1
|
Aishan N, Ju S, Zheng Z, Chen Y, Meng Q, He Q, Zhang J, Lang J, Xie B, Jin L, Shen J, Lu Y, Cai Y, Ji F, Cao F, Wang L. 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as potential diagnostic markers for breast cancer. Biomark Med 2025; 19:317-328. [PMID: 40135698 PMCID: PMC12051572 DOI: 10.1080/17520363.2025.2483156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/19/2025] [Indexed: 03/27/2025] Open
Abstract
AIMS Breast cancer is one of the most prevalent cancers among women, and early diagnosis is crucial in reducing the mortality rate. This study aims to identify novel, reliable, and specific biomarkers for breast cancer diagnosis using 5-Hydroxymethylcytosine (5hmC) signatures in circulating cell-free DNA (cfDNA). MATERIALS AND METHODS We utilized the sensitive 5hmC seal method to map 5hmC profiles in cfDNA samples from 203 breast cancer patients and 60 healthy individuals. Machine learning models were applied to identify 5hmC marker signatures with high sensitivity and specificity. RESULTS A global loss of 5hmC was observed in the blood samples from cancer patients compared to the control group. Several specific 5hmC marker signatures were identified, providing a basis for distinguishing between tumor and healthy individuals. CONCLUSIONS Our study offers a comprehensive understanding of genome-wide 5hmC in cfDNA from breast cancer patients, and identifies valuable epigenetic biomarkers for the minimally invasive diagnosis of breast cancer.
Collapse
Affiliation(s)
- Nadire Aishan
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Siwei Ju
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Zhongqiu Zheng
- Department of Thyroid and Breast Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingna Meng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qina He
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Jiahang Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Jiaheng Lang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Bojian Xie
- Department of Thyroid and Breast Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Lidan Jin
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Jun Shen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Yi Lu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Yangjun Cai
- Department of Thyroid and Breast Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Feiyang Ji
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Feilin Cao
- Department of Thyroid and Breast Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Wong J, Muralidhar R, Wang L, Huang CC. Epigenetic modifications of cfDNA in liquid biopsy for the cancer care continuum. Biomed J 2025; 48:100718. [PMID: 38522508 PMCID: PMC11745953 DOI: 10.1016/j.bj.2024.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
This review provides a comprehensive overview of the latest advancements in the clinical utility of liquid biopsy, with a particular focus on epigenetic approaches aimed at overcoming challenges in cancer diagnosis and treatment. It begins by elucidating key epigenetic terms, including methylomics, fragmentomics, and nucleosomics. The review progresses to discuss methods for analyzing circulating cell-free DNA (cfDNA) and highlights recent studies showcasing the clinical relevance of epigenetic modifications in areas such as diagnosis, drug treatment response, minimal residual disease (MRD) detection, and prognosis prediction. While acknowledging hurdles like the complexity of interpreting epigenetic data and the absence of standardization, the review charts a path forward. It advocates for the integration of multi-omic data through machine learning algorithms to refine predictive models and stresses the importance of collaboration among clinicians, researchers, and data scientists. Such cooperative efforts are essential to fully leverage the potential of epigenetic features in clinical practice.
Collapse
Affiliation(s)
- Jodie Wong
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rohit Muralidhar
- Nova Southeastern University, Kiran C. Patel College of Osteopathic Medicine, Davie, FL, USA
| | - Liang Wang
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Chiang-Ching Huang
- Zilber College of Public Health, University of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
3
|
Chen B, Wang D, Xu Y, Guo Q, Pan J, Yu S, Fang Y, Xiao S, Ruan Y, Yang S, Lin M, Hong J, Zhan Z, Lin S. 5-Hydroxymethylcytosines in circulating cell-free DNA as a diagnostic biomarker for nasopharyngeal carcinoma. Eur J Cancer 2024; 210:114294. [PMID: 39213787 DOI: 10.1016/j.ejca.2024.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To evaluate the diagnostic value of 5-hydroxymethylcytosines (5hmC) in circulating cell-free DNA (cfDNA) for nasopharyngeal carcinoma (NPC) and to develop a diagnostic model. METHODS Genome-wide 5hmC profiles in cfDNA from 174 NPC patients and 146 non-cancer individuals were analyzed using the 5hmC-Seal technique. A cfDNA 5hmC-based diagnostic model to identify NPC patients was developed using least absolute shrinkage and selection operator (LASSO) logistic regression, and performance was evaluated with receiver operating characteristic (ROC) curves and confusion matrices. RESULTS The 5hmC-Seal data from patients with NPC showed a different genome-wide distribution than non-tumor samples. Our initial analysis revealed a 12-gene-based 5hmC marker panel to be an accurate diagnostic model effectively distinguishing between NPC samples and non-cancerous samples (training set: area under curve (AUC)= 0.97 [95 % CI: 0.94-0.99]; and test set: AUC= 0.93 [95 % CI: 0.88-0.98]) superior to EBV DNA testing. The diagnostic score performed well in differentiating the non-cancer subjects from early-stage NPC (training set: AUC=0.99 [95 % CI: 0.98-1]; test set: AUC=0.98 [95 % CI: 0.95-1]), and advanced-stage NPC (training set: AUC=0.96 [95 % CI: 0.93-0.99]; test set: AUC=0.93 [95 % CI: 0.88-0.98]). Notably, in EBV-negative patients, the diagnostic scores showed excellent capacity for distinguishing EBV-negative patients with NPC from non-cancer subjects in both the training set (AUC= 0.94 [95 % CI: 0.88-1]) and test set (AUC=0.91 [95 % CI: 0.81-1]). CONCLUSION 5hmC modifications in cfDNA are promising noninvasive biomarkers for NPC, offering high sensitivity and specificity, particularly for early-stage and EBV-negative NPC.
