1
|
Zhang P, Chen C, Lin F, Xu X, Zhang X, Liu Y, Li C, Cui P, Fu Q. Characterization, immune response and antibacterial mechanism of CXCL12 in black rockfish (Sebastes schlegelii). Int J Biol Macromol 2025; 309:143153. [PMID: 40233902 DOI: 10.1016/j.ijbiomac.2025.143153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/30/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
Black rockfish (Sebastes schlegelii) is one of the most important mariculture fish in the Western North Pacific. Although the crucial roles of CXCL12 in immune responses against bacterial infection are well-known, the specific mechanisms underlying its involvement in fish immunity remain poorly understood. In this study, we systematically characterized CXCL12a and CXCL12b in Sebastes schlegelii (SsCXCL12a and SsCXCL12b), Firstly, SsCXCL12a/b were ubiquitously expressed across all seven tissues. Both SsCXCL12a/b were significantly differentially expressed in gill, kidney, liver, and spleen after Aeromonas salmonicida infection. Secondly, both rSsCXCL12a/b were observed to possess chemotactic activity towards spleen and peripheral blood leukocytes. Thirdly, the pathogen binding ability of rSsCXCL12a and rSsCXCL12b might be fulfilled through the recognition of PAMPs (Pathogen-Associated Molecular Patterns) on the surface of bacteria. rSsCXCL12a/b showed local agglutination effect to different bacteria. Subsequently, by detecting the permeability of the cell membrane, it was speculated that membrane attack might be one of the mechanisms by which rSsCXCL12a/b exert antimicrobial effects. Finally, it was speculated that CXCL12a/CXCR4b and CXCL12b/CXCR4a might be the major antimicrobial axes in black rockfish using Dual-Luciferase reporter gene assay system. Overall, the CXCL12/CXCR4 axis is critically involved in the immune response of S. schlegelii against bacterial infection.
Collapse
Affiliation(s)
- Pei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chonghui Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Fengjun Lin
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuan Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoxu Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yiying Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Pengfei Cui
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, China.
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Lu K, Wang W, Liu Y, Xie C, Liu J, Xing L. Advancements in microenvironment-based therapies: transforming the landscape of multiple myeloma treatment. Front Oncol 2024; 14:1413494. [PMID: 39087026 PMCID: PMC11288838 DOI: 10.3389/fonc.2024.1413494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
Multiple myeloma (MM) is the most prevalent malignant monoclonal disease of plasma cells. There is mounting evidence that interactions with the bone marrow (BM) niche are essential for the differentiation, proliferation, survival, migration, and treatment resistance of myeloma cells. For this reason, gaining a deeper comprehension of how BM microenvironment compartments interact with myeloma cells may inspire new therapeutic ideas that enhance patient outcomes. This review will concentrate on the most recent findings regarding the mechanisms of interaction between microenvironment and MM and highlight research on treatment targeting the BM niche.
Collapse
Affiliation(s)
- Ke Lu
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wen Wang
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuntong Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Chao Xie
- Department of Respiratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiye Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Lijie Xing
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, Shandong, China
| |
Collapse
|
3
|
Liu Q, Tabrez S, Niekamp P, Kim CH. Circadian-clock-controlled endocrine and cytokine signals regulate multipotential innate lymphoid cell progenitors in the bone marrow. Cell Rep 2024; 43:114200. [PMID: 38717905 PMCID: PMC11264331 DOI: 10.1016/j.celrep.2024.114200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/12/2023] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
Innate lymphoid cells (ILCs), strategically positioned throughout the body, undergo population declines over time. A solution to counteract this problem is timely mobilization of multipotential progenitors from the bone marrow. It remains unknown what triggers the mobilization of bone marrow ILC progenitors (ILCPs). We report that ILCPs are regulated by the circadian clock to emigrate and generate mature ILCs in the periphery. We found that circadian-clock-defective ILCPs fail to normally emigrate and generate ILCs. We identified circadian-clock-controlled endocrine and cytokine cues that, respectively, regulate the retention and emigration of ILCPs at distinct times of each day. Activation of the stress-hormone-sensing glucocorticoid receptor upregulates CXCR4 on ILCPs for their retention in the bone marrow, while the interleukin-18 (IL-18) and RORα signals upregulate S1PR1 on ILCPs for their mobilization to the periphery. Our findings establish important roles of circadian signals for the homeostatic efflux of bone marrow ILCPs.
Collapse
Affiliation(s)
- Qingyang Liu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Immunology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shams Tabrez
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Patrick Niekamp
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Immunology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Martinez LM, Guzman ML. Understanding the interaction between leukaemia stem cells and their microenvironment to improve therapeutic approaches. Br J Pharmacol 2024; 181:273-282. [PMID: 37309573 DOI: 10.1111/bph.16162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
Although chemotherapeutic regimens can eliminate blasts in leukaemia patients, such therapies are associated with toxicity and often fail to eliminate all malignant cells resulting in disease relapse. Disease relapse has been attributed to the persistence of leukaemia cells in the bone marrow (BM) with the capacity to recapitulate disease; these cells are often referred to as leukaemia stem cells (LSCs). Although LSCs have distinct characteristics in terms of pathobiology and immunophenotype, they are still regulated by their interactions with the surrounding microenvironment. Thus, understanding the interaction between LSCs and their microenvironment is critical to identify effective therapies. To this end, there are numerous efforts to develop models to study such interactions. In this review, we will focus on the reciprocal interactions between LSCs and their milieu in the BM. Furthermore, we will highlight relevant therapies targeting these interactions and discuss some of the promising in vitro models designed to mimic such relationship. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Leandro M Martinez
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Monica L Guzman
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
5
|
Gong JS, Zhu GQ, Zhang Y, Chen B, Liu YW, Li HM, He ZH, Zou JT, Qian YX, Zhu S, Hu XY, Rao SS, Cao J, Xie H, Wang ZX, Du W. Aptamer-functionalized hydrogels promote bone healing by selectively recruiting endogenous bone marrow mesenchymal stem cells. Mater Today Bio 2023; 23:100854. [PMID: 38024846 PMCID: PMC10665677 DOI: 10.1016/j.mtbio.2023.100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Bone regeneration heavily relies on bone marrow mesenchymal stem cells (BMSCs). However, recruiting endogenous BMSCs for in situ bone regeneration remains challenging. In this study, we developed a novel BMSC-aptamer (BMSC-apt) functionalized hydrogel (BMSC-aptgel) and evaluated its functions in recruiting BMSCs and promoting bone regeneration. The functional hydrogels were synthesized between maleimide-terminated 4-arm polyethylene glycols (PEG) and thiol-flanked PEG crosslinker, allowing rapid in situ gel formation. The aldehyde group-modified BMSC-apt was covalently bonded to a thiol-flanked PEG crosslinker to produce high-density aptamer coverage on the hydrogel surface. In vitro and in vivo studies demonstrated that the BMSC-aptgel significantly increased BMSC recruitment, migration, osteogenic differentiation, and biocompatibility. In vivo fluorescence tomography imaging demonstrated that functionalized hydrogels effectively recruited DiR-labeled BMSCs at the fracture site. Consequently, a mouse femur fracture model significantly enhanced new bone formation and mineralization. The aggregated BMSCs stimulated bone regeneration by balancing osteogenic and osteoclastic activities and reduced the local inflammatory response via paracrine effects. This study's findings suggest that the BMSC-aptgel can be a promising and effective strategy for promoting in situ bone regeneration.
Collapse
Affiliation(s)
- Jiang-Shan Gong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Guo-Qiang Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Yu Zhang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Bei Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yi-Wei Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Hong-Ming Li
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Ze-Hui He
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Jing-Tao Zou
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Yu-Xuan Qian
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Sheng Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Xin-Yue Hu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Shan-Shan Rao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
| | - Jia Cao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
| | - Wei Du
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
- Department of Rehabilitation Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
6
|
Abubakr S, Hazem NM, Sherif RN, Elhawary AA, Botros KG. Correlation between SDF-1α, CD34 positive hematopoietic stem cells and CXCR4 expression with liver fibrosis in CCl4 rat model. BMC Gastroenterol 2023; 23:323. [PMID: 37730560 PMCID: PMC10512633 DOI: 10.1186/s12876-023-02932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND One of the most frequent disorders is liver fibrosis. An improved understanding of the different events during the process of liver fibrosis & its reversibility could be helpful in its staging and in finding potential therapeutic agents. AIM The goal of this research was to evaluate the relationship among CD34 + HPSCs, SDF-1α, and CXCR4 receptor expression with the percentage of the area of hepatic fibrosis. MATERIALS AND METHODS Thirty-six male Sprague-Dawley rats were separated into the control group, liver injury group & spontaneous reversion group. The liver injury was induced by using 2 ml/kg CCl4 twice a week. Flow cytometric examination of CD34 + cells in the blood & liver was performed. Bone marrow & liver samples were taken for evaluation of the SDF-1α mRNA by PCR. Liver specimens were stained for histopathological and CXCR4 immuno-expression evaluation. RESULTS In the liver injury group, the hepatic enzymes, fibrosis area percentage, CXCR4 receptor expression in the liver, CD34 + cells in the blood and bone marrow & the level SDF-1α in the liver and its concentration gradient were statistically significantly elevated with the progression of the liver fibrosis. On the contrary, SDF-1α in the bone marrow was statistically significantly reduced with the development of liver fibrosis. During the spontaneous reversion group, all the studied parameters apart from SDF-1α in the bone marrow were statistically substantially decreased compared with the liver injury group. We found a statistically substantial positive correlation between fibrosis area and all of the following: liver enzymes, CXCR4 receptor expression in the liver, CD34 + cells in the blood and liver, and SDF- 1α in the liver and its concentration gradient. In conclusion, in CCl4 rat model, the fibrosis area is significantly correlated with many parameters in the blood, bone marrow, and liver, which can be used during the process of follow-up during the therapeutic interventions.
Collapse
Affiliation(s)
- Sara Abubakr
- Human Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Noha M Hazem
- Medical Biochemistry and Molecular Biology Department, Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Algomhoria Street, Mansoura, 35516, Egypt.
