1
|
Nie J, Zhou L, Tian W, Liu X, Yang L, Yang X, Zhang Y, Wei S, Wang DW, Wei J. Deep insight into cytokine storm: from pathogenesis to treatment. Signal Transduct Target Ther 2025; 10:112. [PMID: 40234407 PMCID: PMC12000524 DOI: 10.1038/s41392-025-02178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/22/2024] [Accepted: 02/12/2025] [Indexed: 04/17/2025] Open
Abstract
Cytokine storm (CS) is a severe systemic inflammatory syndrome characterized by the excessive activation of immune cells and a significant increase in circulating levels of cytokines. This pathological process is implicated in the development of life-threatening conditions such as fulminant myocarditis (FM), acute respiratory distress syndrome (ARDS), primary or secondary hemophagocytic lymphohistiocytosis (HLH), cytokine release syndrome (CRS) associated with chimeric antigen receptor-modified T (CAR-T) therapy, and grade III to IV acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. The significant involvement of the JAK-STAT pathway, Toll-like receptors, neutrophil extracellular traps, NLRP3 inflammasome, and other signaling pathways has been recognized in the pathogenesis of CS. Therapies targeting these pathways have been developed or are currently being investigated. While novel drugs have demonstrated promising therapeutic efficacy in mitigating CS, the overall mortality rate of CS resulting from underlying diseases remains high. In the clinical setting, the management of CS typically necessitates a multidisciplinary team strategy encompassing the removal of abnormal inflammatory or immune system activation, the preservation of vital organ function, the treatment of the underlying disease, and the provision of life supportive therapy. This review provides a comprehensive overview of the key signaling pathways and associated cytokines implicated in CS, elucidates the impact of dysregulated immune cell activation, and delineates the resultant organ injury associated with CS. In addition, we offer insights and current literature on the management of CS in cases of FM, ARDS, systemic inflammatory response syndrome, treatment-induced CRS, HLH, and other related conditions.
Collapse
Grants
- 82070217, 81873427 National Natural Science Foundation of China (National Science Foundation of China)
- 82100401 National Natural Science Foundation of China (National Science Foundation of China)
- 81772477, 81201848, 82473220 National Natural Science Foundation of China (National Science Foundation of China)
- 82330010,81630010,81790624 National Natural Science Foundation of China (National Science Foundation of China)
- National High Technology Research and Development Program of China, Grant number: 2021YFA1101500.
- The Hubei Provincial Natural Science Foundation (No.2024AFB050)
- Project of Shanxi Bethune Hospital, Grant Numbber: 2023xg02); Fundamental Research Program of Shanxi Province, Grant Numbber: 202303021211224
- The Key Scientific Research Project of COVID-19 Infection Emergency Treatment of Shanxi Bethune Hospital (2023xg01), 2023 COVID-19 Research Project of Shanxi Provincial Health Commission (No.2023XG001, No. 2023XG005), Four “Batches” Innovation Project of Invigorating Medical through Science and Technology of Shanxi Province (2023XM003), Cancer special Fund research project of Shanxi Bethune Hospital (No. 2020-ZL04), and External Expert Workshop Fund Program of Shanxi Provincial Health Commission(Proteomics Shanxi studio for Huanghe professor)
- Fundamental Research Program of Shanxi Province(No.202303021221192); 2023 COVID-19 Emergency Project of Shanxi Health Commission (Nos.2023XG001,2023XG005)
Collapse
Affiliation(s)
- Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
| | - Weiwei Tian
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Liping Yang
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Meshkovska Y, Dzhuraeva B, Godugu C, Pooladanda V, Thatikonda S. Deciphering the interplay: circulating cell-free DNA, signaling pathways, and disease progression in idiopathic pulmonary fibrosis. 3 Biotech 2025; 15:102. [PMID: 40165930 PMCID: PMC11954786 DOI: 10.1007/s13205-025-04272-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lung disease with an unknown etiology and a short survival rate. There is no accurate method of early diagnosis, and it involves computed tomography (CT) or lung biopsy. Since diagnostic methods are not accurate due to their similarity to other lung pathologies, discovering new biomarkers is a key issue for diagnosticians. Currently, the use of ccf-DNA (circulating cell-free deoxyribonucleic acid) is an important focus due to its association with IPF-induced alterations in metabolic pathways, such as amino acid metabolism, energy metabolism, and lipid metabolism pathways. Other biomarkers associated with metabolic changes have been found, and they are related to changes in type II/type I alveolar epithelial cells (AECs I/II), changes in extracellular matrix (ECM), and inflammatory processes. Currently, IPF pathogenetic treatment remains unknown, and the mortality rates are increasing, and the patients are diagnosed at a late stage. Signaling pathways and metabolic dysfunction have a significant role in the disease occurrence, particularly the transforming growth factor-β (TGF-β) signaling pathway, which plays an essential role. TGF-β, Wnt, Hedgehog (Hh), and integrin signaling are the main drivers of fibrosis. These pathways activate the transformation of fibroblasts into myofibroblasts, extracellular matrix (ECM) deposition, and tissue remodeling fibrosis. Therapy targeting diverse signaling pathways to slow disease progression is crucial in the treatment of IPF. Two antifibrotic medications, including pirfenidone and nintedanib, are Food and Drug Administration (FDA)-approved for treatment. ccf-DNA could become a new biomarker for IPF diagnosis to detect the disease at the early stage, while FDA-approved therapies could help to prevent late conditions from forming and decrease mortality rates.
Collapse
Affiliation(s)
- Yeva Meshkovska
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL 33612 USA
| | - Barchinai Dzhuraeva
- Department of Hospital Pediatrics, Moffitt Cancer Center, Tampa, FL 33612 USA
- Department of Hospital Pediatrics with a Course of Neonatology, National Center of Maternal and Child Health, Bishkek, 720017 Kyrgyzstan
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037 India
| | - Venkatesh Pooladanda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom Street, Thier 9, Boston, MA 02114 USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Sowjanya Thatikonda
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL 33612 USA
| |
Collapse
|
3
|
Pasquier F, Pegliasco J, Martin JE, Marti S, Plo I. New approaches to standard of care in early-phase myeloproliferative neoplasms: can interferon-α alter the natural history of the disease? Haematologica 2025; 110:850-862. [PMID: 39445431 PMCID: PMC11959252 DOI: 10.3324/haematol.2023.283958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/15/2024] [Indexed: 10/25/2024] Open
Abstract
The classical BCR::ABL-negative myeloproliferative neoplasms (MPN) include polycythemia vera, essential thrombocythemia, and primary myelofibrosis. They are acquired clonal disorders of hematopoietic stem cells leading to hyperplasia of one or several myeloid lineages. MPN are caused by three main recurrent mutations, JAK2V617F and mutations in the calreticulin (CALR) and thrombopoietin receptor (MPL) genes. Here, we review the general diagnosis, the complications, and the management of MPN. Second, we explain the physiopathology of the natural disease development and its regulation, which contributes to MPN heterogeneity. Thirdly, we describe the new paradigm of MPN development highlighting the early origin of driver mutations, decades before the onset of symptoms, and the consequence of early detection of MPN cases in the general population for prompt diagnosis and better medical management. Finally, we present interferon-α therapy as a potential, early disease-modifying drug after reporting its good hematologic and molecular efficacies in polycythemia vera, essential thrombocythemia, and early myelofibrosis in clinical trials as well as its mechanism of action in pre-clinical studies. As a result, we may expect that, in the future, MPN patients will be diagnosed very early during the course of disease and that new selective therapies under development, such as interferon-α, JAK2V617F inhibitors and CALRmut monoclonal antibodies, will be able to intercept the mutated clones.