Collapse
Affiliation(s)
- Bijuan Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Di Wang
- Department of Molecular Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Yun Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Qiaojuan Guo
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Jianji Pan
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Sisi Yu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Yunxiang Fang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Shuxiang Xiao
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Yuanyuan Ruan
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Shanshan Yang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Mingan Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| | - Zhouwei Zhan
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China.
| | - Shaojun Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China.
| |
Collapse
|
4
|
Li JJN, Liu G, Lok BH. Cell-Free DNA Hydroxymethylation in Cancer: Current and Emerging Detection Methods and Clinical Applications. Genes (Basel) 2024; 15:1160. [PMID: 39336751 PMCID: PMC11430939 DOI: 10.3390/genes15091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
In the era of precision oncology, identifying abnormal genetic and epigenetic alterations has transformed the way cancer is diagnosed, managed, and treated. 5-hydroxymethylcytosine (5hmC) is an emerging epigenetic modification formed through the oxidation of 5-methylcytosine (5mC) by ten-eleven translocase (TET) enzymes. DNA hydroxymethylation exhibits tissue- and cancer-specific patterns and is essential in DNA demethylation and gene regulation. Recent advancements in 5hmC detection methods and the discovery of 5hmC in cell-free DNA (cfDNA) have highlighted the potential for cell-free 5hmC as a cancer biomarker. This review explores the current and emerging techniques and applications of DNA hydroxymethylation in cancer, particularly in the context of cfDNA.
Collapse
Affiliation(s)
- Janice J N Li
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
| | - Geoffrey Liu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
5
|
Wang S, Mouliere F, Pegtel DM, Chamuleau MED. Turning the tide in aggressive lymphoma: liquid biopsy for risk-adapted treatment strategies. Trends Mol Med 2024; 30:660-672. [PMID: 38692937 DOI: 10.1016/j.molmed.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Diffuse large B cell lymphoma (DLBCL) exhibits significant biological and clinical heterogeneity that presents challenges for risk stratification and disease surveillance. Existing tools for risk stratification, including the international prognostic index (IPI), tissue molecular analyses, and imaging, have limited accuracy in predicting outcomes. The therapeutic landscape for aggressive lymphoma is rapidly evolving, and there is a pressing need to identify patients at risk of refractory or relapsed (R/R) disease in the context of personalized therapy. Liquid biopsy, a minimally invasive method for cancer signal detection, has been explored to address these challenges. We review advances in liquid biopsy strategies focusing on circulating nucleic acids in DLBCL patients and highlight their clinical potential. We also provide recommendations for biomarker-guided trials to support risk-adapted treatment modalities.
Collapse
Affiliation(s)
- Steven Wang
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands; Imaging and Biomarkers, Cancer Center Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - Florent Mouliere
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands; Imaging and Biomarkers, Cancer Center Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands; Cancer Research UK National Biomarker Centre, University of Manchester, Wilmslow Road, Manchester, UK
| | - D Michiel Pegtel
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands; Imaging and Biomarkers, Cancer Center Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - Martine E D Chamuleau
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands; Imaging and Biomarkers, Cancer Center Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Shao J, Xu Y, Olsen RJ, Kasparian S, Sun K, Mathur S, Zhang J, He C, Chen SH, Bernicker EH, Li Z. 5-Hydroxymethylcytosine in Cell-Free DNA Predicts Immunotherapy Response in Lung Cancer. Cells 2024; 13:715. [PMID: 38667328 PMCID: PMC11049556 DOI: 10.3390/cells13080715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) drastically improve therapeutic outcomes for lung cancer, but accurately predicting individual patient responses to ICIs remains a challenge. We performed the genome-wide profiling of 5-hydroxymethylcytosine (5hmC) in 85 plasma cell-free DNA (cfDNA) samples from lung cancer patients and developed a 5hmC signature that was significantly associated with progression-free survival (PFS). We built a 5hmC predictive model to quantify the 5hmC level and validated the model in the validation, test, and control sets. Low weighted predictive scores (wp-scores) were significantly associated with a longer PFS compared to high wp-scores in the validation [median 7.6 versus 1.8 months; p = 0.0012; hazard ratio (HR) 0.12; 95% confidence interval (CI), 0.03-0.54] and test (median 14.9 versus 3.3 months; p = 0.00074; HR 0.10; 95% CI, 0.02-0.50) sets. Objective response rates in patients with a low or high wp-score were 75.0% (95% CI, 42.8-94.5%) versus 0.0% (95% CI, 0.0-60.2%) in the validation set (p = 0.019) and 80.0% (95% CI, 44.4-97.5%) versus 0.0% (95% CI, 0.0-36.9%) in the test set (p = 0.0011). The wp-scores were also significantly associated with PFS in patients receiving single-agent ICI treatment (p < 0.05). In addition, the 5hmC predictive signature demonstrated superior predictive capability to tumor programmed death-ligand 1 and specificity to ICI treatment response prediction. Moreover, we identified novel 5hmC-associated genes and signaling pathways integral to ICI treatment response in lung cancer. This study provides proof-of-concept evidence that the cfDNA 5hmC signature is a robust biomarker for predicting ICI treatment response in lung cancer.