- Pathological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia.
| | - R N Sherif
- Human Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Adel Abdelmohdy Elhawary
- Human Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Kamal G Botros
- Human Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Forster S, Radpour R, Ochsenbein AF. Molecular and immunological mechanisms of clonal evolution in multiple myeloma. Front Immunol 2023; 14:1243997. [PMID: 37744361 PMCID: PMC10516567 DOI: 10.3389/fimmu.2023.1243997] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by the proliferation of clonal plasma cells in the bone marrow (BM). It is known that early genetic mutations in post-germinal center B/plasma cells are the cause of myelomagenesis. The acquisition of additional chromosomal abnormalities and distinct mutations further promote the outgrowth of malignant plasma cell populations that are resistant to conventional treatments, finally resulting in relapsed and therapy-refractory terminal stages of MM. In addition, myeloma cells are supported by autocrine signaling pathways and the tumor microenvironment (TME), which consists of diverse cell types such as stromal cells, immune cells, and components of the extracellular matrix. The TME provides essential signals and stimuli that induce proliferation and/or prevent apoptosis. In particular, the molecular pathways by which MM cells interact with the TME are crucial for the development of MM. To generate successful therapies and prevent MM recurrence, a thorough understanding of the molecular mechanisms that drive MM progression and therapy resistance is essential. In this review, we summarize key mechanisms that promote myelomagenesis and drive the clonal expansion in the course of MM progression such as autocrine signaling cascades, as well as direct and indirect interactions between the TME and malignant plasma cells. In addition, we highlight drug-resistance mechanisms and emerging therapies that are currently tested in clinical trials to overcome therapy-refractory MM stages.
Collapse
Affiliation(s)
- Stefan Forster
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ramin Radpour
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian F. Ochsenbein
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Sex and Circadian Timing Modulate Oxaliplatin Hematological and Hematopoietic Toxicities. Pharmaceutics 2022; 14:pharmaceutics14112465. [PMID: 36432655 PMCID: PMC9699532 DOI: 10.3390/pharmaceutics14112465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/17/2022] Open
Abstract
Oxaliplatin was nearly twice as hematotoxic, with optimal circadian timing differing by 6 h, in women as compared to men with colorectal cancers. Hence, we investigated sex- and timing-related determinants of oxaliplatin hematopoietic toxicities in mice. Body-weight loss (BWL), blood cell counts, bone marrow cellularity (BMC) and seven flow-cytometry-monitored hematopoietic progenitor populations were evaluated 72 h after oxaliplatin chronotherapy administration (5 mg/kg). In control animals, circadian rhythms of circulating white blood cells showed a peak at ZT5 in both sexes, whereas BMC was maximum at ZT20 in males and ZT13h40 in females. All BM progenitor counts presented robust rhythms with phases around ZT3h30 in females, whereas only three of them rhythmically cycled in males with a ≈ -6 h phase shift. In treated females, chronotoxicity rhythms occurred in BWL, WBC, BMC and all BM progenitors with the best timing at ZT15, ZT21, ZT15h15 and ZT14h45, respectively. In males, almost no endpoints showed circadian rhythms, BWL and WBC toxicity being minimal, albeit with a substantial drop in BM progenitors. Increasing dose (10 mg/kg) in males induced circadian rhythms in BWL and WBC but not in BM endpoints. Our results suggest complex and sex-specific clock-controlled regulation of the hematopoietic system and its response to oxaliplatin.
Collapse
|
9
|
Dysregulated transforming growth factor-beta mediates early bone marrow dysfunction in diabetes. Commun Biol 2022; 5:1145. [DOI: 10.1038/s42003-022-04112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022] Open
Abstract
AbstractDiabetes affects select organs such as the eyes, kidney, heart, and brain. Our recent studies show that diabetes also enhances adipogenesis in the bone marrow and reduces the number of marrow-resident vascular regenerative stem cells. In the current study, we have performed a detailed spatio-temporal examination to identify the early changes that are induced by diabetes in the bone marrow. Here we show that short-term diabetes causes structural and molecular changes in the marrow, including enhanced adipogenesis in tibiae of mice, prior to stem cell depletion. This enhanced adipogenesis was associated with suppressed transforming growth factor-beta (TGFB) signaling. Using human bone marrow-derived mesenchymal progenitor cells, we show that TGFB pathway suppresses adipogenic differentiation through TGFB-activated kinase 1 (TAK1). These findings may inform the development of novel therapeutic targets for patients with diabetes to restore regenerative stem cell function.
Collapse
|
10
|
Capitano ML, Sammour Y, Ropa J, Legendre M, Mor‐Vaknin N, Markovitz DM. DEK, a nuclear protein, is chemotactic for hematopoietic stem/progenitor cells acting through CXCR2 and Gαi signaling. J Leukoc Biol 2022; 112:449-456. [PMID: 35137444 PMCID: PMC9541944 DOI: 10.1002/jlb.3ab1120-740r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
Few cytokines/growth modulating proteins are known to be chemoattractants for hematopoietic stem (HSC) and progenitor cells (HPC); stromal cell-derived factor 1α (SDF1α/CXCL12) being the most potent known such protein. DEK, a nuclear DNA-binding chromatin protein with hematopoietic cytokine-like activity, is a chemotactic factor attracting mature immune cells. Transwell migration assays were performed to test whether DEK serves as a chemotactic agent for HSC/HPC. DEK induced dose- and time-dependent directed migration of lineage negative (Lin- ) Sca-1+ c-Kit+ (LSK) bone marrow (BM) cells, HSCs and HPCs. Checkerboard assays demonstrated that DEK's activity was chemotactic (directed), not chemokinetic (random migration), in nature. DEK and SDF1α compete for HSC/HPC chemotaxis. Blocking CXCR2 with neutralizing antibodies or inhibiting Gαi protein signaling with Pertussis toxin pretreatment inhibited migration of LSK cells toward DEK. Thus, DEK is a novel and rare chemotactic agent for HSC/HPC acting in a direct or indirect CXCR2 and Gαi protein-coupled signaling-dependent manner.
Collapse
Affiliation(s)
- Maegan L. Capitano
- Department of Microbiology and ImmunologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Yasser Sammour
- Department of Microbiology and ImmunologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - James Ropa
- Department of Microbiology and ImmunologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Maureen Legendre
- Department of Internal Medicine, Division of Infectious DiseasesUniversity of MichiganAnn ArborMichiganUSA
| | - Nirit Mor‐Vaknin
- Department of Internal Medicine, Division of Infectious DiseasesUniversity of MichiganAnn ArborMichiganUSA
| | - David M. Markovitz
- Department of Internal Medicine, Division of Infectious DiseasesUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
11
|
Giger S, Hofer M, Miljkovic-Licina M, Hoehnel S, Brandenberg N, Guiet R, Ehrbar M, Kleiner E, Gegenschatz-Schmid K, Matthes T, Lutolf MP. Microarrayed human bone marrow organoids for modeling blood stem cell dynamics. APL Bioeng 2022; 6:036101. [PMID: 35818479 PMCID: PMC9270995 DOI: 10.1063/5.0092860] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/13/2022] [Indexed: 01/23/2023] Open
Abstract
In many leukemia patients, a poor prognosis is attributed either to the development of chemotherapy resistance by leukemic stem cells (LSCs) or to the inefficient engraftment of transplanted hematopoietic stem/progenitor cells (HSPCs) into the bone marrow (BM). Here, we build a 3D in vitro model system of bone marrow organoids (BMOs) that recapitulate several structural and cellular components of native BM. These organoids are formed in a high-throughput manner from the aggregation of endothelial and mesenchymal cells within hydrogel microwells. Accordingly, the mesenchymal compartment shows partial maintenance of its self-renewal and multilineage potential, while endothelial cells self-organize into an interconnected vessel-like network. Intriguingly, such an endothelial compartment enhances the recruitment of HSPCs in a chemokine ligand/receptor-dependent manner, reminiscent of HSPC homing behavior in vivo. Additionally, we also model LSC migration and nesting in BMOs, thus highlighting the potential of this system as a well accessible and scalable preclinical model for candidate drug screening and patient-specific assays.
Collapse
Affiliation(s)
- Sonja Giger
- Laboratory of Stem Cell Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Moritz Hofer
- Laboratory of Stem Cell Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Sylke Hoehnel
- SUN Bioscience, EPFL Innovation Park, Lausanne, Switzerland
| | | | - Romain Guiet
- Laboratory of Stem Cell Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Martin Ehrbar
- Ehrbar Lab, University Hospital Zurich, Zurich, Switzerland
| | - Esther Kleiner
- Ehrbar Lab, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Forster S, Radpour R. Molecular Impact of the Tumor Microenvironment on Multiple Myeloma Dissemination and Extramedullary Disease. Front Oncol 2022; 12:941437. [PMID: 35847862 PMCID: PMC9284036 DOI: 10.3389/fonc.2022.941437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma (MM) is the most common malignant monoclonal disease of plasma cells. Aside from classical chemotherapy and glucocorticoids, proteasome inhibitors, immunomodulatory agents and monoclonal antibodies are used in the current treatment scheme of MM. The tumor microenvironment (TME) plays a fundamental role in the development and progression of numerous solid and non-solid cancer entities. In MM, the survival and expansion of malignant plasma cell clones heavily depends on various direct and indirect signaling pathways provided by the surrounding bone marrow (BM) niche. In a number of MM patients, single plasma cell clones lose their BM dependency and are capable to engraft at distant body sites or organs. The resulting condition is defined as an extramedullary myeloma (EMM). EMMs are highly aggressive disease stages linked to a dismal prognosis. Emerging literature demonstrates that the dynamic interactions between the TME and malignant plasma cells affect myeloma dissemination. In this review, we aim to summarize how the cellular and non-cellular BM compartments can promote plasma cells to exit their BM niche and metastasize to distant intra-or extramedullary locations. In addition, we list selected therapy concepts that directly target the TME with the potential to prevent myeloma spread.
