1
|
Zhang P, Pei B, Yi C, Akanyibah FA, Mao F. The role of suppressor of cytokine signaling 3 in inflammatory bowel disease and its associated colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167578. [PMID: 39571630 DOI: 10.1016/j.bbadis.2024.167578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Inflammatory bowel disease (IBD) and colorectal cancer (CRC), as two of the major human intestinal diseases, provide challenges for the medical field. Suppressor of cytokine signaling 3 (SOCS3), a protein molecule that negatively regulates cytokine signaling through multiple pathways, is involved in the regulation of various inflammatory diseases and tumors. In IBD, SOCS3 acts on a variety of cells to repair mucosal damage and balance the immune response, including epithelial cells, macrophages, dendritic cells, neutrophils, and T cells. In CRC, SOCS3 is inextricably linked to tumor cell proliferation, invasion, metastasis, and drug resistance. Therefore, it is crucial to systematically investigate the pathogenic involvement of SOCS3 in IBD and CRC. This article reviews the mechanisms and pathways by which SOCS3 is involved in the inhibition of IBD and the mitigation of CRC, and details the therapeutic options for targeting SOCS3.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Institute of Hematology, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, Jiangsu, PR China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang 212028, PR China
| | - Francis Atim Akanyibah
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China
| | - Fei Mao
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Institute of Hematology, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
2
|
Blaszczak W, White B, Monterisi S, Swietach P. Dynamic IL-6R/STAT3 signaling leads to heterogeneity of metabolic phenotype in pancreatic ductal adenocarcinoma cells. Cell Rep 2024; 43:113612. [PMID: 38141171 PMCID: PMC11149489 DOI: 10.1016/j.celrep.2023.113612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/29/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023] Open
Abstract
Malignancy is enabled by pro-growth mutations and adequate energy provision. However, global metabolic activation would be self-terminating if it depleted tumor resources. Cancer cells could avoid this by rationing resources, e.g., dynamically switching between "baseline" and "activated" metabolic states. Using single-cell metabolic phenotyping of pancreatic ductal adenocarcinoma cells, we identify MIA-PaCa-2 as having broad heterogeneity of fermentative metabolism. Sorting by a readout of lactic acid permeability separates cells by fermentative and respiratory rates. Contrasting phenotypes persist for 4 days and are unrelated to cell cycling or glycolytic/respiratory gene expression; however, transcriptomics links metabolically active cells with interleukin-6 receptor (IL-6R)-STAT3 signaling. We verify this by IL-6R/STAT3 knockdowns and sorting by IL-6R status. IL-6R/STAT3 activates fermentation and transcription of its inhibitor, SOCS3, resulting in delayed negative feedback that underpins transitions between metabolic states. Among cells manifesting wide metabolic heterogeneity, dynamic IL-6R/STAT3 signaling may allow cell cohorts to take turns in progressing energy-intense processes without depleting shared resources.
Collapse
Affiliation(s)
- Wiktoria Blaszczak
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, OX1 3PT Oxford, UK
| | - Bobby White
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, OX1 3PT Oxford, UK
| | - Stefania Monterisi
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, OX1 3PT Oxford, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, OX1 3PT Oxford, UK.
| |
Collapse
|
3
|
Patil K, Kuttikrishnan S, Khan AQ, Ahmad F, Alam M, Buddenkotte J, Ahmad A, Steinhoff M, Uddin S. Molecular pathogenesis of Cutaneous T cell Lymphoma: Role of chemokines, cytokines, and dysregulated signaling pathways. Semin Cancer Biol 2022; 86:382-399. [PMID: 34906723 DOI: 10.1016/j.semcancer.2021.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/27/2023]
Abstract
Cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of lymphoproliferative neoplasms that exhibit a wide spectrum of immune-phenotypical, clinical, and histopathological features. The biology of CTCL is complex and remains elusive. In recent years, the application of next-generation sequencing (NGS) has evolved our understanding of the pathogenetic mechanisms, including genetic aberrations and epigenetic abnormalities that shape the mutational landscape of CTCL and represent one of the important pro-tumorigenic principles in CTCL initiation and progression. Still, identification of the major pathophysiological pathways including genetic and epigenetic components that mediate malignant clonal T cell expansion has not been achieved. This is of prime importance given the role of malignant T cell clones in fostering T helper 2 (Th2)-bias tumor microenvironment and fueling progressive immune dysregulation and tumor cell growth in CTCL patients, manifested by the secretion of Th2-associated cytokines and chemokines. Alterations in malignant cytokine and chemokine expression patterns orchestrate the inflammatory milieu and influence the migration dynamics of malignant clonal T cells. Here, we highlight recent insights about the molecular mechanisms of CTCL pathogenesis, emphasizing the role of cytokines, chemokines, and associated downstream signaling networks in driving immune defects, malignant transformation, and disease progression. In-depth characterization of the CTCL immunophenotype and tumoral microenvironment offers a facile opportunity to expand the therapeutic armamentarium of CTCL, an intractable malignant skin disease with poor prognosis and in dire need of curative treatment approaches.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Fareed Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha, 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine, New York, 10065, NY, USA.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
4
|
Si H, Wang J, He R, Yu X, Li S, Huang J, Li J, Tang X, Song X, Tu Z, Zhang Z, Ding K. Identification of U937 JAK3-M511I Acute Myeloid Leukemia Cells as a Sensitive Model to JAK3 Inhibitor. Front Oncol 2022; 11:807200. [PMID: 35111683 PMCID: PMC8802890 DOI: 10.3389/fonc.2021.807200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Mutated JAK3 has been considered a promising target for cancer therapy. Activating mutations of JAK3 are observed in 3.9%-10% of acute myeloid leukemia (AML) patients, but it is unclear whether AML cells are sensitive to JAK3 inhibitors, and no disease-related human AML cell model has been reported. We have identified U937 as the first human AML cell line expressing the JAK3M511I activated mutation and confirmed that JAK3 inhibitors sensitively suppress the proliferation of U937 AML cells.
Collapse
Affiliation(s)
- Hongfei Si
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Jie Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Rui He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Xiuwen Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Shan Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Jing Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Jie Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Xia Tang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaojuan Song
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhengchao Tu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Li G, Lei X, Zhang Y, Liu Z, Zhu K. LncRNA PPM1A-AS Regulate Tumor Development Through Multiple Signal Pathways in T-Cell Acute Lymphoblastic Leukemia. Front Oncol 2021; 11:761205. [PMID: 34746000 PMCID: PMC8567141 DOI: 10.3389/fonc.2021.761205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/29/2021] [Indexed: 01/17/2023] Open
Abstract
ALL (Acute lymphoblastic leukemia) is the most common pediatric malignancy and T-ALL (T-cell acute lymphoblastic leukemia) comprises about 15% cases. Compared with B-ALL (B-cell acute lymphoblastic leukemia), the prognosis of T-ALL is poorer, the chemotherapy is easier to fail and the relapse rate is higher. Previous studies mainly focused in Notch1-related long non-coding RNAs (lncRNAs) in T-ALL. Here, we intend to investigate lncRNAs involved in T-ALL covering different subtypes. The lncRNA PPM1A-AS was screened out for its significant up-regulation in 10 T-ALL samples of different subtypes than healthy human thymus extracts. Besides, the PPM1A-AS expression levels in 3 T-ALL cell lines are markedly higher than that in CD45+ T cells of healthy human. We further demonstrate that PPM1A-AS can promote cell proliferation and inhibit cell apoptosis in vitro and can influence T-ALL growth in vivo. Finally, we verified that PPM1A-AS can regulate core proteins, Notch4, STAT3 and Akt, of 3 important signaling pathways related to T-ALL. These results confirm that lncRNA PPM1A-AS can act as an oncogene in T-ALL and maybe a potential clinical target of patients resistant to current chemotherapy or relapsed cases.
Collapse
Affiliation(s)
- Guoli Li
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xinyue Lei
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhe Liu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Tianjin, China
| | - Kegan Zhu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Sobah ML, Liongue C, Ward AC. SOCS Proteins in Immunity, Inflammatory Diseases, and Immune-Related Cancer. Front Med (Lausanne) 2021; 8:727987. [PMID: 34604264 PMCID: PMC8481645 DOI: 10.3389/fmed.2021.727987] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cytokine signaling represents one of the cornerstones of the immune system, mediating the complex responses required to facilitate appropriate immune cell development and function that supports robust immunity. It is crucial that these signals be tightly regulated, with dysregulation underpinning immune defects, including excessive inflammation, as well as contributing to various immune-related malignancies. A specialized family of proteins called suppressors of cytokine signaling (SOCS) participate in negative feedback regulation of cytokine signaling, ensuring it is appropriately restrained. The eight SOCS proteins identified regulate cytokine and other signaling pathways in unique ways. SOCS1–3 and CISH are most closely involved in the regulation of immune-related signaling, influencing processes such polarization of lymphocytes and the activation of myeloid cells by controlling signaling downstream of essential cytokines such as IL-4, IL-6, and IFN-γ. SOCS protein perturbation disrupts these processes resulting in the development of inflammatory and autoimmune conditions as well as malignancies. As a consequence, SOCS proteins are garnering increased interest as a unique avenue to treat these disorders.
Collapse
Affiliation(s)
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia.,Institue of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia.,Institue of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
7
|
Lin X, Lv J, Ge D, Bai H, Yang Y, Wu J. Heme oxygenase-1 alleviates eosinophilic inflammation by inhibiting STAT3-SOCS3 signaling. Pediatr Pulmonol 2020; 55:1440-1447. [PMID: 32297710 DOI: 10.1002/ppul.24759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/28/2020] [Accepted: 03/18/2020] [Indexed: 01/05/2023]
Abstract
Airway inflammation of eosinophilic asthma (EA) attributes to Th2 response, leaving the role of Th17 response unknown. Signal transducer and activator of transcription 3 (STAT3) induce both suppressors of cytokine signaling 3 (SOCS3) and retinoic acid receptor-related orphan nuclear receptor γ (RORγt) to initiate Th17 cell differentiation which is inhibited by SOCS3, a negative feedback regulator of STAT3. Heme oxygenase-1 (HO-1) is a stress-responsive, cytoprotective, and immunoregulatory molecular. Two other isoforms of the enzyme includes HO-2 and HO-3. Because HO-2 does not exhibit stress-related upregulation and distributes mainly in nervous system and HO-3 shows a low enzymatic activity, we tested a hypothesized anti-inflammatory role for HO-1 in EA by inhibiting STAT3-SOCS3 signaling. Animal model was established with Ovalbumin in wild type Balb/C mice. Hemin or SNPP was intraperitoneally (IP) injected ahead of the animal model to induce or inhibit HO-1 expression. Airway inflammation was evaluated by bronchoalveolar lavage, hematoxyline and eosin staining, enzyme-linked immunosorbent assay, and Western blot analysis. In vivo results showed that HO-1 induction inhibited phosphorylation of STAT3 and expression of SOCS3 and RORγt, decreased Th2 and Th17 immune responses, and alleviated airway inflammation. In vitro results revealed that HO-1 inhibited phosphorylation of STAT3 and expression of SOCS3 in naive CD4+ T cells. These findings identify HO-1 induction as a potential therapeutic strategy for EA treatment by reducing STAT3 phosphorylation, STAT3-SOCS3-mediated Th2/Th17 immune responses, and ultimate allergic airway inflammation.