Collapse
Affiliation(s)
- Jianming Shao
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA (R.J.O.)
- Houston Methodist Research Institute, Houston, TX 77030, USA (S.M.); (S.-H.C.)
| | - Yitian Xu
- Houston Methodist Research Institute, Houston, TX 77030, USA (S.M.); (S.-H.C.)
| | - Randall J. Olsen
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA (R.J.O.)
- Houston Methodist Research Institute, Houston, TX 77030, USA (S.M.); (S.-H.C.)
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Saro Kasparian
- Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA (E.H.B.)
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Kai Sun
- Weill Cornell Medical College, New York, NY 10065, USA
- Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA (E.H.B.)
| | - Sunil Mathur
- Houston Methodist Research Institute, Houston, TX 77030, USA (S.M.); (S.-H.C.)
- Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA (E.H.B.)
| | - Jun Zhang
- Weill Cornell Medical College, New York, NY 10065, USA
- Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA (E.H.B.)
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Shu-Hsia Chen
- Houston Methodist Research Institute, Houston, TX 77030, USA (S.M.); (S.-H.C.)
- Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA (E.H.B.)
| | - Eric H. Bernicker
- Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA (E.H.B.)
| | - Zejuan Li
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA (R.J.O.)
- Houston Methodist Research Institute, Houston, TX 77030, USA (S.M.); (S.-H.C.)
- Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
7
|
Ren Y, Zhang Z, She Y, He Y, Li D, Shi Y, He C, Yang Y, Zhang W, Chen C. A Highly Sensitive and Specific Non-Invasive Test through Genome-Wide 5-Hydroxymethylation Mapping for Early Detection of Lung Cancer. SMALL METHODS 2024; 8:e2300747. [PMID: 37990399 DOI: 10.1002/smtd.202300747] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/04/2023] [Indexed: 11/23/2023]
Abstract
Low-dose computed tomography screening can increase the detection for non-small-cell lung cancer (NSCLC). To improve the diagnostic accuracy of early-stage NSCLC detection, ultrasensitive methods are used to detect cell-free DNA (cfDNA) 5-hydroxymethylcytosine (5hmC) in plasma. Genome-wide 5hmC is profiled in 1990 cfDNA samples collected from patients with non-small cell lung cancer (NSCLC, n = 727), healthy controls (HEA, n = 1,092), as well as patients with small cell lung cancer (SCLC, n = 41), followed by sample randomization, differential analysis, feature selection, and modeling using a machine learning approach. Differentially modified features reflecting tissue origin. A weighted diagnostic model comprised of 105 features is developed to compute a detection score for each individual, which showed an area under the curve (AUC) range of 86.4%-93.1% in the internal and external validation sets for distinguishing lung cancer from HEA controls, significantly outperforming serum biomarkers (p < 0.001). The 5hmC-based model detected high-risk pulmonary nodules (AUC: 82%)and lung cancer of different subtypes with high accuracy as well. A highly sensitive and specific blood-based test is developed for detecting lung cancer. The 5hmC biomarkers in cfDNA offer a promising blood-based test for lung cancer.
Collapse
Affiliation(s)
- Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yayi He
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongdong Li
- Shanghai Epican Genetech, Co., Ltd., Shanghai, China
| | - Yixiang Shi
- Bionova (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- The Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| |
Collapse
|
8
|
Shao J, Olsen RJ, Kasparian S, He C, Bernicker EH, Li Z. Cell-Free DNA 5-Hydroxymethylcytosine Signatures for Lung Cancer Prognosis. Cells 2024; 13:298. [PMID: 38391911 PMCID: PMC10886903 DOI: 10.3390/cells13040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Accurate prognostic markers are essential for guiding effective lung cancer treatment strategies. The level of 5-hydroxymethylcytosine (5hmC) in tissue is independently associated with overall survival (OS) in lung cancer patients. We explored the prognostic value of cell-free DNA (cfDNA) 5hmC through genome-wide analysis of 5hmC in plasma samples from 97 lung cancer patients. In both training and validation sets, we discovered a cfDNA 5hmC signature significantly associated with OS in lung cancer patients. We built a 5hmC prognostic model and calculated the weighted predictive scores (wp-score) for each sample. Low wp-scores were significantly associated with longer OS compared to high wp-scores in the training [median 22.9 versus 8.2 months; p = 1.30 × 10-10; hazard ratio (HR) 0.04; 95% confidence interval (CI), 0.00-0.16] and validation (median 18.8 versus 5.2 months; p = 0.00059; HR 0.22; 95% CI: 0.09-0.57) sets. The 5hmC signature independently predicted prognosis and outperformed age, sex, smoking, and TNM stage for predicting lung cancer outcomes. Our findings reveal critical genes and signaling pathways with aberrant 5hmC levels, enhancing our understanding of lung cancer pathophysiology. The study underscores the potential of cfDNA 5hmC as a superior prognostic tool for guiding more personalized therapeutic strategies for lung cancer patients.