Collapse
Affiliation(s)
- Stefan Forster
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ramin Radpour
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- *Correspondence: Ramin Radpour,
| |
Collapse
|
13
|
Sun H, Guo Q, Shi C, McWilliam RH, Chen J, Zhu C, Han F, Zhou P, Yang H, Liu J, Sun X, Meng B, Shu W, Li B. CD271 antibody-functionalized microspheres capable of selective recruitment of reparative endogenous stem cells for in situ bone regeneration. Biomaterials 2021; 280:121243. [PMID: 34838337 DOI: 10.1016/j.biomaterials.2021.121243] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/31/2021] [Accepted: 11/06/2021] [Indexed: 12/13/2022]
Abstract
In the strategy of in situ bone regeneration, it used to be difficult to specifically recruit bone marrow mesenchymal stem cells (BM-MSCs) by a single marker. Recently, CD271 has been considered to be one of the most specific markers to isolate BM-MSCs; however, the effectiveness of CD271 antibodies in recruiting BM-MSCs has not been explored yet. In this study, we developed novel CD271 antibody-functionalized chitosan (CS) microspheres with the aid of polydopamine (PDA) coating to recruit endogenous BM-MSCs for in situ bone regeneration. The CS microspheres were sequentially modified with PDA and CD271 antibody through dopamine self-polymerization and bioconjugation, respectively. In vitro studies showed that the CD271 antibody-functionalized microspheres selectively captured significantly more BM-MSCs from a fluorescently labeled heterotypic cell population than non-functionalized controls. In addition, the PDA coating was critical for supporting stable adhesion and proliferation of the captured BM-MSCs. Effective early recruitment of CD271+ stem cells by the functionalized microspheres at bone defect site of SD rat was observed by the CD271/DAPI immunofluorescence staining, which led to significantly enhanced new bone formation in rat femoral condyle defect over long term. Together, findings from this study have demonstrated, for the first time, that the CD271 antibody-functionalized CS microspheres are promising for in situ bone regeneration.
Collapse
Affiliation(s)
- Han Sun
- Department of Articular Orthopaedics, Orthopaedic Institute, The Third Affiliated Hospital, Soochow University, Changzhou, Jiangsu, China; Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Chen Shi
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China; Hangzhou R&L Medical Device Co. Ltd., Hangzhou, Zhejiang, China
| | - Ross H McWilliam
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Jianquan Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Fengxuan Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Pinghui Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Jinbo Liu
- Department of Articular Orthopaedics, Orthopaedic Institute, The Third Affiliated Hospital, Soochow University, Changzhou, Jiangsu, China
| | - Xiaoliang Sun
- Department of Articular Orthopaedics, Orthopaedic Institute, The Third Affiliated Hospital, Soochow University, Changzhou, Jiangsu, China
| | - Bin Meng
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China.
| | - Wenmiao Shu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom.
| | - Bin Li
- Department of Articular Orthopaedics, Orthopaedic Institute, The Third Affiliated Hospital, Soochow University, Changzhou, Jiangsu, China; Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China; China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Capitano ML, Mohamad SF, Cooper S, Guo B, Huang X, Gunawan AM, Sampson C, Ropa J, Srour EF, Orschell CM, Broxmeyer HE. Mitigating oxygen stress enhances aged mouse hematopoietic stem cell numbers and function. J Clin Invest 2021; 131:140177. [PMID: 33393491 DOI: 10.1172/jci140177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022] Open
Abstract
Bone marrow (BM) hematopoietic stem cells (HSCs) become dysfunctional during aging (i.e., they are increased in number but have an overall reduction in long-term repopulation potential and increased myeloid differentiation) compared with young HSCs, suggesting limited use of old donor BM cells for hematopoietic cell transplantation (HCT). BM cells reside in an in vivo hypoxic environment yet are evaluated after collection and processing in ambient air. We detected an increase in the number of both young and aged mouse BM HSCs collected and processed in 3% O2 compared with the number of young BM HSCs collected and processed in ambient air (~21% O2). Aged BM collected and processed under hypoxic conditions demonstrated enhanced engraftment capability during competitive transplantation analysis and contained more functional HSCs as determined by limiting dilution analysis. Importantly, the myeloid-to-lymphoid differentiation ratio of aged BM collected in 3% O2 was similar to that detected in young BM collected in ambient air or hypoxic conditions, consistent with the increased number of common lymphoid progenitors following collection under hypoxia. Enhanced functional activity and differentiation of old BM collected and processed in hypoxia correlated with reduced "stress" associated with ambient air BM collection and suggests that aged BM may be better and more efficiently used for HCT if collected and processed under hypoxia so that it is never exposed to ambient air O2.
Collapse
Affiliation(s)
- Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Safa F Mohamad
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Scott Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bin Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xinxin Huang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Zhongshan-Xuhui Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Andrea M Gunawan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Carol Sampson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Edward F Srour
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
15
|
Role of Stromal Cell-Derived Factor-1 in Endothelial Progenitor Cell-Mediated Vascular Repair and Regeneration. Tissue Eng Regen Med 2021; 18:747-758. [PMID: 34449064 PMCID: PMC8440704 DOI: 10.1007/s13770-021-00366-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are immature endothelial cells that participate in vascular repair and postnatal neovascularization and provide a novel and promising therapy for the treatment of vascular disease. Studies in different animal models have shown that EPC mobilization through pharmacological agents and autologous EPC transplantation contribute to restoring blood supply and tissue regeneration after ischemic injury. However, these effects of the progenitor cells in clinical studies exhibit mixed results. The therapeutic efficacy of EPCs is closely associated with the number of the progenitor cells recruited into ischemic regions and their functional abilities and survival in injury tissues. In this review, we discussed the regulating role of stromal cell-derived factor-1 (also known CXCL12, SDF-1) in EPC mobilization, recruitment, homing, vascular repair and neovascularization, and analyzed the underlying machemisms of these functions. Application of SDF-1 to improve the regenerative function of EPCs following vascular injury was also discussed. SDF-1 plays a crucial role in mobilizing EPC from bone marrow into peripheral circulation, recruiting the progenitor cells to target tissue and protecting against cell death under pathological conditions; thus improve EPC regenerative capacity. SDF-1 are crucial for regulating EPC regenerative function, and provide a potential target for improve therapeutic efficacy of the progenitor cells in treatment of vascular disease.
Collapse
|
16
|
Broxmeyer HE. All in for nuclear PFKP-induced CXCR4 metastasis: a T cell acute lymphoblastic leukemia prognostic marker. J Clin Invest 2021; 131:e151295. [PMID: 34396983 DOI: 10.1172/jci151295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Phosphofructokinase 1 (PFK1) is expressed in T cell acute lymphoblastic leukemia (T-ALL), where its upregulation is linked with cancer progression. While PFK1 functions in the glycolysis pathway within the cytoplasm, it is also present in the nucleus where it regulates gene transcription. In this issue of the JCI, Xueliang Gao, Shenghui Qin, et al. focus their mechanism-based investigation on the nucleocytoplasmic shuttling aspect of the PFK1 platelet isoform, PFKP. Functional nuclear export and localization sequences stimulated CXC chemokine receptor type 4 (CXCR4) expression to promote T-ALL invasion that involved cyclin D3/CDK6, c-Myc, and importin-9. Since the presence of nuclear PFKP is associated with poor survival in T-ALL, nuclear PFKP-induced CXCR4 expression might serve as a prognostic marker for T-ALL. More promising, though, are the mechanistic insights suggesting that approaches to dampening metastatic migration may have application to benefit patients with T-ALL.
Collapse
|
17
|
The Impact of Sedentary Lifestyle, High-fat Diet, Tobacco Smoke, and Alcohol Intake on the Hematopoietic Stem Cell Niches. Hemasphere 2021; 5:e615. [PMID: 34291194 PMCID: PMC8288907 DOI: 10.1097/hs9.0000000000000615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/07/2021] [Indexed: 11/25/2022] Open
Abstract
Hematopoietic stem and progenitor cells maintain hematopoiesis throughout life by generating all major blood cell lineages through the process of self-renewal and differentiation. In adult mammals, hematopoietic stem cells (HSCs) primarily reside in the bone marrow (BM) at special microenvironments called “niches.” Niches are thought to extrinsically orchestrate the HSC fate including their quiescence and proliferation. Insight into the HSC niches mainly comes from studies in mice using surface marker identification and imaging to visualize HSC localization and association with niche cells. The advantage of mouse models is the possibility to study the 3-dimensional BM architecture and cell interactions in an intact traceable system. However, this may not be directly translational to human BM. Sedentary lifestyle, unhealthy diet, excessive alcohol intake, and smoking are all known risk factors for various diseases including hematological disorders and cancer, but how do lifestyle factors impact hematopoiesis and the associated niches? Here, we review current knowledge about the HSC niches and how unhealthy lifestyle may affect it. In addition, we summarize epidemiological data concerning the influence of lifestyle factors on hematological disorders and malignancies.
Collapse
|
18
|
Ito S, Sato T, Maeta T. Role and Therapeutic Targeting of SDF-1α/CXCR4 Axis in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13081793. [PMID: 33918655 PMCID: PMC8069569 DOI: 10.3390/cancers13081793] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary The SDF-1α/CXCR4 axis plays crucial roles in proliferation, survival, invasion, dissemination, and drug resistance in multiple myeloma. This review summarizes the pleiotropic role of the SDF-1α/CXCR4 axis in multiple myeloma and introduces the SDF-1α/CXCR4 axis-targeted therapies in multiple myeloma. Abstract The C-X-C chemokine receptor type 4 (CXCR4) is a pleiotropic chemokine receptor that is expressed in not only normal hematopoietic cells but also multiple myeloma cells. Its ligand, stromal cell-derived factor 1α (SDF-1α) is produced in the bone marrow microenvironment. The SDF-1α/CXCR4 axis plays a pivotal role in the major physiological processes associated with tumor proliferation, survival, invasion, dissemination, and drug resistance in myeloma cells. This review summarizes the pleiotropic role of the SDF-1α/CXCR4 axis in multiple myeloma and discusses the future perspective in the SDF-1α/CXCR4 axis-targeted therapies in multiple myeloma.
Collapse
|
19
|
Endometriosis stromal cells induce bone marrow mesenchymal stem cell differentiation and PD-1 expression through paracrine signaling. Mol Cell Biochem 2021; 476:1717-1727. [PMID: 33428059 DOI: 10.1007/s11010-020-04012-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022]
Abstract
Endometriosis is an estrogen-dependent, inflammatory gynecological disorder characterized by the growth of endometrial cells in lesions outside the uterus. Bone marrow-derived cells (BMDCs) engraft lesions and increase lesion size. Do endometriosis cells regulate differentiation of engrafted BMDCs in the pathogenesis and growth of endometriosis? Here, we report endometriosis derived stromal cells promote the differentiation of BMDCs to stromal, epithelial and leukocyte cell fates through paracrine signaling. In-vitro studies demonstrated that both mRNA and protein levels of vimentin, cytokeratin and PD-1 were significantly increased in BMDCs cocultured with stromal cells from endometriosis (ENDO) patients compared to stromal cells from normal endometrium (CNTL). Increased expression of PD-1 has been reported in malignancy where it promotes T cell quiescence and immune tolerance. Increased PD-1 was also confirmed in-vivo where we showed that PD-1 expression was induced in BMDCs engrafted into endometriotic lesions in a murine model of endometriosis. AMD3100, an antagonist for CXCR4 receptor inhibited PD-1 expression in BMDCs suggesting that PD-1 induction requires CXCL12. These results suggest that endometriosis stimulated BMDC differentiation through paracrine signaling and increased T cell PD-1 expression. Increased PD-1 expression may be one mechanism by which endometriosis avoids immune surveillance.
