1
|
Wang J, Man K, Ng KTP. Emerging Roles of C-C Motif Ligand 11 (CCL11) in Cancers and Liver Diseases: Mechanisms and Therapeutic Implications. Int J Mol Sci 2025; 26:4662. [PMID: 40429807 PMCID: PMC12111778 DOI: 10.3390/ijms26104662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
C-C motif ligand 11 (CCL11) is a multifunctional chemokine that regulates immunity, angiogenesis, and tissue remodeling. In addition to its allergic inflammation role, CCL11 exhibits context-dependent dual functions in relation to cancer progression. In liver diseases, it mediates injury, fibrosis, and inflammation while serving as a disease biomarker. This review systematically examines CCL11-receptor interactions and their immunomodulatory mechanisms in cancers and hepatic pathologies. We highlight CCL11's therapeutic potential as both a prognostic marker and immunotherapeutic target. By integrating molecular and clinical insights, this work advances the understanding of CCL11's pathophysiological roles and facilitates targeted therapy development.
Collapse
Affiliation(s)
| | - Kwan Man
- Department of Surgery, HKU-SZH & School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Kevin Tak-Pan Ng
- Department of Surgery, HKU-SZH & School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
2
|
Snider DB, Meyerholz DK, Dellon ES, Cortes LM, Karri A, Blikslager AT, Laster S, Käser T, Cruse G. Comparison of histochemical methods for the analysis of eosinophils and mast cells using a porcine model of eosinophilic esophagitis. Front Vet Sci 2025; 12:1540995. [PMID: 40177668 PMCID: PMC11963769 DOI: 10.3389/fvets.2025.1540995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Accurate identification of eosinophils in tissue sections is required for diagnosis of eosinophilic esophagitis in humans and the assessment of severity of disease in allergy models. The pig may be a good model for sensitization and allergy models due to anatomical, physiological, and immunological similarities to humans. However, comparative studies on histochemical detection of eosinophils in fixed porcine tissue are lacking. Methods Qualitative and quantitative comparisons were performed for six histochemical methods previously reported for eosinophil and mast cell detection in other species. Astra Blue/Vital New Red, Congo Red, Luna, Sirius Red, Toluidine Blue, and modified regressive Hematoxylin & Eosin were applied to formalin-fixed paraffin embedded full-thickness sections of porcine esophagus. Specimens were collected from young, crossbred pigs sensitized to ovalbumin with or without subsequent oral exposure to ovalbumin to produce eosinophilic esophagitis lesions for comparison to non-allergic controls. Results Ease of eosinophil quantitation was analyzed, and varied by histochemical stain, to determine whether stain selection increased accuracy and efficiency of evaluation. Noticeable differences in color contrast between intracytoplasmic granules, surrounding tissue, and cellular components aided detection and identification of eosinophils and mast cells with Astra Blue/New Vital Red and Toluidine Blue, respectively. For eosinophils, Congo Red and H&E were adequate, while Luna and Sirius Red presented challenges for quantitation. Discussion In this case, rapid and reliable characterization of porcine esophageal allergy models was made possible by using Astra Blue/New Vital Red for eosinophils and Toluidine Blue for mast cells.
Collapse
Affiliation(s)
- Douglas B. Snider
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine and Translational Research Training Program, North Carolina State University, Raleigh, NC, United States
| | - David K. Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Evan S. Dellon
- School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Lizette M. Cortes
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Akash Karri
- Department of Mechanical and Aerospace Engineering, College of Engineering, North Carolina State University, Raleigh, NC, United States
| | - Anthony T. Blikslager
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Scott Laster
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Tobias Käser
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Department of Biological Sciences and Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Glenn Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
3
|
Sahli W, Vitte J, Desnues B. Eosinophils and COVID-19: Insights into immune complexity and vaccine safety. Clin Transl Allergy 2025; 15:e70050. [PMID: 40120088 PMCID: PMC11929522 DOI: 10.1002/clt2.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/23/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND COVID-19 exhibits a variety of symptoms and may lead to multi-organ failure and death. This clinical complexity is exacerbated by significant immune dysregulation affecting nearly all cells of the innate and adaptive immune system. Granulocytes, including eosinophils, are affected by SARS-CoV-2. OBJECTIVES Eosinophil responses remain poorly understood despite early recognition of eosinopenia as a hallmark feature of COVID-19 severity. RESULTS The heterogeneous nature of eosinophil responses categorizes them as dual-function cells with contradictory effects. Eosinophil activation can suppress virus-induced inflammation by releasing type 2 cytokines like IL-13 and granular proteins with antiviral action such as eosinophil-derived neurotoxins and eosinophil cationic protein, and also by acting as antigen-presenting cells. In contrast, eosinophil accumulation in the lungs can induce tissue damage triggered by cytokines or hormones like IFN-γ and leptin. Additionally, they can affect adaptive immune functions by interacting with T cells through direct formation of membrane complexes or soluble mediator action. Individuals with allergic disorders who have elevated levels of eosinophils in tissues and blood, such as asthma, do not appear to be at an increased risk of developing severe COVID-19 following SARS-CoV-2 infection. However, the SARS-CoV-2 vaccine appears to be associated with complications and eosinophilic infiltrate-induced immunopathogenicity, which can be mitigated by corticosteroid, anti-histamines and anti-IL-5 therapy and avoided by modifying adjuvants or excipients. CONCLUSION This review highlights the importance of eosinophils in COVID-19 and contributes to a better understanding of their role during natural infection and vaccination.
Collapse
Affiliation(s)
- Wided Sahli
- Aix Marseille UniversityMEPHIMarseilleFrance
- IHU‐Méditerranée InfectionMarseilleFrance
| | - Joana Vitte
- Laboratory of ImmunologyUniversity Hospital of ReimsReimsFrance
- INSERM UMR‐S 1250 P3CELLUniversity of ReimsReimsFrance
| | - Benoit Desnues
- Aix Marseille UniversityMEPHIMarseilleFrance
- IHU‐Méditerranée InfectionMarseilleFrance
| |
Collapse
|
4
|
Sanchez Santos A, Socorro Avila I, Galvan Fernandez H, Cazorla Rivero S, Lemes Castellano A, Cabrera Lopez C. Eosinophils: old cells, new directions. Front Med (Lausanne) 2025; 11:1470381. [PMID: 39886455 PMCID: PMC11780905 DOI: 10.3389/fmed.2024.1470381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025] Open
Abstract
Eosinophils are polymorphonuclear cells that have progressively gained attention due to their involvement in multiple diseases and, more recently, in various homeostatic processes. Their well-known roles range from asthma and parasitic infections to less prevalent diseases such as eosinophilic granulomatosis with polyangiitis, eosinophilic esophagitis, and hypereosinophilic syndrome. In recent years, various biological therapies targeting these cells have been developed, altering the course of eosinophilic pathologies. Recent research has demonstrated differences in eosinophil subtypes and their functions. The presence of distinct classes of eosinophils has led to the theory of resident eosinophils (rEos) and inflammatory eosinophils (iEos). Subtype differences are determined by the pattern of protein expression on the cell membrane and the localization of eosinophils. Most of this research has been conducted in murine models, but several studies confirm these findings in peripheral blood and tissue. The objective of this review is to provide a comprehensive analysis of eosinophils, by recent findings that divide this cell line into two distinct populations with different functions and purposes.
Collapse
Affiliation(s)
- Alejandra Sanchez Santos
- Hospital Universitario de Gran Canaria Dr. Negrín, Respiratory Service, Las Palmas de Gran Canaria, Spain
| | - Iovanna Socorro Avila
- Hospital Universitario de Gran Canaria Dr. Negrín, Respiratory Service, Las Palmas de Gran Canaria, Spain
| | - Helena Galvan Fernandez
- Hospital Universitario de Gran Canaria Dr. Negrín, Respiratory Service, Las Palmas de Gran Canaria, Spain
| | - Sara Cazorla Rivero
- Hospital Universitario de Gran Canaria Dr. Negrín, Research Unit, Las Palmas de Gran Canaria, Spain
- Universidad de La Laguna, Research Unit, Santa Cruz de Tenerife, Spain
| | - Angelina Lemes Castellano
- Hospital Universitario de Gran Canaria Dr. Negrín, Hematology Service, Las Palmas de Gran Canaria, Spain
| | - Carlos Cabrera Lopez
- Hospital Universitario de Gran Canaria Dr. Negrín, Respiratory Service, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
5
|
Russo RC, Ryffel B. The Chemokine System as a Key Regulator of Pulmonary Fibrosis: Converging Pathways in Human Idiopathic Pulmonary Fibrosis (IPF) and the Bleomycin-Induced Lung Fibrosis Model in Mice. Cells 2024; 13:2058. [PMID: 39768150 PMCID: PMC11674266 DOI: 10.3390/cells13242058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal interstitial lung disease (ILD) of unknown origin, characterized by limited treatment efficacy and a fibroproliferative nature. It is marked by excessive extracellular matrix deposition in the pulmonary parenchyma, leading to progressive lung volume decline and impaired gas exchange. The chemokine system, a network of proteins involved in cellular communication with diverse biological functions, plays a crucial role in various respiratory diseases. Chemokine receptors trigger the activation, proliferation, and migration of lung-resident cells, including pneumocytes, endothelial cells, alveolar macrophages, and fibroblasts. Around 50 chemokines can potentially interact with 20 receptors, expressed by both leukocytes and non-leukocytes such as tissue parenchyma cells, contributing to processes such as leukocyte mobilization from the bone marrow, recirculation through lymphoid organs, and tissue influx during inflammation or immune response. This narrative review explores the complexity of the chemokine system in the context of IPF and the bleomycin-induced lung fibrosis mouse model. The goal is to identify specific chemokines and receptors as potential therapeutic targets. Recent progress in understanding the role of the chemokine system during IPF, using experimental models and molecular diagnosis, underscores the complex nature of this system in the context of the disease. Despite advances in experimental models and molecular diagnostics, discovering an effective therapy for IPF remains a significant challenge in both medicine and pharmacology. This work delves into microarray results from lung samples of IPF patients and murine samples at different stages of bleomycin-induced pulmonary fibrosis. By discussing common pathways identified in both IPF and the experimental model, we aim to shed light on potential targets for therapeutic intervention. Dysregulation caused by abnormal chemokine levels observed in IPF lungs may activate multiple targets, suggesting that chemokine signaling plays a central role in maintaining or perpetuating lung fibrogenesis. The highlighted chemokine axes (CCL8-CCR2, CCL19/CCL21-CCR7, CXCL9-CXCR3, CCL3/CCL4/CCL5-CCR5, and CCL20-CCR6) present promising opportunities for advancing IPF treatment research and uncovering new pharmacological targets within the chemokine system.