Collapse
Affiliation(s)
- Jianming Shao
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Randall J. Olsen
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Saro Kasparian
- Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | | | - Zejuan Li
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
9
|
Gao L, Zhang Z, Cui XL, West-Szymanski D, Ye C, He C, Zhang W, Bissonnette M. Analysis of genome-wide 5-hydroxymethylation of blood samples stored in different anticoagulants: opportunities for the expansion of clinical resources for epigenetic research. Epigenetics 2023; 18:2271692. [PMID: 37898998 PMCID: PMC10627064 DOI: 10.1080/15592294.2023.2271692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Elucidating epigenetic mechanisms could provide new biomarkers for disease diagnosis and prognosis. Technological advances allow genome-wide profiling of 5-hydroxymethylcytosines (5hmC) in liquid biopsies. 5hmC-Seal followed by NGS is a highly sensitive technique for 5hmC biomarker discovery in cfDNA. Currently, 5hmC Seal is optimized for EDTA blood collection. We asked whether heparin was compatible with 5hmC Seal as many clinical and biobanked samples are stored in heparin. METHODS We obtained 60 samples in EDTA matched to 60 samples in heparin from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. Samples were comprised of 30 controls and 30 individuals who were later diagnosed with colon cancer. We profiled genome-wide 5hmC in cfDNA using 5hmC-Seal assay followed by NGS. The 5hmC profiling data from samples collected in EDTA were systematically compared to those in heparin across various genomic features. RESULTS cfDNA isolation and library construction appeared comparable in heparin vs. EDTA. Typical genomic distribution patterns of 5hmC, including gene bodies and enhancer markers, were comparable in heparin vs. EDTA. 5hmC analysis of cases and controls yielded highly correlated differential features suggesting that both anticoagulants were compatible with 5hmC Seal assay. CONCLUSIONS While not currently recommended for the 5hmC-Seal protocol, blood samples stored in heparin were successfully used to generate analysable and biologically relevant genome-wide 5hmC profiling. Our findings are the first to support opportunities to expand the biospecimen resource to heparin samples for 5hmC Seal and perhaps other PCR-based technologies in epigenetic research.
Collapse
Affiliation(s)
- Lu Gao
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiao-Long Cui
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | | | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marc Bissonnette
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Liang G, Wang L, You Q, Cahill K, Chen C, Zhang W, Fulton N, Stock W, Odenike O, He C, Han D. Cellular Composition and 5hmC Signature Predict the Treatment Response of AML Patients to Azacitidine Combined with Chemotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300445. [PMID: 37271891 PMCID: PMC10427370 DOI: 10.1002/advs.202300445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/12/2023] [Indexed: 06/06/2023]
Abstract
Azacitidine (AZA) is a DNA methyltransferase inhibitor and epigenetic modulator that can be an effective agent in combination with chemotherapy for patients with high-risk acute myeloid leukemia (AML). However, biological factors driving the therapeutic response of such hypomethylating agent (HMA)-based therapies remain unknown. Herein, the transcriptome and/or genome-wide 5-hydroxymethylcytosine (5hmC) is characterized for 41 patients with high-risk AML from a phase 1 clinical trial treated with AZA epigenetic priming followed by high-dose cytarabine and mitoxantrone (AZA-HiDAC-Mito). Digital cytometry reveals that responders have elevated Granulocyte-macrophage-progenitor-like (GMP-like) malignant cells displaying an active cell cycle program. Moreover, the enrichment of natural killer (NK) cells predicts a favorable outcome in patients receiving AZA-HiDAC-Mito therapy or other AZA-based therapies. Comparing 5hmC profiles before and after five-day treatment of AZA shows that AZA exposure induces dose-dependent 5hmC changes, in which the magnitude correlates with overall survival (p = 0.015). An extreme gradient boosting (XGBoost) machine learning model is developed to predict the treatment response based on 5hmC levels of 11 genes, achieving an area under the curve (AUC) of 0.860. These results suggest that cellular composition markedly impacts the treatment response, and showcase the prospect of 5hmC signatures in predicting the outcomes of HMA-based therapies in AML.