Collapse
Affiliation(s)
- Xiaoliang Lin
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiajia Lv
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Ge
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Haitao Bai
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yungang Yang
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jinzhun Wu
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Gluud M, Willerslev-Olsen A, Gjerdrum LMR, Lindahl LM, Buus TB, Andersen MH, Bonefeld CM, Krejsgaard T, Litvinov IV, Iversen L, Becker JC, Persson JL, Koralov SB, Litman T, Geisler C, Woetmann A, Odum N. MicroRNAs in the Pathogenesis, Diagnosis, Prognosis and Targeted Treatment of Cutaneous T-Cell Lymphomas. Cancers (Basel) 2020; 12:cancers12051229. [PMID: 32414221 PMCID: PMC7281391 DOI: 10.3390/cancers12051229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) represents a heterogeneous group of potentially devastating primary skin malignancies. Despite decades of intense research efforts, the pathogenesis is still not fully understood. In the early stages, both clinical and histopathological diagnosis is often difficult due to the ability of CTCL to masquerade as benign skin inflammatory dermatoses. Due to a lack of reliable biomarkers, it is also difficult to predict which patients will respond to therapy or progress towards severe recalcitrant disease. In this review, we discuss recent discoveries concerning dysregulated microRNA (miR) expression and putative pathological roles of oncogenic and tumor suppressive miRs in CTCL. We also focus on the interplay between miRs, histone deacetylase inhibitors, and oncogenic signaling pathways in malignant T cells as well as the impact of miRs in shaping the inflammatory tumor microenvironment. We highlight the potential use of miRs as diagnostic and prognostic markers, as well as their potential as therapeutic targets. Finally, we propose that the combined use of miR-modulating compounds with epigenetic drugs may provide a novel avenue for boosting the clinical efficacy of existing anti-cancer therapies in CTCL.
Collapse
Affiliation(s)
- Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Lise Mette Rahbek Gjerdrum
- Department of Pathology, Zealand University Hospital, DK-4000 Roskilde, Denmark;
- Department of Clinical Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lise M. Lindahl
- Department of Dermatology, Aarhus University Hospital, DK-8200 Aarhus, Denmark; (L.M.L.); (L.I.)
| | - Terkild B. Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology and Oncology, Copenhagen University Hospital, Herlev Hospital, DK-2730 Herlev, Denmark;
| | - Charlotte Menne Bonefeld
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Thorbjorn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Ivan V. Litvinov
- Division of Dermatology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, DK-8200 Aarhus, Denmark; (L.M.L.); (L.I.)
| | - Jürgen C. Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Hospital Essen and Deutsches Krebsforschungszentrum (DKFZ), D-45141 Essen, Germany;
| | - Jenny L. Persson
- Department of Molecular Biology, Umea University, 90187 Umea, Sweden;
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA;
| | - Thomas Litman
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Niels Odum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
- Correspondence: ; Tel.: +45-2875-7879
| |
Collapse
|
9
|
STAT3 Dysregulation in Mature T and NK Cell Lymphomas. Cancers (Basel) 2019; 11:cancers11111711. [PMID: 31684088 PMCID: PMC6896161 DOI: 10.3390/cancers11111711] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Abstract: T cell lymphomas comprise a distinct class of non-Hodgkin's lymphomas, which include mature T and natural killer (NK) cell neoplasms. While each malignancy within this group is characterized by unique clinicopathologic features, dysregulation in the Janus tyrosine family of kinases/Signal transducer and activator of transcription (JAK/STAT) signaling pathway, specifically aberrant STAT3 activation, is a common feature among these lymphomas. The mechanisms driving dysregulation vary among T cell lymphoma subtypes and include activating mutations in upstream kinases or STAT3 itself, formation of oncogenic kinases which drive STAT3 activation, loss of negative regulators of STAT3, and the induction of a pro-tumorigenic inflammatory microenvironment. Constitutive STAT3 activation has been associated with the expression of targets able to increase pro-survival signals and provide malignant fitness. Patients with dysregulated STAT3 signaling tend to have inferior clinical outcomes, which underscores the importance of STAT3 signaling in malignant progression. Targeting of STAT3 has shown promising results in pre-clinical studies in T cell lymphoma lines, ex-vivo primary malignant patient cells, and in mouse models of disease. However, targeting this pleotropic pathway in patients has proven difficult. Here we review the recent contributions to our understanding of the role of STAT3 in T cell lymphomagenesis, mechanisms driving STAT3 activation in T cell lymphomas, and current efforts at targeting STAT3 signaling in T cell malignancies.
Collapse
|
10
|
Antibiotics inhibit tumor and disease activity in cutaneous T-cell lymphoma. Blood 2019; 134:1072-1083. [PMID: 31331920 DOI: 10.1182/blood.2018888107] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/16/2019] [Indexed: 02/07/2023] Open
Abstract
It has been proposed that CD4 T-cell responses to Staphylococcus aureus (SA) can inadvertently enhance neoplastic progression in models of skin cancer and cutaneous T-cell lymphoma (CTCL). In this prospective study, we explored the effect of transient antibiotic treatment on tumor cells and disease activity in 8 patients with advanced-stage CTCL. All patients experienced significant decrease in clinical symptoms in response to aggressive, transient antibiotic treatment. In some patients, clinical improvements lasted for more than 8 months. In 6 of 8 patients, a malignant T-cell clone could be identified in lesional skin, and a significant decrease in the fraction of malignant T cells was observed following antibiotics but an otherwise unchanged treatment regimen. Immunohistochemistry, global messenger RNA expression, and cell-signaling pathway analysis indicated that transient aggressive antibiotic therapy was associated with decreased expression of interleukin-2 high-affinity receptors (CD25), STAT3 signaling, and cell proliferation in lesional skin. In conclusion, this study provides novel evidence suggesting that aggressive antibiotic treatment inhibits malignant T cells in lesional skin. Thus, we provide a novel rationale for treatment of SA in advanced CTCL.
Collapse
|
11
|
Anderson AE, Maney NJ, Nair N, Lendrem DW, Skelton AJ, Diboll J, Brown PM, Smith GR, Carmody RJ, Barton A, Isaacs JD, Pratt AG. Expression of STAT3-regulated genes in circulating CD4+ T cells discriminates rheumatoid arthritis independently of clinical parameters in early arthritis. Rheumatology (Oxford) 2019; 58:1250-1258. [PMID: 30753680 PMCID: PMC6587924 DOI: 10.1093/rheumatology/kez003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/13/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Dysregulated signal transduction and activator of transcription-3 (STAT3) signalling in CD4+ T cells has been proposed as an early pathophysiological event in RA. We sought further evidence for this observation, and to determine its clinical relevance. METHODS Microarray technology was used to measure gene expression in purified peripheral blood CD4+ T cells from treatment-naïve RA patients and disease controls newly recruited from an early arthritis clinic. Analysis focused on 12 previously proposed transcripts, and concurrent STAT3 pathway activation was determined in the same cells by flow cytometry. A pooled analysis of previous and current gene expression findings incorporated detailed clinical parameters and employed multivariate analysis. RESULTS In an independent cohort of 161 patients, expression of 11 of 12 proposed signature genes differed significantly between RA patients and controls, robustly validating the earlier findings. Differential regulation was most pronounced for the STAT3 target genes PIM1, BCL3 and SOCS3 (>1.3-fold difference; P < 0.005), each of whose expression correlated strongly with paired intracellular phospho-STAT3. In a meta-analysis of 279 patients the same three genes accounted for the majority of the signature's ability to discriminate RA patients, which was found to be independent of age, joint involvement or acute phase response. CONCLUSION The STAT3-mediated dysregulation of BCL3, SOCS3 and PIM1 in circulating CD4+ T cells is a discriminatory feature of early RA that occurs independently of acute phase response. The mechanistic and functional implications of this observation at a cellular level warrant clarification.
Collapse
Affiliation(s)
- Amy E Anderson
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Nicola J Maney
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Nisha Nair
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, and NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester NHS Foundation Trust, Manchester, UK
| | - Dennis W Lendrem
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew J Skelton
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, UK
| | - Julie Diboll
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Philip M Brown
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Graham R Smith
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, UK
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Anne Barton
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, and NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester NHS Foundation Trust, Manchester, UK
| | - John D Isaacs
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Arthur G Pratt
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
12
|
Harling K, Adankwah E, Güler A, Afum-Adjei Awuah A, Adu-Amoah L, Mayatepek E, Owusu-Dabo E, Nausch N, Jacobsen M. Constitutive STAT3 phosphorylation and IL-6/IL-10 co-expression are associated with impaired T-cell function in tuberculosis patients. Cell Mol Immunol 2019; 16:275-287. [PMID: 30886421 PMCID: PMC6460487 DOI: 10.1038/cmi.2018.5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
T-cells critically contribute to protection against Mycobacterium tuberculosis infection, and impaired T-cell responses can lead to disease progression. Pro-inflammatory and immunosuppressive cytokines affect T-cells, and fine-tuned regulation of cytokine signaling via the Jak/STAT signaling pathways is crucial for appropriate T-cell function. Constitutive STAT3 phosphorylation as a consequence of aberrant cytokine signaling has been described to occur in pathognomonic T-cell responses in inflammatory and autoimmune diseases. We characterized blood samples from tuberculosis patients (n=28) and healthy contacts (n=28) from Ghana for M. tuberculosis-specific T-cell responses, constitutive cytokine production, and SOCS3 and pSTAT3 expression. Lentiviral modulation of primary CD4+ T-cells was performed to determine the effects of SOCS3 on T-cell functions. T-cells from tuberculosis patients expressed higher levels of IL-10 and IL-6 and lower levels of T helper type (TH)17 cytokines after M. tuberculosis-specific stimulation compared to healthy contacts. In addition, tuberculosis patients had higher IL-10 and IL-6 levels in the supernatants of non-stimulated immune cells and plasma samples compared to healthy contacts. Notably, aberrant cytokine expression was accompanied by high constitutive pSTAT3 levels and SOCS3 expression in T-cells. Multivariate analysis identified an IL-6/IL-10 co-expression-based principal component in tuberculosis patients that correlated with high pSTAT3 levels. SOCS3 contributed to a regulatory component, and tuberculosis patients with high SOCS3 expression showed decreased TH1 cytokine expression and impaired IL-2-induced STAT5 phosphorylation. SOCS3 over-expression in primary CD4+ T-cells confirmed the SOCS3 inhibitory function on IL-2-induced STAT5 phosphorylation. We conclude that constitutive pSTAT3 and high SOCS3 expression are influential factors that indicate impaired T-cell functions in tuberculosis patients.