Collapse
|
20
|
Progress towards improving homing and engraftment of hematopoietic stem cells for clinical transplantation. Curr Opin Hematol 2020; 26:266-272. [PMID: 31045644 DOI: 10.1097/moh.0000000000000510] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Hematopoietic cell transplantation (HCT) is a life-saving treatment for a variety of hematological and nonhematological disorders. Successful clinical outcomes after transplantation rely on adequate hematopoietic stem cell (HSC) numbers, and the homing and subsequent short-term and long-term engraftment of these cells in the bone marrow. Enhancing the homing capability of HSCs has the potential for high impact on improving HCT and patient survival. RECENT FINDINGS There are a number of ways to enhance HSC engraftment. Neutralizing negative epigenetic regulation by histone deacetylase 5 (HDAC5) increases surface CXCR4 expression and promotes human HSC homing and engraftment in immune-deficient NSG (NOD.Cg-Prkdc IL2rgt/Sz) mice. Short-term treatment of cells with glucocorticoids, pharmacological stabilization of hypoxia-inducible factor (HIF)-1α, increasing membrane lipid raft aggregation, and inhibition of dipeptidyl peptidase 4 (DPP4) facilitates HSC homing and engraftment. Added to these procedures, modulating the mitochondria permeability transition pore (MPTP) to mitigate ambient air-induced extra physiological oxygen stress/shock (EPHOSS) by hypoxic harvest and processing, or using cyclosporine A during air collection increases functional HSC numbers and improves HSC engraftment. SUMMARY A better understanding of the regulation of human HSC homing mediated by various signaling pathways will facilitate development of more efficient means to enhance HCT efficacy.
Collapse
|
21
|
Capitano ML, Griesenauer B, Guo B, Cooper S, Paczesny S, Broxmeyer HE. The IL-33 Receptor/ST2 acts as a positive regulator of functional mouse bone marrow hematopoietic stem and progenitor cells. Blood Cells Mol Dis 2020; 84:102435. [PMID: 32408242 PMCID: PMC7788514 DOI: 10.1016/j.bcmd.2020.102435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022]
Abstract
There is a paucity of information on a potential role for the IL-33 receptor/ST2 in the regulation of mouse bone marrow (BM) hematopoietic stem (HSC) and progenitor (HPC) cells. Comparing the BM of st2−/− and wild type (WT) control mice using functional assays, it was found that st2−/− BM cells had poorer engrafting capacity than WT BM in a competitive repopulating assay using congenic mice, with no changes in reconstitution of B-, T- and myeloid cells following transplantation. The BM of st2−/− mice also had fewer granulocyte-macrophage, erythroid, and multipotential progenitors than that of WT BM and these st2−/− HPC were in a slow cycling state compared to that of the rapidly cycling HPC of the WT mice. While functional assessment of HSC and HPC demonstrated that ST2 has a positive influence on regulation of HSC, we could not pick up differences in st2−/− compared to WT BM using only phenotypic analysis of HSC and HPC populations prior to transplantation, again demonstrating that phenotypic analysis of HSC and HPC do not always recapitulate the functional assessments of these immature hematopoietic cells. ST2 is a positive modulator of hematopoiesis. ST2-/- is a positive modulator of hematopoiesis Immunophenotyping of st2-/- hematopoietic stem cell numbers does not recapitulate functional capability of these cells.
Collapse
Affiliation(s)
- Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States of America.
| | - Brad Griesenauer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Bin Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Scott Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States of America.
| |
Collapse
|
22
|
De Paepe ME, Wong T, Chu S, Mao Q. Stromal cell-derived factor-1 (SDF-1) expression in very preterm human lungs: potential relevance for stem cell therapy for bronchopulmonary dysplasia. Exp Lung Res 2020; 46:146-156. [PMID: 32281423 DOI: 10.1080/01902148.2020.1751899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background: The axis formed by CXC chemokine receptor 4 (CXCR4), expressed on mesenchymal stromal cells (MSCs), and stromal cell-derived factor-1 (SDF-1), expressed in recipient organs, is a critical mediator of MSC migration in non-pulmonary injury models. The role and regulation of SDF-1 expression in preterm lungs, of potential relevance for MSC-based cell therapy for bronchopulmonary dysplasia (BPD), is unknown. The aim of this study was to determine the spatiotemporal pattern of CXCR4/SDF-1 expression in lungs of extremely preterm infants at risk for BPD.Methods: Postmortem lung samples were collected from ventilated extremely preterm infants who died between 23 and 29 wks ("short-term ventilated") or between 36 and 39 wks ("long-term ventilated") corrected postmenstrual age. Results were compared with age-matched infants who had lived <12 h or stillborn infants ("early" and "late" controls). CXCR4 and SDF-1 expression was studied by immunohistochemistry, immunofluorescence/confocal microscopy, and qRT-PCR analysis.Results: Compared with age-matched controls without antenatal infection, lungs of early control infants with evidence of intrauterine infection/inflammation showed significant upregulation of SDF-1 expression, localized to the respiratory epithelium, and of CXCR4 expression, localized to stromal cells. Similarly, pulmonary SDF-1 mRNA levels were significantly higher in long-term ventilated ex-premature infants with established BPD than in age-matched controls. The pulmonary vasculature was devoid of SDF-1 expression at all time points. Endogenous CXCR4-positive stromal cells were preferentially localized along the basal aspect of SDF-1-positive bronchial and respiratory epithelial cells, suggestive of functionality of the CXCR4/SDF-1 axis.Conclusions: Incipient and established neonatal lung injury is associated with upregulation of SDF-1 expression, restricted to the respiratory epithelium. Knowledge of the clinical associations, time-course and localization of pulmonary SDF-1 expression may guide decisions about the optimal timing and delivery route of MSC-based cell therapy for BPD.
Collapse
Affiliation(s)
- Monique E De Paepe
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Talia Wong
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Sharon Chu
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Quanfu Mao
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
23
|
Karres D, Ali S, van Hennik PB, Straus S, Josephson F, Thole G, Glerum PJ, Herberts C, Babae N, Herold R, Papadouli I, Pignatti F. EMA Recommendation for the Pediatric Indications of Plerixafor (Mozobil) to Enhance Mobilization of Hematopoietic Stem Cells for Collection and Subsequent Autologous Transplantation in Children with Lymphoma or Malignant Solid Tumors. Oncologist 2020; 25:e976-e981. [PMID: 32154610 DOI: 10.1634/theoncologist.2019-0898] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
On March 28, 2019, the Committee for Medicinal Products for Human Use adopted a positive opinion recommending the marketing authorization for the medicinal product plerixafor. The marketing authorization holder for this medicinal product is Genzyme Europe B.Th. The adoption was for an extension of the existing adult indication in combination with granulocyte colony-stimulating factor (G-CSF) to pediatric patients (aged 1 year to <18 years) to enhance mobilization of hematopoietic stem cells to the peripheral blood for collection and subsequent autologous transplantation in children with lymphoma or solid malignant tumors. This treatment is indicated either preemptively, when circulating stem cell count on the predicted day of collection after adequate mobilization with G-CSF (with or without chemotherapy) is expected to be insufficient with regard to desired hematopoietic stem cells yield, or in children who previously failed to collect sufficient hematopoietic stem cells. The efficacy and safety of plerixafor were evaluated in an open label, multicenter, phase I/II, dose-ranging, and randomized controlled study (DFI12860) in pediatric patients with solid tumors, including neuroblastoma, sarcoma, Ewing sarcoma, or lymphoma, who were eligible for autologous hematopoietic stem cell transplantation. Forty-five patients (aged 1 year to <18 years) were randomized, 2:1, using 0.24 mg/kg of plerixafor plus standard mobilization (G-CSF with or without chemotherapy) versus control (standard mobilization alone). The primary analysis showed that 80% of patients in the plerixafor arm experienced at least a doubling of the peripheral blood (PB) CD34+ count, observed from the morning of the day preceding the first planned apheresis to the morning prior to apheresis, versus 28.6% of patients in the control arm (p = .0019). The median increase in PB CD34+ cell counts from baseline to the day of apheresis was 3.2-fold in the plerixafor arm versus by 1.4-fold in the control arm. The observed safety profile in the pediatric population was consistent with that in adults, with adverse events mainly related to injection site reactions, hypokalemia, and increased blood bicarbonate. Importantly, plerixafor exposure did not seem to negatively affect transplant efficiency. This article summarizes the scientific review of the application leading to regulatory approval in the European Union. IMPLICATIONS FOR PRACTICE: This review of the marketing authorization of plerixafor will raise awareness of pediatric indication granted for this medicinal product.