Collapse
Affiliation(s)
- Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte 31270-901, MG, Brazil
| | - Bernhard Ryffel
- Laboratory of Immuno-Neuro Modulation (INEM), UMR7355 Centre National de la Recherche Scientifique (CNRS), University of Orleans, 45071 Orleans, France
| |
Collapse
|
6
|
Hameed M, Solomon NA, Weger-Lucarelli J. Lack of pathogenic involvement of CCL4 and its receptor CCR5 in arthritogenic alphavirus disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606106. [PMID: 39131287 PMCID: PMC11312581 DOI: 10.1101/2024.07.31.606106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Arthritogenic alphaviruses, including chikungunya virus (CHIKV), Mayaro virus (MAYV), Ross River virus (RRV), and O'nyong nyong virus (ONNV) are emerging and reemerging viruses that cause disease characterized by fever, rash, and incapacitating joint swelling. Alphavirus infection induces robust immune responses in infected hosts, leading to the upregulation of several cytokines and chemokines, including chemokine C ligand 4 (CCL4). CCL4 is a chemoattractant for immune cells such as T cells, natural killer cells, monocytes/macrophages, and dendritic cells, recruiting these cells to the site of infection, stimulating the release of proinflammatory mediators, and inducing T cell differentiation. CCL4 has been found at high levels in both the acute and chronic phases of chikungunya disease; however, the role of CCL4 in arthritogenic alphavirus disease development remains unexplored. Here, we tested the effect of CCL4 on MAYV infection in mice through antibody depletion and treatment with recombinant mouse CCL4. We observed no differences in mice depleted of CCL4 or treated with recombinant CCL4 in terms of disease progression such as weight loss and footpad swelling or the development of viremia. CCL4 uses the G protein-coupled receptor C-C chemokine receptor type 5 (CCR5). To determine whether CCR5 deficiency would alter disease outcomes or virus replication in mice, we inoculated CCR5 knockout (CCR5-/-) mice with MAYV and observed no effect on disease development and immune cell profile of blood and footpads between CCR5-/- and wild type mice. These studies failed to identify a clear role for CCL4 or its receptor CCR5 in MAYV infection.
Collapse
Affiliation(s)
- Muddassar Hameed
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Norman A. Solomon
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
- Lead contact
| |
Collapse
|
7
|
Wang C, Wang J, Zhu Z, Hu J, Lin Y. Spotlight on pro-inflammatory chemokines: regulators of cellular communication in cognitive impairment. Front Immunol 2024; 15:1421076. [PMID: 39011039 PMCID: PMC11247373 DOI: 10.3389/fimmu.2024.1421076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024] Open
Abstract
Cognitive impairment is a decline in people's ability to think, learn, and remember, and so forth. Cognitive impairment is a global health challenge that affects the quality of life of thousands of people. The condition covers a wide range from mild cognitive impairment to severe dementia, which includes Alzheimer's disease (AD) and Parkinson's disease (PD), among others. While the etiology of cognitive impairment is diverse, the role of chemokines is increasingly evident, especially in the presence of chronic inflammation and neuroinflammation. Although inflammatory chemokines have been linked to cognitive impairment, cognitive impairment is usually multifactorial. Researchers are exploring the role of chemokines and other inflammatory mediators in cognitive dysfunction and trying to develop therapeutic strategies to mitigate their effects. The pathogenesis of cognitive disorders is very complex, their underlying causative mechanisms have not been clarified, and their treatment is always one of the challenges in the field of medicine. Therefore, exploring its pathogenesis and treatment has important socioeconomic value. Chemokines are a growing family of structurally and functionally related small (8-10 kDa) proteins, and there is growing evidence that pro-inflammatory chemokines are associated with many neurobiological processes that may be relevant to neurological disorders beyond their classical chemotactic function and play a crucial role in the pathogenesis and progression of cognitive disorders. In this paper, we review the roles and regulatory mechanisms of pro-inflammatory chemokines (CCL2, CCL3, CCL4, CCL5, CCL11, CCL20, and CXCL8) in cognitive impairment. We also discuss the intrinsic relationship between the two, hoping to provide some valuable references for the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Chenxu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jiayi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zhichao Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang, China
| | - Yong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Anesthesia, The First Affiliated Hospital of GanNan Medical University, Ganzhou, China
| |
Collapse
|
8
|
Chen L, Xu G, Song X, Zhang L, Chen C, Xiang G, Wang S, Zhang Z, Wu F, Yang X, Zhang L, Ma X, Yu J. A novel antagonist of the CCL5/CCR5 axis suppresses the tumor growth and metastasis of triple-negative breast cancer by CCR5-YAP1 regulation. Cancer Lett 2024; 583:216635. [PMID: 38237887 DOI: 10.1016/j.canlet.2024.216635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/27/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC) with a high mortality rate, and few effective therapeutic strategies are available. CCL5/CCR5 is an appealing immunotherapeutic target for TNBC. However, its signaling mechanism is poorly understood and its direct antagonists have not been reported. Here, we developed a high-throughput screening (HTS) assay for discovering its antagonists. Verteporfin was identified as a more selective and potent antagonist than the known CCR5 antagonist maraviroc. Without photodynamic therapy, verteporfin demonstrated significant inhibition on TNBC tumor growth through immune regulation, remarkable suppression of lung metastasis by cell-intrinsic mechanism, and a significant extension of overall survival in vivo. Mechanistically, CCR5 was found to be essential for expression of the key hippo effector YAP1. It promoted YAP1 transcription via HIF-1α and exerted further control over the migration of CD8+ T, NK, and MDSC immune cells through chemokines CXCL16 and CXCL8 which were identified from RNA-seq. Moreover, the CCR5-YAP1 axis played a vital role in promoting metastasis by modulating β-catenin and core epithelial-mesenchymal transition transcription factors ZEB1 and ZEB2. It is noteworthy that the regulatory relationship between CCR5 and YAP1 was observed across various BC subtypes, TNBC patients, and showed potential relevance in fifteen additional cancer types. Overall, this study introduced an easy-to-use HTS assay that streamlines the discovery of CCL5/CCR5 axis antagonists. Verteporfin was identified as a specific molecular probe of this axis with great potentials as a therapeutic agent for treating sixteen malignant diseases characterized by heightened CCR5 and YAP1 levels.
Collapse
Affiliation(s)
- Ling Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guiying Xu
- Department of Breast Surgery, Jilin Cancer Hospital, Changchun, 130000, Jilin, China
| | - Xiaoxu Song
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lianbo Zhang
- Department of Breast Surgery, Jilin Cancer Hospital, Changchun, 130000, Jilin, China
| | - Chuyu Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gang Xiang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuxuan Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zijian Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuanming Yang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Jing Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
9
|
Cecchinato V, Martini V, Pirani E, Ghovehoud E, Uguccioni M. The chemokine landscape: one system multiple shades. Front Immunol 2023; 14:1176619. [PMID: 37251376 PMCID: PMC10213763 DOI: 10.3389/fimmu.2023.1176619] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Leukocyte trafficking is mainly governed by chemokines, chemotactic cytokines, which can be concomitantly produced in tissues during homeostatic conditions or inflammation. After the discovery and characterization of the individual chemokines, we and others have shown that they present additional properties. The first discoveries demonstrated that some chemokines act as natural antagonists on chemokine receptors, and prevent infiltration of leukocyte subsets in tissues. Later on it was shown that they can exert a repulsive effect on selective cell types, or synergize with other chemokines and inflammatory mediators to enhance chemokine receptors activities. The relevance of the fine-tuning modulation has been demonstrated in vivo in a multitude of processes, spanning from chronic inflammation to tissue regeneration, while its role in the tumor microenvironment needs further investigation. Moreover, naturally occurring autoantibodies targeting chemokines were found in tumors and autoimmune diseases. More recently in SARS-CoV-2 infection, the presence of several autoantibodies neutralizing chemokine activities distinguished disease severity, and they were shown to be beneficial, protecting from long-term sequelae. Here, we review the additional properties of chemokines that influence cell recruitment and activities. We believe these features need to be taken into account when designing novel therapeutic strategies targeting immunological disorders.
Collapse
|
10
|
Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course. Nat Immunol 2023; 24:604-611. [PMID: 36879067 PMCID: PMC10063443 DOI: 10.1038/s41590-023-01445-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/27/2023] [Indexed: 03/08/2023]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 associates with diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse coronavirus disease 2019 (COVID-19) outcomes. Here we discovered that antibodies against specific chemokines were omnipresent post-COVID-19, were associated with favorable disease outcome and negatively correlated with the development of long COVID at 1 yr post-infection. Chemokine antibodies were also present in HIV-1 infection and autoimmune disorders, but they targeted different chemokines compared with COVID-19. Monoclonal antibodies derived from COVID-19 convalescents that bound to the chemokine N-loop impaired cell migration. Given the role of chemokines in orchestrating immune cell trafficking, naturally arising chemokine antibodies may modulate the inflammatory response and thus bear therapeutic potential.
Collapse
|
11
|
Dragan P, Merski M, Wiśniewski S, Sanmukh SG, Latek D. Chemokine Receptors-Structure-Based Virtual Screening Assisted by Machine Learning. Pharmaceutics 2023; 15:pharmaceutics15020516. [PMID: 36839838 PMCID: PMC9965785 DOI: 10.3390/pharmaceutics15020516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Chemokines modulate the immune response by regulating the migration of immune cells. They are also known to participate in such processes as cell-cell adhesion, allograft rejection, and angiogenesis. Chemokines interact with two different subfamilies of G protein-coupled receptors: conventional chemokine receptors and atypical chemokine receptors. Here, we focused on the former one which has been linked to many inflammatory diseases, including: multiple sclerosis, asthma, nephritis, and rheumatoid arthritis. Available crystal and cryo-EM structures and homology models of six chemokine receptors (CCR1 to CCR6) were described and tested in terms of their usefulness in structure-based drug design. As a result of structure-based virtual screening for CCR2 and CCR3, several new active compounds were proposed. Known inhibitors of CCR1 to CCR6, acquired from ChEMBL, were used as training sets for two machine learning algorithms in ligand-based drug design. Performance of LightGBM was compared with a sequential Keras/TensorFlow model of neural network for these diverse datasets. A combination of structure-based virtual screening with machine learning allowed to propose several active ligands for CCR2 and CCR3 with two distinct compounds predicted as CCR3 actives by all three tested methods: Glide, Keras/TensorFlow NN, and LightGBM. In addition, the performance of these three methods in the prediction of the CCR2/CCR3 receptor subtype selectivity was assessed.
Collapse
|
12
|
Sinha S, Sparks HD, Labit E, Robbins HN, Gowing K, Jaffer A, Kutluberk E, Arora R, Raredon MSB, Cao L, Swanson S, Jiang P, Hee O, Pope H, Workentine M, Todkar K, Sharma N, Bharadia S, Chockalingam K, de Almeida LGN, Adam M, Niklason L, Potter SS, Seifert AW, Dufour A, Gabriel V, Rosin NL, Stewart R, Muench G, McCorkell R, Matyas J, Biernaskie J. Fibroblast inflammatory priming determines regenerative versus fibrotic skin repair in reindeer. Cell 2022; 185:4717-4736.e25. [PMID: 36493752 PMCID: PMC9888357 DOI: 10.1016/j.cell.2022.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 08/24/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022]
Abstract
Adult mammalian skin wounds heal by forming fibrotic scars. We report that full-thickness injuries of reindeer antler skin (velvet) regenerate, whereas back skin forms fibrotic scar. Single-cell multi-omics reveal that uninjured velvet fibroblasts resemble human fetal fibroblasts, whereas back skin fibroblasts express inflammatory mediators mimicking pro-fibrotic adult human and rodent fibroblasts. Consequently, injury elicits site-specific immune responses: back skin fibroblasts amplify myeloid infiltration and maturation during repair, whereas velvet fibroblasts adopt an immunosuppressive phenotype that restricts leukocyte recruitment and hastens immune resolution. Ectopic transplantation of velvet to scar-forming back skin is initially regenerative, but progressively transitions to a fibrotic phenotype akin to the scarless fetal-to-scar-forming transition reported in humans. Skin regeneration is diminished by intensifying, or enhanced by neutralizing, these pathologic fibroblast-immune interactions. Reindeer represent a powerful comparative model for interrogating divergent wound healing outcomes, and our results nominate decoupling of fibroblast-immune interactions as a promising approach to mitigate scar.