Collapse
Affiliation(s)
| | - Jean Pegliasco
- INSERM U1287, Gustave Roussy, Villejuif
- Gustave Roussy, Villejuif
- Université Paris-Cité, Paris, France
| | - Jean-Edouard Martin
- INSERM U1287, Gustave Roussy, Villejuif
- Gustave Roussy, Villejuif
- Université Paris-Cité, Paris, France
| | - Séverine Marti
- INSERM U1287, Gustave Roussy, Villejuif
- Gustave Roussy, Villejuif
- Université Paris-Cité, Paris, France
| | | |
Collapse
|
4
|
Perner F, Pahl HL, Zeiser R, Heidel FH. Malignant JAK-signaling: at the interface of inflammation and malignant transformation. Leukemia 2025:10.1038/s41375-025-02569-8. [PMID: 40140631 DOI: 10.1038/s41375-025-02569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/21/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
The JAK pathway is central to mammalian cell communication, characterized by rapid responses, receptor versatility, and fine-tuned regulation. It involves Janus kinases (JAK1, JAK2, JAK3, TYK2), which are activated when natural ligands bind to receptors, leading to autophosphorylation and activation of STAT transcription factors [1, 2]. JAK-dependent signaling plays a pivotal role in coordinating cell communication networks across a broad spectrum of biological systems including development, immune responses, cell growth, and differentiation. JAKs are frequently mutated in the aging hematopoietic system [3, 4] and in hematopoietic cancers [5]. Thus, dysregulation of the pathway results in various diseases, including cancers and immune disorders. The binding of extracellular ligands to class I and II cytokine receptors initiates a critical signaling cascade through the activation of Janus kinases (JAKs). Upon ligand engagement, JAKs become activated and phosphorylate specific tyrosine residues on the receptor, creating docking sites for signal transducer and activator of transcription (STAT) proteins. Subsequent JAK-mediated phosphorylation of STATs enables their dimerization and nuclear translocation, where they function as transcription factors to modulate gene expression. Under physiological conditions, JAK-signaling is a tightly regulated mechanism that governs cellular responses to external cues, such as cytokines and growth factors, ensuring homeostasis and maintaining the functional integrity of tissues and organs. Highly defined regulation of JAK-signaling is essential for balancing cellular responses to inflammatory stimuli and growth signals, thus safeguarding tissue health. In contrast, dysregulated JAK-signaling results in chronic inflammation and unrestrained cellular proliferation associated with various diseases. Understanding the qualitative and quantitative differences at the interface of physiologic JAK-signaling and its aberrant activation in disease is crucial for the development of targeted therapies that precisely tune this pathway to target pathologic activation patterns while leaving homeostatic processes largely unaffected. Consequently, pharmaceutical research has targeted this pathway for drug development leading to the approval of several substances with different selectivity profiles towards individual JAKs. Yet, the precise impact of inhibitor selectivity and the complex interplay of different functional modules within normal and malignant cells remains incompletely understood. In this review, we summarize the current knowledge on JAK-signaling in health and disease and highlight recent advances and future directions in the field.
Collapse
Affiliation(s)
- Florian Perner
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
| | - Heike L Pahl
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian H Heidel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany.
- Leibniz-Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena, Germany.
- Cellular Therapy Center (CTC), Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
5
|
Tan C, Zhou H, Xiong Q, Xian X, Liu Q, Zhang Z, Xu J, Yao H. Cromolyn sodium reduces LPS-induced pulmonary fibrosis by inhibiting the EMT process enhanced by MC-derived IL-13. Respir Res 2025; 26:3. [PMID: 39762844 PMCID: PMC11706190 DOI: 10.1186/s12931-024-03045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Sepsis is a systemic inflammatory response caused by infection. When this inflammatory response spreads to the lungs, it can lead to acute lung injury (ALI) or more severe acute respiratory distress syndrome (ARDS). Pulmonary fibrosis is a potential complication of these conditions, and the early occurrence of pulmonary fibrosis is associated with a higher mortality rate. The underlying mechanism of ARDS-related pulmonary fibrosis remains unclear. METHODS To evaluate the role of mast cell in sepsis-induced pulmonary fibrosis and elucidate its molecular mechanism. We investigated the level of mast cell and epithelial-mesenchymal transition(EMT) in LPS-induced mouse model and cellular model. We also explored the influence of cromolyn sodium and mast cell knockout on pulmonary fibrosis. Additionally, we explored the effect of MC-derived IL-13 on the EMT and illustrated the relationship between mast cell and pulmonary fibrosis. RESULTS Mast cell was up-regulated in the lung tissues of the pulmonary fibrotic mouse model compared to control groups. Cromolyn sodium and mast cell knockout decreased the expression of EMT-related protein and IL-13, alleviated the symptoms of pulmonary fibrosis in vivo and in vitro. The PI3K/AKT/mTOR signaling was activated in fibrotic lung tissue, whereas Cromolyn sodium and mast cell knockout inhibited this pathway. CONCLUSION The expression level of mast cell is increased in fibrotic lungs. Cromolyn sodium intervention and mast cell knockout alleviate the symptoms of pulmonary fibrosis probably via the PI3K/AKT/mTOR signaling pathway. Therefore, mast cell inhibition is a potential therapeutic target for sepsis-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Cheng Tan
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Wuxi, 214002, Jiangsu Province, China
| | - Hang Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Qiangfei Xiong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Xian Xian
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Qiyuan Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Zexin Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Jingjing Xu
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Wuxi, 214002, Jiangsu Province, China.
| | - Hao Yao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China.
| |
Collapse
|
6
|
Jing R, Wu N, Zhang Q, Liu J, Zhao Y, Zeng S, Wu S, Wu Y, Yi S. DPP4 promotes an immunoenhancing tumor microenvironment through exhausted CD8+ T cells with activating IL13-IL13RA2 axis in papillary thyroid cancer. Int Immunopharmacol 2025; 145:113760. [PMID: 39662266 DOI: 10.1016/j.intimp.2024.113760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is among the most prevalent forms of endocrine malignancy with a rapid rise in incidence rates worldwide; however, the composition and characteristics of its immune microenvironment is poorly understand. Here, this work investigated the precise function of Dipeptidyl peptidase 4 (DPP4) in tumor-infiltrated T cells within PTC by investigating its role in cytokine-mediated signaling pathways. METHODS TCGA and GEO data as well as human PTC specimens confirmed the expression of DPP4 in PTC. The CIBERSORT and TIMER tool were used to analyze the distribution of tumor-infiltrating immune cells in PTC. CD8+ T cells from PTC patient's peripheral blood were cultured and used in a three-dimensional model for direct co-culture with PTC tumors to investigate DPP4 function. RESULTS Bioinformatic analyses has uncovered a significant upregulation of DPP4, which enhances the survival and migration of PTC cells in vitro. DPP4 upregulation significantly correlated with advanced grades, stages, and poor progression-free survival. DPP4 influences immune function and the exhaustion of CD8+ T cells through the IL13-IL13RA2 axis. The inhibition of DPP4 reduces CD8+ T cell exhaustion and IL13 secretion, while also blocking the IL13-IL13RA2 axis, thereby promoting the mesenchymal-to-epithelial transition of PTC cells. CONCLUSION Blocking DPP4 leads to the conversion of exhausted CD8+ T cells with decreased IL13 level, resulting in downregulation of IL13RA2 to promote mesenchymal-to-epithelial transition of PTC cells. This highlights DPP4 as a potential therapeutic target, particularly between CD8+ T cells and PTC cells via IL13-IL13RA2 axis, and represents a novel avenue for combined immunotherapy in PTC.