Collapse
Affiliation(s)
- Guanghao Liang
- Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- College of Future TechnologySino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100049China
| | - Linchen Wang
- Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- College of Future TechnologySino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100049China
| | - Qiancheng You
- Department of Chemistry and Institute for Biophysical DynamicsThe University of ChicagoChicagoIL60637USA
- Howard Hughes Medical InstituteChicagoIL60637USA
| | - Kirk Cahill
- Section of Hematology/OncologyDepartment of MedicineUniversity of Chicago MedicineChicagoIL60637USA
| | - Chuanyuan Chen
- Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- College of Future TechnologySino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100049China
| | - Wei Zhang
- Department of MedicineUniversity of California, San DiegoLa JollaCA92093USA
- Bristol‐Myers SquibbSan DiegoCA92121USA
| | - Noreen Fulton
- Section of Hematology/OncologyDepartment of MedicineUniversity of Chicago MedicineChicagoIL60637USA
- Comprehensive Cancer CenterUniversity of Chicago MedicineChicagoIL60637USA
| | - Wendy Stock
- Section of Hematology/OncologyDepartment of MedicineUniversity of Chicago MedicineChicagoIL60637USA
- Comprehensive Cancer CenterUniversity of Chicago MedicineChicagoIL60637USA
| | - Olatoyosi Odenike
- Section of Hematology/OncologyDepartment of MedicineUniversity of Chicago MedicineChicagoIL60637USA
- Comprehensive Cancer CenterUniversity of Chicago MedicineChicagoIL60637USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical DynamicsThe University of ChicagoChicagoIL60637USA
- Howard Hughes Medical InstituteChicagoIL60637USA
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIL60637USA
| | - Dali Han
- Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- College of Future TechnologySino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100049China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| |
Collapse
|
11
|
Cai Q, Zhang Z, Cui X, Zeng C, Cai J, Cai J, Wu K, Zhang X, Shi Y, Arvanitakis Z, Bissonnette MA, Chiu BCH, Cheng SY, He C, Zhang W. PETCH-DB: a Portal for Exploring Tissue-specific and Complex disease-associated 5-Hydroxymethylcytosines. Database (Oxford) 2023; 2023:baad042. [PMID: 37387524 PMCID: PMC10311472 DOI: 10.1093/database/baad042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 05/19/2023] [Indexed: 07/01/2023]
Abstract
Epigenetic modifications play critical roles in gene regulation and disease pathobiology. Highly sensitive enabling technologies, including microarray- and sequencing-based approaches have allowed genome-wide profiling of cytosine modifications in DNAs in clinical samples to facilitate discovery of epigenetic biomarkers for disease diagnosis and prognosis. Historically, many previous studies, however, did not distinguish the most investigated 5-methylcytosines (5mC) from other modified cytosines, especially the biochemically stable 5-hydroxymethylcytosines (5hmC), which have been shown to have a distinct genomic distribution and regulatory role from 5mC. Notably, during the past several years, the 5hmC-Seal, a highly sensitive chemical labeling technique, has been demonstrated to be a powerful tool for genome-wide profiling of 5hmC in clinically feasible biospecimens (e.g. a few milliliter of plasma or serum). The 5hmC-Seal technique has been utilized by our team in biomarker discovery for human cancers and other complex diseases using circulating cell-free DNA (cfDNA), as well as the characterization of the first 5hmC Human Tissue Map. Convenient access to the accumulating 5hmC-Seal data will allow the research community to validate and re-use these results, potentially providing novel insights into epigenetic contribution to a range of human diseases. Here we introduce the PETCH-DB, an integrated database that was implemented to provide 5hmC-related results generated using the 5hmC-Seal technique. We aim the PETCH-DB to be a central portal, which will be available to the scientific community with regularly updated 5hmC data in clinical samples to reflect current advances in this field. Database URL http://petch-db.org/.
Collapse
Affiliation(s)
- Qinyun Cai
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Dr., Chicago, IL 60611, USA
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Dr., Chicago, IL 60611, USA
| | - Xiaolong Cui
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Ave., Chicago, IL 60637, USA
| | - Chang Zeng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Dr., Chicago, IL 60611, USA
| | - Jiabin Cai
- Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Jiajun Cai
- Huashan Hospital, Fudan University, 12 Wulumuqi Rd., Shanghai 200040, China
| | - Kai Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Rd., Zhengzhou, Henan Province 450052, China
| | - Xu Zhang
- Department of Medicine, University of Illinois, 808 S. Wood St., Chicago, IL 60612, USA
| | - Yixiang Shi
- Bionova (Shanghai) Medical Technology Co., Ltd., Building 42, 100 Banxia Rd., Shanghai 201318, China
| | - Zoe Arvanitakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, 1620 W. Harrison St., Chicago, IL 60612, USA
| | - Marc A Bissonnette
- Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | - Brian C -H Chiu
- Department of Public Health Sciences, The University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | - Shi-Yuan Cheng
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Ave., Chicago, IL 60637, USA
- The Howard Hughes Medical Institute, The University of Chicago, 5735 S. Ellis Ave., Chicago, IL 60637, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Dr., Chicago, IL 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Ave., Chicago, IL 60637, USA
| |
Collapse
|
12
|
Di Sario G, Rossella V, Famulari ES, Maurizio A, Lazarevic D, Giannese F, Felici C. Enhancing clinical potential of liquid biopsy through a multi-omic approach: A systematic review. Front Genet 2023; 14:1152470. [PMID: 37077538 PMCID: PMC10109350 DOI: 10.3389/fgene.2023.1152470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
In the last years, liquid biopsy gained increasing clinical relevance for detecting and monitoring several cancer types, being minimally invasive, highly informative and replicable over time. This revolutionary approach can be complementary and may, in the future, replace tissue biopsy, which is still considered the gold standard for cancer diagnosis. "Classical" tissue biopsy is invasive, often cannot provide sufficient bioptic material for advanced screening, and can provide isolated information about disease evolution and heterogeneity. Recent literature highlighted how liquid biopsy is informative of proteomic, genomic, epigenetic, and metabolic alterations. These biomarkers can be detected and investigated using single-omic and, recently, in combination through multi-omic approaches. This review will provide an overview of the most suitable techniques to thoroughly characterize tumor biomarkers and their potential clinical applications, highlighting the importance of an integrated multi-omic, multi-analyte approach. Personalized medical investigations will soon allow patients to receive predictable prognostic evaluations, early disease diagnosis, and subsequent ad hoc treatments.