Collapse
Affiliation(s)
- Sarthak Sinha
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Holly D Sparks
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Elodie Labit
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Hayley N Robbins
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Kevin Gowing
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Arzina Jaffer
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Eren Kutluberk
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Rohit Arora
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics, Yale University, New Haven, CT, USA
| | - Leslie Cao
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Peng Jiang
- Morgridge Institute for Research, Madison, WI, USA
| | - Olivia Hee
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Hannah Pope
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Matt Workentine
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Kiran Todkar
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nilesh Sharma
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Shyla Bharadia
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Luiz G N de Almeida
- McCaig Institute, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Laura Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics, Yale University, New Haven, CT, USA
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Antoine Dufour
- McCaig Institute, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Vincent Gabriel
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; McCaig Institute, University of Calgary, Calgary, AB, Canada; Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Nicole L Rosin
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI, USA
| | - Greg Muench
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert McCorkell
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - John Matyas
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada; McCaig Institute, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada; Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Hotchkiss Brain Institute, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada.
| |
Collapse
|
13
|
Muri J, Cecchinato V, Cavalli A, Shanbhag AA, Matkovic M, Biggiogero M, Maida PA, Moritz J, Toscano C, Ghovehoud E, Furlan R, Barbic F, Voza A, Nadai GD, Cervia C, Zurbuchen Y, Taeschler P, Murray LA, Danelon-Sargenti G, Moro S, Gong T, Piffaretti P, Bianchini F, Crivelli V, Podešvová L, Pedotti M, Jarrossay D, Sgrignani J, Thelen S, Uhr M, Bernasconi E, Rauch A, Manzo A, Ciurea A, Rocchi MB, Varani L, Moser B, Bottazzi B, Thelen M, Fallon BA, Boyman O, Mantovani A, Garzoni C, Franzetti-Pellanda A, Uguccioni M, Robbiani DF. Anti-chemokine antibodies after SARS-CoV-2 infection correlate with favorable disease course. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.05.23.493121. [PMID: 35664993 PMCID: PMC9164443 DOI: 10.1101/2022.05.23.493121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Infection by SARS-CoV-2 leads to diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse COVID-19 outcomes. Instead, we discovered that antibodies against specific chemokines are omnipresent after COVID-19, associated with favorable disease, and predictive of lack of long COVID symptoms at one year post infection. Anti-chemokine antibodies are present also in HIV-1 infection and autoimmune disorders, but they target different chemokines than those in COVID-19. Monoclonal antibodies derived from COVID- 19 convalescents that bind to the chemokine N-loop impair cell migration. Given the role of chemokines in orchestrating immune cell trafficking, naturally arising anti-chemokine antibodies associated with favorable COVID-19 may be beneficial by modulating the inflammatory response and thus bear therapeutic potential. One-Sentence Summary Naturally arising anti-chemokine antibodies associate with favorable COVID-19 and predict lack of long COVID.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Valentina Cecchinato
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
- Swiss Institute of Bioinformatics; Lausanne, Switzerland
| | - Akanksha A. Shanbhag
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Milos Matkovic
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Maira Biggiogero
- Clinical Research Unit, Clinica Luganese Moncucco; Lugano, Switzerland
| | - Pier Andrea Maida
- Clinical Research Unit, Clinica Luganese Moncucco; Lugano, Switzerland
| | - Jacques Moritz
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Chiara Toscano
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Elaheh Ghovehoud
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Raffaello Furlan
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
- Internal Medicine, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Franca Barbic
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
- Internal Medicine, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Antonio Voza
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
- Department of Emergency, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Guendalina De Nadai
- Emergency Medicine Residency School, Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4 - 20090 Pieve Emanuele, Milan, Italy
| | - Carlo Cervia
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yves Zurbuchen
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Patrick Taeschler
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lilly A. Murray
- Lyme & Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, New York, NY, USA
| | | | - Simone Moro
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Tao Gong
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Pietro Piffaretti
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Filippo Bianchini
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Virginia Crivelli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Lucie Podešvová
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Sylvia Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | | | - Enos Bernasconi
- Regional Hospital Lugano, Ente Ospedaliero Cantonale; Lugano, Switzerland
- Università della Svizzera italiana; Lugano, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern; Bern, Switzerland
| | - Antonio Manzo
- Rheumatology and Translational Immunology Research Laboratories (LaRIT), Division of Rheumatology, IRCCS Policlinico San Matteo Foundation, University of Pavia; Pavia, Italy
| | - Adrian Ciurea
- Department of Rheumatology, Zurich University Hospital, University of Zurich; Zurich, Switzerland
| | - Marco B.L. Rocchi
- Department of Biomolecular Sciences, Biostatistics Unit, University of Urbino; Urbino, Italy
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Bernhard Moser
- Division of Infection & Immunity, Henry Wellcome Building, Cardiff University School of Medicine; Cardiff, United Kingdom
| | - Barbara Bottazzi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Brian A. Fallon
- Lyme & Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, New York, NY, USA
- Lyme Research Program at the New York State Psychiatric Institute, New York, NY, USA
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Faculty of Medicine and Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Christian Garzoni
- Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco; Lugano, Switzerland
| | | | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
| | - Davide F. Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| |
Collapse
|
14
|
Role of Chemokines in the Development and Progression of Alzheimer's Disease. J Mol Neurosci 2022; 72:1929-1951. [PMID: 35821178 PMCID: PMC9392685 DOI: 10.1007/s12031-022-02047-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurogenerative disorder manifested by gradual memory loss and cognitive decline due to profound damage of cholinergic neurons. The neuropathological hallmarks of AD are intracellular deposits of neurofibrillary tangles (NFTs) and extracellular aggregates of amyloid β (Aβ). Mounting evidence indicates that intensified neuroinflammatory processes play a pivotal role in the pathogenesis of AD. Chemokines serve as signaling molecules in immune cells but also in nerve cells. Under normal conditions, neuroinflammation plays a neuroprotective role against various harmful factors. However, overexpression of chemokines initiates disruption of the integrity of the blood–brain barrier, facilitating immune cells infiltration into the brain. Then activated adjacent glial cells–astrocytes and microglia, release massive amounts of chemokines. Prolonged inflammation loses its protective role and drives an increase in Aβ production and aggregation, impairment of its clearance, or enhancement of tau hyperphosphorylation, contributing to neuronal loss and exacerbation of AD. Moreover, chemokines can be further released in response to growing deposits of toxic forms of Aβ. On the other hand, chemokines seem to exert multidimensional effects on brain functioning, including regulation of neurogenesis and synaptic plasticity in regions responsible for memory and cognitive abilities. Therefore, underexpression or complete genetic ablation of some chemokines can worsen the course of AD. This review covers the current state of knowledge on the role of particular chemokines and their receptors in the development and progression of AD. Special emphasis is given to their impact on forming Aβ and NFTs in humans and in transgenic murine models of AD.
Collapse
|
15
|
Wang L, Jiang J, Chen Y, Jia Q, Chu Q. The roles of CC chemokines in response to radiation. Radiat Oncol 2022; 17:63. [PMID: 35365161 PMCID: PMC8974090 DOI: 10.1186/s13014-022-02038-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/20/2022] [Indexed: 01/21/2023] Open
Abstract
Radiotherapy is an effective regimen for cancer treatment alone or combined with chemotherapy or immunotherapy. The direct effect of radiotherapy involves radiation-induced DNA damage, and most studies have focused on this area to improve the efficacy of radiotherapy. Recently, the immunomodulatory effect of radiation on the tumour microenvironment has attracted much interest. Dying tumour cells can release multiple immune-related molecules, including tumour-associated antigens, chemokines, and inflammatory mediators. Then, immune cells are attracted to the irradiated site, exerting immunostimulatory or immunosuppressive effects. CC chemokines play pivotal roles in the trafficking process. The CC chemokine family includes 28 members that attract different immune subsets. Upon irradiation, tumour cells or immune cells can release different CC chemokines. Here, we mainly discuss the importance of CCL2, CCL3, CCL5, CCL8, CCL11, CCL20 and CCL22 in radiotherapy. In irradiated normal tissues, released chemokines induce epithelial to mesenchymal transition, thus promoting tissue injury. In the tumour microenvironment, released chemokines recruit cancer-associated cells, such as tumour-infiltrating lymphocytes, myeloid-derived suppressor cells and tumour-associated macrophages, to the tumour niche. Thus, CC chemokines have protumour and antitumour properties. Based on the complex roles of CC chemokines in the response to radiation, it would be promising to target specific chemokines to alleviate radiation-induced injury or promote tumour control.
Collapse
|
16
|
Pharmacological Inhibition of CCR2 Signaling Exacerbates Exercise-Induced Inflammation Independently of Neutrophil Infiltration and Oxidative Stress. IMMUNO 2021. [DOI: 10.3390/immuno2010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Although exercise-induced humoral factors known as exerkines benefit systemic health, the role of most exerkines has not been investigated. Monocyte chemoattractant protein-1 (MCP-1) is a representative chemokine whose circulating concentrations increase after exercise, and it is one of the exerkines. MCP-1 is a ligand for CC chemokine receptor 2 (CCR2), which is expressed on monocytes, macrophages, and muscle cells. However, there is no information on the role of CCR2 signaling in exercise. Therefore, to investigate the research question, we administrated CCR2 antagonist or PBS to mice to inhibit CCR2 signaling before and after exercise. Our results showed that CCR2 signaling inhibition promoted exercise-induced macrophage infiltration and inflammation 24 h after exercise in muscle. CCR2 signaling inhibition also exacerbated exercise-induced inflammation immediately after exercise in muscle. However, neutrophil infiltration and oxidative stress had no contribution to exercise-induced inflammation by CCR2 signaling inhibition. CCR2 signaling inhibition also exacerbated exercise-induced inflammation immediately after exercise in kidney, liver, and adipose tissues. To summarize, pharmacological inhibition of CCR2 signaling exacerbated exercise-induced inflammation independently of neutrophil infiltration and oxidative stress.