Collapse
Affiliation(s)
- Ren Jing
- Department of Breast and Thyroid Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, PR China
| | - Nan Wu
- Department of Breast and Thyroid Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China
| | - Qian Zhang
- Respiratory Medicine, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen 518118, PR China
| | - Jinlin Liu
- Department of Clinical Laboratory, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China
| | - Ying Zhao
- Department of Clinical Laboratory, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China
| | - Shan Zeng
- Department of Pathology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China
| | - Shaojie Wu
- Department of Breast and Thyroid Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China
| | - Yang Wu
- Department of Breast and Thyroid Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China.
| | - Shijian Yi
- Department of Breast and Thyroid Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China.
| |
Collapse
|
7
|
Cerreto GM, Pozzi G, Cortellazzi S, Pasini LM, Di Martino O, Mirandola P, Carubbi C, Vitale M, Masselli E. Folate metabolism in myelofibrosis: a missing key? Ann Hematol 2025; 104:35-46. [PMID: 39847116 PMCID: PMC11868374 DOI: 10.1007/s00277-024-06176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/28/2024] [Indexed: 01/24/2025]
Abstract
Folates serve as key enzyme cofactors in several biological processes. Folic acid supplementation is a cornerstone practice but may have a "dark side". Indeed, the accumulation of circulating unmetabolized folic acid (UMFA) has been associated with various chronic inflammatory conditions, including cancer. Additionally, by engaging specific folate receptors, folates can directly stimulate cancer cells and modulate the expression of genes coding for pro-inflammatory and pro-fibrotic cytokines.This evidence could be extremely relevant for myelofibrosis (MF), a chronic myeloproliferative neoplasm typified by the unique combination of clonal proliferation, chronic inflammation, and progressive bone marrow fibrosis. Folate supplementation is frequently associated with conventional or investigational drugs in the treatment of MF-related anemia to tackle ineffective erythropoiesis. In this review, we cover the different aspects of folate metabolism entailed in the behavior and function of normal and malignant hematopoietic cells and discuss the potential implications on the biology of myelofibrosis.
Collapse
Affiliation(s)
- Giacomo Maria Cerreto
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, Parma, 43126, Italy
| | - Giulia Pozzi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, Parma, 43126, Italy
| | - Samuele Cortellazzi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, Parma, 43126, Italy
| | - Livia Micaela Pasini
- Hematology and BMT Unit, Parma University Hospital (AOUPR), Via Gramsci 14, 43126, Parma, Italy
| | - Orsola Di Martino
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, Parma, 43126, Italy
| | - Prisco Mirandola
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, Parma, 43126, Italy
| | - Cecilia Carubbi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, Parma, 43126, Italy
| | - Marco Vitale
- Faculty of Medicine, Vita-Salute University-San Raffaele, Via Olgettina 58, Milan, 20132, Italy.
| | - Elena Masselli
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, Parma, 43126, Italy.
- Hematology and BMT Unit, Parma University Hospital (AOUPR), Via Gramsci 14, 43126, Parma, Italy.
| |
Collapse
|
8
|
Ganesan S, Awan-Toor S, Guidez F, Maslah N, Rahimy R, Aoun C, Gou P, Guiguen C, Soret J, Ravdan O, Bisio V, Dulphy N, Lobry C, Schlageter MH, Souyri M, Giraudier S, Kiladjian JJ, Chomienne C, Cassinat B. Comprehensive analysis of mesenchymal cells reveals a dysregulated TGF-β/WNT/HOXB7 axis in patients with myelofibrosis. JCI Insight 2024; 9:e173665. [PMID: 39470742 PMCID: PMC11623938 DOI: 10.1172/jci.insight.173665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/22/2024] [Indexed: 11/01/2024] Open
Abstract
Despite the advances in the understanding and treatment of myeloproliferative neoplasm (MPN), the disease remains incurable with the risk of evolution to acute myeloid leukemia or myelofibrosis (MF). Unfortunately, the evolution of the disease to MF remains poorly understood, impeding preventive and therapeutic options. Recent studies in solid tumor microenvironment and organ fibrosis have shed instrumental insights on their respective pathogenesis and drug resistance, yet such precise data are lacking in MPN. In this study, through a patient sample-driven transcriptomic and epigenetic description of the MF microenvironment landscape and cell-based analyses, we identify homeobox B7 (HOXB7) overexpression and more precisely a potentially novel TGF-β/WNT/HOXB7 pathway as associated to a pro-fibrotic and pro-osteoblastic biased differentiation of mesenchymal stromal cells (MSCs). Using gene-based and chemical inhibition of this pathway, we reversed the abnormal phenotype of MSCs from patients with MF, providing the MPN field a potentially novel target to prevent and manage evolution to MF.
Collapse
Affiliation(s)
- Saravanan Ganesan
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Sarah Awan-Toor
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Fabien Guidez
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
- INSERM U1232/LNC, Team Epi2THM, Université Bourgogne Franche-Comté, Dijon, France
| | - Nabih Maslah
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
- Service de Biologie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Rifkath Rahimy
- Laboratoire de recherche en génétique et hématologie translationnelle, Institut Gonçalo Moniz, Salvador, Bahia, Brazil
| | - Céline Aoun
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Panhong Gou
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Chloé Guiguen
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Juliette Soret
- INSERM CIC 1427, Université Paris Cité, Centre d’Investigations Cliniques, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Odonchimeg Ravdan
- Service de Biologie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Valeria Bisio
- INSERM UMRS 1160, Institut de Recherche Saint-Louis, Université Paris-Cité, Paris, France
| | - Nicolas Dulphy
- INSERM UMRS 1160, Institut de Recherche Saint-Louis, Université Paris-Cité, Paris, France
- Laboratoire d’Immunologie et d’Histocompatibilite, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Camille Lobry
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint-Louis, Université Paris-Cité, Paris, France
| | | | - Michèle Souyri
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Stéphane Giraudier
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
- Service de Biologie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Jean-Jacques Kiladjian
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
- INSERM CIC 1427, Université Paris Cité, Centre d’Investigations Cliniques, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Christine Chomienne
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Bruno Cassinat
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
- Service de Biologie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
| |
Collapse
|
9
|
Li R, Colombo M, Wang G, Rodriguez-Romera A, Benlabiod C, Jooss NJ, O’Sullivan J, Brierley CK, Clark SA, Pérez Sáez JM, Aragón Fernández P, Schoof EM, Porse B, Meng Y, Khan AO, Wen S, Dong P, Zhou W, Sousos N, Murphy L, Clarke M, Olijnik AA, C. Wong Z, Karali CS, Sirinukunwattana K, Ryou H, Norfo R, Cheng Q, Carrelha J, Ren Z, Thongjuea S, Rathinam VA, Krishnan A, Royston D, Rabinovich GA, Mead AJ, Psaila B. A proinflammatory stem cell niche drives myelofibrosis through a targetable galectin-1 axis. Sci Transl Med 2024; 16:eadj7552. [PMID: 39383242 PMCID: PMC7616771 DOI: 10.1126/scitranslmed.adj7552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/01/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Myeloproliferative neoplasms are stem cell-driven cancers associated with a large burden of morbidity and mortality. Most patients present with early-stage disease, but a substantial proportion progress to myelofibrosis or secondary leukemia, advanced cancers with a poor prognosis and high symptom burden. Currently, it remains difficult to predict progression, and therapies that reliably prevent or reverse fibrosis are lacking. A major bottleneck to the discovery of disease-modifying therapies has been an incomplete understanding of the interplay between perturbed cellular and molecular states. Several cell types have individually been implicated, but a comprehensive analysis of myelofibrotic bone marrow is lacking. We therefore mapped the cross-talk between bone marrow cell types in myelofibrotic bone marrow. We found that inflammation and fibrosis are orchestrated by a "quartet" of immune and stromal cell lineages, with basophils and mast cells creating a TNF signaling hub, communicating with megakaryocytes, mesenchymal stromal cells, and proinflammatory fibroblasts. We identified the β-galactoside-binding protein galectin-1 as a biomarker of progression to myelofibrosis and poor survival in multiple patient cohorts and as a promising therapeutic target, with reduced myeloproliferation and fibrosis in vitro and in vivo and improved survival after galectin-1 inhibition. In human bone marrow organoids, TNF increased galectin-1 expression, suggesting a feedback loop wherein the proinflammatory myeloproliferative neoplasm clone creates a self-reinforcing niche, fueling progression to advanced disease. This study provides a resource for studying hematopoietic cell-niche interactions, with relevance for cancer-associated inflammation and disorders of tissue fibrosis.
