), but not in high-risk patients. These data demonstrate that inferior survival outcomes in EU patients are associated with longer time-to-infusion intervals, higher tumor burden/LDH levels, increased systemic inflammatory markers, and CAR-T product use.
Collapse
Affiliation(s)
- Veit Bücklein
- Department of Medicine III, University Hospital, LMU Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Ariel Perez
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
- Blood and Marrow Transplant Program, Miami Cancer Institute, Miami, FL, USA
| | - Kai Rejeski
- Department of Medicine III, University Hospital, LMU Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK) Munich Site, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gloria Iacoboni
- Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), University Hospital Vall d’Hebron, Department of Medicine, Universitat Autònoma of Barcelona (UAB), Spain
| | - Vindi Jurinovic
- Institute for Medical Information Processing, Biometry, and Epidemiology, LMU Munich, Germany
| | - Udo Holtick
- Department I of Internal Medicine, Medical Faculty and University Hospital, Cologne, University of Cologne, Germany
| | - Olaf Penack
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Tumorimmunology, Berlin, Germany
| | - Soraya Kharboutli
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Germany
| | - Viktoria Blumenberg
- Department of Medicine III, University Hospital, LMU Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK) Munich Site, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Lisa Frölich
- Department of Medicine III, University Hospital, LMU Munich, Germany
| | - Grace Johnson
- USF Health Morsani College of Medicine, Tampa, FL, USA
| | - Kedar Patel
- USF Health Morsani College of Medicine, Tampa, FL, USA
| | - Brian Arciola
- USF Health Morsani College of Medicine, Tampa, FL, USA
| | - Rahul Mhaskar
- USF Health Morsani College of Medicine, Tampa, FL, USA
| | - Anthony Wood
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Christian Schmidt
- Department of Medicine III, University Hospital, LMU Munich, Germany
| | - Omar Albanyan
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Philipp Gödel
- Department I of Internal Medicine, Medical Faculty and University Hospital, Cologne, University of Cologne, Germany
| | - Eva Hoster
- Institute for Medical Information Processing, Biometry, and Epidemiology, LMU Munich, Germany
| | - Lars Bullinger
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Tumorimmunology, Berlin, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Germany
| | - Frederick Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Michael von Bergwelt
- Department of Medicine III, University Hospital, LMU Munich, Germany
- German Cancer Consortium (DKTK) Munich Site, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pere Barba
- Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), University Hospital Vall d’Hebron, Department of Medicine, Universitat Autònoma of Barcelona (UAB), Spain
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK) Munich Site, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael D. Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
32
|
Rejeski K, Jain MD, Smith EL. Mechanisms of Resistance and Treatment of Relapse after CAR T-cell Therapy for Large B-cell Lymphoma and Multiple Myeloma. Transplant Cell Ther 2023; 29:418-428. [PMID: 37076102 PMCID: PMC10330792 DOI: 10.1016/j.jtct.2023.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Although chimeric antigen receptor (CAR) T cell therapy (CAR-T) has altered the treatment landscape for relapsed/refractory B cell malignancies and multiple myeloma, only a minority of patients attain long-term disease remission. The underlying reasons for CAR-T resistance are multifaceted and can be broadly divided into host-related, tumor-intrinsic, microenvironmental and macroenvironmental, and CAR-T-related factors. Emerging host-related determinants of response to CAR-T relate to gut microbiome composition, intact hematopoietic function, body composition, and physical reserve. Emerging tumor-intrinsic resistance mechanisms include complex genomic alterations and mutations to immunomodulatory genes. Furthermore, the extent of systemic inflammation prior to CAR-T is a potent biomarker of response and reflects a proinflammatory tumor micromilieu characterized by infiltration of myeloid-derived suppressor cells and regulatory T cell populations. The tumor and its surrounding micromilieu also can shape the response of the host to CAR-T infusion and the subsequent expansion and persistence of CAR T cells, a prerequisite for efficient eradication of tumor cells. Here, focusing on both large B cell lymphoma and multiple myeloma, we review resistance mechanisms, explore therapeutic avenues to overcome resistance to CAR-T, and discuss the management of patients who relapse after CAR-T.
Collapse
Affiliation(s)
- Kai Rejeski
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich Site, and German Cancer Research Center, Heidelberg, Germany
| | - Michael D. Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, USA
| | | |
Collapse
|
33
|
Cappell KM, Kochenderfer JN. Long-term outcomes following CAR T cell therapy: what we know so far. Nat Rev Clin Oncol 2023; 20:359-371. [PMID: 37055515 PMCID: PMC10100620 DOI: 10.1038/s41571-023-00754-1] [Citation(s) in RCA: 519] [Impact Index Per Article: 259.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/15/2023]
Abstract
Chimeric antigen receptors (CAR) are engineered fusion proteins designed to target T cells to antigens expressed on cancer cells. CAR T cells are now an established treatment for patients with relapsed and/or refractory B cell lymphomas, B cell acute lymphoblastic leukaemia and multiple myeloma. At the time of this writing, over a decade of follow-up data are available from the initial patients who received CD19-targeted CAR T cells for B cell malignancies. Data on the outcomes of patients who received B cell maturation antigen (BCMA)-targeted CAR T cells for multiple myeloma are more limited owing to the more recent development of these constructs. In this Review, we summarize long-term follow-up data on efficacy and toxicities from patients treated with CAR T cells targeting CD19 or BCMA. Overall, the data demonstrate that CD19-targeted CAR T cells can induce prolonged remissions in patients with B cell malignancies, often with minimal long-term toxicities, and are probably curative for a subset of patients. By contrast, remissions induced by BCMA-targeted CAR T cells are typically more short-lived but also generally have only limited long-term toxicities. We discuss factors associated with long-term remissions, including the depth of initial response, malignancy characteristics predictive of response, peak circulating CAR levels and the role of lymphodepleting chemotherapy. We also discuss ongoing investigational strategies designed to improve the length of remission following CAR T cell therapy.