Collapse
Affiliation(s)
- Kirstin Harling
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, 40225, Duesseldorf, Germany
| | - Ernest Adankwah
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, 40225, Duesseldorf, Germany
| | - Alptekin Güler
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, 40225, Duesseldorf, Germany
| | - Anthony Afum-Adjei Awuah
- Kumasi Centre for collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
- School of Public Health, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Louis Adu-Amoah
- Kumasi Centre for collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, 40225, Duesseldorf, Germany
| | - Ellis Owusu-Dabo
- Kumasi Centre for collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
- School of Public Health, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Norman Nausch
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, 40225, Duesseldorf, Germany
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, 40225, Duesseldorf, Germany.
| |
Collapse
|
13
|
Fabbri M, Frixou M, Degano M, Fousteri G. Type 1 Diabetes in STAT Protein Family Mutations: Regulating the Th17/Treg Equilibrium and Beyond. Diabetes 2019; 68:258-265. [PMID: 30665954 DOI: 10.2337/db18-0627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/11/2018] [Indexed: 11/13/2022]
Abstract
Improvements in the immunological, molecular, and genetic technologies such as next-generation sequencing have led to an exponential increase in the number of monogenic immune dysregulatory syndromes diagnosed, where type 1 diabetes (T1D) forms part of the autoimmune manifestations. Here, we reviewed the mutations in the signal transducer and activator of transcription (STAT) protein family, namely gain-of-function (GOF) mutations in STAT1 and STAT3 as well as STAT5b deficiency, that show strong association to T1D susceptibility. The equilibrium of T-helper 17 (Th17) and regulatory T cells (Tregs) is often found altered in patients affected by STAT GOF mutations. While the increased number of Th17 cells and the concomitant decrease in Treg cells may explain T1D in STAT3 GOF patients, the reduced number of Th17 cells found in those carrying STAT1 GOF mutations added a new level of complexity on the exact role of Th17 in the pathogenesis of T1D. Here, we describe the possible mechanisms through which STAT3 and STAT1 GOF mutations may perturb the fate and function of Th17 and Tregs and explore how this may lead to the development of T1D. We propose that the study of monogenic diseases, and in particular STAT mutations, may not only improve our understanding of the function of the human immune system but also shed light onto the pathogenic mechanisms of T1D and the genetic variants that confer predisposition to the disease.
Collapse
Affiliation(s)
- Marco Fabbri
- Division of Immunology, Transplantation and Infectious Diseases, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Mikaela Frixou
- School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Massimo Degano
- Biocrystallography Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Georgia Fousteri
- Division of Immunology, Transplantation and Infectious Diseases, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
14
|
Abstract
Cutaneous T-cell lymphomas (CTCLs) are a heterogeneous group of lymphomas that are characterized by primary skin involvement. Mycosis fungoides (MF) and Sézary syndrome (SS), the two most common subtypes of CTCL, can be difficult to manage clinically as there are few effective treatment options available. Recently, histone deacetylase inhibitors (HDACi) have emerged as promising therapies with favorable adverse effect profiles, compared with traditional chemotherapies. In this article, we review the published literature to evaluate the role of HDACi in the treatment of CTCL. Specifically, we (1) briefly discuss the molecular rationale for the use of HDACi in CTCL; (2) compare the efficacy, tolerability, and adverse effects of HDACi; (3) review the cardiac safety data; and (4) discuss optimization of therapy with HDACi in the treatment of CTCL.
Collapse
|
15
|
The role of regulatory T cells and genes involved in their differentiation in pathogenesis of selected inflammatory and neoplastic skin diseases. Part III: Polymorphisms of genes involved in Tregs' activation and function. Postepy Dermatol Alergol 2017; 34:517-525. [PMID: 29422815 PMCID: PMC5799752 DOI: 10.5114/pdia.2017.67053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/10/2017] [Indexed: 12/29/2022] Open
Abstract
Regulatory T cells (Tregs) represent a cell type that promotes immune tolerance to autologous components and maintains immune system homeostasis. The abnormal function of Tregs is relevant to the pathogenesis of several skin diseases like psoriasis, atopic dermatitis, systemic lupus erythematosus, cutaneous T-cell lymphomas, and skin cancer and is also important in rheumatoid arthritis, diabetes and other autoimmune diseases. In this review, we will summarize the role of mutations and/or polymorphisms of genes involved in Tregs development, and functions in the pathogenesis of selected skin diseases.
Collapse
|
16
|
Sibbesen NA, Kopp KL, Litvinov IV, Jønson L, Willerslev-Olsen A, Fredholm S, Petersen DL, Nastasi C, Krejsgaard T, Lindahl LM, Gniadecki R, Mongan NP, Sasseville D, Wasik MA, Iversen L, Bonefeld CM, Geisler C, Woetmann A, Odum N. Jak3, STAT3, and STAT5 inhibit expression of miR-22, a novel tumor suppressor microRNA, in cutaneous T-Cell lymphoma. Oncotarget 2016; 6:20555-69. [PMID: 26244872 PMCID: PMC4653025 DOI: 10.18632/oncotarget.4111] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/22/2015] [Indexed: 01/08/2023] Open
Abstract
Aberrant activation of Janus kinase-3 (Jak3) and its key down-stream effectors, Signal Transducer and Activator of Transcription-3 (STAT3) and STAT5, is a key feature of malignant transformation in cutaneous T-cell lymphoma (CTCL). However, it remains only partially understood how Jak3/STAT activation promotes lymphomagenesis. Recently, non-coding microRNAs (miRNAs) have been implicated in the pathogenesis of this malignancy. Here, we show that (i) malignant T cells display a decreased expression of a tumor suppressor miRNA, miR-22, when compared to non-malignant T cells, (ii) STAT5 binds the promoter of the miR-22 host gene, and (iii) inhibition of Jak3, STAT3, and STAT5 triggers increased expression of pri-miR-22 and miR-22. Curcumin, a nutrient with anti-Jak3 activity and histone deacetylase inhibitors (HDACi) also trigger increased expression of pri-miR-22 and miR-22. Transfection of malignant T cells with recombinant miR-22 inhibits the expression of validated miR-22 targets including NCoA1, a transcriptional co-activator in others cancers, as well as HDAC6, MAX, MYCBP, PTEN, and CDK2, which have all been implicated in CTCL pathogenesis. In conclusion, we provide the first evidence that de-regulated Jak3/STAT3/STAT5 signalling in CTCL cells represses the expression of the gene encoding miR-22, a novel tumor suppressor miRNA.
Collapse
Affiliation(s)
- Nina A Sibbesen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Katharina L Kopp
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ivan V Litvinov
- Division of Dermatology, McGill University Health Centre, Montréal, Quebec, Canada
| | - Lars Jønson
- Departmen of Molecular Medicine, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | | | - Simon Fredholm
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - David L Petersen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Nastasi
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lise M Lindahl
- Department of Dermatology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | - Robert Gniadecki
- Departmen of Dermatology, Copenhagen University Hospital, Bispebjerg, Copenhagen, Denmark
| | - Nigel P Mongan
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Denis Sasseville
- Division of Dermatology, McGill University Health Centre, Montréal, Quebec, Canada
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | - Charlotte M Bonefeld
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Odum
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Hamada S, Masamune A, Yoshida N, Takikawa T, Shimosegawa T. IL-6/STAT3 Plays a Regulatory Role in the Interaction Between Pancreatic Stellate Cells and Cancer Cells. Dig Dis Sci 2016; 61:1561-71. [PMID: 26738736 DOI: 10.1007/s10620-015-4001-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/11/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pancreatic stellate cells (PSCs) play a pivotal role in pancreatic fibrosis, a characteristic feature of pancreatic cancer. Although it is still controversial, previous studies have suggested that PSCs promote the progression of pancreatic cancer by regulating the cell functions of cancer cells. PSCs produce large amounts of IL-6, which promotes the accumulation of myeloid-derived suppressor cells via a signal transducers and activator of transcription 3 (STAT3)-dependent mechanism. But the role of IL-6/STAT3 pathway in the interaction between PSCs and pancreatic cancer cells remains largely unknown. AIMS To clarify the role of IL-6/STAT3 in the interaction between PSCs and cancer cells. METHODS Human pancreatic cancer cells (Panc-1 and SUIT-2 cells) were treated with conditioned medium of immortalized human PSCs (PSC-CM). The effects of PSC-CM and IL-6 neutralization on the mRNA expression profiles were examined using Agilent's microarray. Activation of STAT3 was assessed by Western blotting using an anti-phospho-specific antibody. Cellular migration was examined by a two-chamber assay. The expression of markers related to epithelial-mesenchymal transition (EMT) was assessed by real-time reverse transcription PCR. RESULTS PSC-CM induced the activation of STAT3 in pancreatic cancer cells. Neutralization of IL-6 suppressed the PSC-CM-induced upregulation of genes including complement factor B, lipocalin, and chemokine (C-C motif) ligand 20. Inhibition of IL-6/STAT3 pathway by anti-IL-6 antibody or a STAT3 inhibitor (NSC74859) inhibited the PSC-CM-induced migration and the expression of EMT-related markers (Snail and cadherin-2) in pancreatic cancer cells. CONCLUSION IL-6/STAT3 pathway regulates the PSC-induced EMT and alterations in gene expression in pancreatic cancer cells.