Collapse
|
17
|
Wellemans V, Benhassou HA, Fuselier E, Bellesort F, Dury S, Lebargy F, Dormoy V, Fichel C, Naour RL, Gounni AS, Lamkhioued B. Role of CCR3 in respiratory syncytial virus infection of airway epithelial cells. iScience 2021; 24:103433. [PMID: 34917892 PMCID: PMC8646169 DOI: 10.1016/j.isci.2021.103433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 08/29/2021] [Accepted: 11/10/2021] [Indexed: 01/17/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection is the principal cause of severe lower respiratory tract disease and accounts for a significant risk for developing asthma later in life. Clinical studies have shown an increase in airway responsiveness and a concomitant Th2 response in the lungs of RSV-infected patients. These indications suggest that RSV may modulate aspects of the immune response to promote virus replication. Here, we show that CCR3 facilitates RSV infection of airway epithelial cells, an effect that was inhibited by eotaxin-1/CCL11 or upon CCR3 gene silencing. Mechanistically, cellular entry of RSV is mediated by binding of the viral G protein to CCR3 and selective chemotaxis of Th2 cells and eosinophils. In vivo, mice lacking CCR3 display a significant reduction in RSV infection, airway inflammation, and mucus production. Overall, RSV G protein-CCR3 interaction may participate in pulmonary infection and inflammation by enhancing eosinophils' recruitment and less potent antiviral Th2 cells. CCR3 mediates RSV infection of human airway epithelial cells Eotaxin-1 blocks RSV-G binding to CCR3 and significantly decreases RSV infection RSV-G secreted protein (sG) attracts human eosinophils and Th2 cells through CCR3 RSV infection of mice lacking CCR3 exhibited reduced inflammation and mucus secretion
Collapse
Affiliation(s)
| | - Hassan Ait Benhassou
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Eloise Fuselier
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Sandra Dury
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France.,Service des Maladies Respiratoires et Allergiques. Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - François Lebargy
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France.,Service des Maladies Respiratoires et Allergiques. Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Valérian Dormoy
- Inserm UMR-S 1250, Pathologies Pulmonaires et Plasticité Cellulaire (P3Cell). Université de Reims Champagne-Ardenne, Reims, France
| | - Caroline Fichel
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Richard Le Naour
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Abdelilah S Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Canada
| | - Bouchaib Lamkhioued
- Laboratoire d'Immunologie et de Biotechnologie, EA7509-IRMAIC, Pôle-Santé, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
18
|
Déry L, Charest G, Guérin B, Akbari M, Fortin D. Chemoattraction of Neoplastic Glial Cells with CXCL10, CCL2 and CCL11 as a Paradigm for a Promising Therapeutic Approach for Primary Brain Tumors. Int J Mol Sci 2021; 22:ijms222212150. [PMID: 34830041 PMCID: PMC8626037 DOI: 10.3390/ijms222212150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022] Open
Abstract
Chemoattraction is a normal and essential process, but it can also be involved in tumorigenesis. This phenomenon plays a key role in glioblastoma (GBM). The GBM tumor cells are extremely difficult to eradicate, due to their strong capacity to migrate into the brain parenchyma. Consequently, a complete resection of the tumor is rarely a possibility, and recurrence is inevitable. To overcome this problem, we proposed to exploit this behavior by using three chemoattractants: CXCL10, CCL2 and CCL11, released by a biodegradable hydrogel (GlioGel) to produce a migration of tumor cells toward a therapeutic trap. To investigate this hypothesis, the agarose drop assay was used to test the chemoattraction capacity of these three chemokines on murine F98 and human U87MG cell lines. We then studied the potency of this approach in vivo in the well-established syngeneic F98-Fischer glioma-bearing rat model using GlioGel containing different mixtures of the chemoattractants. In vitro assays resulted in an invasive cell rate 2-fold higher when chemokines were present in the environment. In vivo experiments demonstrated the capacity of these specific chemoattractants to strongly attract neoplastic glioblastoma cells. The use of this strong locomotion ability to our end is a promising avenue in the establishment of a new therapeutic approach in the treatment of primary brain tumors.
Collapse
Affiliation(s)
- Laurence Déry
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Correspondence:
| | - Gabriel Charest
- Department of Surgery, Division of Neurosurgery, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (G.C.); (D.F.)
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Mohsen Akbari
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - David Fortin
- Department of Surgery, Division of Neurosurgery, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (G.C.); (D.F.)
| |
Collapse
|
19
|
Kurogoushi R, Hasegawa T, Akazawa Y, Iwata K, Sugimoto A, Yamaguchi-Ueda K, Miyazaki A, Narwidina A, Kawarabayashi K, Kitamura T, Nakagawa H, Iwasaki T, Iwamoto T. Fibroblast growth factor 2 suppresses the expression of C-C motif chemokine 11 through the c-Jun N-terminal kinase pathway in human dental pulp-derived mesenchymal stem cells. Exp Ther Med 2021; 22:1356. [PMID: 34659502 PMCID: PMC8515551 DOI: 10.3892/etm.2021.10791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
The regulation of the mesenchymal stem cell (MSC) programming mechanism promises great success in regenerative medicine. Tissue regeneration has been associated not only with the differentiation of MSCs, but also with the microenvironment of the stem cell niche that involves various cytokines and immune cells in the tissue regeneration site. In the present study, fibroblast growth factor 2 (FGF2), the principal growth factor for tooth development, dental pulp homeostasis and dentin repair, was reported to affect the expression of cytokines in human dental pulp-derived MSCs. FGF2 significantly inhibited the expression of chemokine C-C motif ligand 11 (CCL11) in a time- and dose-dependent manner in the SDP11 human dental pulp-derived MSC line. This inhibition was diminished following treatment with the AZD4547 FGF receptor (FGFR) inhibitor, indicating that FGF2 negatively regulated the expression of CCL11 in SDP11 cells. Furthermore, FGF2 activated the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinases (JNK) in SDP11 cells. The mechanism of the FGFR-downstream signaling pathway was then studied using the SB203580, U0126 and SP600125 inhibitors for p38 MAPK, ERK1/2, and JNK, respectively. Interestingly, only treatment with SP600125 blocked the FGF2-mediated suppression of CCL11. The present results suggested that FGF2 regulated the expression of cytokines and suppressed the expression of CCL11 via the JNK signaling pathway in human dental pulp-derived MSCs. The present findings could provide important insights into the association of FGF2 and CCL11 in dental tissue regeneration therapy.
Collapse
Affiliation(s)
- Rika Kurogoushi
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan.,Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Tomokazu Hasegawa
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Yuki Akazawa
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Kokoro Iwata
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Asuna Sugimoto
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Kimiko Yamaguchi-Ueda
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Aya Miyazaki
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Anrizandy Narwidina
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Keita Kawarabayashi
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Takamasa Kitamura
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Hiroshi Nakagawa
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Tomonori Iwasaki
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| |
Collapse
|
20
|
Jacobs I, Ceulemans M, Wauters L, Breynaert C, Vermeire S, Verstockt B, Vanuytsel T. Role of Eosinophils in Intestinal Inflammation and Fibrosis in Inflammatory Bowel Disease: An Overlooked Villain? Front Immunol 2021; 12:754413. [PMID: 34737752 PMCID: PMC8560962 DOI: 10.3389/fimmu.2021.754413] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Eosinophils are leukocytes which reside in the gastrointestinal tract under homeostatic conditions, except for the esophagus which is normally devoid of eosinophils. Research on eosinophils has primarily focused on anti-helminth responses and type 2 immune disorders. In contrast, the search for a role of eosinophils in chronic intestinal inflammation and fibrosis has been limited. With a shift in research focus from adaptive to innate immunity and the fact that the eosinophilic granules are filled with inflammatory mediators, eosinophils are becoming a point of interest in inflammatory bowel diseases. In the current review we summarize eosinophil characteristics and recruitment as well as the current knowledge on presence, inflammatory and pro-fibrotic functions of eosinophils in inflammatory bowel disease and other chronic inflammatory conditions, and we identify research gaps which should be covered in the future.
Collapse
Affiliation(s)
- Inge Jacobs
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Matthias Ceulemans
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lucas Wauters
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Christine Breynaert
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of General Internal Medicine, Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Bram Verstockt
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Ghafouri-Fard S, Shahir M, Taheri M, Salimi A. A review on the role of chemokines in the pathogenesis of systemic lupus erythematosus. Cytokine 2021; 146:155640. [PMID: 34252872 DOI: 10.1016/j.cyto.2021.155640] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
Chemokines are a group of cytokines with low molecular weight that principally direct chemotaxis of target cells. They have prominent roles in the pathogenesis systemic lupus erythematosus (SLE) and related complications particularly lupus nephritis. These molecules not only induce autoimmune responses in the organs of patients, but also can amplify the induced inflammatory responses. Although chemokine family has at least 46 identified members, the role of a number of these molecules have been more clarified in SLE patients or animal models of this disorder. In the current paper, we review the role of CCL2, CCL3, CCL4, CCL11, CCL20, CXCL1, CXCL2, CXCL8, CXCL10, CXCL12 and CXCL13 in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehri Shahir
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Salimi
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Fettrelet T, Gigon L, Karaulov A, Yousefi S, Simon HU. The Enigma of Eosinophil Degranulation. Int J Mol Sci 2021; 22:ijms22137091. [PMID: 34209362 PMCID: PMC8268949 DOI: 10.3390/ijms22137091] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Eosinophils are specialized white blood cells, which are involved in the pathology of diverse allergic and nonallergic inflammatory diseases. Eosinophils are traditionally known as cytotoxic effector cells but have been suggested to additionally play a role in immunomodulation and maintenance of homeostasis. The exact role of these granule-containing leukocytes in health and diseases is still a matter of debate. Degranulation is one of the key effector functions of eosinophils in response to diverse stimuli. The different degranulation patterns occurring in eosinophils (piecemeal degranulation, exocytosis and cytolysis) have been extensively studied in the last few years. However, the exact mechanism of the diverse degranulation types remains unknown and is still under investigation. In this review, we focus on recent findings and highlight the diversity of stimulation and methods used to evaluate eosinophil degranulation.
Collapse
Affiliation(s)
- Timothée Fettrelet
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Lea Gigon
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, 119991 Moscow, Russia;
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
- Department of Clinical Immunology and Allergology, Sechenov University, 119991 Moscow, Russia;
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420012 Kazan, Russia
- Institute of Biochemistry, Medical School Brandenburg, D-16816 Neuruppin, Germany
- Correspondence: ; Tel.: +41-31-632-3281
| |
Collapse
|
23
|
Sun Y, Pan D, Kang K, Sun MJ, Li YL, Sang LX, Chang B. Eosinophilic pancreatitis: a review of the pathophysiology, diagnosis, and treatment. Gastroenterol Rep (Oxf) 2021; 9:115-124. [PMID: 34026218 PMCID: PMC8128011 DOI: 10.1093/gastro/goaa087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/24/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022] Open
Abstract
Eosinophilic pancreatitis (EP) is an extremely rare disease caused by purely eosinophilic infiltration of the pancreas. EP is prone to being misdiagnosed as pancreatic cancer, causing unnecessary economic and physical harm to the patient. We report three cases of EP that were cured by steroids without relapse from 2017 to now. The clinical data of the three patients, including clinical manifestations, serological manifestations, imaging (ultrasound, computed tomography, and MRI), pathological diagnosis and treatment, and telephone follow-up of all patients, were retrospectively analysed. In addition, a literature search was conducted on the Web of Science and PubMed databases using key terms related to EP, considering case reports with no restrictions on the date of publication or language. In conclusion, we analysed 19 cases and determined the diagnostic criteria for EP. The diagnostic algorithm for EP can be used to diagnose EP easily. We hope that our standards and algorithm can reduce the rate of misdiagnosis and contribute to clinical diagnosis and treatment. In addition, we expect to evaluate more EP cases to test our diagnostic criteria and design a systematic diagnostic flow chart.
Collapse
Affiliation(s)
- Yue Sun
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, P. R. China
| | - Dan Pan
- Department of Geriatrics, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, P. R. China
| | - Kai Kang
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, P. R. China
| | - Ming-Jun Sun
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, P. R. China
| | - Yi-Ling Li
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, P. R. China
| | - Li-Xuan Sang
- Department of Geriatrics, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, P. R. China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, P. R. China
| |
Collapse
|
24
|
Kim DA, Park SJ, Lee JY, Kim JH, Lee S, Lee E, Jang IY, Jung HW, Park JH, Kim BJ. Effect of CCL11 on In Vitro Myogenesis and Its Clinical Relevance for Sarcopenia in Older Adults. Endocrinol Metab (Seoul) 2021; 36:455-465. [PMID: 33849248 PMCID: PMC8090464 DOI: 10.3803/enm.2020.942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The C-C motif chemokine ligand 11 (CCL11) has been receiving attention as a potential pro-aging factor. Accordingly, it may be involved in muscle metabolism and sarcopenia, a key component of aging phenotypes. To clarify this potential, we investigated the effects of CCL11 on in vitro muscle biology and its clinical relevance for sarcopenia parameters in older adults. METHODS Myogenesis was induced in mouse C2C12 myoblasts with 2% horse serum. Human blood samples were collected from 79 participants who underwent a functional assessment. Thereafter, CCL11 level was measured using a quantikine ELISA kit. Sarcopenia was defined using the Asian-specific guideline. RESULTS Recombinant CCL11 treatment significantly stimulated myogenesis in a dose-dependent manner, and consistently increased the expression of myogenic differentiation markers. Among the C-C chemokine receptors (CCRs), CCR5, not CCR2 and CCR3, was predominantly expressed in muscle cells. Further, the CCR5 inhibitor blocked recombinant CCL11-stimulated myogenesis. In a clinical study, serum CCL11 level was not significantly different according to the status of sarcopenia, low muscle mass, weak muscle strength, and poor physical performance, and was not associated with skeletal muscle index, grip strength, short physical performance battery score, gait speed, and time to complete 5 chair stands, after adjusting for sex, age, and body mass index. CONCLUSION Contrary to expectations, CCL11 exerted beneficial effects on muscle metabolism at least in vitro system. However, its impact on human muscle health was not evident, suggesting that circulating CCL11 may not be a useful biomarker for sarcopenia risk assessment in older adults.