Collapse
Affiliation(s)
- Kathryn M Cappell
- Surgery Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA
| | - James N Kochenderfer
- Surgery Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA.
| |
Collapse
|
34
|
Yang J, Chen Y, Jing Y, Green MR, Han L. Advancing CAR T cell therapy through the use of multidimensional omics data. Nat Rev Clin Oncol 2023; 20:211-228. [PMID: 36721024 PMCID: PMC11734589 DOI: 10.1038/s41571-023-00729-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
Despite the notable success of chimeric antigen receptor (CAR) T cell therapies in the treatment of certain haematological malignancies, challenges remain in optimizing CAR designs and cell products, improving response rates, extending the durability of remissions, reducing toxicity and broadening the utility of this therapeutic modality to other cancer types. Data from multidimensional omics analyses, including genomics, epigenomics, transcriptomics, T cell receptor-repertoire profiling, proteomics, metabolomics and/or microbiomics, provide unique opportunities to dissect the complex and dynamic multifactorial phenotypes, processes and responses of CAR T cells as well as to discover novel tumour targets and pathways of resistance. In this Review, we summarize the multidimensional cellular and molecular profiling technologies that have been used to advance our mechanistic understanding of CAR T cell therapies. In addition, we discuss current applications and potential strategies leveraging multi-omics data to identify optimal target antigens and other molecular features that could be exploited to enhance the antitumour activity and minimize the toxicity of CAR T cell therapy. Indeed, fully utilizing multi-omics data will provide new insights into the biology of CAR T cell therapy, further accelerate the development of products with improved efficacy and safety profiles, and enable clinicians to better predict and monitor patient responses.
Collapse
Affiliation(s)
- Jingwen Yang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yamei Chen
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Ying Jing
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Michael R Green
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
35
|
Sivapalan L, Murray JC, Canzoniero JV, Landon B, Jackson J, Scott S, Lam V, Levy BP, Sausen M, Anagnostou V. Liquid biopsy approaches to capture tumor evolution and clinical outcomes during cancer immunotherapy. J Immunother Cancer 2023; 11:e005924. [PMID: 36657818 PMCID: PMC9853269 DOI: 10.1136/jitc-2022-005924] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/20/2023] Open
Abstract
Circulating cell-free tumor DNA (ctDNA) can serve as a real-time biomarker of tumor burden and provide unique insights into the evolving molecular landscape of cancers under the selective pressure of immunotherapy. Tracking the landscape of genomic alterations detected in ctDNA may reveal the clonal architecture of the metastatic cascade and thus improve our understanding of the molecular wiring of therapeutic responses. While liquid biopsies may provide a rapid and accurate evaluation of tumor burden dynamics during immunotherapy, the complexity of antitumor immune responses is not fully captured through single-feature ctDNA analyses. This underscores a need for integrative studies modeling the tumor and the immune compartment to understand the kinetics of tumor clearance in association with the quality of antitumor immune responses. Clinical applications of ctDNA testing in patients treated with immune checkpoint inhibitors have shown both predictive and prognostic value through the detection of genomic biomarkers, such as tumor mutational burden and microsatellite instability, as well as allowing for real-time monitoring of circulating tumor burden and the assessment of early on-therapy responses. These efforts highlight the emerging role of liquid biopsies in selecting patients for cancer immunotherapy, monitoring therapeutic efficacy, determining the optimal duration of treatment and ultimately guiding treatment selection and sequencing. The clinical translation of liquid biopsies is propelled by the increasing number of ctDNA-directed interventional clinical trials in the immuno-oncology space, signifying a critical step towards implementation of liquid biopsies in precision immuno-oncology.
Collapse
Affiliation(s)
- Lavanya Sivapalan
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph C Murray
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jenna VanLiere Canzoniero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Blair Landon
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Susan Scott
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vincent Lam
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Benjamin P Levy
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Sausen
- Personal Genome Diagnostics, Baltimore, Maryland, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
36
|
Tumor-intrinsic causes of CAR-T failure. Blood 2022; 140:414-415. [PMID: 35925642 PMCID: PMC9353152 DOI: 10.1182/blood.2022016851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 11/20/2022] Open
|