Collapse
Affiliation(s)
- Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | - Naoki Yoshida
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Tetsuya Takikawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| |
Collapse
|
18
|
Lauenborg B, Christensen L, Ralfkiaer U, Kopp KL, Jønson L, Dabelsteen S, Bonefeld CM, Geisler C, Gjerdrum LMR, Zhang Q, Wasik MA, Ralfkiaer E, Ødum N, Woetmann A. Malignant T cells express lymphotoxin α and drive endothelial activation in cutaneous T cell lymphoma. Oncotarget 2016; 6:15235-49. [PMID: 25915535 PMCID: PMC4558148 DOI: 10.18632/oncotarget.3837] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 03/19/2015] [Indexed: 11/25/2022] Open
Abstract
Lymphotoxin α (LTα) plays a key role in the formation of lymphatic vasculature and secondary lymphoid structures. Cutaneous T cell lymphoma (CTCL) is the most common primary lymphoma of the skin and in advanced stages, malignant T cells spreads through the lymphatic to regional lymph nodes to internal organs and blood. Yet, little is known about the mechanism of the CTCL dissemination. Here, we show that CTCL cells express LTα in situ and that LTα expression is driven by aberrantly activated JAK3/STAT5 pathway. Importantly, via TNF receptor 2, LTα functions as an autocrine factor by stimulating expression of IL-6 in the malignant cells. LTα and IL-6, together with VEGF promote angiogenesis by inducing endothelial cell sprouting and tube formation. Thus, we propose that LTα plays a role in malignant angiogenesis and disease progression in CTCL and may serve as a therapeutic target in this disease.
Collapse
Affiliation(s)
- Britt Lauenborg
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Louise Christensen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Ralfkiaer
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Katharina L Kopp
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Jønson
- Center for Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sally Dabelsteen
- Department of Oral Medicine and Pathology, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Bonefeld
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Qian Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elisabeth Ralfkiaer
- Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Niels Ødum
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Lee D, Wang YH, Kalaitzidis D, Ramachandran J, Eda H, Sykes DB, Raje N, Scadden DT. Endogenous transmembrane protein UT2 inhibits pSTAT3 and suppresses hematological malignancy. J Clin Invest 2016; 126:1300-10. [PMID: 26927669 PMCID: PMC4811118 DOI: 10.1172/jci84620] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/14/2016] [Indexed: 12/27/2022] Open
Abstract
Regulation of STAT3 activation is critical for normal and malignant hematopoietic cell proliferation. Here, we have reported that the endogenous transmembrane protein upstream-of-mTORC2 (UT2) negatively regulates activation of STAT3. Specifically, we determined that UT2 interacts directly with GP130 and inhibits phosphorylation of STAT3 on tyrosine 705 (STAT3Y705). This reduces cytokine signaling including IL6 that is implicated in multiple myeloma and other hematopoietic malignancies. Modulation of UT2 resulted in inverse effects on animal survival in myeloma models. Samples from multiple myeloma patients also revealed a decreased copy number of UT2 and decreased expression of UT2 in genomic and transcriptomic analyses, respectively. Together, these studies identify a transmembrane protein that functions to negatively regulate cytokine signaling through GP130 and pSTAT3Y705 and is molecularly and mechanistically distinct from the suppressors of cytokine signaling (SOCS) family of genes. Moreover, this work provides evidence that perturbations of this activation-dampening molecule participate in hematologic malignancies and may serve as a key determinant of multiple myeloma pathophysiology. UT2 is a negative regulator shared across STAT3 and mTORC2 signaling cascades, functioning as a tumor suppressor in hematologic malignancies driven by those pathways.
Collapse
Affiliation(s)
- Dongjun Lee
- Center for Regenerative Medicine and
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology and
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Ying-Hua Wang
- Center for Regenerative Medicine and
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology and
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Demetrios Kalaitzidis
- Center for Regenerative Medicine and
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology and
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | | | - Homare Eda
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David B. Sykes
- Center for Regenerative Medicine and
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology and
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Noopur Raje
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David T. Scadden
- Center for Regenerative Medicine and
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology and
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
20
|
Brassinin inhibits STAT3 signaling pathway through modulation of PIAS-3 and SOCS-3 expression and sensitizes human lung cancer xenograft in nude mice to paclitaxel. Oncotarget 2016; 6:6386-405. [PMID: 25788267 PMCID: PMC4467444 DOI: 10.18632/oncotarget.3443] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/21/2015] [Indexed: 12/14/2022] Open
Abstract
Persistent phosphorylation of signal transducers and activators of transcription 3 (STAT3) is frequently observed in tumor cells. We found that brassinin (BSN) suppressed both constitutive and IL-6-inducible STAT3 activation in lung cancer cells. Moreover, BSN induced PIAS-3 protein and mRNA, whereas the expression of SOCS-3 was reduced. Knockdown of PIAS-3 by small interfering RNA prevented inhibition of STAT3 and cytotoxicity by BSN. Overexpression of SOCS-3 in BSN-treated cells increased STAT3 phosphorylation and cell viability. BSN down-regulated STAT3-regulated gene products, inhibited proliferation, invasion, as well as induced apoptosis. Most importantly, when administered intraperitoneally, combination of BSN and paclitaxel significantly decreased the tumor development in a xenograft lung cancer mouse model associated with down-modulation of phospho-STAT3, Ki-67 and CD31. We suggest that BSN inhibits STAT3 signaling through modulation of PIAS-3 and SOCS-3, thereby attenuating tumor growth and increasing sensitivity to paclitaxel.
Collapse
|
21
|
Vieyra-Garcia PA, Wei T, Naym DG, Fredholm S, Fink-Puches R, Cerroni L, Odum N, O'Malley JT, Gniadecki R, Wolf P. STAT3/5-Dependent IL9 Overexpression Contributes to Neoplastic Cell Survival in Mycosis Fungoides. Clin Cancer Res 2016; 22:3328-39. [PMID: 26851186 DOI: 10.1158/1078-0432.ccr-15-1784] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 01/17/2016] [Indexed: 01/12/2023]
Abstract
PURPOSE Sustained inflammation is a key feature of mycosis fungoides (MF), the most common form of cutaneous T-cell lymphoma (CTCL). Resident IL9-producing T cells have been found in skin infections and certain inflammatory skin diseases, but their role in MF is currently unknown. EXPERIMENTAL DESIGN We analyzed lesional skin from patients with MF for the expression of IL9 and its regulators. To determine which cells were producing IL9, high-throughput sequencing was used to identify malignant clones and Vb-specific antibodies were employed to visualize malignant cells in histologic preparations. To explore the mechanism of IL9 secretion, we knocked down STAT3/5 and IRF4 by siRNA transfection in CTCL cell lines receiving psoralen+UVA (PUVA) ± anti-IL9 antibody. To further examine the role of IL9 in tumor development, the EL-4 T-cell lymphoma model was used in C57BL/6 mice. RESULTS Malignant and reactive T cells produce IL9 in lesional skin. Expression of the Th9 transcription factor IRF4 in malignant cells was heterogeneous, whereas reactive T cells expressed it uniformly. PUVA or UVB phototherapy diminished the frequencies of IL9- and IL9r-positive cells, as well as STAT3/5a and IRF4 expression in lesional skin. IL9 production was regulated by STAT3/5 and silencing of STAT5 or blockade of IL9 with neutralizing antibodies potentiated cell death after PUVA treatment in vitro IL9-depleted mice exhibited a reduction of tumor growth, higher frequencies of regulatory T cells, and activated CD4 and CD8 T lymphocytes. CONCLUSIONS Our results suggest that IL9 and its regulators are promising new targets for therapy development in mycosis fungoides. Clin Cancer Res; 22(13); 3328-39. ©2016 AACR.
Collapse
Affiliation(s)
- Pablo A Vieyra-Garcia
- Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Tianling Wei
- Department of Dermatology, Bispebjerg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - David Gram Naym
- Department of Dermatology, Bispebjerg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Simon Fredholm
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Regina Fink-Puches
- Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Lorenzo Cerroni
- Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Niels Odum
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - John T O'Malley
- Department of Dermatology, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts
| | - Robert Gniadecki
- Department of Dermatology, Bispebjerg Hospital, Copenhagen University Hospital, Copenhagen, Denmark. Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
22
|
Staphylococcal enterotoxin A (SEA) stimulates STAT3 activation and IL-17 expression in cutaneous T-cell lymphoma. Blood 2016; 127:1287-96. [PMID: 26738536 DOI: 10.1182/blood-2015-08-662353] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/01/2015] [Indexed: 12/23/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is characterized by proliferation of malignant T cells in a chronic inflammatory environment. With disease progression, bacteria colonize the compromised skin barrier and half of CTCL patients die of infection rather than from direct organ involvement by the malignancy. Clinical data indicate that bacteria play a direct role in disease progression, but little is known about the mechanisms involved. Here, we demonstrate that bacterial isolates containing staphylococcal enterotoxin A (SEA) from the affected skin of CTCL patients, as well as recombinant SEA, stimulate activation of signal transducer and activator of transcription 3 (STAT3) and upregulation of interleukin (IL)-17 in immortalized and primary patient-derived malignant and nonmalignant T cells. Importantly, SEA induces STAT3 activation and IL-17 expression in malignant T cells when cocultured with nonmalignant T cells, indicating an indirect mode of action. In accordance, malignant T cells expressing an SEA-nonresponsive T-cell receptor variable region β chain are nonresponsive to SEA in monoculture but display strong STAT3 activation and IL-17 expression in cocultures with SEA-responsive nonmalignant T cells. The response is induced via IL-2 receptor common γ chain cytokines and a Janus kinase 3 (JAK3)-dependent pathway in malignant T cells, and blocked by tofacitinib, a clinical-grade JAK3 inhibitor. In conclusion, we demonstrate that SEA induces cell cross talk-dependent activation of STAT3 and expression of IL-17 in malignant T cells, suggesting a mechanism whereby SEA-producing bacteria promote activation of an established oncogenic pathway previously implicated in carcinogenesis.