Collapse
|
13
|
Ma J, Teng Y, Youming H, Tao X, Fan Y. The Value of Cell-Free Circulating DNA Profiling in Patients with Skin Diseases. Methods Mol Biol 2023; 2695:247-262. [PMID: 37450124 DOI: 10.1007/978-1-0716-3346-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Liquid biopsy, also known as fluid biopsy or fluid-phase biopsy, is the sampling and analysis of the blood, cerebrospinal fluid, saliva, pleural fluid, ascites, and urine. Compared with tissue biopsy, liquid biopsy technology has the advantages of being noninvasive, having strong repeatability, enabling early diagnosis, dynamic monitoring, and overcoming tumor heterogeneity. However, interest in cfDNA and skin diseases has not expanded until recently. In this review, we present an overview of the literature related to the basic biology of cfDNA in the field of dermatology as a biomarker for early diagnosis, monitoring disease activity, predicting progression, and treatment response.
Collapse
Affiliation(s)
- Jingwen Ma
- Medical Cosmetic Center, Shanghai Skin Disease Hospital, Tongji University, Shanghai, People's Republic of China
| | - Yan Teng
- Health Management Center, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Huang Youming
- Health Management Center, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Xiaohua Tao
- Health Management Center, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Yibin Fan
- Health Management Center, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China.
| |
Collapse
|
14
|
5-Hydroxymethylation alterations in cell-free DNA reflect molecular distinctions of diffuse large B cell lymphoma at different primary sites. Clin Epigenetics 2022; 14:126. [PMID: 36221115 PMCID: PMC9555108 DOI: 10.1186/s13148-022-01344-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background 5-Hydroxymethylcytosine (5hmC), an important DNA epigenetic modification, plays a vital role in tumorigenesis, progression and prognosis in many cancers. Diffuse large B cell lymphoma (DLBCL) can involve almost any organ, but the prognosis of patients with DLBCL at different primary sites varies greatly. Previous studies have shown that 5hmC displays a tissue-specific atlas, but its role in DLBCLs at different primary sites remains unknown. Results We found that primary gastric DLBCL (PG-DLBCL) and lymph node-involved DLBCL (LN-DLBCL) patients had a favorable prognosis, while primary central nervous system DLBCL (PCNS-DLBCL) patients faced the worst prognosis, followed by primary testicular DLBCL (PT-DLBCL) and primary intestinal DLBCL (PI-DLBCL) patients. Thus, we used hmC-CATCH, a bisulfite-free and cost-effective 5hmC detection technology, to first generate the 5hmC profiles from plasma cell-free DNA (cfDNA) of DLBCL patients at these five different primary sites. Specifically, we found robust cancer-associated features that could be used to distinguish healthy individuals from DLBCL patients and distinguish among different primary sites. Through functional enrichment analysis of the differentially 5hmC-enriched genes, almost all DLBCL patients were enriched in tumor-related pathways, and DLBCL patients at different primary sites had unique characteristics. Moreover, 5hmC-based biomarkers can also highly reflect clinical features. Conclusions Collectively, we revealed the primary site differential 5hmC regions of DLBCL at different primary sites. This new strategy may help develop minimally invasive and effective methods to diagnose and determine the primary sites of DLBCL. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01344-1.