Collapse
Affiliation(s)
| | - Sahra Ali
- European Medicines Agency, Amsterdam, The Netherlands
| | - Paula B van Hennik
- Committee for Medicinal Products for Human Use (CHMP), Amsterdam, The Netherlands
- Medicines Evaluation Board, Utrecht, The Netherlands
| | - Sabine Straus
- Pharmacovigilance Risk Assessment Committee (PRAC), Amsterdam, The Netherlands
- Medicines Evaluation Board, Utrecht, The Netherlands
| | - Filip Josephson
- Committee for Medicinal Products for Human Use (CHMP), Amsterdam, The Netherlands
- Department of Efficacy and Safety 3, Medical Products Agency, Uppsala, Sweden
| | - Geanne Thole
- Medicines Evaluation Board, Utrecht, The Netherlands
| | | | | | - Negar Babae
- Medicines Evaluation Board, Utrecht, The Netherlands
| | - Ralf Herold
- European Medicines Agency, Amsterdam, The Netherlands
| | | | | |
Collapse
|
24
|
Spiller S, Panitz N, Limasale YDP, Atallah PM, Schirmer L, Bellmann-Sickert K, Blaszkiewicz J, Koehling S, Freudenberg U, Rademann J, Werner C, Beck-Sickinger AG. Modulation of Human CXCL12 Binding Properties to Glycosaminoglycans To Enhance Chemotactic Gradients. ACS Biomater Sci Eng 2019; 5:5128-5138. [DOI: 10.1021/acsbiomaterials.9b01139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sabrina Spiller
- Universität Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Nydia Panitz
- Universität Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Yanuar Dwi Putra Limasale
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Passant Morsi Atallah
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Lucas Schirmer
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Kathrin Bellmann-Sickert
- Universität Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Joanna Blaszkiewicz
- Freie Universität Berlin, Medicinal Chemistry, Königin-Luise-Strasse 2+4, Berlin 14195, Germany
| | - Sebastian Koehling
- Freie Universität Berlin, Medicinal Chemistry, Königin-Luise-Strasse 2+4, Berlin 14195, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Jörg Rademann
- Freie Universität Berlin, Medicinal Chemistry, Königin-Luise-Strasse 2+4, Berlin 14195, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Annette G. Beck-Sickinger
- Universität Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| |
Collapse
|
25
|
Quickly attainable and highly engrafting hematopoietic stem cells. BLOOD SCIENCE 2019; 1:113-115. [PMID: 35402793 PMCID: PMC8975002 DOI: 10.1097/bs9.0000000000000003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 11/26/2022] Open
|
26
|
Gębura K, Butrym A, Chaszczewska-Markowska M, Wróbel T, Kuliczkowski K, Bogunia-Kubik K. G-CSF administration favours SDF-1 release and activation of neutrophils and monocytes in recipients of autologous peripheral blood progenitor cells. Cytokine 2019; 116:38-47. [DOI: 10.1016/j.cyto.2018.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 12/23/2022]
|
27
|
Yi KW, Mamillapalli R, Sahin C, Song J, Tal R, Taylor HS. Bone marrow-derived cells or C-X-C motif chemokine 12 (CXCL12) treatment improve thin endometrium in a mouse model. Biol Reprod 2019; 100:61-70. [PMID: 30084961 PMCID: PMC6335209 DOI: 10.1093/biolre/ioy175] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/14/2018] [Accepted: 07/30/2018] [Indexed: 01/07/2023] Open
Abstract
Successful implantation and pregnancy is dependent on sufficient endometrial growth during each reproductive cycle. Here, we report the therapeutic effect of either bone marrow-derived cells (BMDCs) or the stem cell chemo-attractant C-X-C motif chemokine 12 (CXCL12) on endometrial receptivity in a murine ethanol induced thin endometrium model. Endometrial epithelial area was significantly increased in mice treated with BMDCs, CXCL12, or by co-treatment with both compared with PBS-treated controls. Ki-67 and CD31 immunoreactivity was significantly higher in mice treated with either BMDCs, CXCL12, or both. The mRNA expression levels of endometrial receptivity markers leukemia inhibitory factor, interleukin-1β, and integrin beta-3 were increased in mice treated with either BMDCs, CXCL12, or both. The mRNA levels of matrix metalloproteinase-2 and -9 were significantly decreased by BMDCs but not by CXCL12. Pregnancy rates and litter size were increased after either treatment. Both BMDCs and CXCL12 displayed a comparable efficacy on endometrial regeneration in mice with thin endometrium. Our findings indicate the potential therapeutic effects of BMDCs and CXCL12 on infertility related to thin endometrium. Bone marrow-derived cells and CXCL12 displayed a comparable efficacy on endometrial regeneration in mice with thin endometrium.
Collapse
Affiliation(s)
- Kyong Wook Yi
- Department of Obstetrics and Gynecology, Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ramanaiah Mamillapalli
- Department of Obstetrics and Gynecology, Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Cagdas Sahin
- Department of Obstetrics and Gynecology, Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jaeyen Song
- Department of Obstetrics and Gynecology, Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Reshef Tal
- Department of Obstetrics and Gynecology, Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hugh S Taylor
- Department of Obstetrics and Gynecology, Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
28
|
Wang J, Li J, Lu Y, Yang H, Hong N, Jin L, Li Y, Wu S. Incorporation of Stromal Cell-Derived Factor-1α in Three-Dimensional Hydroxyapatite/Polyacrylonitrile Composite Scaffolds for Bone Regeneration. ACS Biomater Sci Eng 2018; 5:911-921. [PMID: 33405848 DOI: 10.1021/acsbiomaterials.8b01146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bone regeneration strategies rely on biomaterial constructs with stem cells or growth factors. By comparison, cell homing strategies employ chemokines to recruit the host endogenous stem or progenitor cells to the defect site to support endogenous healing. In the present study, we used a novel fluffy hydroxyapatite/polyacrylonitrile (HA/PAN) composite scaffold to provide a better three-dimensional cell culture microenvironment. These HA/PAN composite scaffolds loaded with stromal cell-derived factor-1α (SDF-1α) provided a diffusion-controlled SDF-1α release profile and endowed the scaffolds with cell homing capabilities. Furthermore, the scaffolds significantly stimulated bone marrow stromal cell (BMSC) recruitment, facilitated BMSC osteogenic differentiation, and promoted ectopic bone formation. Our results suggest that a HA/PAN composite scaffold loaded with SDF-1α offers a clinically beneficial bone repair strategy.
Collapse
Affiliation(s)
- Jieda Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou 510055, China
| | - Jiayan Li
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou 510055, China
| | - Yeming Lu
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600, Tianhe Road, Guangzhou 510000, China
| | - Huifang Yang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou 510055, China
| | - Nanrui Hong
- Department of Stomatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16, Airport Road, Guangzhou 510405, China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, No. 6, Wenchang Road, Zhoukou 466001, China
| | - Yan Li
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou 510055, China
| | - Shuyi Wu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou 510055, China
| |
Collapse
|
29
|
Janssens R, Struyf S, Proost P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev 2018; 44:51-68. [PMID: 30396776 DOI: 10.1016/j.cytogfr.2018.10.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
CXCL12 is a CXC chemokine that traditionally has been classified as a homeostatic chemokine. It contributes to physiological processes such as embryogenesis, hematopoiesis and angiogenesis. In contrast to these homeostatic functions, increased expression of CXCL12 in general, or of a specific CXCL12 splicing variant has been demonstrated in various pathologies. In addition to this increased or differential transcription of CXCL12, also upregulation of its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) contributes to the onset or progression of diseases. Moreover, posttranslational modification of CXCL12 during disease progression, through interaction with locally produced molecules or enzymes, also affects CXCL12 activity, adding further complexity. As CXCL12, CXCR4 and ACKR3 are broadly expressed, the number of pathologies wherein CXCL12 is involved is growing. In this review, the role of the CXCL12/CXCR4/ACKR3 axis will be discussed for the most prevalent pathologies. Administration of CXCL12-neutralizing antibodies or small-molecule antagonists of CXCR4 or ACKR3 delays disease onset or prevents disease progression in cancer, viral infections, inflammatory bowel diseases, rheumatoid arthritis and osteoarthritis, asthma and acute lung injury, amyotrophic lateral sclerosis and WHIM syndrome. On the other hand, CXCL12 has protective properties in Alzheimer's disease and multiple sclerosis, has a beneficial role in wound healing and has crucial homeostatic properties in general.
Collapse
Affiliation(s)
- Rik Janssens
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Sofie Struyf
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Paul Proost
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| |
Collapse
|
30
|
Chen J, Yang N, Liu H, Yao H, Wang J, Yang Y, Zhang W. Immunological effects of a low-dose cytarabine, aclarubicin and granulocyte-colony stimulating factor priming regimen on a mouse leukemia model. Oncol Lett 2018; 16:3022-3028. [PMID: 30127892 PMCID: PMC6096276 DOI: 10.3892/ol.2018.9018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/09/2018] [Indexed: 01/11/2023] Open
Abstract
The low-dose cytarabine, aclarubicin and granulocyte-colony stimulating factor (G-CSF) (CAG) priming regimen is an effective treatment for patients with relapsed or refractory acute myeloid leukemia (AML) and advanced myelodysplastic syndrome (MDS). G-CSF influences the bone marrow microenvironment (BMM) by mobilizing regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), as well as by reducing the expression of stromal cell-derived factor-1α (SDF-1α). In the present study, a WEHI-3-grafted BALB/c mouse AML model (AML-M4) was employed to determine how the BMM was altered by different treatment regimens. It was evident that CAG regimen decreased and increased the proportion of Tregs and MDSCs in the bone marrow and spleen, respectively. Furthermore, the CAG regimen downregulated SDF-1α levels in the bone marrow and peripheral blood. However, hematoxylin and eosin staining of the main organs revealed that leukemic cells infiltrated the liver following treatment with the CAG regimen. The present study indicates that the CAG regimen has a positive effect on the immunosuppressive microenvironment in AML and relieves AML-associated BMM immune suppression by decreasing Tregs and MDSCs in the bone marrow and downregulating the SDF-1α/CXCR4 axis in the bone marrow and peripheral blood.
Collapse
Affiliation(s)
- Jinqiu Chen
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Nan Yang
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hailing Liu
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Huan Yao
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jin Wang
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yun Yang
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wanggang Zhang
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
31
|
Natural nitration of CXCL12 reduces its signaling capacity and chemotactic activity in vitro and abrogates intra-articular lymphocyte recruitment in vivo. Oncotarget 2018; 7:62439-62459. [PMID: 27566567 PMCID: PMC5308738 DOI: 10.18632/oncotarget.11516] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 08/13/2016] [Indexed: 01/01/2023] Open
Abstract
The chemokine CXCL12/stromal cell-derived factor-1 is important for leukocyte migration to lymphoid organs and inflamed tissues and stimulates tumor development. In vitro, CXCL12 activity through CXCR4 is abolished by proteolytic processing. However, limited information is available on in vivo effects of posttranslationally modified CXCL12. Natural CXCL12 was purified from the coculture supernatant of stromal cells stimulated with leukocytes and inflammatory agents. In this conditioned medium, CXCL12 with a nitration on Tyr7, designated [3-NT7]CXCL12, was discovered via Edman degradation. CXCL12 and [3-NT7]CXCL12 were chemically synthesized to evaluate the biological effects of this modification. [3-NT7]CXCL12 recruited β-arrestin 2 and phosphorylated the Akt kinase similar to CXCL12 in receptor-transfected cells. Also the affinity of CXCL12 and [3-NT7]CXCL12 for glycosaminoglycans, the G protein-coupled chemokine receptor CXCR4 and the atypical chemokine receptor ACKR3 were comparable. However, [3-NT7]CXCL12 showed a reduced ability to enhance intracellular calcium concentrations, to generate inositol triphosphate, to phosphorylate ERK1/2 and to induce monocyte and lymphocyte chemotaxis in vitro. Moreover, nitrated CXCL12 failed to induce in vivo extravasation of lymphocytes to the joint. In summary, nitration on Tyr7 under inflammatory conditions is a novel natural posttranslational regulatory mechanism of CXCL12 which may downregulate the CXCR4-mediated inflammatory and tumor-promoting activities of CXCL12.