Collapse
|
23
|
Guo H, Wang Y, Zhao Z, Shao X. Platelet Factor 4 Limits Th17 Differentiation and Ischaemia-Reperfusion Injury After Liver Transplantation in Mice. Scand J Immunol 2015; 81:129-34. [PMID: 25440775 DOI: 10.1111/sji.12257] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 11/12/2014] [Indexed: 01/13/2023]
Affiliation(s)
- H. Guo
- Department of General Surgery; The Third Affiliated Hospital of Qiqihaer Medical College; Heilongjiang China
| | - Y. Wang
- Department of Hematology; Guilin Medical College; Guilin China
| | - Z. Zhao
- Department of Surgical Oncology; The Chinese People's Liberation Army General Hospital; Beijing China
| | - X. Shao
- Department of General Surgery; The Third Affiliated Hospital of Qiqihaer Medical College; Heilongjiang China
| |
Collapse
|
24
|
Zhou H, Rigoutsos I. The emerging roles of GPRC5A in diseases. Oncoscience 2014; 1:765-76. [PMID: 25621293 PMCID: PMC4303886 DOI: 10.18632/oncoscience.104] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 12/14/2022] Open
Abstract
The ‘Retinoic Acid-Inducible G-protein-coupled receptors’ or RAIG are a group comprising the four orphan receptors GPRC5A, GPRC5B, GPRC5C and GPRC5D. As the name implies, their expression is induced by retinoic acid but beyond that very little is known about their function. In recent years, one member, GPRC5A, has been receiving increasing attention as it was shown to play important roles in human cancers. As a matter of fact, dysregulation of GPRC5A has been associated with several cancers including lung cancer, breast cancer, colorectal cancer, and pancreatic cancer. Here we review the current state of knowledge about the heterogeneity and evolution of GPRC5A, its regulation, its molecular functions, and its involvement in human disease.
Collapse
Affiliation(s)
- Honglei Zhou
- Computational Medicine Center, Jefferson Alumni Hall, Thomas Jefferson University, Philadelphia, PA
| | - Isidore Rigoutsos
- Computational Medicine Center, Jefferson Alumni Hall, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
25
|
KIR3DL2/CpG ODN interaction mediates Sézary syndrome malignant T cell apoptosis. J Invest Dermatol 2014; 135:229-237. [PMID: 25007046 DOI: 10.1038/jid.2014.286] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 05/25/2014] [Accepted: 06/17/2014] [Indexed: 11/08/2022]
Abstract
We previously identified the NK cell receptor KIR3DL2 as a valuable diagnostic and prognostic marker for the detection of the tumoral T cell burden of Sézary syndrome (SS) patients. However, the function of this receptor on the malignant T lymphocyte population remained unexplored. We here demonstrate that engagement of KIR3DL2 by its recently identified ligand CpG oligodeoxynucleotide (ODN) induces the internalization of the receptor and leads to a caspase-dependent apoptosis of malignant T cells. This process of cellular death is correlated to a dephosphorylation of the transcription factor STAT3 (signal transducer and activator of transcription 3), which is found constitutively phosphorylated and activated in Sézary cells. Our results indicate that KIR3DL2 can directly promote SS malignant cell death through the use of CpG ODN.
Collapse
|
26
|
Palanivel JA, Macbeth AE, Chetty NC, Levell NJ. An insight into JAK-STAT signalling in dermatology. Clin Exp Dermatol 2014; 39:513-8. [DOI: 10.1111/ced.12273] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - A. E. Macbeth
- Department of Dermatology; Norfolk and Norwich University Hospitals NHS Trust; Norwich UK
- Department of Vasculitis; Cambridge University Hospitals NHS Trust; Cambridge UK
| | - N. C. Chetty
- Department of Dermatology; Norfolk and Norwich University Hospitals NHS Trust; Norwich UK
| | - N. J. Levell
- Department of Dermatology; Norfolk and Norwich University Hospitals NHS Trust; Norwich UK
| |
Collapse
|
27
|
Immunohistochemical analysis of IL-6, IL-8/CXCR2 axis, Tyr p-STAT-3, and SOCS-3 in lymph nodes from patients with chronic lymphocytic leukemia: correlation between microvascular characteristics and prognostic significance. BIOMED RESEARCH INTERNATIONAL 2014; 2014:251479. [PMID: 24883303 PMCID: PMC4026921 DOI: 10.1155/2014/251479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/04/2014] [Indexed: 02/07/2023]
Abstract
A number of studies have looked into the pathophysiological role of angiogenesis in CLL, but the results have often been inconsistent. We aimed to gain direct insight into the angiogenic process in lymph nodes involved by CLL, focusing on proangiogenic cytokines and microvessel morphometry. The tissue levels of VEGF, Th-2 cytokines IL-6 and IL-8, IL-8 receptor CXCR2, and tyrosine p-STAT-3/SOCS-3 axis modulating cytokine expression were evaluated immunohistochemically in 62 CLL/SLL cases. Microvascular characteristics were evaluated by image analysis. Results were analyzed with regard to clinicopathological characteristics. Proliferation centers (PCs) were less well vascularised compared to non-PC areas. IL-8 and CXCR2 expression was distinctly uncommon as opposed to IL-6, VEGF and SOCS-3, which were detected in the vast majority of cases. The latter two molecule expressions were more pronounced in the PCs in ∼40% of the cases. p-STAT-3 immunoreactivity was recorded in 66.67% of the cases with a predilection for PCs. Microvessel morphometry was unrelated to proangiogenic cytokines, p-STAT-3, SOCS-3, or survival. Microvascular caliber and VEGF expression were higher in Binet stage A, whereasIL-6 expression was higher in stage C. VEGF and p-STAT-3 exerted a favorable effect on progression, which remained significant in multivariate analysis, thereby constituting potential outcome predictors in CLL patients.
Collapse
|
28
|
The role of suppressors of cytokine signalling in human neoplasms. Mol Biol Int 2014; 2014:630797. [PMID: 24757565 PMCID: PMC3976820 DOI: 10.1155/2014/630797] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/02/2014] [Accepted: 02/04/2014] [Indexed: 12/28/2022] Open
Abstract
Suppressors of cytokine signalling 1-7 (SOCS1-7) and cytokine-inducible SH2-containing protein (CIS) are a group of intracellular proteins that are well known as JAK-STAT and several other signalling pathways negative feedback regulators. More recently several members have been identified as tumour suppressors and dysregulation of their biological roles in controlling cytokine and growth factor signalling may contribute to the development of many solid organ and haematological malignancies. This review explores their biological functions and their possible tumour suppressing role in human neoplasms.
Collapse
|
29
|
Willerslev-Olsen A, Krejsgaard T, Lindahl LM, Bonefeld CM, A. Wasik M, B. Koralov S, Geisler C, Kilian M, Iversen L, Woetmann A, Odum N. Bacterial toxins fuel disease progression in cutaneous T-cell lymphoma. Toxins (Basel) 2013; 5:1402-21. [PMID: 23949004 PMCID: PMC3760043 DOI: 10.3390/toxins5081402] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 01/02/2023] Open
Abstract
In patients with cutaneous T-cell lymphoma (CTCL) bacterial infections constitute a major clinical problem caused by compromised skin barrier and a progressive immunodeficiency. Indeed, the majority of patients with advanced disease die from infections with bacteria, e.g., Staphylococcus aureus. Bacterial toxins such as staphylococcal enterotoxins (SE) have long been suspected to be involved in the pathogenesis in CTCL. Here, we review links between bacterial infections and CTCL with focus on earlier studies addressing a direct role of SE on malignant T cells and recent data indicating novel indirect mechanisms involving SE- and cytokine-driven cross-talk between malignant- and non-malignant T cells.
Collapse
Affiliation(s)
- Andreas Willerslev-Olsen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
| | - Thorbjørn Krejsgaard
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
| | - Lise M. Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus 8000, Denmark; E-Mails: (L.M.L.); (L.I.)
| | - Charlotte Menne Bonefeld
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
| | - Mariusz A. Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; E-Mail:
| | - Sergei B. Koralov
- Department of Pathology, NYU Langone Medical Center, New York, NY 10016, USA; E-Mail:
| | - Carsten Geisler
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
| | - Mogens Kilian
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; E-Mail:
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus 8000, Denmark; E-Mails: (L.M.L.); (L.I.)
| | - Anders Woetmann
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
| | - Niels Odum
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +45-3532-7879
| |
Collapse
|
30
|
Ehrentraut S, Nagel S, Scherr ME, Schneider B, Quentmeier H, Geffers R, Kaufmann M, Meyer C, Prochorec-Sobieszek M, Ketterling RP, Knudson RA, Feldman AL, Kadin ME, Drexler HG, MacLeod RAF. t(8;9)(p22;p24)/PCM1-JAK2 activates SOCS2 and SOCS3 via STAT5. PLoS One 2013; 8:e53767. [PMID: 23372669 PMCID: PMC3553112 DOI: 10.1371/journal.pone.0053767] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/04/2012] [Indexed: 12/03/2022] Open
Abstract
Fusions of the tyrosine kinase domain of JAK2 with multiple partners occur in leukemia/lymphoma where they reportedly promote JAK2-oligomerization and autonomous signalling, Affected entities are promising candidates for therapy with JAK2 signalling inhibitors. While JAK2-translocations occur in myeloid, B-cell and T-cell lymphoid neoplasms, our findings suggest their incidence among the last group is low. Here we describe the genomic, transcriptional and signalling characteristics of PCM1-JAK2 formed by t(8;9)(p22;p24) in a trio of cell lines established at indolent (MAC-1) and aggressive (MAC-2A/2B) phases of a cutaneous T-cell lymphoma (CTCL). To investigate signalling, PCM1-JAK2 was subjected to lentiviral knockdown which inhibited 7 top upregulated genes in t(8;9) cells, notably SOCS2/3. SOCS3, but not SOCS2, was also upregulated in a chronic eosinophilic leukemia bearing PCM1-JAK2, highlighting its role as a central signalling target of JAK2 translocation neoplasia. Conversely, expression of GATA3, a key T-cell developmental gene silenced in aggressive lymphoma cells, was partially restored by PCM1-JAK2 knockdown. Treatment with a selective JAK2 inhibitor (TG101348) to which MAC-1/2A/2B cells were conspicuously sensitive confirmed knockdown results and highlighted JAK2 as the active moiety. PCM1-JAK2 signalling required pSTAT5, supporting a general paradigm of STAT5 activation by JAK2 alterations in lymphoid malignancies. MAC-1/2A/2B - the first JAK2–translocation leukemia/lymphoma cell lines described - display conspicuous JAK/STAT signalling accompanied by T-cell developmental and autoimmune disease gene expression signatures, confirming their fitness as CTCL disease models. Our data support further investigation of SOCS2/3 as signalling effectors, prognostic indicators and potential therapeutic targets in cancers with JAK2 rearrangements.