Collapse
Affiliation(s)
- Rong Li
- CAMS Oxford Institute; University of Oxford; Oxford, United Kingdom (UK)
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Michela Colombo
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
- Human Technopole; Milan, Italy
| | - Guanlin Wang
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
- MRC WIMM Centre for Computational Biology, University of Oxford; Oxford, United Kingdom
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology; Fudan University, Shanghai, China
- Qizhi Institute, Shanghai, China
| | - Antonio Rodriguez-Romera
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Camelia Benlabiod
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Natalie J. Jooss
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Jennifer O’Sullivan
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Charlotte K. Brierley
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Sally-Ann Clark
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Juan M. Pérez Sáez
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | - Erwin M. Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark; Denmark
| | - Bo Porse
- The Finsen Laboratory, Copenhagen University Hospital; Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen; Denmark
- Department of Clinical Medicine, University of Copenhagen; Copenhagen, Denmark
| | - Yiran Meng
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Abdullah O. Khan
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences; University of Birmingham; Birmingham, UK
| | - Sean Wen
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Pengwei Dong
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology; Fudan University, Shanghai, China
| | - Wenjiang Zhou
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology; Fudan University, Shanghai, China
| | - Nikolaos Sousos
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Lauren Murphy
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Matthew Clarke
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Aude-Anais Olijnik
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Zoë C. Wong
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Christina Simoglou Karali
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Korsuk Sirinukunwattana
- Oxford Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford; Oxford, UK
| | - Hosuk Ryou
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford; Oxford, UK
| | - Ruggiero Norfo
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Qian Cheng
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Joana Carrelha
- Haematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford; Oxford, UK
| | - Zemin Ren
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Supat Thongjuea
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Vijay A Rathinam
- Department of Immunology, University of Connecticut Health School of Medicine; Farmington, ConnecticutUSA
| | - Anandi Krishnan
- Stanford Cancer Institute, Stanford University School of Medicine; Stanford, California, USA
| | - Daniel Royston
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen; Denmark
- Oxford University Hospitals NHS Trust; Oxford, UK
| | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adam J Mead
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
- Oxford University Hospitals NHS Trust; Oxford, UK
| | - Bethan Psaila
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
- Oxford University Hospitals NHS Trust; Oxford, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Bruzzese A, Martino EA, Labanca C, Mendicino F, Lucia E, Olivito V, Rossi T, Neri A, Morabito F, Vigna E, Gentile M. The role of corticosteroids in the current treatment paradigm for myelofibrosis. Expert Opin Pharmacother 2024; 25:2015-2022. [PMID: 39385638 DOI: 10.1080/14656566.2024.2415710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Myelofibrosis (MF) is a clonal hematological disorder characterized by bone marrow fibrosis, splenomegaly, and inflammatory cytokine dysregulation. While the role of steroids in MF is not fully defined, their anti-inflammatory properties may offer therapeutic benefits, particularly in managing anemia and other cytopenias. Steroids exert their effects by suppressing pro-inflammatory cytokines such as IL1, IL6, and TNF, and by enhancing anti-inflammatory cytokines like IL4 and IL10. Elevated levels of IL6 and other cytokines in MF are associated with anemia and poor prognosis, suggesting that steroid therapy could mitigate these effects. AREAS COVERED In this manuscript, we review clinical studies which evaluated the safety and efficacy of steroids in MF patients. Moreover, we examine clinical data of the combination of steroids with immunomodulatory agents and JAK inhibitors. Our literature search consisted of an extensive review of PubMed and clinicaltrials.gov. EXPERT OPINION The role of steroids in the management of MF remains poorly defined, though emerging evidence suggests a potential therapeutic benefit, particularly in managing anemia and other cytopenias. The combination with IMIDs has also yielded positive outcomes as demonstrated in several studies. Steroids may also play a crucial role in managing cytopenias in MF patients receiving JAKi.
Collapse
Affiliation(s)
| | | | | | | | - Eugenio Lucia
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | - Teresa Rossi
- Laboratorio di Ricerca Traslazionale Azienda USL-IRCSS Reggio Emilia, Emilia-Romagna, Italy
| | - Antonino Neri
- Scientific Directorate IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | | | - Ernesto Vigna
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
11
|
Wang X, Zhang P, Tang Y, Chen Y, Zhou E, Gao K. Mast cells: a double-edged sword in inflammation and fibrosis. Front Cell Dev Biol 2024; 12:1466491. [PMID: 39355120 PMCID: PMC11442368 DOI: 10.3389/fcell.2024.1466491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
As one of the key components of the immune system, mast cells are well known for their role in allergic reactions. However, they are also involved in inflammatory and fibrotic processes. Mast cells participate in all the stages of acute inflammatory responses, playing an immunomodulatory role in both innate and adaptive immunity. Mast cell-derived histamine, TNF-α, and IL-6 contribute to the inflammatory processes, while IL-10 mediates the suppression of inflammation. Crosstalk between mast cells and other immune cells is also involved in the development of inflammation. The cell-cell adhesion of mast cells and fibroblasts is crucial for fibrosis. Mast cell mediators, including cytokines and proteases, play contradictory roles in the fibrotic process. Here, we review the double-edged role of mast cells in inflammation and fibrosis.
Collapse
Affiliation(s)
- Xufang Wang
- Jiangsu Province Key Laboratory of Tonifying Kidney and Anti-senescence, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Peipei Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yuxin Tang
- Jiangsu Province Key Laboratory of Tonifying Kidney and Anti-senescence, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanlin Chen
- Jiangsu Province Key Laboratory of Tonifying Kidney and Anti-senescence, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Enchao Zhou
- Jiangsu Province Key Laboratory of Tonifying Kidney and Anti-senescence, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Gao
- Jiangsu Province Key Laboratory of Tonifying Kidney and Anti-senescence, Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Zhang Y, Zhu K, Wang X, Zhao Y, Shi J, Liu Z. Roles of IL-4, IL-13, and Their Receptors in Lung Cancer. J Interferon Cytokine Res 2024; 44:399-407. [PMID: 38516928 DOI: 10.1089/jir.2024.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Interleukin (IL)-4 and IL-13 are the main effectors of innate lymphoid cells (ILC2) of the type 2 innate immune response, which can carry out specific signal transmission between multiple cells in the tumor immune microenvironment. IL-4 and IL-13 mediate signal transduction and regulate cellular functions in a variety of solid tumors through their shared receptor chain, the transmembrane heterodimer interleukin-4 receptor alpha/interleukin-13 receptor alpha-1 (type II IL-4 receptor). IL-4, IL-13, and their receptors can induce the formation of a variety of malignant tumors and play an important role in their progression, growth, and tumor immunity. In order to explore possible targets for lung cancer prediction and treatment, this review summarizes the characteristics and signal transduction pathways of IL-4 and IL-13, and their respective receptors, and discusses in depth their possible role in the occurrence and development of lung cancer.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Kangle Zhu
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Xiao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Yi Zhao
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Jingwei Shi
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Zhengcheng Liu
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
13
|
Yang D, Ge T, Zhou J, Li H, Zhang Y. Aloe-emodin alleviates inflammatory bowel disease in mice by modulating intestinal microbiome homeostasis via the IL-4/IL-13 axis. Heliyon 2024; 10:e34932. [PMID: 39157379 PMCID: PMC11328045 DOI: 10.1016/j.heliyon.2024.e34932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Inflammatory bowel disease (IBD) is a global health concern. Aloe-emodin (AE) has diverse pharmacological benefits, including anti-inflammatory effects. However, its role in IBD remains unclear, prompting our investigation of its regulatory effects and mechanisms in an IBD mouse model. Methods We studied the therapeutic efficacy of AE in alleviating symptoms and modulating cytokine secretion in a murine model of dextran sulfate sodium (DSS)-induced colitis. BALB/c mice were administered DSS to induce colitis and were subsequently treated with varying doses of AE. Changes in body weight, fecal lipocalin-2 (LCN2) levels, colon tissue histology, and serum cytokine concentrations were evaluated to assess the effects of AE treatment. Additionally, 16 S rRNA sequencing was used to analyze alterations in the composition of the gut microbiota following AE intervention. Finally, the database was used to analyze the signaling pathways associated with IBD in AE and to detect the expression levels of interleukin (IL)-4 pathway using real-time quantitative reverse transcription PCR. Exogenous IL-4 was used in rescue experiments to observe its effects on the disease process of IBD under AE regulation. Results AE treatment resulted in a dose-dependent mitigation of weight loss, reduction in fecal LCN2 levels, and amelioration of histological damage in DSS-induced colitis in mice. The levels of superoxide dismutase and catalase increased, whereas malondialdehyde decreased following AE treatment, indicating a dose-dependent alleviation of colitis symptoms. Furthermore, AE administration attenuated the secretion of pro-inflammatory cytokines, including IL-17, tumor necrosis factor-alpha (TNF-α), and chemokine ligand 1, while promoting the expression of anti-inflammatory cytokines IL-4 and IL-13. Analysis of the gut microbiota revealed that AE effectively suppressed the overgrowth of colitis-associated bacterial species and restored microbial homeostasis. Finally, we found that overexpression of IL-4 was able to reverse the therapeutic effect of AE for DSS-induced IBD. Conclusion AE shows promise in alleviating colitis severity, influencing inflammatory cytokines, and modulating the gut microbiota in an IBD mouse model via the IL-4/IL-13 pathway, suggesting its potential as a natural IBD remedy.