Collapse
Affiliation(s)
- Da Ae Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - So Jeong Park
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Jin Young Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Jeoung Hee Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Seungjoo Lee
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Eunju Lee
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Il-Young Jang
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Hee-Won Jung
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Jin Hoon Park
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Beom-Jun Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| |
Collapse
|
25
|
From Allergy to Cancer-Clinical Usefulness of Eotaxins. Cancers (Basel) 2021; 13:cancers13010128. [PMID: 33401527 PMCID: PMC7795139 DOI: 10.3390/cancers13010128] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Eotaxins are small proteins included in the group of chemokines. They act mainly on blood cells called eosinophils which are involved in the pathogenesis of inflammatory processes. This connection leads to involvement of eotaxins in the pathogenesis of all inflammatory related diseases, such as allergic diseases and cancer. This paper summarizes the current knowledge about eotaxins, showing their usefulness as markers that can be used not only in the detection of these diseases, but also to determine the effectiveness of treatment. Abstract Eotaxins are proteins which belong to the group of cytokines. These small molecules are secreted by cells that are mainly involved in immune-mediated reactions in the course of allergic diseases. Eotaxins were discovered in 1994 and their main role was considered to be the selective recruitment of eosinophils. As those blood cells are involved in the course of all inflammatory diseases, including cancer, we decided to perform an extensive search of the literature pertaining to our investigation via the MEDLINE/PubMed database. On the basis of available literature, we can assume that eotaxins can be used as markers for the detection and determination of origin or type of allergic disease. Many publications also confirm that eotaxins can be used in the determination of allergic disease treatment. Moreover, there are also studies indicating a connection between eotaxins and cancer. Some researchers revealed that CCL11 (C-C motif chemokine ligand 11, eotaxin-1) concentrations differed between the control and tested groups indicating their possible usefulness in cancer detection. Furthermore, some papers showed usefulness of eotaxins in determining the treatment efficacy as markers of decreasing inflammation. Therefore, in this paper we present the current knowledge on eotaxins in the course of allergic and cancerous diseases.
Collapse
|
26
|
CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of the Ligands of Receptors CCR1, CCR2, CCR3, and CCR4. Int J Mol Sci 2020; 21:ijms21218412. [PMID: 33182504 PMCID: PMC7665155 DOI: 10.3390/ijms21218412] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
CC chemokines, a subfamily of 27 chemotactic cytokines, are a component of intercellular communication, which is crucial for the functioning of the tumor microenvironment. Although many individual chemokines have been well researched, there has been no comprehensive review presenting the role of all known human CC chemokines in the hallmarks of cancer, and this paper aims at filling this gap. The first part of this review discusses the importance of CCL1, CCL3, CCL4, CCL5, CCL18, CCL19, CCL20, CCL21, CCL25, CCL27, and CCL28 in cancer. Here, we discuss the significance of CCL2 (MCP-1), CCL7, CCL8, CCL11, CCL13, CCL14, CCL15, CCL16, CCL17, CCL22, CCL23, CCL24, and CCL26. The presentation of each chemokine includes its physiological function and then the role in tumor, including proliferation, drug resistance, migration, invasion, and organ-specific metastasis of tumor cells, as well as the effects on angiogenesis and lymphangiogenesis. We also discuss the effects of each CC chemokine on the recruitment of cancer-associated cells to the tumor niche (eosinophils, myeloid-derived suppressor cells (MDSC), tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), regulatory T cells (Treg)). On the other hand, we also present the anti-cancer properties of CC chemokines, consisting in the recruitment of tumor-infiltrating lymphocytes (TIL).
Collapse
|
27
|
CCL-11 or Eotaxin-1: An Immune Marker for Ageing and Accelerated Ageing in Neuro-Psychiatric Disorders. Pharmaceuticals (Basel) 2020; 13:ph13090230. [PMID: 32887304 PMCID: PMC7558796 DOI: 10.3390/ph13090230] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Background: CCL-11 (eotaxin) is a chemokine with an important role in allergic conditions. Recent evidence indicates that CCL-11 plays a role in brain disorders as well. This paper reviews the associations between CCL-11 and aging, neurodegenerative, neuroinflammatory and neuropsychiatric disorders. Methods: Electronic databases were searched for original articles examining CCL-11 in neuropsychiatric disorders. Results: CCL-11 is rapidly transported from the blood to the brain through the blood-brain barrier. Age-related increases in CCL-11 are associated with cognitive impairments in executive functions and episodic and semantic memory, and therefore, this chemokine has been described as an “Endogenous Cognition Deteriorating Chemokine” (ECDC) or “Accelerated Brain-Aging Chemokine” (ABAC). In schizophrenia, increased CCL-11 is not only associated with impairments in cognitive functions, but also with key symptoms including formal thought disorders. Some patients with mood disorders and premenstrual syndrome show increased plasma CCL-11 levels. In diseases of old age, CCL-11 is associated with lowered neurogenesis and neurodegenerative processes, and as a consequence, increased CCL-11 increases risk towards Alzheimer’s disease. Polymorphisms in the CCL-11 gene are associated with stroke. Increased CCL-11 also plays a role in neuroinflammatory disease including multiple sclerosis. In animal models, neutralization of CCL-11 may protect against nigrostriatal neurodegeneration. Increased production of CCL-11 may be attenuated by glucocorticoids, minocycline, resveratrol and anti-CCL11 antibodies. Conclusions: Increased CCL-11 production during inflammatory conditions may play a role in human disease including age-related cognitive decline, schizophrenia, mood disorders and neurodegenerative disorders. Increased CCL-11 production is a new drug target in the treatment and prevention of those disorders.
Collapse
|
28
|
Zajkowska M, Mroczko B. Eotaxins and Their Receptor in Colorectal Cancer-A Literature Review. Cancers (Basel) 2020; 12:cancers12061383. [PMID: 32481530 PMCID: PMC7352276 DOI: 10.3390/cancers12061383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies in the world, with a global incidence of almost 2 million new cases every year. Despite the availability of many diagnostic tests, including laboratory tests and molecular diagnostics, an increasing number of new cases is observed. Thus, it is very important to search new markers that would show high diagnostic sensitivity and specificity in the detection of colorectal cancer in early stages of the disease. Eotaxins are proteins that belong to the cytokine group-small molecules with a variety of applications. Their main role is the activation of basophils and eosinophils involved in inflammatory processes. Therefore, we performed an extensive search of the literature pertaining to our investigation via the MEDLINE/PubMed database. On the basis of available literature, we can assume that eotaxins accumulate in cancer cells in the course of CRC. This leads to a decrease in the chemotaxis of eosinophils, which are effector immune cells with anti-tumor activity. This may explain a decrease in their number as a defense mechanism of cancer cells against their destruction and may be useful when attempting anti-tumor therapy with the use of chemokines.
Collapse
Affiliation(s)
- Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Correspondence: ; Tel.: +48-686-5168; Fax: +48-686-5169
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
29
|
Plundrich NJ, Smith AR, Borst LB, Snider DB, Käser T, Dellon ES, Blikslager AT, Odle J, Lila MA, Laster SM. Oesophageal eosinophilia accompanies food allergy to hen egg white protein in young pigs. Clin Exp Allergy 2020; 50:95-104. [PMID: 31702085 PMCID: PMC6930966 DOI: 10.1111/cea.13527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Esophagitis with eosinophilia, inflammation, and fibrosis represent a chronic condition in humans with food allergies. OBJECTIVE In this investigation, we asked whether esophagitis with an eosinophilic component is observed in young pigs rendered allergic to hen egg white protein (HEWP). METHODS Food allergy was induced in young pigs using two protocols. In one protocol, sensitized pigs were challenged by gavage with a single dose of HEWP. Clinical signs were monitored for 24 hours, and then, gastrointestinal (GI) tissues were collected for histological examination. The phenotype of circulating, ovalbumin (OVA)-specific T cells also was examined in HEWP challenged animals. In the second protocol, sensitized animals were fed HEWP for 28 days. Animals were then examined by endoscopy and gastrointestinal tissues collected for histological examination. RESULTS In pigs challenged by gavage with HEWP, clinical signs were noted in 5/6 pigs including diarrhoea, emesis, and skin rash. Clinical signs were not seen in any control group. Histological analysis revealed significant levels of oesophageal eosinophilic infiltration (P < .05) in 4/6 of these animals, with two also displaying eosinophilic infiltration in the stomach. Eosinophils were not increased in ileum or colon samples. Increased numbers of circulating, OVA-specific CD4+ T cells also were observed in pigs that received HEWP by gavage. In the group of animals fed HEWP, endoscopy revealed clinical signs of esophagitis including oedema, granularity, white spots, and furrowing, while histology revealed oedema, immune cell infiltration, and basal zone hyperplasia. CONCLUSIONS AND CLINICAL RELEVANCE Food allergy in the pig can be associated with esophagitis based on histological and endoscopic findings, including eosinophilic infiltration. The young pig may, therefore, be a useful large animal model for the study of eosinophilic esophagitis in humans.
Collapse
Affiliation(s)
- Nathalie J. Plundrich
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Andrew R. Smith
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Luke B. Borst
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Douglas B. Snider
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine and Translational Research Training Program, Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Tobias Käser
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Evan S. Dellon
- Center for Esophageal Diseases and Swallowing, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Anthony T. Blikslager
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Scott M. Laster
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
30
|
Takemura N, Kurashima Y, Mori Y, Okada K, Ogino T, Osawa H, Matsuno H, Aayam L, Kaneto S, Park EJ, Sato S, Matsunaga K, Tamura Y, Ouchi Y, Kumagai Y, Kobayashi D, Suzuki Y, Yoshioka Y, Nishimura J, Mori M, Ishii KJ, Rothenberg ME, Kiyono H, Akira S, Uematsu S. Eosinophil depletion suppresses radiation-induced small intestinal fibrosis. Sci Transl Med 2019; 10:10/429/eaan0333. [PMID: 29467297 DOI: 10.1126/scitranslmed.aan0333] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 10/05/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022]
Abstract
Radiation-induced intestinal fibrosis (RIF) is a serious complication after abdominal radiotherapy for pelvic tumor or peritoneal metastasis. Herein, we show that RIF is mediated by eosinophil interactions with α-smooth muscle actin-positive (α-SMA+) stromal cells. Abdominal irradiation caused RIF especially in the submucosa (SM) of the small intestine, which was associated with the excessive accumulation of eosinophils in both human and mouse. Eosinophil-deficient mice showed markedly ameliorated RIF, suggesting the importance of eosinophils. After abdominal irradiation, chronic crypt cell death caused elevation of extracellular adenosine triphosphate, which in turn activated expression of C-C motif chemokine 11 (CCL11) by pericryptal α-SMA+ cells in the SM to attract eosinophils in mice. Inhibition of C-C chemokine receptor 3 (CCR3) by genetic deficiency or neutralizing antibody (Ab) treatment suppressed eosinophil accumulation in the SM after irradiation in mice, suggesting a critical role of the CCL11/CCR3 axis in the eosinophil recruitment. Activated α-SMA+ cells also expressed granulocyte-macrophage colony-stimulating factor (GM-CSF) to activate eosinophils. Transforming growth factor-β1 from GM-CSF-stimulated eosinophils promoted collagen expression by α-SMA+ cells. In translational studies, treatment with a newly developed interleukin-5 receptor α-targeting Ab, analogous to the human agent benralizumab, depleted intestinal eosinophils and suppressed RIF in mice. Collectively, we identified eosinophils as a crucial factor in the pathogenesis of RIF and showed potential therapeutic strategies for RIF by targeting eosinophils.