Collapse
MESH Headings
- Cell Line, Tumor
- Chromosomes, Human, Pair 8
- Chromosomes, Human, Pair 9
- GATA3 Transcription Factor/genetics
- GATA3 Transcription Factor/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Silencing
- Genetic Vectors
- Humans
- Lentivirus/genetics
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/metabolism
- Lymphoma, T-Cell, Cutaneous/pathology
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Protein Kinase Inhibitors/pharmacology
- Pyrrolidines/pharmacology
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Sulfonamides/pharmacology
- Suppressor of Cytokine Signaling 3 Protein
- Suppressor of Cytokine Signaling Proteins/agonists
- Suppressor of Cytokine Signaling Proteins/genetics
- Suppressor of Cytokine Signaling Proteins/metabolism
- Translocation, Genetic
Collapse
Affiliation(s)
- Stefan Ehrentraut
- Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Cultures, Braunschweig, Germany
| | - Stefan Nagel
- Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Cultures, Braunschweig, Germany
| | - Michaela E. Scherr
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Medical School Hannover, Hannover, Germany
| | - Björn Schneider
- University of Rostock, Institute of Pathology and Molecular Pathology, Rostock, Germany
| | - Hilmar Quentmeier
- Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Cultures, Braunschweig, Germany
| | - Robert Geffers
- Department of Genome Analysis, HZI-Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maren Kaufmann
- Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Cultures, Braunschweig, Germany
| | | | - Rhett P. Ketterling
- College of Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ryan A. Knudson
- College of Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andrew L. Feldman
- College of Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Marshall E. Kadin
- Boston University School of Medicine, Department of Dermatology and Skin Surgery, Roger Williams Medical Center, Providence, Rhode Island, United States of America
| | - Hans G. Drexler
- Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Cultures, Braunschweig, Germany
| | - Roderick A. F. MacLeod
- Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Cultures, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
31
|
Loss of expression and function of SOCS3 is an early event in HNSCC: altered subcellular localization as a possible mechanism involved in proliferation, migration and invasion. PLoS One 2012; 7:e45197. [PMID: 23028842 PMCID: PMC3445460 DOI: 10.1371/journal.pone.0045197] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/17/2012] [Indexed: 01/12/2023] Open
Abstract
Background Suppressor of cytokine signaling 3 (SOCS3) is an inducible endogenous negative regulator of signal transduction and activator of transcription 3 (STAT3). Epigenetic silencing of SOCS3 has been shown in head and neck squamous cell carcinoma (HNSCC), which is associated with increased activation of STAT3. There is scarce information on the functional role of the reduction of SOCS3 expression and no information on altered subcellular localization of SOCS3 in HNSCC. Methodology/Principal Findings We assessed endogenous SOCS3 expression in different HNSCC cell lines by RT-qPCR and western blot. Immunofluorescence and western blot were used to study the subcellular localization of endogenous SOCS3 induced by IL-6. Overexpression of SOCS3 by CMV-driven plasmids and siRNA-mediated inhibition of endogenous SOCS3 were used to verify the role of SOCS3 on tumor cell proliferation, viability, invasion and migration in vitro. In vivo relevance of SOCS3 expression in HNSCC was studied by quantitative immunohistochemistry of commercially-available tissue microarrays. Endogenous expression of SOCS3 was heterogeneous in four HNSCC cell lines and surprisingly preserved in most of these cell lines. Subcellular localization of endogenous SOCS3 in the HNSCC cell lines was predominantly nuclear as opposed to cytoplasmic in non-neoplasic epithelial cells. Overexpression of SOCS3 produced a relative increase of the protein in the cytoplasmic compartment and significantly inhibited proliferation, migration and invasion, whereas inhibition of endogenous nuclear SOCS3 did not affect these events. Analysis of tissue microarrays indicated that loss of SOCS3 is an early event in HNSCC and was correlated with tumor size and histological grade of dysplasia, but a considerable proportion of cases presented detectable expression of SOCS3. Conclusion Our data support a role for SOCS3 as a tumor suppressor gene in HNSCC with relevance on proliferation and invasion processes and suggests that abnormal subcellular localization impairs SOCS3 function in HNSCC cells.
Collapse
|
32
|
Goswami M, Duvic M, Dougherty A, Ni X. Increased Twist expression in advanced stage of mycosis fungoides and Sézary syndrome. J Cutan Pathol 2012; 39:500-7. [PMID: 22515221 DOI: 10.1111/j.1600-0560.2012.01883.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The mechanisms of tumor progression in mycosis fungoides (MF) and Sézary syndrome (SS) are poorly understood. Twist, a transcription factor, is thought to promote solid tumor progression by blocking p53 and inhibiting c-myc-induced apoptosis. Whether Twist expression is correlated to MF/SS stages remains unknown. METHODS Twist, c-myc and p53 proteins in 68 MF/SS lesions across all T stages were examined by immunohistochemistry, and mRNA levels in peripheral blood CD4+ T-cells from SS patients were measured by real-time quantitative polymerase chain reaction. RESULTS Positive staining for Twist was found in 12.5% (2/16) of T1 and 33.3% (7/21) of T2 early stage patches/plaques compared to 50.0% (9/18) of T3 tumors and 84.6% (11/13) of T4 erythroderma. Most T4 erythroderma were positive for Twist in dermal lymphocytes, with the strongest staining. Positive staining for c-myc was higher in T3/T4 lesions (29/31, 93.5%) than T1/T2 lesions (25/37, 67.6%, p < 0.05), with strongest staining in T3 tumors. Aberrant p53 expression was more common in T3/T4 lesions (8/31, 25.8%) than in T1/T2 lesions (2/37, 5.4%, p < 0.05). Twist mRNA was detected in all CD4+ T cells from SS patients but not in normal donors. CONCLUSIONS Increased Twist protein expression in advanced MF/SS lesions suggests that Twist expression may correlate with MF/SS stages.
Collapse
Affiliation(s)
- Meghali Goswami
- Department of Dermatology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Inflammatory cytokines and growth factors drive angiogenesis independently; however, their integrated role in pathologic and physiologic angiogenesis is not fully understood. Suppressor of cytokine signaling-3 (SOCS3) is an inducible negative feedback regulator of inflammation and growth factor signaling. In the present study, we show that SOCS3 curbs pathologic angiogenesis. Using a Cre/Lox system, we deleted SOCS3 in vessels and studied developmental and pathologic angiogenesis in murine models of oxygen-induced retinopathy and cancer. Conditional loss of SOCS3 leads to increased pathologic neovascularization, resulting in pronounced retinopathy and increased tumor size. In contrast, physiologic vascularization is not regulated by SOCS3. In vitro, SOCS3 knockdown increases proliferation and sprouting of endothelial cells costimulated with IGF-1 and TNFα via reduced feedback inhibition of the STAT3 and mTOR pathways. These results identify SOCS3 as a pivotal endogenous feedback inhibitor of pathologic angiogenesis and a potential therapeutic target acting at the converging crossroads of growth factor- and cytokine-induced vessel growth.
Collapse
|
34
|
Silencing SOCS3 could inhibit TNF-α induced apoptosis in 3T3-L1 and mouse preadipocytes. Mol Biol Rep 2012; 39:8853-60. [DOI: 10.1007/s11033-012-1749-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
|
35
|
Abstract
Treatment regimens of patients with CTCL vary widely based on clinician preference and patient tolerance. Skin directed therapies are recommended for patients with early stage IA and IB MF, with combinations used in refractory cases. While no regimen has been proven to prolong survival in advanced stages, immunomodulatory regimens should be used initially to reduce the need for cytotoxic therapies. In more advanced stages of disease, treatment efforts should strive for palliation and improvement of quality of life. With many new therapies and strategies on the horizon, the future looks promising for CTCL patients. Unfortunately, other than allogeneic HCT, there are no potential curative therapies for CTCL. Clinical trials are currently underway to identify new therapies to improve quality of life for patients, and researchers are hard at work to identify novel pathways and genes for prognostication and as targets for therapies. Importantly, collaborative clinical trials to enhance rates of accrual need to be conducted, and improved interpretation of data via standardizing end points and response criteria should be an emphasis. Recently, the International Society for Cutaneous Lymphomas (ISCL), the United States Cutaneous Lymphoma Consortium (USCLC), and the Cutaneous Lymphoma Task Force of the European Organisation for Research and Treatment of Cancer (EORTC) met to develop consensus guidelines to facilitate collaboration on clinical trials. These proposed guidelines consist of: recommendations for standardizing general protocol design; a scoring system for assessing tumor burden in skin, lymph nodes, blood, and viscera; definition of response in skin, nodes, blood, and viscera; a composite global response score; and a definition of end points. Although these guidelines were generated by consensus panels, they have not been prospectively or retrospectively validated through analysis of large patient cohorts.
Collapse
|
36
|
Korkolopoulou P, Levidou G, El-Habr EA, Adamopoulos C, Samaras V, Zisakis A, Kavantzas N, Boviatsis E, Fragkou P, Papavassiliou AG, Patsouris E, Piperi C. Expression of interleukin-8 receptor CXCR2 and suppressor of cytokine signaling-3 in astrocytic tumors. Mol Med 2012; 18:379-88. [PMID: 22231733 DOI: 10.2119/molmed.2011.00449] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/03/2011] [Indexed: 01/23/2023] Open
Abstract
The aim was to expand recently published information regarding the significance of the interleukin (IL)-8/p-STAT-3 (signal transducer and activator of transcription) pathway in astrocytomas, focusing on the IL-8 receptor, chemokine (C-X-C motif) receptor 2 (CXCR2), and the STAT-3 inhibitor SOCS-3 (suppressors of cytokine signaling). A total of 91 paraffin-embedded human astrocytoma tissues (grades II-IV) were investigated for the association of SOCS-3 and CXCR2 expression with clinicopathologic and morphometric microvascular characteristics, vascular endothelial growth factor (VEGF), IL-8 and p-STAT-3 expression and patient survival. Peripheral IL-8 secretion levels were assessed by enzyme-linked immunosorbent spot (ELISPOT). SOCS-3, p-STAT-3 and CXCR2 protein levels were also quantified by Western immunoblotting in six cases, and the protein levels of SOCS-3 and CXCR2 were correlated with the immunohistochemical expression of the respective proteins. All CXCR2-positive cases by Western immunoblotting displayed increased peripheral IL-8 secretion levels. Treatment of primary glioblastoma cell cultures with exogenous IL-8 enhanced proliferation, and this effect was inhibited by treatment with a neutralizing anti-CXCR2 antibody. SOCS-3 and CXCR2 were expressed by neoplastic astrocytes in 92.4% and 48.78% of cases, respectively, with their levels increasing with histological grade and extent of necrosis. VEGF expression and microvessel density, CXCR2 and IL-8 levels were interrelated. SOCS-3 and p-STAT-3 were co-expressed in 85.7% of cases, although they were not interrelated. In univariate survival analysis, increased SOCS-3 expression and the presence of CXCR2 adversely affected survival, whereas in multivariate analysis, only CXCR2 remained significant. The prognostic significance of CXCR2 was validated in an independent set of 63 patients. Our data implicate IL-8/CXCR2 signaling pathway in the progression and regulation of angiogenesis in astrocytomas and provide a rationale for CXCR2 therapeutic exploitation in these tumors.