Collapse
|
32
|
Schelker RC, Iberl S, Müller G, Hart C, Herr W, Grassinger J. TGF-β1 and CXCL12 modulate proliferation and chemotherapy sensitivity of acute myeloid leukemia cells co-cultured with multipotent mesenchymal stromal cells. Hematology 2017; 23:337-345. [DOI: 10.1080/10245332.2017.1402455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Roland Christian Schelker
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Sabine Iberl
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Gunnar Müller
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Christina Hart
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Jochen Grassinger
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
33
|
Chen X, Han Y, Zhang B, Liu Y, Wang S, Liao T, Deng Z, Fan Z, Zhang J, He L, Yue W, Li Y, Pei X. Caffeic acid phenethyl ester promotes haematopoietic stem/progenitor cell homing and engraftment. Stem Cell Res Ther 2017; 8:255. [PMID: 29116023 PMCID: PMC5678809 DOI: 10.1186/s13287-017-0708-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/24/2017] [Accepted: 10/23/2017] [Indexed: 11/24/2022] Open
Abstract
Background Several studies have suggested that caffeic acid phenethyl ester (CAPE) can induce the expression of hypoxia inducible factor-1α (HIF-1α) protein. We determined whether CAPE has a novel function in improving the homing and engraftment of haematopoietic stem/progenitor cells (HSPCs) by regulating HIF-1α gene expression in the bone marrow (BM) niche. Methods For survival experiments, lethally irradiated C57BL/6 mice were injected with a low number of BM mononuclear cells (MNCs) and CAPE according to the indicated schedule. Homing efficiency analysis was conducted using flow cytometry and colony-forming unit (CFU) assays. The influence of intraperitoneal injection of CAPE on short-term and long-term engraftment of HSPCs was evaluated using competitive and non-competitive mouse transplantation models. To investigate the mechanism by which CAPE enhanced HSPC homing, we performed these experiments including Q-PCR, western blot, immunohistochemistry and CFU assays after in-vivo HIF-1α activity blockade. Results CAPE injection significantly increased the survival rate of recipient mice after lethal irradiation and transplantation of a low number of BM MNCs. Using HSPC homing assays, we found that CAPE notably increased donor HSPC homing to recipient BM. The subsequent short-term and long-term engraftment of transplanted HSPCs was also improved by the optimal schedule of CAPE administration. Mechanistically, we found that CAPE upregulated the expression of HIF-1α, vascular endothelial growth factor-A (VEGF-A) and stromal cell-derived factor 1α (SDF-1α). The HIF-1α inhibitor PX-478 blocked CAPE-enhanced HSPC homing, which supported the idea that HIF-1α is a key target of CAPE. Conclusions Our results showed that CAPE administration facilitated HSPC homing and engraftment, and this effect was primarily dependent on HIF-1α activation and upregulation of SDF-1α and VEGF-A expression in the BM niche. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0708-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaofang Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, No. 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China.,Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China
| | - Yi Han
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Bowen Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China
| | - Yiming Liu
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Sihan Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China
| | - Tuling Liao
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China
| | - Ziliang Deng
- South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China.,Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China
| | - Zeng Fan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China
| | - Jing Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China
| | - Lijuan He
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China
| | - Yanhua Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China. .,South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China.
| | - Xuetao Pei
- School of Laboratory Medicine and Biotechnology, Southern Medical University, No. 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China. .,Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China. .,South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China.
| |
Collapse
|
34
|
The unique structural and functional features of CXCL12. Cell Mol Immunol 2017; 15:299-311. [PMID: 29082918 DOI: 10.1038/cmi.2017.107] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022] Open
Abstract
The CXC chemokine CXCL12 is an important factor in physiological and pathological processes, including embryogenesis, hematopoiesis, angiogenesis and inflammation, because it activates and/or induces migration of hematopoietic progenitor and stem cells, endothelial cells and most leukocytes. Therefore, CXCL12 activity is tightly regulated at multiple levels. CXCL12 has the unique property of existing in six splice variants in humans, each having a specific tissue distribution and in vivo activity. Controlled splice variant transcription and mRNA stability determine the CXCL12 expression profile. CXCL12 fulfills its functions in homeostatic and pathological conditions by interacting with its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) and by binding to glycosaminoglycans (GAGs) in tissues and on the endothelium to allow a proper presentation to passing leukocytes. Homodimerizaton and heterodimerization of CXCL12 and its receptors can alter their signaling activity, as exemplified by the synergy between CXCL12 and other chemokines in leukocyte migration assays. Receptor binding may also initiate CXCL12 internalization and its subsequent removal from the environment. Furthermore, CXCL12 activity is regulated by posttranslational modifications. Proteolytic removal of NH2- or COOH-terminal amino acids, citrullination of arginine residues by peptidyl arginine deiminases or nitration of tyrosine residues reduce CXCL12 activity. This review summarizes the interactions of CXCL12 with the cellular environment and discusses the different levels of CXCL12 activity regulation.
Collapse
|
35
|
Wang W, Ha C, Lin T, Wang D, Wang Y, Gong M. Celastrol attenuates pain and cartilage damage via SDF-1/CXCR4 signalling pathway in osteoarthritis rats. ACTA ACUST UNITED AC 2017; 70:81-88. [PMID: 28994112 DOI: 10.1111/jphp.12835] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/21/2017] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Celastrol has attracted wide interests for its anticancer and anti-inflammation properties, and studies have demonstrated that celastrol negatively modulates the stromal cell-derived factor-1 (SDF-1) and receptor C-X-C chemokine receptor type 4 (CXCR4) signalling. We aim in this study to investigate the effects of celastrol in osteoarthritis (OA) in vivo and explored the underlying molecular mechanisms. METHODS We established a monoiodoacetate (MIA)-induced rat OA model and evaluated the joint pain and cartilage damage with or without celastrol treatments. We further assessed the alterations of the SDF-1/CXCR4 pathway and cartilage-specific genes, at both mRNA and protein levels. KEY FINDINGS Celastrol significantly attenuated the joint pain and cartilage damage induced by MIA in OA rats and suppressed the upregulation of SDF-1/CXCR4 and associated genes caused by MIA injections. Furthermore, MIA induced a decrease in cartilage-specific genes which was also prevented by celastrol treatments. CONCLUSIONS Celastrol ameliorate OA in vivo as evidenced by the attenuated joint pain and less cartilage damage in OA rats given celastrol treatments, an effect mediated via suppression of the SDF-1/CXCR4 pathway.
Collapse
Affiliation(s)
- Weifeng Wang
- Department of Orthopedic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China.,Department of Orthopedic Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Chengzhi Ha
- Department of Orthopedic Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Tao Lin
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dawei Wang
- Department of Orthopedic Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Yuanhe Wang
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mingzhi Gong
- Department of Orthopedic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
36
|
Vandyke K, Zeissig MN, Hewett DR, Martin SK, Mrozik KM, Cheong CM, Diamond P, To LB, Gronthos S, Peet DJ, Croucher PI, Zannettino AC. HIF-2α Promotes Dissemination of Plasma Cells in Multiple Myeloma by Regulating CXCL12/CXCR4 and CCR1. Cancer Res 2017; 77:5452-5463. [DOI: 10.1158/0008-5472.can-17-0115] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/11/2017] [Accepted: 08/18/2017] [Indexed: 11/16/2022]
|
37
|
Luo J, Li D, Wei D, Wang X, Wang L, Zeng X. RhoA and RhoC are involved in stromal cell-derived factor-1-induced cell migration by regulating F-actin redistribution and assembly. Mol Cell Biochem 2017; 436:13-21. [PMID: 28536953 DOI: 10.1007/s11010-017-3072-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/16/2017] [Indexed: 12/18/2022]
Abstract
Stromal cell-derived factor-1 (SDF-1) signaling is important to the maintenance and progression of T-cell acute lymphoblastic leukemia by inducing chemotaxis migration. To identify the mechanism of SDF-1 signaling in the migration of T-ALL, Jurkat acute lymphoblastic leukemia cells were used. Results showed that SDF-1 induces Jurkat cell migration by F-actin redistribution and assembly, which is dependent on Rho activity. SDF-1 induced RhoA and RhoC activation, as well as reactive oxygen species (ROS) production, which was inhibited by Rho inhibitor. The Rho-dependent ROS production led to subsequent cytoskeleton redistribution and assembly in the process of migration. Additionally, RhoA and RhoC were involved in SDF-1-induced Jurkat cell migration. Taken together, we found a SDF-1/CXCR4-RhoA and RhoC-ROS-cytoskeleton pathway that regulates Jurkat cell migration in response to SDF-1. This work will contribute to a clearer insight into the migration mechanism of acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Jixian Luo
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, China.
| | - Dingyun Li
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, China
| | - Dan Wei
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, China
| | - Xiaoguang Wang
- Department of Bioscience, Changchun Normal University, 677 Changji Northroad, Changchun, 130032, China
| | - Lan Wang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, China.
| | - Xianlu Zeng
- Institute of Genetics and Cytology, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.
| |
Collapse
|
38
|
Domingues MJ, Nilsson SK, Cao B. New agents in HSC mobilization. Int J Hematol 2016; 105:141-152. [PMID: 27905003 DOI: 10.1007/s12185-016-2156-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022]
Abstract
Mobilized peripheral blood (PB) is the most common source of hematopoietic stem cells (HSC) for autologous transplantation. Granulocyte colony stimulating factor (G-CSF) is the most commonly used mobilization agent, yet despite its widespread use, a considerable number of patients still fail to mobilize. Recently, a greater understanding of the interactions that regulate HSC homeostasis in the bone marrow (BM) microenvironment has enabled the development of new molecules that mobilize HSC through specific inhibition, modulation or perturbation of these interactions. AMD3100 (plerixafor), a small molecule that selectively inhibits the chemokine receptor CXCR4 is approved for mobilization in combination with G-CSF in patients with Non-Hodgkin's lymphoma and multiple myeloma. Nevertheless, identifying mobilization strategies that not only enhance HSC number, but are rapid and generate an optimal "mobilized product" for improved transplant outcomes remains an area of clinical importance. In recent times, new agents based on recombinant proteins, peptides and small molecules have been identified as potential candidates for therapeutic HSC mobilization. In this review, we describe the most recent developments in HSC mobilization agents and their potential impact in HSC transplantation.