Collapse
Affiliation(s)
- Naoki Takemura
- Department of Mucosal Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.,Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yosuke Kurashima
- Department of Mucosal Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.,Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Institute for Global Prominent Research, Chiba University, Chiba 260-8670, Japan.,Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.,Division of Clinical Vaccinology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yuki Mori
- Laboratory of Biofunctional Imaging, World Premier Institute (WPI) Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazuki Okada
- Immunology and Allergy R&D Unit, R&D Division, Kyowa Hakko Kirin Co. Ltd., 3-6-6 Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.,Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Obere Zahlbacher Strasse 67, Mainz 55131, Germany
| | - Hideki Osawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hirosih Matsuno
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Lamichhane Aayam
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Satoshi Kaneto
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Eun Jeong Park
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Department of Molecular Pathobiology and Cell Adhesion Biology, Basic Medical Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Shintaro Sato
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Mucosal Vaccine Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kouta Matsunaga
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yusuke Tamura
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yasuo Ouchi
- Department of Mucosal Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yutaro Kumagai
- Quantitative Immunology Research Unit, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Daichi Kobayashi
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yoshichika Yoshioka
- Laboratory of Biofunctional Imaging, World Premier Institute (WPI) Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation, 7-6-8 Asagi Saito, Ibaraki, Osaka 567-0085, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Mark E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Division of Clinical Vaccinology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Satoshi Uematsu
- Department of Mucosal Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. .,Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
31
|
Lechner J, Schulz T, von Baehr V. Immunohistological staining of unknown chemokine RANTES/CCL5 expression in jawbone marrow defects-osteoimmunology and disruption of bone remodeling in clinical case studies targeting on predictive preventive personalized medicine. EPMA J 2019; 10:351-364. [PMID: 31832111 PMCID: PMC6883018 DOI: 10.1007/s13167-019-00182-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
Background Fatty degenerative osteonecrosis in the medullary spaces of the jawbone (FDOJ) may be identified as a lesser known source of RANTES/CCL5 (R/C) overexpression. The chemokine R/C also interferes with bone metabolism leading to osteolysis in areas affected by FDOJ. Many dental surgeries require functioning repair mechanisms and these may be disrupted by R/C overexpression. Objective To clarify the way in which R/C expression from adipocytes in FDOJ causes a disturbance in osteogenesis and impacts on medullary stem cells by investigating the detection of R/C expression with immunochemical staining. Materials and methods We examined the tissue samples of 449 patients with FDOJ to assess the level of the chemokine R/C using bead-based Luminex® analysis. In six clinical case studies of FDOJ, we compared bone density, histological findings, R/C expression, and immunohistochemical staining. Results R/C is overexpressed by up to 30-fold in the 449 FDOJ cases when compared with healthy jawbone samples. The comparison of the six clinical cases consistently shows greatly reduced bone density, (i.e., osteolysis), but varies in terms of the level of agreement across the other three parameters. Discussion R/C from FDOJ sources may be implicated in several immune responses and considered a key pathogenetic pathway for increased adipogenesis rather than desirable osteogenesis. Adipocytes pathogenetically act via R/C expression in local FDOJ and systemically on the immune system. Conclusion R/C may be regarded as an important trigger for possible pathological developments in the fate of hematopoietic stem cells. FDOJ is not a rigidly uniform process but reflects changing stages of development. The absence of correlating findings should not be interpreted as a misdiagnosis. It seems appropriate to direct further research in the field of “maxillo–mandibular osteoimmunology” focusing on R/C overexpression in FDOJ areas. This may contribute to the development of personalized strategies in preventive medicine.
Collapse
Affiliation(s)
- Johann Lechner
- Clinic for Integrative Dentistry, Grünwalder Str. 10A, 81547 Munich, Germany
| | - Tilman Schulz
- Institute of Pathology, Klinikum Bayreuth, Preuschwitzer Sr. 101, 95410 Bayreuth, Germany
| | - Volker von Baehr
- Department of Immunology and Allergology, Institute for Medical Diagnostics in MVZ GbR, Nicolaistr. 22, 12247 Berlin, Germany
| |
Collapse
|
32
|
Shou J, Peng J, Zhao Z, Huang X, Li H, Li L, Gao X, Xing Y, Liu H. CCL26 and CCR3 are associated with the acute inflammatory response in the CNS in experimental autoimmune encephalomyelitis. J Neuroimmunol 2019; 333:576967. [DOI: 10.1016/j.jneuroim.2019.576967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022]
|
33
|
Farnsworth RH, Karnezis T, Maciburko SJ, Mueller SN, Stacker SA. The Interplay Between Lymphatic Vessels and Chemokines. Front Immunol 2019; 10:518. [PMID: 31105685 PMCID: PMC6499173 DOI: 10.3389/fimmu.2019.00518] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 12/21/2022] Open
Abstract
Chemokines are a family of small protein cytokines that act as chemoattractants to migrating cells, in particular those of the immune system. They are categorized functionally as either homeostatic, constitutively produced by tissues for basal levels of cell migration, or inflammatory, where they are generated in association with a pathological inflammatory response. While the extravasation of leukocytes via blood vessels is a key step in cells entering the tissues, the lymphatic vessels also serve as a conduit for cells that are recruited and localized through chemoattractant gradients. Furthermore, the growth and remodeling of lymphatic vessels in pathologies is influenced by chemokines and their receptors expressed by lymphatic endothelial cells (LECs) in and around the pathological tissue. In this review we summarize the diverse role played by specific chemokines and their receptors in shaping the interaction of lymphatic vessels, immune cells, and other pathological cell types in physiology and disease.
Collapse
Affiliation(s)
- Rae H Farnsworth
- Tumor Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Tara Karnezis
- Lymphatic and Regenerative Medicine Laboratory, O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Simon J Maciburko
- Lymphatic and Regenerative Medicine Laboratory, O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Melbourne, VIC, Australia
| | - Steven A Stacker
- Tumor Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
34
|
Cross-Species Analysis of Glycosaminoglycan Binding Proteins Reveals Some Animal Models Are "More Equal" than Others. Molecules 2019; 24:molecules24050924. [PMID: 30845788 PMCID: PMC6429508 DOI: 10.3390/molecules24050924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 12/22/2022] Open
Abstract
Glycosaminoglycan (GAG) mimetics are synthetic or semi-synthetic analogues of heparin or heparan sulfate, which are designed to interact with GAG binding sites on proteins. The preclinical stages of drug development rely on efficacy and toxicity assessment in animals and aim to apply these findings to clinical studies. However, such data may not always reflect the human situation possibly because the GAG binding site on the protein ligand in animals and humans could differ. Possible inter-species differences in the GAG-binding sites on antithrombin III, heparanase, and chemokines of the CCL and CXCL families were examined by sequence alignments, molecular modelling and assessment of surface electrostatic potentials to determine if one species of laboratory animal is likely to result in more clinically relevant data than another. For each protein, current understanding of GAG binding is reviewed from a protein structure and function perspective. This combinatorial analysis shows chemokine dimers and oligomers can present different GAG binding surfaces for the same target protein, whereas a cleft-like GAG binding site will differently influence the types of GAG structures that bind and the species preferable for preclinical work. Such analyses will allow an informed choice of animal(s) for preclinical studies of GAG mimetic drugs.
Collapse
|
35
|
Abstract
Allergic contact dermatitis (ACD) is a common skin disease that results in significant cost and morbidity. Despite its high prevalence, therapeutic options are limited. Allergic contact dermatitis is regulated primarily by T cells within the adaptive immune system, but also by natural killer and innate lymphoid cells within the innate immune system. The chemokine receptor system, consisting of chemokine peptides and chemokine G protein-coupled receptors, is a critical regulator of inflammatory processes such as ACD. Specific chemokine signaling pathways are selectively up-regulated in ACD, most prominently CXCR3 and its endogenous chemokines CXCL9, CXCL10, and CXCL11. Recent research demonstrates that these 3 chemokines are not redundant and indeed activate distinct intracellular signaling profiles such as those activated by heterotrimeric G proteins and β-arrestin adapter proteins. Such differential signaling provides an attractive therapeutic target for novel therapies for ACD and other inflammatory diseases.
Collapse
|
36
|
Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018; 285:2944-2971. [PMID: 29637711 PMCID: PMC6120486 DOI: 10.1111/febs.14466] [Citation(s) in RCA: 883] [Impact Index Per Article: 126.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The chemokines (or chemotactic cytokines) are a large family of small, secreted proteins that signal through cell surface G protein-coupled heptahelical chemokine receptors. They are best known for their ability to stimulate the migration of cells, most notably white blood cells (leukocytes). Consequently, chemokines play a central role in the development and homeostasis of the immune system, and are involved in all protective or destructive immune and inflammatory responses. Classically viewed as inducers of directed chemotactic migration, it is now clear that chemokines can stimulate a variety of other types of directed and undirected migratory behavior, such as haptotaxis, chemokinesis, and haptokinesis, in addition to inducing cell arrest or adhesion. However, chemokine receptors on leukocytes can do more than just direct migration, and these molecules can also be expressed on, and regulate the biology of, many nonleukocytic cell types. Chemokines are profoundly affected by post-translational modification, by interaction with the extracellular matrix (ECM), and by binding to heptahelical 'atypical' chemokine receptors that regulate chemokine localization and abundance. This guide gives a broad overview of the chemokine and chemokine receptor families; summarizes the complex physical interactions that occur in the chemokine network; and, using specific examples, discusses general principles of chemokine function, focusing particularly on their ability to direct leukocyte migration.
Collapse
Affiliation(s)
- Catherine E Hughes
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Robert J B Nibbs
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
37
|
Cecchinato V, Uguccioni M. Insight on the regulation of chemokine activities. J Leukoc Biol 2018; 104:295-300. [PMID: 29668065 DOI: 10.1002/jlb.3mr0118-014r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 01/06/2023] Open
Abstract
The activity of chemokines is regulated by several mechanisms that control the final cellular response. The present review discusses the complexity of the regulation of the chemokine system, and the novel findings describing how in persistent infections, the expression of chemokine receptors on the surface of T cells does not correlate with their homing potential. Thanks to the latest advances in our comprehension of the chemokine system, novel approaches targeting chemokines, chemokine receptors, or protein of their signaling pathway should be considered in order to achieve a personalized therapy.