Collapse
Affiliation(s)
- Penelope Korkolopoulou
- First Department of Pathology, "Laiko" Hospital, University of Athens Medical School, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Xiong H, Chen ZF, Liang QC, Du W, Chen HM, Su WY, Chen GQ, Han ZG, Fang JY. Inhibition of DNA methyltransferase induces G2 cell cycle arrest and apoptosis in human colorectal cancer cells via inhibition of JAK2/STAT3/STAT5 signalling. J Cell Mol Med 2011; 13:3668-79. [PMID: 20196786 PMCID: PMC4516515 DOI: 10.1111/j.1582-4934.2009.00661.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
DNA methyltransferase inhibitors (MTIs) have recently emerged as promising chemotherapeutic or preventive agents for cancer, despite their poorly characterized mechanisms of action. The present study shows that DNA methylation is integral to the regulation of SH2-containing protein tyrosine phosphatase 1 (SHP1) expression, but not for regulation of suppressors of cytokine signalling (SOCS)1 or SOCS3 in colorectal cancer (CRC) cells. SHP1 expression correlates with down-regulation of Janus kinase/signal transducers and activators of transcription (JAK2/STAT3/STAT5) signalling, which is mediated in part by tyrosine dephosphorylation events and modulation of the proteasome pathway. Up-regulation of SHP1 expression was achieved using a DNA MTI, 5-aza-2'-deoxycytidine (5-aza-dc), which also generated significant down-regulation of JAK2/STAT3/STAT5 signalling. We demonstrate that 5-aza-dc suppresses growth of CRC cells, and induces G2 cell cycle arrest and apoptosis through regulation of downstream targets of JAK2/STAT3/STAT5 signalling including Bcl-2, p16(ink4a), p21(waf1/cip1) and p27(kip1). Although 5-aza-dc did not significantly inhibit cell invasion, 5-aza-dc did down-regulate expression of focal adhesion kinase and vascular endothelial growth factor in CRC cells. Our results demonstrate that 5-aza-dc can induce SHP1 expression and inhibit JAK2/STAT3/STAT5 signalling. This study represents the first evidence towards establishing a mechanistic link between inhibition of JAK2/STAT3/STAT5 signalling and the anticancer action of 5-aza-dc in CRC cells that may lead to the use of MTIs as a therapeutic intervention for human colorectal cancer.
Collapse
Affiliation(s)
- Hua Xiong
- Department of Gastroenterology, Shanghai Jiao-Tong University School of Medicine Ren-Ji Hospital, Shanghai Institute of Digestive Disease, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abraham RM, Zhang Q, Odum N, Wasik MA. The role of cytokine signaling in the pathogenesis of cutaneous T-cell lymphoma. Cancer Biol Ther 2011; 12:1019-22. [PMID: 22236880 DOI: 10.4161/cbt.12.12.18144] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) displays immunosuppressive properties and phenotypic plasticity. The malignant T cells in CTCL can possess features of immunomodulating regulatory T cells (Treg) and IL-17-producing helper T cells (Th17) depending on the stimuli they receive from antigen presenting cells and other sources. IL-2-type cytokines activate STAT5 to promote expression of Treg-related FoxP3, while various cytokines can activate STAT3 to induce synthesis of IL-10 and IL-17. When the Treg phenotype is activated in the early stages of CTCL, "immune evasion" can occur, allowing the clonal T cells to expand. Late stages of CTCL lose the FoxP3 expression but continue to express an immunosuppressive cell-surface ligand PD-L1 suggesting that this and possibly other immunosuppressive proteins rather than FoxP3 are critical for the immunosuppressive state in the advanced stages of CTCL. Novel therapeutic agents may potentially exploit the phenotypic plasticity of CTCL such that the malignant T cells become vulnerable to antitumor immunity.
Collapse
Affiliation(s)
- Ronnie M Abraham
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
39
|
Krejsgaard T, Odum N, Geisler C, Wasik MA, Woetmann A. Regulatory T cells and immunodeficiency in mycosis fungoides and Sézary syndrome. Leukemia 2011; 26:424-32. [PMID: 21904385 DOI: 10.1038/leu.2011.237] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cutaneous T-cell lymphoma (CTCL) is the term for diseases characterized by primary accumulation of malignant T cells in the skin. Patients with the two predominant clinical forms of CTCL called mycosis fungoides (MF) and Sézary syndrome (SS) characteristically develop severe immunodeficiency during disease progression and consequently patients with advanced disease frequently die of infections and not from the tumor burden. For decades, it has been suspected that the malignant T cells actively drive the evolving immunodeficiency to avoid antitumor immunity, yet, the underlying mechanisms remain unclear. The identification of a subset of highly immunosuppressive regulatory T cells (Tregs) triggered a variety of studies investigating if MF and SS are malignant proliferations of Tregs but seemingly discordant findings have been reported. Here, we review the literature to clarify the role of Tregs in MF and SS and discuss the potential mechanisms driving the immunodeficiency.
Collapse
Affiliation(s)
- T Krejsgaard
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
40
|
McKenzie RCT, Jones CL, Tosi I, Caesar JA, Whittaker SJ, Mitchell TJ. Constitutive activation of STAT3 in Sézary syndrome is independent of SHP-1. Leukemia 2011; 26:323-31. [PMID: 21818116 DOI: 10.1038/leu.2011.198] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Constitutive and persistent activation of STAT3 has been implicated in the pathogenesis of many malignancies. Studies of CTCL cell lines have previously suggested that aberrant activation of STAT3 is mediated via silencing of the negative regulator SHP-1 by promoter methylation. In this study of ex vivo tumour cell populations from 18 Sézary syndrome (SS) patients, constitutive phosphorylation of STAT3, JAK1 and JAK2 was present in all patients, but was absent in comparative CD4+ T-cells from healthy controls. Furthermore, no loss or significant difference in SHP-1 expression was observed between patients and healthy control samples. Methylation-specific PCR analysis of the SHP-1 CpG island in 47 SS patients and 11 healthy controls did not detect any evidence of methylation. Moreover, small interfering RNA knockdown of SHP-1 had no effect on phosphorylation of STAT3. In contrast, treatment of SS tumour cells with the pan-JAK inhibitor pyridone 6 led to downregulation of phosphorylated STAT3 (pSTAT3), its target genes and induction of apoptosis. No evidence for common JAK1/JAK2-activating mutations was found. These data demonstrate that constitutive activation of STAT3 in SS is not due to the loss of SHP-1, but is mediated by constitutive aberrant activation of JAK family members.
Collapse
Affiliation(s)
- R C T McKenzie
- Skin Tumour Unit, St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, King's College London, London, UK
| | | | | | | | | | | |
Collapse
|
41
|
Krejsgaard T, Kopp K, Ralfkiaer E, Willumsgaard AE, Eriksen KW, Labuda T, Rasmussen S, Mathiesen AM, Geisler C, Lauenborg B, Becker JC, Zhang Q, Wasik MA, Odum N, Woetmann A. A novel xenograft model of cutaneous T-cell lymphoma. Exp Dermatol 2011; 19:1096-102. [PMID: 20629733 DOI: 10.1111/j.1600-0625.2010.01138.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cutaneous T-cell lymphomas (CTCLs) are characterized by accumulation of malignant T cells in the skin. Early disease resembles benign skin disorders but during disease progression cutaneous tumors develop, and eventually the malignant T cells can spread to lymph nodes and internal organs. However, because of the lack of suitable animal models, little is known about the mechanisms driving CTCL development and progression in vivo. Here, we describe a novel xenograft model of tumor stage CTCL, where malignant T cells (MyLa2059) are transplanted to NOD/SCID-B2m(-/-) (NOD.Cg-Prkdc(scid) B2m(tm1Unc) /J) mice. Subcutaneous transplantation of the malignant T cells led to rapid tumor formation in 43 of 48 transplantations, whereas transplantation of non-malignant T cells isolated from the same donor did not result in tumor development. Importantly, the tumor growth was significantly suppressed in mice treated with vorinostat when compared to mice treated with vehicle. Furthermore, in most mice the tumors displayed subcutaneous and/or lymphatic dissemination. Histological, immunohistochemical and flow cytometric analyses confirmed that both tumors at the inoculation site, as well as distant subcutaneous and lymphatic tumors, originated from the transplanted malignant T cells. In conclusion, we describe a novel mouse model of tumor stage CTCL for future studies of disease dissemination and preclinical evaluations of new therapeutic strategies.
Collapse
|
42
|
Koh W, Ahn KS, Jeong SJ, Lee HJ, Kim M, Lee HJ, Lee EO, Kim SH. Reactive oxygen species involved in sulforaphane-induced STAT3 inactivation and apoptosis in DU145 prostate cancer cells. CHINESE SCIENCE BULLETIN-CHINESE 2010. [DOI: 10.1007/s11434-010-4169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Bluyssen HAR, Rastmanesh MM, Tilburgs C, Jie K, Wesseling S, Goumans MJ, Boer P, Joles JA, Braam B. IFNγ-dependent SOCS3 expression inhibits IL-6-induced STAT3 phosphorylation and differentially affects IL-6 mediated transcriptional responses in endothelial cells. Am J Physiol Cell Physiol 2010; 299:C354-62. [DOI: 10.1152/ajpcell.00513.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IL-6 has pro- and anti-inflammatory effects and is involved in endothelial cell (EC) dysfunction. The anti-inflammatory effects of IL-6 are mediated by signal transducer and activator of transcription-3 (STAT3), which is importantly controlled by suppressor of cytokine signaling 3 (SOCS3). Therefore, cytokines that modulate SOCS3 expression might inhibit the anti-inflammatory effects of IL-6. We hypothesized that in EC, interferon-γ (IFNγ)-induced SOCS3 expression leads to inhibition of IL-6-induced STAT3 activation and IL-6-dependent expression of anti-, but not pro-inflammatory, target genes. IFNγ activated STAT1 and STAT3 and increased SOCS3 expression in EC. IL-6 only activated STAT3 and induced SOCS3 expression. IFNγ pretreatment of EC inhibited IL-6-induced STAT3 activation accompanied by increased SOCS3 protein. Inhibition of SOCS3 expression, using costimulation, Act-D, and small interfering RNA (siRNA), subsequently implicated the importance of IFNγ-induced SOCS3 in this phenomenon. Pretreatment of EC with IFNγ also affected the transcriptional program induced by IL-6. We identified 1) IL-6 anti-inflammatory target genes that were inhibited by IFNγ, 2) IFNγ-target genes of pro-inflammatory nature that were increased in response to IL-6 in the presence of IFNγ, and 3) a set of target genes that were increased upon IL-6 or IFNγ alone, or combined IFNγ and IL-6. In summary, by increasing SOCS3 expression in EC, IFNγ can selectively inhibit STAT3-dependent IL-6 signaling. This in turn leads to decreased expression of some EC protective genes. In contrast, other genes of pro-inflammatory nature are not inhibited or even increased. This IFNγ-induced shift in IL-6 signaling to a pro-inflammatory phenotype could represent a novel mechanism involved in EC dysfunction.