Collapse
Affiliation(s)
| | | | - Jingyi Zhou
- Department of Anorectal Surgery, The First People's Hospital of Lianyungang, NO.6 Zhenhua East Road, Haizhou District, Lianyungang, 222061, Jiangsu, China
| | - Huazhuan Li
- Department of Anorectal Surgery, The First People's Hospital of Lianyungang, NO.6 Zhenhua East Road, Haizhou District, Lianyungang, 222061, Jiangsu, China
| | - Yonggang Zhang
- Department of Anorectal Surgery, The First People's Hospital of Lianyungang, NO.6 Zhenhua East Road, Haizhou District, Lianyungang, 222061, Jiangsu, China
| |
Collapse
|
14
|
Zhang Y, Lin W, Yang Y, Zhu S, Chen Y, Wang H, Teng L. MEF2D facilitates liver metastasis of gastric cancer cells through directly inducing H1X under IL-13 stimulation. Cancer Lett 2024; 591:216878. [PMID: 38609001 DOI: 10.1016/j.canlet.2024.216878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Liver metastasis is the most common metastatic occurrence in gastric cancer patients, although the precise mechanism behind it remains unclear. Through a combination of proteomics and quantitative RT-PCR, our study has revealed a significant correlation between the upregulation of myocyte enhancer factor-2D (MEF2D) and both distant metastasis and poor prognosis in gastric cancer patients. In mouse models, we observed that overexpressing or knocking down MEF2D in gastric cancer cells respectively promoted or inhibited liver metastasis. Furthermore, our research has demonstrated that MEF2D regulates the transcriptional activation of H1X by binding to the H1X promoter. This regulation leads to the upregulation of H1X, which, in turn, promotes the in vivo metastasis of gastric cancer cells along with the upregulation of the downstream gene β-CATENIN. Additionally, we found that the expression of MEF2D and H1X at both mRNA and protein levels can be induced by the inflammatory factor IL-13, and this induction exhibits a time gradient dependence. In human gastric cancer tissues, the expression of IL13RA1, the receptor for IL-13, positively correlates with the expression of MEF2D and H1X. IL13RA1 has been identified as an intermediate receptor through which IL-13 regulates MEF2D. In conclusion, our findings suggest that MEF2D plays a crucial role in promoting liver metastasis of gastric cancer by upregulating H1X and downstream target β-CATENIN in response to IL-13 stimulation. Targeting MEF2D could therefore be a promising therapeutic strategy for the clinical management of gastric cancer. STATEMENT OF SIGNIFICANCE: MEF2D promotes its transcriptional activation in gastric cancer cells by binding to the H1X promoter and is upregulated by IL-13-IL13RA1, thereby promoting distant metastasis of gastric cancer.
Collapse
Affiliation(s)
- Yingzi Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China.
| | - Wu Lin
- Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China; Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China.
| | - Yan Yang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China.
| | - Songting Zhu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China.
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China.
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China.
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China.
| |
Collapse
|
15
|
Pandey G, Mazzacurati L, Rowsell TM, Horvat NP, Amin NE, Zhang G, Akuffo AA, Colin-Leitzinger CM, Haura EB, Kuykendall AT, Zhang L, Epling-Burnette PK, Reuther GW. SHP2 inhibition displays efficacy as a monotherapy and in combination with JAK2 inhibition in preclinical models of myeloproliferative neoplasms. Am J Hematol 2024; 99:1040-1055. [PMID: 38440831 PMCID: PMC11096011 DOI: 10.1002/ajh.27282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Myeloproliferative neoplasms (MPNs), including polycythemia vera, essential thrombocytosis, and primary myelofibrosis, are clonal hematopoietic neoplasms driven by mutationally activated signaling by the JAK2 tyrosine kinase. Although JAK2 inhibitors can improve MPN patients' quality of life, they do not induce complete remission as disease-driving cells persistently survive therapy. ERK activation has been highlighted as contributing to JAK2 inhibitor persistent cell survival. As ERK is a component of signaling by activated RAS proteins and by JAK2 activation, we sought to inhibit RAS activation to enhance responses to JAK2 inhibition in preclinical MPN models. We found the SHP2 inhibitor RMC-4550 significantly enhanced growth inhibition of MPN cell lines in combination with the JAK2 inhibitor ruxolitinib, effectively preventing ruxolitinib persistent growth, and the growth and viability of established ruxolitinib persistent cells remained sensitive to SHP2 inhibition. Both SHP2 and JAK2 inhibition diminished cellular RAS-GTP levels, and their concomitant inhibition enhanced ERK inactivation and increased apoptosis. Inhibition of SHP2 inhibited the neoplastic growth of MPN patient hematopoietic progenitor cells and exhibited synergy with ruxolitinib. RMC-4550 antagonized MPN phenotypes and increased survival of an MPN mouse model driven by MPL-W515L. The combination of RMC-4550 and ruxolitinib, which was safe and tolerated in healthy mice, further inhibited disease compared to ruxolitinib monotherapy, including extending survival. Given SHP2 inhibitors are undergoing clinical evaluation in patients with solid tumors, our preclinical findings suggest that SHP2 is a candidate therapeutic target with potential for rapid translation to clinical assessment to improve current targeted therapies for MPN patients.
Collapse
Affiliation(s)
- Garima Pandey
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Lucia Mazzacurati
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Tegan M. Rowsell
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL USA
| | | | - Narmin E. Amin
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Guolin Zhang
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Afua A. Akuffo
- Department of Immunology, Moffitt Cancer Center, Tampa, FL USA
| | | | - Eric B. Haura
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL USA
| | | | - Ling Zhang
- Department of Pathology, Moffitt Cancer Center, Tampa, FL USA
| | | | - Gary W. Reuther
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL USA
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL USA
| |
Collapse
|
16
|
Wang Z, Mei Y, Yang Z, Gao Q, Xu H, Han Z, Hong Z. TNF-α is a predictive marker in distinguishing myeloproliferative neoplasm and idiopathic erythrocytosis/thrombocytosis: development and validation of a non-invasive diagnostic model. Front Oncol 2024; 14:1369346. [PMID: 38585007 PMCID: PMC10995358 DOI: 10.3389/fonc.2024.1369346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose Philadelphia-chromosome negative myeloproliferative neoplasms (MPN) exhibit phenotypic similarities with JAK/STAT-unmutated idiopathic erythrocytosis and thrombocytosis (IE/IT). We aimed to develop a clinical diagnostic model to discern MPN and IE/IT. Methods A retrospective study was performed on 77 MPN patients and 32 IE/IT patients in our center from January 2018 to December 2023. We investigated the role of hemogram, cytokine and spleen size in differentiating MPN and IE/IT among newly onset erythrocytosis and thrombocytosis patients. Independent influencing factors were integrated into a nomogram for individualized risk prediction. The calibration and discrimination ability of the model were evaluated by concordance index (C-index), calibration curve. Results MPN had significantly higher TNF-α level than IE/IT, and the TNF-α level is correlated with MF-grade. Multivariable analyses revealed that TNF-α, PLT count, age, size of spleen were independent diagnostic factors in differentiating MPN and IE/IT. Nomograms integrated the above 4 factors for differentiating MPN and IE/IT was internally validated and had good performance, the C-index of the model is 0.979. Conclusion The elevation of serum TNF-α in MPN patients is of diagnostic significance and is correlated with the severity of myelofibrosis. The nomogram incorporating TNF-α with age, PLT count and spleen size presents a noteworthy tool in the preliminary discrimination of MPN patients and those with idiopathic erythrocytosis or thrombocytosis. This highlights the potential of cytokines as biomarkers in hematologic disorders.