Collapse
Affiliation(s)
- Valentina Cecchinato
- Laboratory of "Chemokines in Immunity", Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Mariagrazia Uguccioni
- Laboratory of "Chemokines in Immunity", Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
38
|
Ameti R, Melgrati S, Radice E, Cameroni E, Hub E, Thelen S, Rot A, Thelen M. Characterization of a chimeric chemokine as a specific ligand for ACKR3. J Leukoc Biol 2018; 104:391-400. [DOI: 10.1002/jlb.2ma1217-509r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Rafet Ameti
- Institute for Research in Biomedicine; Università della Svizzera italiana; Bellinzona Switzerland
- Graduate School for Cellular and Biomedical Sciences; University of Bern; Bern Switzerland
| | - Serena Melgrati
- Institute for Research in Biomedicine; Università della Svizzera italiana; Bellinzona Switzerland
- University of York; York United Kingdom
| | - Egle Radice
- Institute for Research in Biomedicine; Università della Svizzera italiana; Bellinzona Switzerland
- Graduate School for Cellular and Biomedical Sciences; University of Bern; Bern Switzerland
| | - Elisabetta Cameroni
- Institute for Research in Biomedicine; Università della Svizzera italiana; Bellinzona Switzerland
| | - Elin Hub
- The William Harvey Research Institute; Queen Mary University London; London United Kingdom
| | - Sylvia Thelen
- Institute for Research in Biomedicine; Università della Svizzera italiana; Bellinzona Switzerland
| | - Antal Rot
- The William Harvey Research Institute; Queen Mary University London; London United Kingdom
- Institute for Cardiovascular Prevention; Ludwig-Maximilians University (LMU); Munich Germany
| | - Marcus Thelen
- Institute for Research in Biomedicine; Università della Svizzera italiana; Bellinzona Switzerland
| |
Collapse
|
39
|
Gauvreau GM, FitzGerald JM, Boulet LP, Watson RM, Hui L, Villineuve H, Scime TX, Schlatman AR, Obminski C, Kum J, Boehme S, Ly TW, Bacon KB, O'Byrne PM. The effects of a CCR3 inhibitor, AXP1275, on allergen-induced airway responses in adults with mild-to-moderate atopic asthma. Clin Exp Allergy 2018; 48:445-451. [PMID: 29423947 DOI: 10.1111/cea.13114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/08/2018] [Accepted: 01/28/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND CCR3 is the cognate receptor for major human eosinophil chemoattractants from the eotaxin family of proteins that are elevated in asthma and correlate with disease severity. OBJECTIVE This proof-of-mechanism study examined the effect of AXP1275, an oral, small-molecule inhibitor of CCR3, on airway responses to inhaled allergen challenge. METHODS Twenty-one subjects with mild atopic asthma and documented early and late asthmatic responses to an inhaled aeroallergen completed a randomized double-blind cross-over study to compare early and late allergen-induced asthmatic responses, methacholine PC20 , blood and sputum eosinophils and exhaled nitric oxide after 2 weeks of treatment with once-daily doses of AXP1275 (50 mg) or placebo. RESULTS There was a significant increase in methacholine PC20 after 12 days of AXP1275 treatment compared to placebo (increase of 0.92 doubling doses versus 0.17 doubling doses, P = .01), but this protection was lost post-allergen challenge. There was no effect of AXP1275 on allergen-induced late asthmatic responses, or eosinophils in blood and sputum. The early asthmatic response and exhaled nitric oxide levels were slightly lower with AXP1275, but this did not reach statistical significance. The number of subjects who experienced treatment-emergent adverse events while receiving AXP1275 was comparable placebo. CONCLUSIONS & CLINICAL RELEVANCE AXP1275 50 mg administered daily was safe and well tolerated, and there was no difference in the type, severity or frequency of treatment-emergent adverse events in subjects while receiving AXP1275 compared to placebo. AXP1275 increased the methacholine PC20 ; however, the low and variable exposure to APX1275 over a short treatment period may have contributed to poor efficacy on other outcomes.
Collapse
Affiliation(s)
| | | | - L P Boulet
- Institut Universitaire de Pneumologie et de Cardiologie de Québec, Québec, QC, Canada
| | - R M Watson
- McMaster University, Hamilton, ON, Canada
| | - L Hui
- University of British Columbia, Vancouver, BC, Canada
| | - H Villineuve
- Institut Universitaire de Pneumologie et de Cardiologie de Québec, Québec, QC, Canada
| | - T X Scime
- McMaster University, Hamilton, ON, Canada
| | | | - C Obminski
- McMaster University, Hamilton, ON, Canada
| | - J Kum
- University of British Columbia, Vancouver, BC, Canada
| | - S Boehme
- Axikin Pharmaceuticals Inc., San Diego, CA, USA
| | - T W Ly
- Axikin Pharmaceuticals Inc., San Diego, CA, USA
| | - K B Bacon
- Axikin Pharmaceuticals Inc., San Diego, CA, USA
| | | |
Collapse
|
40
|
Abstract
Chemokine signaling is essential for coordinated cell migration in health and disease to specifically govern cell positioning in space and time. Typically, chemokines signal through heptahelical, G protein-coupled receptors to orchestrate cell migration. Notably, chemokine receptors are highly dynamic structures and signaling efficiency largely depends on the discrete contact with the ligand. Promiscuity of both chemokines and chemokine receptors, combined with biased signaling and allosteric modulation of receptor activation, guarantees a tightly controlled recruitment and positioning of individual cells within the local environment at a given time. Here, we discuss recent insights in understanding chemokine gradient formation by atypical chemokine receptors and how typical chemokine receptors can transmit distinct signals to translate guidance cues into coordinated cell locomotion in space and time.
Collapse
Affiliation(s)
- Daniel F Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
41
|
Teixeira AL, Gama CS, Rocha NP, Teixeira MM. Revisiting the Role of Eotaxin-1/CCL11 in Psychiatric Disorders. Front Psychiatry 2018; 9:241. [PMID: 29962972 PMCID: PMC6010544 DOI: 10.3389/fpsyt.2018.00241] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/17/2018] [Indexed: 12/16/2022] Open
Abstract
Eotaxin-1/CCL11 is a chemokine originally implicated in the selective recruitment of eosinophils into inflammatory sites during allergic reactions, being thoroughly investigated in asthma, allergic rhinitis, and other eosinophil-related conditions. Eotaxin-1/CCL11 is also involved with a skewed immune response toward a type-2 (Th2) profile. In addition to its role in immune response, recent studies have shown that eotaxin-1/CCL11 is associated with aging, neurogenesis and neurodegeneration, being able to influence neural progenitor cells, and microglia. Increased circulating levels of eotaxin-1/CCL11 have been described in major psychiatric disorders (schizophrenia, bipolar disorder, major depression), sometimes correlating with the severity of psychopathological and cognitive parameters. As similar findings have been reported in neurodegenerative conditions such as Alzheimer's disease, it has been hypothesized that mechanisms involving eotaxin-1/CCL11 signaling may underlie the "accelerated aging" profile commonly linked to psychiatric disorders. Future studies must determine whether eotaxin-1/CCL11 can be regarded as a prognostic biomarker and/or as therapeutic target for resistant/progressive cases.
Collapse
Affiliation(s)
- Antonio L Teixeira
- Neuropsychiatry Program & Immuno-Psychiatry Lab, Department of Psychiatry & Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States.,Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Clarissa S Gama
- Molecular Psychiatry Laboratory, Hospital de Clínicas de Porto Alegre, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natalia P Rocha
- Neuropsychiatry Program & Immuno-Psychiatry Lab, Department of Psychiatry & Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States.,Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Neuropsychiatry Program & Immuno-Psychiatry Lab, Department of Psychiatry & Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
42
|
McCarthy MK, Davenport BJJ, Morrison TE. Chronic Chikungunya Virus Disease. Curr Top Microbiol Immunol 2018; 435:55-80. [DOI: 10.1007/82_2018_147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Hoff P, Gaber T, Strehl C, Schmidt-Bleek K, Lang A, Huscher D, Burmester GR, Schmidmaier G, Perka C, Duda GN, Buttgereit F. Immunological characterization of the early human fracture hematoma. Immunol Res 2017; 64:1195-1206. [PMID: 27629117 DOI: 10.1007/s12026-016-8868-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The initial inflammatory phase of fracture healing is of great importance for the clinical outcome. We aimed to develop a detailed time-dependent analysis of the initial fracture hematoma. We analyzed the composition of immune cell subpopulations by flow cytometry and the concentration of cytokines and chemokines by bioplex in 42 samples from human fractures of long bones <72 h post-trauma. The early human fracture hematoma is characterized by maturation of granulocytes and migration of monocytes/macrophages and hematopoietic stem cells. Both T helper cells and cytotoxic T cells proliferate within the fracture hematoma and/or migrate to the fracture site. Humoral immunity characteristics comprise high concentration of pro-inflammatory cytokines such as IL-6, IL-8, IFNγ and TNFα, but also elevated concentration of anti-inflammatory cytokines, e.g., IL-1 receptor antagonist and IL-10. Furthermore, we found that cells of the fracture hematoma represent a source for key chemokines. Even under the bioenergetically restricted conditions that exist in the initial fracture hematoma, immune cells are not only present, but also survive, mature, function and migrate. They secrete a cytokine/chemokine cocktail that contributes to the onset of regeneration. We hypothesize that this specific microenvironment of the initial fracture hematoma is among the crucial factors that determine fracture healing.
Collapse
Affiliation(s)
- Paula Hoff
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Charitéplatz 1, 10117, Berlin, Germany.
- German Arthritis Research Center (DRFZ), 10117, Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany.
| | - T Gaber
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Charitéplatz 1, 10117, Berlin, Germany
- German Arthritis Research Center (DRFZ), 10117, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany
| | - C Strehl
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Charitéplatz 1, 10117, Berlin, Germany
- German Arthritis Research Center (DRFZ), 10117, Berlin, Germany
| | - K Schmidt-Bleek
- Julius Wolff Institute, Charité University Hospital, 13353, Berlin, Germany
| | - A Lang
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Charitéplatz 1, 10117, Berlin, Germany
- German Arthritis Research Center (DRFZ), 10117, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), 13353, Berlin, Germany
| | - D Huscher
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Charitéplatz 1, 10117, Berlin, Germany
- German Arthritis Research Center (DRFZ), 10117, Berlin, Germany
| | - G R Burmester
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Charitéplatz 1, 10117, Berlin, Germany
- German Arthritis Research Center (DRFZ), 10117, Berlin, Germany
| | - G Schmidmaier
- Department of Orthopedics, University Hospital Heidelberg, 69118, Heidelberg, Germany
| | - C Perka
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany
- Center for Musculoskeletal Surgery, Charité University Hospital, 10117, Berlin, Germany
| | - G N Duda
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany
- Julius Wolff Institute, Charité University Hospital, 13353, Berlin, Germany
| | - F Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Charitéplatz 1, 10117, Berlin, Germany
- German Arthritis Research Center (DRFZ), 10117, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany
| |
Collapse
|
44
|
Marichal T, Mesnil C, Bureau F. Homeostatic Eosinophils: Characteristics and Functions. Front Med (Lausanne) 2017; 4:101. [PMID: 28744457 PMCID: PMC5504169 DOI: 10.3389/fmed.2017.00101] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/26/2017] [Indexed: 12/17/2022] Open
Abstract
Eosinophils are typically considered to be specialized effector cells that are recruited to the tissues as a result of T helper type 2 (Th2) cell responses associated with helminth infections or allergic diseases such as asthma. Once at the site of injury, eosinophils release their cytotoxic granule proteins as well as preformed cytokines and lipid mediators, contributing to parasite destruction but also to exacerbation of inflammation and tissue damage. Accumulating evidence indicates that, besides their roles in Th2 responses, eosinophils also regulate homeostatic processes at steady state, thereby challenging the exclusive paradigm of the eosinophil as a destructive and inflammatory cell. Indeed, under baseline conditions, eosinophils rapidly leave the bloodstream to enter tissues, mainly the gastrointestinal tract, lungs, adipose tissue, thymus, uterus, and mammary glands, where they regulate a variety of important biological functions, such as immunoregulation, control of glucose homeostasis, protection against obesity, regulation of mammary gland development, and preparation of the uterus for pregnancy. This article provides an overview of the characteristics and functions of these homeostatic eosinophils.