Collapse
Affiliation(s)
- Hans A. R. Bluyssen
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | | | | | - Kim Jie
- Department of Nephrology and Hypertension and
| | | | - Marie-Jose Goumans
- Department of Experimental Cardiology, University Medical Center, Utrecht, The Netherlands
| | - Peter Boer
- Department of Nephrology and Hypertension and
| | | | - Branko Braam
- Department of Nephrology and Hypertension and
- Division of Nephrology and Immunology, Department of Medicine and
- Department of Physiology, University of Alberta, Edmonton, Canada; and
| |
Collapse
|
44
|
Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell 2010. [PMID: 20227042 DOI: 10.1016/j.ccr.2009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The NF-kappaB activating kinase IKKbeta suppresses early chemically induced liver tumorigenesis by inhibiting hepatocyte death and compensatory proliferation. To study IKKbeta's role in late tumor promotion and progression, we developed a transplant system that allows initiated mouse hepatocytes to form hepatocellular carcinomas (HCC) in host liver after a long latency. Deletion of IKKbeta long after initiation accelerated HCC development and enhanced proliferation of tumor initiating cells. These effects of IKKbeta/NF-kappaB were cell autonomous and correlated with increased accumulation of reactive oxygen species that led to JNK and STAT3 activation. Hepatocyte-specific STAT3 ablation prevented HCC development. The negative crosstalk between NF-kappaB and STAT3, which is also evident in human HCC, is a critical regulator of liver cancer development and progression.
Collapse
|
45
|
He G, Yu GY, Temkin V, Ogata H, Kuntzen C, Sakurai T, Sieghart W, Peck-Radosavljevic M, Leffert HL, Karin M. Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell 2010; 17:286-97. [PMID: 20227042 PMCID: PMC2841312 DOI: 10.1016/j.ccr.2009.12.048] [Citation(s) in RCA: 371] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/17/2009] [Accepted: 02/03/2010] [Indexed: 02/07/2023]
Abstract
The NF-kappaB activating kinase IKKbeta suppresses early chemically induced liver tumorigenesis by inhibiting hepatocyte death and compensatory proliferation. To study IKKbeta's role in late tumor promotion and progression, we developed a transplant system that allows initiated mouse hepatocytes to form hepatocellular carcinomas (HCC) in host liver after a long latency. Deletion of IKKbeta long after initiation accelerated HCC development and enhanced proliferation of tumor initiating cells. These effects of IKKbeta/NF-kappaB were cell autonomous and correlated with increased accumulation of reactive oxygen species that led to JNK and STAT3 activation. Hepatocyte-specific STAT3 ablation prevented HCC development. The negative crosstalk between NF-kappaB and STAT3, which is also evident in human HCC, is a critical regulator of liver cancer development and progression.
Collapse
Affiliation(s)
- Guobin He
- Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California at San Diego, 9500 Gilman Drive MC 0723, La Jolla, CA 92093-0723, USA
| | - Guann-Yi Yu
- Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California at San Diego, 9500 Gilman Drive MC 0723, La Jolla, CA 92093-0723, USA
| | - Vladislav Temkin
- Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California at San Diego, 9500 Gilman Drive MC 0723, La Jolla, CA 92093-0723, USA
| | - Hisanobu Ogata
- Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California at San Diego, 9500 Gilman Drive MC 0723, La Jolla, CA 92093-0723, USA
| | - Christian Kuntzen
- Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California at San Diego, 9500 Gilman Drive MC 0723, La Jolla, CA 92093-0723, USA
| | - Toshiharu Sakurai
- Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California at San Diego, 9500 Gilman Drive MC 0723, La Jolla, CA 92093-0723, USA
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Wolfgang Sieghart
- Department of Internal Medicine III, Division of Gastroenterology/Hepatology, Medical University Vienna, Währingergürtel 18–20, 1090 Vienna, Austria
| | - Markus Peck-Radosavljevic
- Department of Internal Medicine III, Division of Gastroenterology/Hepatology, Medical University Vienna, Währingergürtel 18–20, 1090 Vienna, Austria
| | - Hyam L. Leffert
- Hepatocyte Growth Control and Stem Cell Laboratory, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California at San Diego, 9500 Gilman Drive MC 0723, La Jolla, CA 92093-0723, USA
- Correspondence to: ; Phone: (858) 534-1361; Fax: (858) 534-8158
| |
Collapse
|
46
|
Abstract
IFN-alpha and skin-infiltrating activated T lymphocytes have important roles in the pathogenesis of psoriasis. T cells from psoriatic patients display an increased sensitivity to IFN-alpha, but the pathological mechanisms behind the hyperresponsiveness to IFN-alpha remained unknown. In this study, we show that psoriatic T cells display deficient expression of the suppressor of cytokine signaling (SOCS)3 in response to IFN-alpha and a low baseline expression of the SH2-domain-containing protein-tyrosine phosphatase (SHP)-1 when compared with skin T cells from nonpsoriatic donors. Moreover, IFN-alpha-stimulated psoriatic T cells show enhanced activation of JAKs (JAK1 and TYK2) and signal transducers and activators of transcription. Increased expression of SOCS3 proteins resulting from proteasomal blockade partially inhibits IFN-alpha response. Similarly, forced expression of SOCS3 and SHP-1 inhibits IFN-alpha signaling in psoriatic T cells. In conclusion, our data suggest that loss of regulatory control is involved in the aberrant hypersensitivity of psoriatic T cells to IFN-alpha.
Collapse
|
47
|
Crea F, Giovannetti E, Zinzani PL, Danesi R. Pharmacologic rationale for early G-CSF prophylaxis in cancer patients and role of pharmacogenetics in treatment optimization. Crit Rev Oncol Hematol 2009; 72:21-44. [PMID: 19111474 DOI: 10.1016/j.critrevonc.2008.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 10/14/2008] [Accepted: 10/22/2008] [Indexed: 11/22/2022] Open
Abstract
The use of recombinant human granulocyte colony stimulating factors (G-CSF) has become an integral part of supportive care during cytotoxic chemotherapy. Current guidelines recommend the use of G-CSF in patients with substantial risk of febrile neutropenia. However, little consensus exists about optimal timing and tailoring of this therapy. Based on the known effects of chemotherapy and G-CSF on bone marrow compartments, we propose a model that supports the prophylactic rather than therapeutic use of G-CSF therapy. In addition, several genetic alterations in G-CSF signalling pathway have been described. These genetic variants may predict the risk of febrile neutropenia and response to G-CSF. Thus, future pharmacogenetic/omics studies in this field are warranted. Through the identification of patients at risk and the knowledge of biological basis for optimal timing, hopefully we should soon be able to improve the application of the existing guidelines for G-CSF therapy and patient's prognosis.
Collapse
Affiliation(s)
- Francesco Crea
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
48
|
Wozniak M, Tracey L, Ortiz-Romero P, Montes S, Alvarez M, Fraga J, Fernández Herrera J, Vidal S, Rodriguez-Peralto J, Piris M, Villuendas (deceased) R. Psoralen plus ultraviolet A ± interferon-α treatment resistance in mycosis fungoides: the role of tumour microenvironment, nuclear transcription factor-κB and T-cell receptor pathways. Br J Dermatol 2009; 160:92-102. [DOI: 10.1111/j.1365-2133.2008.08886.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Baker BJ, Qin H, Benveniste EN. Molecular basis of oncostatin M-induced SOCS-3 expression in astrocytes. Glia 2008; 56:1250-62. [PMID: 18571793 DOI: 10.1002/glia.20694] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Under neuropathological conditions, reactive astrocytes release cytokines and chemokines, which act in an autocrine and/or paracrine fashion to modulate production of immunoregulatory factors from cells including microglia, astrocytes, and neurons. In this way, astrocytes play an important role in orchestrating immune responses within the central nervous system (CNS). Suppressor of cytokine signaling (SOCS) proteins are endogenous, negative regulators of the JAK/STAT signaling pathway and function as attenuators of the immune and inflammatory responses. As such, SOCS proteins may have critical roles in the CNS under neuroinflammatory conditions. In the inflamed CNS, expression of IL-6 cytokine family member oncostatin M (OSM) is elevated; however, its functional effects are not well understood. We demonstrate that OSM is a potent inducer of SOCS-3 in astrocytes. Analysis of the SOCS-3 promoter revealed that an AP-1 element, two IFN-gamma activation sequence (GAS) elements, and a GC-rich region are crucial for SOCS-3 gene expression. Using small interfering RNA against STAT-3, as well as a STAT-3 dominant-negative construct, we demonstrate that STAT-3 activation is critical for OSM induction of SOCS-3 expression. The ERK1/2 and JNK pathways also contribute to OSM-induced SOCS-3 gene expression. OSM stimulation led to a time-dependent recruitment of the transcription factors STAT-3, c-Fos, c-Jun, and Sp1 and the coactivators CREB-binding protein (CBP) and p300 to the endogenous SOCS-3 promoter. These data indicate that OSM-induced activation of STAT-3 and the ERK1/2 and JNK pathways are critical for astrocytic expression of SOCS-3, which provides for feedback inhibition of cytokine-induced inflammatory responses in the CNS.
Collapse
Affiliation(s)
- Brandi J Baker
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | |
Collapse
|
50
|
|