Collapse
Affiliation(s)
- Mélanie J Domingues
- CSIRO Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Bag 10, Clayton South, VIC, 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Susan K Nilsson
- CSIRO Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Bag 10, Clayton South, VIC, 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Benjamin Cao
- CSIRO Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Bag 10, Clayton South, VIC, 3169, Australia. .,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
39
|
Bendall L. Extracellular molecules in hematopoietic stem cell mobilisation. Int J Hematol 2016; 105:118-128. [PMID: 27826715 DOI: 10.1007/s12185-016-2123-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/01/2016] [Indexed: 01/11/2023]
Abstract
Hematopoietic stem cells are a remarkable resource currently used for the life saving treatment, hematopoietic stem cell transplantation. Today, hematopoietic stem cells are primarily obtained from mobilized peripheral blood following treatment of the donor with the cytokine G-CSF, and in some settings, chemotherapy and/or the CXCR4 antagonist plerixafor. The collection of hematopoietic stem cells is contingent on adequate and timely mobilization of these cells into the peripheral blood. The use of healthy donors, particularly when unrelated to the patient, requires mobilization strategies be safe for the donor. While current mobilization strategies are largely successful, adequate mobilization fails to occur in a significant portion of donors. Understanding the mechanisms involved in the egress of stem cells from the bone marrow provides opportunities to further improve the process of collecting hematopoietic stem cells. Here, the role extracellular components of the blood and bone marrow in the mobilization process are discussed.
Collapse
Affiliation(s)
- Linda Bendall
- Centre for Cancer Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Westmead, Sydney, NSW, 2145, Australia.
| |
Collapse
|
40
|
Activation of Nrf2-ARE signaling mitigates cyclophosphamide-induced myelosuppression. Toxicol Lett 2016; 262:17-26. [PMID: 27633142 DOI: 10.1016/j.toxlet.2016.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/06/2016] [Accepted: 09/11/2016] [Indexed: 11/21/2022]
Abstract
Myelosuppression is the most common dose-limiting adverse effect of chemotherapies. In the present study, we investigated the involvement of nuclear erythroid 2-related factor 2 (Nrf2) in cyclophosphamide-induced myelosuppression in mice, and evaluated the potential of activating Nrf2 signaling as a preventive strategy. The whole blood from Nrf2-/- mice exhibited decreased antioxidant capacities, while the bone marrow cells, peripheral blood mononuclear cells and granulocytes from Nrf2-/- mice were more susceptible to acrolein-induced cytotoxicity than those from wild type mice. Single dosage of cyclophosphamide induced significantly severer acute myelosuppression in Nrf2-/- mice than in wild type mice. Furthermore, Nrf2-/- mice exhibited greater loss of peripheral blood nucleated cells and recovered slower from myelosuppression nadir upon multiple consecutive dosages of cyclophosphamide than wild type mice did. This was accompanied with decreased antioxidant and detoxifying gene expressions and impaired colony formation ability of Nrf2-/- bone marrow cells. More importantly, activation of Nrf2 signaling by CDDO-Me significantly alleviated cyclophosphamide-induced myelosuppression, while this alleviation was diminished in Nrf2-/- mice. In conclusion, the present study shows that Nrf2 plays a protective role in cyclophosphamide-induced myelosuppression and activation of Nrf2 is a promising strategy to prevent or treat chemotherapy-induced myelosuppression.
Collapse
|
41
|
Semba H, Takeda N, Isagawa T, Sugiura Y, Honda K, Wake M, Miyazawa H, Yamaguchi Y, Miura M, Jenkins DMR, Choi H, Kim JW, Asagiri M, Cowburn AS, Abe H, Soma K, Koyama K, Katoh M, Sayama K, Goda N, Johnson RS, Manabe I, Nagai R, Komuro I. HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat Commun 2016; 7:11635. [PMID: 27189088 PMCID: PMC4873978 DOI: 10.1038/ncomms11635] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022] Open
Abstract
In severely hypoxic condition, HIF-1α-mediated induction of Pdk1 was found to regulate glucose oxidation by preventing the entry of pyruvate into the tricarboxylic cycle. Monocyte-derived macrophages, however, encounter a gradual decrease in oxygen availability during its migration process in inflammatory areas. Here we show that HIF-1α-PDK1-mediated metabolic changes occur in mild hypoxia, where mitochondrial cytochrome c oxidase activity is unimpaired, suggesting a mode of glycolytic reprogramming. In primary macrophages, PKM2, a glycolytic enzyme responsible for glycolytic ATP synthesis localizes in filopodia and lammelipodia, where ATP is rapidly consumed during actin remodelling processes. Remarkably, inhibition of glycolytic reprogramming with dichloroacetate significantly impairs macrophage migration in vitro and in vivo. Furthermore, inhibition of the macrophage HIF-1α-PDK1 axis suppresses systemic inflammation, suggesting a potential therapeutic approach for regulating inflammatory processes. Our findings thus demonstrate that adaptive responses in glucose metabolism contribute to macrophage migratory activity. Migration to the inflamed tissue demands energy production in an increasingly hypoxic environment. Here the authors show that during migration, HIF1α-induced PDK1 uniquely adapts macrophage metabolism to mild hypoxia by promoting glycolysis while preserving cytochrome c oxidase activity.
Collapse
Affiliation(s)
- Hiroaki Semba
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.,Department of Cardiovascular Medicine, The Cardiovascular Institute, Tokyo 106-0031, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.,PRESTO, JST, Saitama 332-0012, Japan
| | - Takayuki Isagawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuki Sugiura
- PRESTO, JST, Saitama 332-0012, Japan.,Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kurara Honda
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masaki Wake
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hidenobu Miyazawa
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshifumi Yamaguchi
- PRESTO, JST, Saitama 332-0012, Japan.,Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8655, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8655, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo 332-0012, Japan
| | - Dana M R Jenkins
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Hyunsung Choi
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Jung-Whan Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Masataka Asagiri
- Innovation Center for Immunoregulation and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Andrew S Cowburn
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1SZ, UK
| | - Hajime Abe
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Katsura Soma
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Katsuhiro Koyama
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Manami Katoh
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Keimon Sayama
- Department of Life Science and Medical BioScience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical BioScience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Randall S Johnson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1SZ, UK
| | - Ichiro Manabe
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ryozo Nagai
- Jichi Medical University, Tochigi 329-0498, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
42
|
Capitano ML, Hangoc G, Cooper S, Broxmeyer HE. Mild Heat Treatment Primes Human CD34(+) Cord Blood Cells for Migration Toward SDF-1α and Enhances Engraftment in an NSG Mouse Model. Stem Cells 2016; 33:1975-84. [PMID: 25753525 DOI: 10.1002/stem.1988] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/23/2015] [Accepted: 02/06/2015] [Indexed: 12/19/2022]
Abstract
Simple efforts are needed to enhance cord blood (CB) transplantation. We hypothesized that short-term exposure of CD34(+) CB cells to 39.5°C would enhance their response to stromal-derived factor-1 (SDF-1), by increasing lipid raft aggregation and CXCR4 expression, thus leading to enhanced engraftment. Mild hyperthermia (39.5°C) significantly increased the percent of CD34(+) CB that migrated toward SDF-1. This was associated with increased expression of CXCR4 on the cells. Mechanistically, mild heating increased the percent of CD34(+) cells with aggregated lipid rafts and enhanced colocalization of CXCR4 within lipid raft domains. Using methyl-β-cyclodextrin (MβCD), an agent that blocks lipid raft aggregation, it was determined that this enhancement in chemotaxis was dependent upon lipid raft aggregation. Colocalization of Rac1, a GTPase crucial for cell migration and adhesion, with CXCR4 to the lipid raft was essential for the effects of heat on chemotaxis, as determined with an inhibitor of Rac1 activation, NSC23766. Application-wise, mild heat treatment significantly increased the percent chimerism as well as homing and engraftment of CD34(+) CB cells in sublethally irradiated non-obese diabetic severe combined immunodeficiency IL-2 receptor gamma chain d (NSG) mice. Mild heating may be a simple and inexpensive means to enhance engraftment following CB transplantation in patients.
Collapse
Affiliation(s)
- Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Giao Hangoc
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Scott Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
43
|
SDF-1/CXCL12 modulates mitochondrial respiration of immature blood cells in a bi-phasic manner. Blood Cells Mol Dis 2016; 58:13-8. [PMID: 27067482 DOI: 10.1016/j.bcmd.2016.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 01/08/2023]
Abstract
SDF-1/CXCL12 is a potent chemokine required for the homing and engraftment of hematopoietic stem and progenitor cells. Previous data from our group has shown that in an SDF-1/CXCL12 transgenic mouse model, lineage(-) Sca-1(+) c-Kit(+) (LSK) bone marrow cells have reduced mitochondrial membrane potential versus wild-type. These results suggested that SDF-1/CXCL12 may function to keep mitochondrial respiration low in immature blood cells in the bone marrow. Low mitochondrial metabolism helps to maintain low levels of reactive oxygen species (ROS), which can influence differentiation. To test whether SDF-1/CXCL12 regulates mitochondrial metabolism, we employed the human leukemia cell line HL-60, that expresses high levels of the SDF-1/CXCL12 receptor, CXCR4, as a model of hematopoietic progenitor cells in vitro. We treated HL-60 cells with SDF-1/CXCL12 for 2 and 24h. Oxygen consumption rates (OCR), mitochondrial-associated ATP production, mitochondrial mass, and mitochondrial membrane potential of HL-60 cells were significantly reduced at 2h and increased at 24h as compared to untreated control cells. These biphasic effects of SDF-1/CXCL12 were reproduced with lineage negative primary mouse bone marrow cells, suggesting a novel function of SDF-1/CXCL12 in modulating mitochondrial respiration by regulating mitochondrial oxidative phosphorylation, ATP production and mitochondrial content.