Collapse
Affiliation(s)
- Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium.,Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Claire Mesnil
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium.,Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium.,Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.,WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Wallonia, Belgium
| |
Collapse
|
45
|
Sindhu S, Akhter N, Arefanian H, Al-Roub AA, Ali S, Wilson A, Al-Hubail A, Al-Beloushi S, Al-Zanki S, Ahmad R. Increased circulatory levels of fractalkine (CX3CL1) are associated with inflammatory chemokines and cytokines in individuals with type-2 diabetes. J Diabetes Metab Disord 2017; 16:15. [PMID: 28396851 PMCID: PMC5379731 DOI: 10.1186/s40200-017-0297-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/26/2017] [Indexed: 12/12/2022]
Abstract
Background Fractalkine (CX3CL1) is involved in the development of numerous inflammatory conditions including metabolic diseases. However, changes in the circulatory fractalkine levels in type-2 diabetes (T2D) and their relationship with inflammatory chemokines/cytokines remain unclear. The aim of the study was to determine the T2D-associated modulations in plasma fractalkine levels and investigate their relationship with circulatory chemokines/cytokines. Methods A total of 47 plasma samples were collected from 23 T2D and 24 non-diabetic individuals selected over a wide range of body mass index (BMI). Clinical metabolic parameters were determined using standard commercial kits. Fractalkine and chemokines/cytokines were measured using Luminex X-MAP® technology. C-reactive protein (CRP) was measured by ELISA. The data were compared using unpaired t-test and the dependence between two variables was assessed by Pearson’s correlation coefficient (r). Results Plasma fractalkine levels were significantly higher (P = 0.005) in T2D patients (166 ± 14.22 pg/ml) as compared with non-diabetics (118 ± 8.90 pg/ml). In T2D patients, plasma fractalkine levels correlated positively (P ≤ 0.05) with inflammatory chemokines/cytokines including CCL3 (r = 0.52), CCL4 (r = 0.85), CCL11 (r = 0.51), CXCL1 (r = 0.67), G-CSF (r = 0.91), IFN-α2 (r = 0.97), IL-17A (r = 0.79), IL-1β (r = 0.97), IL-12P70 (r = 0.90), TNF-α (r = 0.58), and IL-6 (r = 0.60). In non-diabetic individuals, fractalkine levels correlated (P ≤ 0.05) with those of CCL4 (r = 0.49), IL-1β (r = 0.73), IL-12P70 (r = 0.41), and TNF-α (r = 0.50). Notably, plasma fractalkine levels in T2D patients associated with systemic inflammation (CRP) (r = 0.65, P = 0.02). Conclusions The altered plasma fractalkine levels associate differentially with inflammatory chemokines/cytokines in T2D patients which may have implications for T2D immunopathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s40200-017-0297-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sardar Sindhu
- Immunology Unit, P.O. Box 1180, Dasman, 15462 Kuwait ; Animal & Zebrafish Core Facility, Dasman Diabetes Institute (DDI), P.O. Box 1180, Dasman, 15462 Kuwait
| | - Nadeem Akhter
- Immunology Unit, P.O. Box 1180, Dasman, 15462 Kuwait
| | | | | | - Shamsha Ali
- Immunology Unit, P.O. Box 1180, Dasman, 15462 Kuwait
| | - Ajit Wilson
- Immunology Unit, P.O. Box 1180, Dasman, 15462 Kuwait
| | - Asma Al-Hubail
- Clinical Laboratory, P.O. Box 1180, Dasman, 15462 Kuwait
| | | | - Saad Al-Zanki
- Immunology Unit, P.O. Box 1180, Dasman, 15462 Kuwait
| | - Rasheed Ahmad
- Immunology Unit, P.O. Box 1180, Dasman, 15462 Kuwait
| |
Collapse
|
46
|
A Pronounced Inflammatory Activity Characterizes the Early Fracture Healing Phase in Immunologically Restricted Patients. Int J Mol Sci 2017; 18:ijms18030583. [PMID: 28282868 PMCID: PMC5372599 DOI: 10.3390/ijms18030583] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/02/2017] [Accepted: 03/05/2017] [Indexed: 01/10/2023] Open
Abstract
Immunologically restricted patients such as those with autoimmune diseases or malignancies often suffer from delayed or insufficient fracture healing. In human fracture hematomas and the surrounding bone marrow obtained from immunologically restricted patients, we analyzed the initial inflammatory phase on cellular and humoral level via flow cytometry and multiplex suspension array. Compared with controls, we demonstrated higher numbers of immune cells like monocytes/macrophages, natural killer T (NKT) cells, and activated T helper cells within the fracture hematomas and/or the surrounding bone marrow. Also, several pro-inflammatory cytokines such as Interleukin (IL)-6 and Tumor necrosis factor α (TNFα), chemokines (e.g., Eotaxin and RANTES), pro-angiogenic factors (e.g., IL-8 and Macrophage migration inhibitory factor: MIF), and regulatory cytokines (e.g., IL-10) were found at higher levels within the fracture hematomas and/or the surrounding bone marrow of immunologically restricted patients when compared to controls. We conclude here that the inflammatory activity on cellular and humoral levels at fracture sites of immunologically restricted patients considerably exceeds that of control patients. The initial inflammatory phase profoundly differs between these patient groups and is probably one of the reasons for prolonged or insufficient fracture healing often occurring within immunologically restricted patients.
Collapse
|
47
|
Stone MJ, Hayward JA, Huang C, E Huma Z, Sanchez J. Mechanisms of Regulation of the Chemokine-Receptor Network. Int J Mol Sci 2017; 18:E342. [PMID: 28178200 PMCID: PMC5343877 DOI: 10.3390/ijms18020342] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/18/2017] [Accepted: 01/26/2017] [Indexed: 12/18/2022] Open
Abstract
The interactions of chemokines with their G protein-coupled receptors promote the migration of leukocytes during normal immune function and as a key aspect of the inflammatory response to tissue injury or infection. This review summarizes the major cellular and biochemical mechanisms by which the interactions of chemokines with chemokine receptors are regulated, including: selective and competitive binding interactions; genetic polymorphisms; mRNA splice variation; variation of expression, degradation and localization; down-regulation by atypical (decoy) receptors; interactions with cell-surface glycosaminoglycans; post-translational modifications; oligomerization; alternative signaling responses; and binding to natural or pharmacological inhibitors.
Collapse
Affiliation(s)
- Martin J Stone
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Jenni A Hayward
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Cheng Huang
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Zil E Huma
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Julie Sanchez
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
48
|
Abstract
Chemokines are a family of small cytokines that share a typical key structure that is stabilized by disulfide bonds between the cysteine residues at the NH2-terminal of the protein, and they are secreted by a great variety of cells in several different conditions. Their function is directly dependent on their interactions with their receptors. Chemokines are involved in cell maturation and differentiation, infection, autoimmunity, cancer, and, in general, in any situation where immune components are involved. However, their role in postfracture inflammation and fracture healing is not yet well established. In this article, we will discuss the response of chemokines to bone fracture and their potential roles in postfracture inflammation and healing based on data from our studies and from other previously published studies.
Collapse
Affiliation(s)
- Bouchra Edderkaoui
- Musculoskeletal Disease Center, Loma Linda VA Health Care Systems, Loma Linda, CA, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- *Correspondence: Bouchra Edderkaoui,
| |
Collapse
|
49
|
Huber AK, Giles DA, Segal BM, Irani DN. An emerging role for eotaxins in neurodegenerative disease. Clin Immunol 2016; 189:29-33. [PMID: 27664933 DOI: 10.1016/j.clim.2016.09.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/07/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022]
Abstract
Eotaxins are C-C motif chemokines first identified as potent eosinophil chemoattractants. They facilitate eosinophil recruitment to sites of inflammation in response to parasitic infections as well as allergic and autoimmune diseases such as asthma, atopic dermatitis, and inflammatory bowel disease. The eotaxin family currently includes three members: eotaxin-1 (CCL11), eotaxin-2 (CCL24), and eotaxin-3 (CCL26). Despite having only ~30% sequence homology to one another, each was identified based on its ability to bind the chemokine receptor, CCR3. Beyond their role in innate immunity, recent studies have shown that CCL11 and related molecules may directly contribute to degenerative processes in the central nervous system (CNS). CCL11 levels increase in the plasma and cerebrospinal fluid of both mice and humans as part of normal aging. In mice, these increases are associated with declining neurogenesis and impaired cognition and memory. In humans, elevated plasma levels of CCL11 have been observed in Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and secondary progressive multiple sclerosis when compared to age-matched, healthy controls. Since CCL11 is capable of crossing the blood-brain barrier of normal mice, it is plausible that eotaxins generated in the periphery may exert physiological and pathological actions in the CNS. Here, we briefly review known functions of eotaxin family members during innate immunity, and then focus on whether and how these molecules might participate in the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda K Huber
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David A Giles
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Benjamin M Segal
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David N Irani
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
50
|
Perera SS, Wang B, Damian A, Dyer W, Zhou L, Conceicao V, Saksena NK. Retrospective Proteomic Analysis of Cellular Immune Responses and Protective Correlates of p24 Vaccination in an HIV Elite Controller Using Antibody Arrays. ACTA ACUST UNITED AC 2016; 5:microarrays5020014. [PMID: 27600080 PMCID: PMC5003490 DOI: 10.3390/microarrays5020014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 01/22/2023]
Abstract
Background: HIV p24 is an extracellular HIV antigen involved in viral replication. Falling p24 antibody responses are associated with clinical disease progression and their preservation with non-progressive disease. Stimulation of p24 antibody production by immunization to delay progression was the basis of discontinued p24 vaccine. We studied a therapy-naive HIV+ man from Sydney, Australia, infected in 1988. He received the HIV-p24-virus like particle (VLP) vaccine in 1993, and continues to show vigorous p24 antigen responses (>4% p24-specific CD4+ T cells), coupled with undetectable plasma viremia. We defined immune-protective correlates of p24 vaccination at the proteomic level through parallel retrospective analysis of cellular immune responses to p24 antigen in CD4+ and CD8+ T cells and CD14+ monocytes at viremic and aviremic phases using antibody-array. We found statistically significant coordinated up-regulation by all three cell-types with high fold-changes in fractalkine, ITAC, IGFBP-2, and MIP-1α in the aviremic phase. TECK and TRAIL-R4 were down-regulated in the viremic phase and up-regulated in the aviremic phase. The up-regulation of fractalkine in all three cell-types coincided with protective effect, whereas the dysfunction in anti-apoptotic chemokines with the loss of immune function. This study highlights the fact that induction of HIV-1-specific helper cells together with coordinated cellular immune response (p < 0.001) might be important in immunotherapeutic interventions and HIV vaccine development.
Collapse
Affiliation(s)
- Suneth S Perera
- Department of Medicine, University of Sydney, Sydney 2000, Australia.
| | - Bin Wang
- Department of Medicine, University of Sydney, Sydney 2000, Australia.
| | - Arturo Damian
- Department of Cytogenetics, Children's Hospital at Westmead, Sydney 2000, Australia.
| | - Wayne Dyer
- Australian Red Cross Blood Service, 17 O'Riordan Street, Alexandria NSW 2015 and School of Medical Sciences, (Faculty of Medicine) University of Sydney, Sydney 2000, Australia.
| | - Li Zhou
- Department of Medicine, University of Sydney, Sydney 2000, Australia.
| | - Viviane Conceicao
- Department of Medicine, University of Sydney, Sydney 2000, Australia.
| | - Nitin K Saksena
- Department of Medicine, University of Sydney, Sydney 2000, Australia.
| |
Collapse
|