Collapse
Affiliation(s)
- Zhenhao Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Mei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuming Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiang Gao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Wang JN, Li Y. Exploring the molecular mechanisms between lymphoma and myelofibrosis. Am J Transl Res 2024; 16:730-737. [PMID: 38586105 PMCID: PMC10994807 DOI: 10.62347/nwjo7078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/28/2024] [Indexed: 04/09/2024]
Abstract
Lymphoma is a heterogeneous malignant tumor with an increasing annual incidence. As the lymphoma progresses, bone marrow (BM) invasion gradually appears. Myelofibrosis (MF) can accompany a variety of hematological malignancies, including lymphoma, and multiple myeloma. The prognosis of lymphoma patients with myelofibrosis is poor, and a fundamental reason is that there are few studies on the correlation and pathogenesis of the two diseases. In this review, we examine the potential pathogenesis and the correlation of the two diseases.
Collapse
Affiliation(s)
- Jun-Nuan Wang
- Hebei Medical UniversityShijiazhuang, Hebei, The People’s Republic of China
- Department of Hematology, Hebei General HospitalShijiazhuang, Hebei, The People’s Republic of China
| | - Yan Li
- Department of Hematology, Hebei General HospitalShijiazhuang, Hebei, The People’s Republic of China
| |
Collapse
|
18
|
Verma T, Papadantonakis N, Peker Barclift D, Zhang L. Molecular Genetic Profile of Myelofibrosis: Implications in the Diagnosis, Prognosis, and Treatment Advancements. Cancers (Basel) 2024; 16:514. [PMID: 38339265 PMCID: PMC10854658 DOI: 10.3390/cancers16030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Myelofibrosis (MF) is an essential element of primary myelofibrosis, whereas secondary MF may develop in the advanced stages of other myeloid neoplasms, especially polycythemia vera and essential thrombocythemia. Over the last two decades, advances in molecular diagnostic techniques, particularly the integration of next-generation sequencing in clinical laboratories, have revolutionized the diagnosis, classification, and clinical decision making of myelofibrosis. Driver mutations involving JAK2, CALR, and MPL induce hyperactivity in the JAK-STAT signaling pathway, which plays a central role in cell survival and proliferation. Approximately 80% of myelofibrosis cases harbor additional mutations, frequently in the genes responsible for epigenetic regulation and RNA splicing. Detecting these mutations is crucial for diagnosing myeloproliferative neoplasms (MPNs), especially in cases where no mutations are present in the three driver genes (triple-negative MPNs). While fibrosis in the bone marrow results from the disturbance of inflammatory cytokines, it is fundamentally associated with mutation-driven hematopoiesis. The mutation profile and order of acquiring diverse mutations influence the MPN phenotype. Mutation profiling reveals clonal diversity in MF, offering insights into the clonal evolution of neoplastic progression. Prognostic prediction plays a pivotal role in guiding the treatment of myelofibrosis. Mutation profiles and cytogenetic abnormalities have been integrated into advanced prognostic scoring systems and personalized risk stratification for MF. Presently, JAK inhibitors are part of the standard of care for MF, with newer generations developed for enhanced efficacy and reduced adverse effects. However, only a minority of patients have achieved a significant molecular-level response. Clinical trials exploring innovative approaches, such as combining hypomethylation agents that target epigenetic regulators, drugs proven effective in myelodysplastic syndrome, or immune and inflammatory modulators with JAK inhibitors, have demonstrated promising results. These combinations may be more effective in patients with high-risk mutations and complex mutation profiles. Expanding mutation profiling studies with more sensitive and specific molecular methods, as well as sequencing a broader spectrum of genes in clinical patients, may reveal molecular mechanisms in cases currently lacking detectable driver mutations, provide a better understanding of the association between genetic alterations and clinical phenotypes, and offer valuable information to advance personalized treatment protocols to improve long-term survival and eradicate mutant clones with the hope of curing MF.
Collapse
Affiliation(s)
- Tanvi Verma
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nikolaos Papadantonakis
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Deniz Peker Barclift
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
19
|
Huang M, Wang L, Zhang Q, Zhou L, Liao R, Wu A, Wang X, Luo J, Huang F, Zou W, Wu J. Interleukins in Platelet Biology: Unraveling the Complex Regulatory Network. Pharmaceuticals (Basel) 2024; 17:109. [PMID: 38256942 PMCID: PMC10820339 DOI: 10.3390/ph17010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Interleukins, a diverse family of cytokines produced by various cells, play crucial roles in immune responses, immunoregulation, and a wide range of physiological and pathological processes. In the context of megakaryopoiesis, thrombopoiesis, and platelet function, interleukins have emerged as key regulators, exerting significant influence on the development, maturation, and activity of megakaryocytes (MKs) and platelets. While the therapeutic potential of interleukins in platelet-related diseases has been recognized for decades, their clinical application has been hindered by limitations in basic research and challenges in drug development. Recent advancements in understanding the molecular mechanisms of interleukins and their interactions with MKs and platelets, coupled with breakthroughs in cytokine engineering, have revitalized the field of interleukin-based therapeutics. These breakthroughs have paved the way for the development of more effective and specific interleukin-based therapies for the treatment of platelet disorders. This review provides a comprehensive overview of the effects of interleukins on megakaryopoiesis, thrombopoiesis, and platelet function. It highlights the potential clinical applications of interleukins in regulating megakaryopoiesis and platelet function and discusses the latest bioengineering technologies that could improve the pharmacokinetic properties of interleukins. By synthesizing the current knowledge in this field, this review aims to provide valuable insights for future research into the clinical application of interleukins in platelet-related diseases.
Collapse
Affiliation(s)
- Miao Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.H.); (Q.Z.)
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Qianhui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.H.); (Q.Z.)
| | - Ling Zhou
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Rui Liao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Xinle Wang
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (X.W.); (J.L.)
| | - Jiesi Luo
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (X.W.); (J.L.)
| | - Feihong Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Wenjun Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.H.); (Q.Z.)
| | - Jianming Wu
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (X.W.); (J.L.)
- The Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Ministry of Education of China, Luzhou 646000, China
| |
Collapse
|
20
|
Al-Qahtani AA, Alhamlan FS, Al-Qahtani AA. Pro-Inflammatory and Anti-Inflammatory Interleukins in Infectious Diseases: A Comprehensive Review. Trop Med Infect Dis 2024; 9:13. [PMID: 38251210 PMCID: PMC10818686 DOI: 10.3390/tropicalmed9010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024] Open
Abstract
Interleukins (ILs) are signaling molecules that are crucial in regulating immune responses during infectious diseases. Pro-inflammatory ILs contribute to the activation and recruitment of immune cells, whereas anti-inflammatory ILs help to suppress excessive inflammation and promote tissue repair. Here, we provide a comprehensive overview of the role of pro-inflammatory and anti-inflammatory ILs in infectious diseases, with a focus on the mechanisms underlying their effects, their diagnostic and therapeutic potential, and emerging trends in IL-based therapies.