Collapse
|
15
|
Cell-free DNA 5-hydroxymethylcytosine is an emerging marker of acute myeloid leukemia. Sci Rep 2022; 12:12410. [PMID: 35859008 PMCID: PMC9300744 DOI: 10.1038/s41598-022-16685-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
Aberrant changes in 5-hydroxymethylcytosine (5hmC) are a unique epigenetic feature in many cancers including acute myeloid leukemia (AML). However, genome-wide analysis of 5hmC in plasma cell-free DNA (cfDNA) remains unexploited in AML patients. We used a highly sensitive and robust nano-5hmC-Seal technology and profiled genome-wide 5hmC distribution in 239 plasma cfDNA samples from 103 AML patients and 81 non-cancer controls. We developed a 5hmC diagnostic model that precisely differentiates AML patients from controls with high sensitivity and specificity. We also developed a 5hmC prognostic model that accurately predicts prognosis in AML patients. High weighted prognostic scores (wp-scores) in AML patients were significantly associated with adverse overall survival (OS) in both training (P = 3.31e-05) and validation (P = 0.000464) sets. The wp-score was also significantly associated with genetic risk stratification and displayed dynamic changes with varied disease burden. Moreover, we found that high wp-scores in a single gene, BMS1 and GEMIN5 predicted OS in AML patients in both the training set (P = 0.023 and 0.031, respectively) and validation set (P = 9.66e-05 and 0.011, respectively). Lastly, our study demonstrated the genome-wide landscape of DNA hydroxymethylation in AML and revealed critical genes and pathways related to AML diagnosis and prognosis. Our data reveal plasma cfDNA 5hmC signatures as sensitive and accurate markers for AML diagnosis and prognosis. Plasma cfDNA 5hmC analysis will be an effective and minimally invasive tool for AML management.
Collapse
|
16
|
Nakauchi Y, Azizi A, Thomas D, Corces MR, Reinisch A, Sharma R, Cruz Hernandez D, Köhnke T, Karigane D, Fan A, Martinez-Krams D, Stafford M, Kaur S, Dutta R, Phan P, Ediriwickrema A, McCarthy E, Ning Y, Phillips T, Ellison CK, Guler GD, Bergamaschi A, Ku CJ, Levy S, Majeti R. The Cell Type-Specific 5hmC Landscape and Dynamics of Healthy Human Hematopoiesis and TET2-Mutant Preleukemia. Blood Cancer Discov 2022; 3:346-367. [PMID: 35532363 PMCID: PMC9338760 DOI: 10.1158/2643-3230.bcd-21-0143] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/07/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
The conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) is a key step in DNA demethylation that is mediated by ten-eleven translocation (TET) enzymes, which require ascorbate/vitamin C. Here, we report the 5hmC landscape of normal hematopoiesis and identify cell type-specific 5hmC profiles associated with active transcription and chromatin accessibility of key hematopoietic regulators. We utilized CRISPR/Cas9 to model TET2 loss-of-function mutations in primary human hematopoietic stem and progenitor cells (HSPC). Disrupted cells exhibited increased colonies in serial replating, defective erythroid/megakaryocytic differentiation, and in vivo competitive advantage and myeloid skewing coupled with reduction of 5hmC at erythroid-associated gene loci. Azacitidine and ascorbate restored 5hmC abundance and slowed or reverted the expansion of TET2-mutant clones in vivo. These results demonstrate the key role of 5hmC in normal hematopoiesis and TET2-mutant phenotypes and raise the possibility of utilizing these agents to further our understanding of preleukemia and clonal hematopoiesis. SIGNIFICANCE We show that 5-hydroxymethylation profiles are cell type-specific and associated with transcriptional abundance and chromatin accessibility across human hematopoiesis. TET2 loss caused aberrant growth and differentiation phenotypes and disrupted 5hmC and transcriptional landscapes. Treatment of TET2 KO HSPCs with ascorbate or azacitidine reverted 5hmC profiles and restored aberrant phenotypes. This article is highlighted in the In This Issue feature, p. 265.
Collapse
Affiliation(s)
- Yusuke Nakauchi
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Armon Azizi
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
- University of California Irvine School of Medicine, Irvine, California
| | - Daniel Thomas
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
- South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
| | - M. Ryan Corces
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- University of California Irvine School of Medicine, Irvine, California
- South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
- Gladstone Institute of Neurological Disease, San Francisco, California
- Gladstone Institute of Data Science and Biotechnology, San Francisco, California
- Department of Neurology, University of California San Francisco, San Francisco, California
| | - Andreas Reinisch
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Rajiv Sharma
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - David Cruz Hernandez
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
- MRC Molecular Haematology Unit and Oxford Centre for Haematology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Thomas Köhnke
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Daiki Karigane
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Amy Fan
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Daniel Martinez-Krams
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Melissa Stafford
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Satinder Kaur
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Ritika Dutta
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Paul Phan
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Asiri Ediriwickrema
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Yuhong Ning
- Bluestar Genomics Inc., San Mateo, California
| | | | | | | | | | - Chin-Jen Ku
- Bluestar Genomics Inc., San Mateo, California
| | - Samuel Levy
- Bluestar Genomics Inc., San Mateo, California
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Cancer Institute, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
17
|
Pathway importance by graph convolutional network and Shapley additive explanations in gene expression phenotype of diffuse large B-cell lymphoma. PLoS One 2022; 17:e0269570. [PMID: 35749395 PMCID: PMC9231717 DOI: 10.1371/journal.pone.0269570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Deep learning techniques have recently been applied to analyze associations between gene expression data and disease phenotypes. However, there are concerns regarding the black box problem: it is difficult to interpret why the prediction results are obtained using deep learning models from model parameters. New methods have been proposed for interpreting deep learning model predictions but have not been applied to genetics. In this study, we demonstrated that applying SHapley Additive exPlanations (SHAP) to a deep learning model using graph convolutions of genetic pathways can provide pathway-level feature importance for classification prediction of diffuse large B-cell lymphoma (DLBCL) gene expression subtypes. Using Kyoto Encyclopedia of Genes and Genomes pathways, a graph convolutional network (GCN) model was implemented to construct graphs with nodes and edges. DLBCL datasets, including microarray gene expression data and clinical information on subtypes (germinal center B-cell-like type and activated B-cell-like type), were retrieved from the Gene Expression Omnibus to evaluate the model. The GCN model showed an accuracy of 0.914, precision of 0.948, recall of 0.868, and F1 score of 0.906 in analysis of the classification performance for the test datasets. The pathways with high feature importance by SHAP included highly enriched pathways in the gene set enrichment analysis. Moreover, a logistic regression model with explanatory variables of genes in pathways with high feature importance showed good performance in predicting DLBCL subtypes. In conclusion, our GCN model for classifying DLBCL subtypes is useful for interpreting important regulatory pathways that contribute to the prediction.