Collapse
|
44
|
Jawdat D. Banking of Human Umbilical Cord Blood Stem Cells and Their Clinical Applications. RECENT ADVANCES IN STEM CELLS 2016. [DOI: 10.1007/978-3-319-33270-3_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Jarocha D, Zuba-Surma E, Majka M. Dimethyl Sulfoxide (DMSO) Increases Percentage of CXCR4(+) Hematopoietic Stem/Progenitor Cells, Their Responsiveness to an SDF-1 Gradient, Homing Capacities, and Survival. Cell Transplant 2015; 25:1247-57. [PMID: 26345294 DOI: 10.3727/096368915x689424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cryopreservation of bone marrow (BM), mobilized peripheral blood (mPB), and cord blood (CB) hematopoietic stem/progenitor cells (HSPCs) is a routine procedure before transplantation. The most commonly used cryoprotectant for HSPCs is dimethyl sulfoxide (DMSO). The objective of this study was to evaluate the influence of DMSO on surface receptor expression and chemotactic activities of HSPCs. We found that 10 min of incubation of human mononuclear cells (MNCs) with 10% DMSO significantly increases the percentage of CXCR4(+), CD38(+), and CD34(+) cells, resulting in an increase of CD34(+), CD34(+)CXCR4(+), and CD34(+)CXCR4(+)CD38(-) subpopulations. Furthermore, DMSO significantly increased chemotactic responsiveness of MNCs and CXCR4(+) human hematopoietic Jurkat cell line to a stromal cell-derived factor-1 (SDF-1) gradient. Furthermore, we demonstrated enhanced chemotaxis of human clonogenic progenitor cells to an SDF-1 gradient, which suggests that DMSO directly enhances the chemotactic responsiveness of early human progenitors. DMSO preincubation also caused lower internalization of the CXCR4 receptor. In parallel experiments, we found that approximately 30% more of DMSO-preincubated human CD45(+) and CD45(+)CD34(+) cells homed to the mouse BM 24 h after transplantation in comparison to control cells. Finally, we demonstrated considerably higher (25 days) survival of mice transplanted with DMSO-exposed MNCs than those transplanted with the control cells. We show in this study an unexpected beneficial influence of DMSO on HSPC homing and suggest that a short priming with DMSO before transplantation could be considered a new strategy to enhance cell homing and engraftment.
Collapse
Affiliation(s)
- Danuta Jarocha
- Department of Transplantation, Jagiellonian University Medical College, Cracow, Poland
| | | | | |
Collapse
|
46
|
Psatha N, Sgouramali E, Gkountis A, Siametis A, Baliakas P, Constantinou V, Athanasiou E, Arsenakis M, Anagnostopoulos A, Papayannopoulou T, Stamatoyannopoulos G, Yannaki E. Superior long-term repopulating capacity of G-CSF+plerixafor-mobilized blood: implications for stem cell gene therapy by studies in the Hbb(th-3) mouse model. Hum Gene Ther Methods 2015; 25:317-27. [PMID: 25333506 DOI: 10.1089/hgtb.2014.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
High numbers of genetically modified hematopoietic stem cells (HSCs) equipped with enhanced engrafting potential are required for successful stem cell gene therapy. By using thalassemia as a model, we investigated the functional properties of hematopoietic stem and progenitor cells (HSPCs) from Hbb(th3)/45.2(+) mice after mobilization with G-CSF, plerixafor, or G-CSF+plerixafor and the engraftment kinetics of primed cells after competitive primary and noncompetitive secondary transplantation. G-CSF+plerixafor yielded the highest numbers of HSPCs, while G-CSF+plerixafor-mobilized Hbb(th3)/45.2(+) cells, either unmanipulated or transduced with a reporter vector, achieved faster hematologic reconstitution and higher levels of donor chimerism over all other types of mobilized cells, after competitive transplantation to B6.BoyJ/45.1(+) recipients. The engraftment benefit observed in the G-CSF+plerixafor group was attributed to the more primitive stem cell phenotype of G-CSF+plerixafor-LSK cells, characterized by higher CD150(+)/CD48 expression. Moreover, secondary G-CSF+plerixafor recipients displayed stable or even higher chimerism levels as compared with primary engrafted mice, thus maintaining or further improving engraftment levels over G-CSF- or plerixafor-secondary recipients. Plerixafor-primed cells displayed the lowest competiveness over all other mobilized cells after primary or secondary transplantation, probably because of the higher frequency of more actively proliferating LK cells. Overall, the higher HSC yields, the faster hematological recovery, and the superiority in long-term engraftment indicate G-CSF+plerixafor-mobilized blood as an optimal graft source, not only for thalassemia gene therapy, but also for stem cell gene therapy applications in general.
Collapse
Affiliation(s)
- Nikoleta Psatha
- 1 Hematology-BMT Unit, Gene and Cell Therapy Center , George Papanicolaou Hospital, Thessaloniki 57010, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut. Immunity 2015; 43:107-19. [PMID: 26141583 DOI: 10.1016/j.immuni.2015.06.009] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 02/24/2015] [Accepted: 05/20/2015] [Indexed: 12/19/2022]
Abstract
Distinct groups of innate lymphoid cells (ILCs) such as ILC1, ILC2, and ILC3 populate the intestine, but how these ILCs develop tissue tropism for this organ is unclear. We report that prior to migration to the intestine ILCs first undergo a "switch" in their expression of homing receptors from lymphoid to gut homing receptors. This process is regulated by mucosal dendritic cells and the gut-specific tissue factor retinoic acid (RA). This change in homing receptors is required for long-term population and effector function of ILCs in the intestine. Only ILC1 and ILC3, but not ILC2, undergo the RA-dependent homing receptor switch in gut-associated lymphoid tissues. In contrast, ILC2 acquire gut homing receptors in a largely RA-independent manner during their development in the bone marrow and can migrate directly to the intestine. Thus, distinct programs regulate the migration of ILC subsets to the intestine for regulation of innate immunity.
Collapse
|
48
|
Kim CH, Hashimoto-Hill S, Kang SG. Human Tfh and Tfr cells: identification and assessment of their migration potential. Methods Mol Biol 2015; 1291:175-86. [PMID: 25836311 DOI: 10.1007/978-1-4939-2498-1_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The ability of follicular T cells to migrate into B-cell follicles is central for them to participate in germinal center responses. The chemokine receptor CXCR5 is expressed by both Tfh and Tfr cells and is the defining marker for follicular T cells. In addition, Tfh and Tfr cells express additional chemokine receptors to enable them to interact with B cells and other cell types. CXCR5(+) Tfh and Tfr cells are divided into CCR7(+) perifollicular cells and CCR7(-) follicular cells. Most of the CXCR5(+) CCR7(-) Tfh cells reside in germinal centers and are called GC T cells. The methods to identify human Tfh and Tfr cell subsets based on chemokine receptors and other antigens and assess their migration potential are provided in this article.
Collapse
Affiliation(s)
- Chang H Kim
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA,
| | | | | |
Collapse
|
49
|
Abstract
The use of umbilical cord blood (UCB) as an alternative haematopoietic cell source in lieu of bone marrow for haematopoietic reconstitution is increasingly becoming a mainstay treatment for both malignant and nonmalignant diseases, as most individuals will have at least one available, suitably HLA-matched unit of blood. The principal limitation of UCB is the low and finite number of haematopoietic stem and progenitor cells (HSPC) relative to the number found in a typical bone marrow or mobilized peripheral blood allograft, which leads to prolonged engraftment times. In an attempt to overcome this obstacle, strategies that are often based on native processes occurring in the bone marrow microenvironment or 'niche' have been developed with the goal of accelerating UCB engraftment. In broad terms, the two main approaches have been either to expand UCB HSPC ex vivo before transplantation, or to modulate HSPC functionality to increase the efficiency of HSPC homing to the bone marrow niche after transplant both of which enhance the biological activities of the engrafted HSPC. Several early phase clinical trials of these approaches have reported promising results.
Collapse
|
50
|
Roccaro AM, Sacco A, Purschke WG, Moschetta M, Buchner K, Maasch C, Zboralski D, Zöllner S, Vonhoff S, Mishima Y, Maiso P, Reagan MR, Lonardi S, Ungari M, Facchetti F, Eulberg D, Kruschinski A, Vater A, Rossi G, Klussmann S, Ghobrial IM. SDF-1 inhibition targets the bone marrow niche for cancer therapy. Cell Rep 2014; 9:118-128. [PMID: 25263552 PMCID: PMC4194173 DOI: 10.1016/j.celrep.2014.08.042] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 07/23/2014] [Accepted: 08/19/2014] [Indexed: 11/30/2022] Open
Abstract
Bone marrow (BM) metastasis remains one of the main causes of death associated with solid tumors as well as multiple myeloma (MM). Targeting the BM niche to prevent or modulate metastasis has not been successful to date. Here, we show that stromal cell-derived factor-1 (SDF-1/CXCL12) is highly expressed in active MM, as well as in BM sites of tumor metastasis and report on the discovery of the high-affinity anti-SDF-1 PEGylated mirror-image l-oligonucleotide (olaptesed-pegol). In vivo confocal imaging showed that SDF-1 levels are increased within MM cell-colonized BM areas. Using in vivo murine and xenograft mouse models, we document that in vivo SDF-1 neutralization within BM niches leads to a microenvironment that is less receptive for MM cells and reduces MM cell homing and growth, thereby inhibiting MM disease progression. Targeting of SDF-1 represents a valid strategy for preventing or disrupting colonization of the BM by MM cells.
Collapse
Affiliation(s)
- Aldo M Roccaro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Antonio Sacco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | - Michele Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | - Yuji Mishima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Patricia Maiso
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Michaela R Reagan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Silvia Lonardi
- Department of Pathology, University of Brescia Medical School, Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Marco Ungari
- Department of Pathology, University of Brescia Medical School, Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Fabio Facchetti
- Department of Pathology, University of Brescia Medical School, Spedali Civili di Brescia, 25123 Brescia, Italy
| | | | | | | | - Giuseppe Rossi
- Spedali Civili di Brescia, Department of Hematology, Centro per la Ricerca Onco-ematologica AIL, (CREA), 25123 Brescia, Italy
| | | | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|