Collapse
Affiliation(s)
- Arwa A. Al-Qahtani
- Department of Family Medicine, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Ahmed Ali Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| |
Collapse
|
21
|
De Luca G, Lev PR, Camacho MF, Goette NP, Sackmann F, Castro Ríos MA, Moiraghi B, Cortes Guerrieri V, Bendek G, Carricondo E, Enrico A, Vallejo V, Varela A, Khoury M, Gutierrez M, Larripa IB, Marta RF, Glembotsky AC, Heller PG. High cell-free DNA is associated with disease progression, inflammasome activation and elevated levels of inflammasome-related cytokine IL-18 in patients with myelofibrosis. Front Immunol 2023; 14:1161832. [PMID: 38035089 PMCID: PMC10687201 DOI: 10.3389/fimmu.2023.1161832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Myelofibrosis (MF) is a clonal hematopoietic stem cell disorder classified among chronic myeloproliferative neoplasms, characterized by exacerbated myeloid and megakaryocytic proliferation and bone marrow fibrosis. It is induced by driver (JAK2/CALR/MPL) and high molecular risk mutations coupled to a sustained inflammatory state that contributes to disease pathogenesis. Patient outcome is determined by stratification into risk groups and refinement of current prognostic systems may help individualize treatment decisions. Circulating cell-free (cf)DNA comprises short fragments of double-stranded DNA, which promotes inflammation by stimulating several pathways, including inflammasome activation, which is responsible for IL-1β and IL-18 maturation and release. In this work, we assessed the contribution of cfDNA as a marker of disease progression and mediator of inflammation in MF. cfDNA was increased in MF patients and higher levels were associated with adverse clinical outcome, a high-risk molecular profile, advanced disease stages and inferior overall survival, indicating its potential value as a prognostic marker. Cell-free DNA levels correlated with tumor burden parameters and markers of systemic inflammation. To mimic the effects of cfDNA, monocytes were stimulated with poly(dA:dT), a synthetic double-stranded DNA. Following stimulation, patient monocytes released higher amounts of inflammasome-processed cytokine, IL-18 to the culture supernatant, reflecting enhanced inflammasome function. Despite overexpression of cytosolic DNA inflammasome sensor AIM2, IL-18 release from MF monocytes was shown to rely mainly on the NLRP3 inflammasome, as it was prevented by NLRP3-specific inhibitor MCC950. Circulating IL-18 levels were increased in MF plasma, reflecting in vivo inflammasome activation, and highlighting the previously unrecognized involvement of this cytokine in MF cytokine network. Monocyte counts were higher in patients and showed a trend towards correlation with IL-18 levels, suggesting monocytes represent a source of circulating IL-18. The close correlation shown between IL-18 and cfDNA levels, together with the finding of enhanced DNA-triggered IL-18 release from monocytes, suggest that cfDNA promotes inflammation, at least in part, through inflammasome activation. This work highlights cfDNA, the inflammasome and IL-18 as additional players in the complex inflammatory circuit that fosters MF progression, potentially providing new therapeutic targets.
Collapse
Affiliation(s)
- Geraldine De Luca
- División Hematología Investigación, Instituto de Investigaciones Médicas Dr. Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Investigaciones Médicas (IDIM), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola R. Lev
- División Hematología Investigación, Instituto de Investigaciones Médicas Dr. Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Investigaciones Médicas (IDIM), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria F. Camacho
- Laboratorio de Genética Hematológica, Instituto de Medicina Experimental, IMEX-CONICET/Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Nora P. Goette
- División Hematología Investigación, Instituto de Investigaciones Médicas Dr. Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | | | | | - Beatriz Moiraghi
- Departamento de Hematología, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Veronica Cortes Guerrieri
- División Hematología Clínica, IDIM Dr. Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Georgina Bendek
- Departamento de Hematología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Emiliano Carricondo
- Departamento de Hematología, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Alicia Enrico
- Departamento de Hematología, Hospital Italiano de La Plata, Buenos Aires, Argentina
| | - Veronica Vallejo
- Departamento de Hematología, Instituto Cardiovascular de Buenos Aires, Buenos Aires, Argentina
| | - Ana Varela
- Departamento de Hematología, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Marina Khoury
- Departamento de Docencia e Investigación, IDIM Dr. Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marina Gutierrez
- Unidad Genómica, Laboratorio Stamboulian, Buenos Aires, Argentina
| | - Irene B. Larripa
- Laboratorio de Genética Hematológica, Instituto de Medicina Experimental, IMEX-CONICET/Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Rosana F. Marta
- División Hematología Investigación, Instituto de Investigaciones Médicas Dr. Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Investigaciones Médicas (IDIM), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana C. Glembotsky
- División Hematología Investigación, Instituto de Investigaciones Médicas Dr. Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Investigaciones Médicas (IDIM), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula G. Heller
- División Hematología Investigación, Instituto de Investigaciones Médicas Dr. Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Investigaciones Médicas (IDIM), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
22
|
Pemmaraju N, Garcia JS, Perkins A, Harb JG, Souers AJ, Werner ME, Brown CM, Passamonti F. New era for myelofibrosis treatment with novel agents beyond Janus kinase-inhibitor monotherapy: Focus on clinical development of BCL-X L /BCL-2 inhibition with navitoclax. Cancer 2023; 129:3535-3545. [PMID: 37584267 DOI: 10.1002/cncr.34986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 08/17/2023]
Abstract
Myelofibrosis is a heterogeneous myeloproliferative neoplasm characterized by chronic inflammation, progressive bone marrow failure, and hepatosplenic extramedullary hematopoiesis. Treatments like Janus kinase inhibitor monotherapy (e.g., ruxolitinib) provide significant spleen and symptom relief but demonstrate limited ability to lead to a durable disease modification. There is an urgent unmet medical need for treatments with a novel mechanism of action that can modify the underlying pathophysiology and affect the disease course of myelofibrosis. This review highlights the role of B-cell lymphoma (BCL) protein BCL-extra large (BCL-XL ) in disease pathogenesis and the potential role that navitoclax, a BCL-extra large/BCL-2 inhibitor, may have in myelofibrosis treatment.
Collapse
Affiliation(s)
- Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Andrew Perkins
- Australian Centre for Blood Diseases, Monash University, and the Alfred Hospital, Melbourne, Victoria, Australia
| | | | | | | | | | - Francesco Passamonti
- Department of Oncology and Onco-Hematology, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
23
|
Calledda FR, Malara A, Balduini A. Inflammation and bone marrow fibrosis: novel immunotherapeutic targets. Curr Opin Hematol 2023; 30:237-244. [PMID: 37548363 DOI: 10.1097/moh.0000000000000778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
PURPOSE OF REVIEW Myelofibrosis (MF) is primarily driven by constitutive activation of the Janus kinase/signal transducer of activators of transcription (JAK/STAT) pathway. While JAK inhibitors have shown to alleviate disease symptoms, their disease-modifying effects in MF are limited. The only curative treatment remains allogeneic stem cell transplantation, which can be applied to a minority of patients. As a result, there is a need to explore novel targets in MF to facilitate appropriate drug development and therapeutic pathways. RECENT FINDINGS Recent research has focused on identifying novel signals that contribute to the abnormal cross-talk between hematopoietic and stromal cells, which promotes MF and disease progression. Inflammation and immune dysregulation have emerged as key drivers of both the initiation and progression of MF. A growing number of actionable targets has been identified, including cytokines, transcription factors, signalling networks and cell surface-associated molecules. These targets exhibit dysfunctions in malignant and nonmalignant hematopoietic cells, but also in nonhematopoietic cells of the bone marrow. The study of these inflammation-related molecules, in preclinical models and MF patient's samples, is providing novel therapeutic targets. SUMMARY The identification of immunotherapeutic targets is expanding the therapeutic landscape of MF. This review provides a summary of the most recent advancements in the study of immunotherapeutic targets in MF.
Collapse
|
24
|
Vainchenker W, Yahmi N, Havelange V, Marty C, Plo I, Constantinescu SN. Recent advances in therapies for primary myelofibrosis. Fac Rev 2023; 12:23. [PMID: 37771602 PMCID: PMC10523375 DOI: 10.12703/r/12-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Primary myelofibrosis (PMF), polycythemia vera (PV) and essential thrombocythemia (ET) form the classical BCR-ABL1-negative myeloproliferative neoplasms (MPNs) that are driven by a constitutive activation of JAK2 signaling. PMF as well as secondary MF (post-ET and post-PV MF) are the most aggressive MPNs. Presently, there is no curative treatment, except allogenic hematopoietic stem cell transplantation. JAK inhibitors, essentially ruxolitinib, are the therapy of reference for intermediate and high-risk MF. However, presently the current JAK inhibitors behave mainly as anti-inflammatory drugs, improving general symptoms and spleen size without major impact on disease progression. A better understanding of the genetics of MF, the biology of its leukemic stem cells (LSCs), the mechanisms of fibrosis and of cytopenia and the role of inflammatory cytokines has led to new approaches with the development of numerous therapeutic agents that target epigenetic regulation, telomerase, apoptosis, cell cycle, cytokines and signaling. Furthermore, the use of a new less toxic form of interferon-α has been revived, as it is presently one of the only molecules that targets the mutated clone. These new approaches have different aims: (a) to provide alternative therapy to JAK inhibition; (b) to correct cytopenia; and (c) to inhibit fibrosis development. However, the main important goal is to find new disease modifier treatments, which will profoundly modify the progression of the disease without major toxicity. Presently the most promising approaches consist of the inhibition of telomerase and the combination of JAK2 inhibitors (ruxolitinib) with either a BCL2/BCL-xL or BET inhibitor. Yet, the most straightforward future approaches can be considered to be the development of and/or selective inhibition of JAK2V617F and the targeting MPL and calreticulin mutants by immunotherapy. It can be expected that the therapy of MF will be significantly improved in the coming years.
Collapse
Affiliation(s)
- William Vainchenker
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Nasrine Yahmi
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Violaine Havelange
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Cliniques universitaires Saint Luc, Department of Hematology, Université Catholique de Louvain, Brussels, Belgium
| | - Caroline Marty
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Isabelle Plo
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Stefan N Constantinescu
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, Brussels, Belgium
- WEL Research Institute, WELBIO Department, Wavre, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
25
|
Reynolds SB, Pettit K, Kandarpa M, Talpaz M, Li Q. Exploring the Molecular Landscape of Myelofibrosis, with a Focus on Ras and Mitogen-Activated Protein (MAP) Kinase Signaling. Cancers (Basel) 2023; 15:4654. [PMID: 37760623 PMCID: PMC10527328 DOI: 10.3390/cancers15184654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Myelofibrosis (MF) is a clonal myeloproliferative neoplasm (MPN) characterized clinically by cytopenias, fatigue, and splenomegaly stemming from extramedullary hematopoiesis. MF commonly arises from mutations in JAK2, MPL, and CALR, which manifests as hyperactive Jak/Stat signaling. Triple-negative MF is diagnosed in the absence of JAK2, MPL, and CALR but when clinical, morphologic criteria are met and other mutation(s) is/are present, including ASXL1, EZH2, and SRSF2. While the clinical and classic molecular features of MF are well-established, emerging evidence indicates that additional mutations, specifically within the Ras/MAP Kinase signaling pathway, are present and may play important role in disease pathogenesis and treatment response. KRAS and NRAS mutations alone are reportedly present in up to 15 and 14% of patients with MF (respectively), and other mutations predicted to activate Ras signaling, such as CBL, NF1, BRAF, and PTPN11, collectively exist in as much as 21% of patients. Investigations into the prevalence of RAS and related pathway mutations in MF and the mechanisms by which they contribute to its pathogenesis are critical in better understanding this condition and ultimately in the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Samuel B. Reynolds
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| | - Kristen Pettit
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| | - Malathi Kandarpa
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Moshe Talpaz
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Qing Li
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| |
Collapse
|
26
|
Pozzi G, Carubbi C, Cerreto GM, Scacchi C, Cortellazzi S, Vitale M, Masselli E. Functionally Relevant Cytokine/Receptor Axes in Myelofibrosis. Biomedicines 2023; 11:2462. [PMID: 37760903 PMCID: PMC10525259 DOI: 10.3390/biomedicines11092462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Dysregulated inflammatory signaling is a key feature of myeloproliferative neoplasms (MPNs), most notably of myelofibrosis (MF). Indeed, MF is considered the prototype of onco-inflammatory hematologic cancers. While increased levels of circulatory and bone marrow cytokines are a well-established feature of all MPNs, a very recent body of literature is intriguingly pinpointing the selective overexpression of cytokine receptors by MF hematopoietic stem and progenitor cells (HSPCs), which, by contrast, are nearly absent or scarcely expressed in essential thrombocythemia (ET) or polycythemia vera (PV) cells. This new evidence suggests that MF CD34+ cells are uniquely capable of sensing inflammation, and that activation of specific cytokine signaling axes may contribute to the peculiar aggressive phenotype and biological behavior of this disorder. In this review, we will cover the main cytokine systems peculiarly activated in MF and how cytokine receptor targeting is shaping a novel therapeutic avenue in this disease.
Collapse
Affiliation(s)
- Giulia Pozzi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Cecilia Carubbi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Giacomo Maria Cerreto
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Chiara Scacchi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Samuele Cortellazzi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Marco Vitale
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| | - Elena Masselli
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| |
Collapse
|
27
|
Zhu J, Fan J, Xia Y, Wang H, Li Y, Feng Z, Fu C. Potential therapeutic targets of macrophages in inhibiting immune damage and fibrotic processes in musculoskeletal diseases. Front Immunol 2023; 14:1219487. [PMID: 37545490 PMCID: PMC10400722 DOI: 10.3389/fimmu.2023.1219487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Macrophages are a heterogeneous cell type with high plasticity, exhibiting unique activation characteristics that modulate the progression and resolution of diseases, serving as a key mediator in maintaining tissue homeostasis. Macrophages display a variety of activation states in response to stimuli in the local environment, with their subpopulations and biological functions being dependent on the local microenvironment. Resident tissue macrophages exhibit distinct transcriptional profiles and functions, all of which are essential for maintaining internal homeostasis. Dysfunctional macrophage subpopulations, or an imbalance in the M1/M2 subpopulation ratio, contribute to the pathogenesis of diseases. In skeletal muscle disorders, immune and inflammatory damage, as well as fibrosis induced by macrophages, are prominent pathological features. Therefore, targeting macrophages is of great significance for maintaining tissue homeostasis and treating skeletal muscle disorders. In this review, we discuss the receptor-ligand interactions regulating macrophages and identify potential targets for inhibiting collateral damage and fibrosis in skeletal muscle disorders. Furthermore, we explore strategies for modulating macrophages to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zijia Feng
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Maslah N, Benajiba L, Giraudier S, Kiladjian JJ, Cassinat B. Clonal architecture evolution in Myeloproliferative Neoplasms: from a driver mutation to a complex heterogeneous mutational and phenotypic landscape. Leukemia 2023; 37:957-963. [PMID: 37002477 PMCID: PMC10169637 DOI: 10.1038/s41375-023-01886-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
AbstractMyeloproliferative neoplasms are characterized by the acquisition at the hematopoietic stem cell level of driver mutations targeting the JAK/STAT pathway. In addition, they also often exhibit additional mutations targeting various pathways such as intracellular signalling, epigenetics, mRNA splicing or transcription. The natural history of myeloproliferative neoplasms is usually marked by a chronic phase of variable duration depending on the disease subtype, which can be followed by an accelerated phase or transformation towards more aggressive diseases such as myelofibrosis or acute leukemia. Besides, recent studies revealed important new information about the rates and mechanisms of sequential acquisition and selection of mutations in hematopoietic cells of myeloproliferative neoplasms. Better understanding of these events has been made possible in large part with the help of novel techniques that are now available to precisely decipher at the single cell level both the clonal architecture and the mutation-induced cell modifications. In this review, we will summarize the most recent knowledge about the mechanisms leading to clonal selection, how clonal architecture complexity can explain disease heterogeneity, and the impact of clonal evolution on clinical evolution.
Collapse
|
29
|
Affiliation(s)
| | - Ann Mullally
- Brigham and Women's Hospital
- Dana-Farber Cancer Institute
- Broad Institute
| |
Collapse
|