Collapse
|
18
|
Yang Y, Zeng C, Yang K, Xu S, Zhang Z, Cai Q, He C, Zhang W, Liu SM. Genome-wide Analysis Reflects Novel 5-Hydroxymethylcytosines Implicated in Diabetic Nephropathy and the Biomarker Potential. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:49-60. [PMID: 35342902 PMCID: PMC8950161 DOI: 10.20517/evcna.2022.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 12/20/2024]
Abstract
Aim Diabetic nephropathy (DN) has become the most common cause of end-stage renal disease (ESRD) in most countries. Elucidating novel epigenetic contributors to DN can not only enhance our understanding of this complex disorder, but also lay the foundation for developing more effective monitoring tools and preventive interventions in the future, thus contributing to our ultimate goal of improving patient care. Methods The 5hmC-Seal, a highly selective, chemical labeling technique, was used to profile genome-wide 5-hydroxymethylcytosines (5hmC), a stable cytosine modification type marking gene activation, in circulating cell-free DNA (cfDNA) samples from a cohort of patients recruited at Zhongnan Hospital, including T2D patients with nephropathy (DN, n = 12), T2D patients with non-DN vascular complications (non-DN, n = 29), and T2D patients without any complication (controls, n = 14). Differentially analysis was performed to find DN-associated 5hmC features, followed by the exploration of biomarker potential of 5hmC in cfDNA for DN using a machine learning approach. Results Genome-wide analyses of 5hmC in cfDNA detected 427 and 336 differential 5hmC modifications associated with DN, compared with non-DN individuals and controls, and suggested relevant pathways such as NOD-like receptor signaling pathway and tyrosine metabolism. Our exploration using a machine learning approach revealed an exploratory model comprised of ten 5hmC genes showing the possibility to distinguish DN from non-DN individuals or controls. Conclusion Genome-wide analysis suggests the possibility of exploiting novel 5hmC in patient-derived cfDNA as a non-invasive tool for monitoring DN in high risk T2D patients in the future.
Collapse
Affiliation(s)
- Ying Yang
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 430071 Wuhan, Hubei, China
- Authors contributed equally
| | - Chang Zeng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Authors contributed equally
| | - Kun Yang
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 430071 Wuhan, Hubei, China
| | - Shaohua Xu
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 430071 Wuhan, Hubei, China
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Qinyun Cai
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Chuan He
- Department of Chemistry and the Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60611, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Authors contributed equally
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 430071 Wuhan, Hubei, China
- Authors contributed equally
| |
Collapse
|
19
|
Zhang Z, Zeng C, Zhang W. Considerations before the application of 5-hydroxymethylation levels of long non-coding RNAs for non-invasive cancer diagnosis. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:10-13. [PMID: 35098258 PMCID: PMC8797161 DOI: 10.20517/evcna.2021.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Previous studies have suggested that aberrant 5-hydroxymethylcytosines (5hmC) modifications are related to cancer pathobiology. Genome-wide profiling 5hmC in circulating cell-free DNA (cfDNA) using the highly sensitive chemical labeling-based 5hmC-Seal technique has been demonstrated to have the potential to be a robust epigenomic tool for cancer biomarker discovery. Prior studies have mostly focused on cfDNA-derived 5hmC-Seal data summarized in well-annotated genic features (e.g., gene bodies) or unbiased bins. Zhou et al. recently proposed long non-coding RNAs (lncRNAs) as an alternative molecular target for biomarker discovery using publicly available 5hmC-Seal data. Considering its potential clinical impact, we would like to comment on Zhou et al. and advocate more serious consideration of critical issues such as the availability of clinical information and technical variables, especially when performing secondary analysis using publicly available data, with the aim of improving data transparency and translatability.
Collapse
Affiliation(s)
- Zhou Zhang
- Department of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Chang Zeng
- Department of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center,
Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611,
USA
| |
Collapse
|
20
|
Xu L, Zhou Y, Chen L, Bissessur AS, Chen J, Mao M, Ju S, Chen L, Chen C, Li Z, Zhang X, Chen F, Cao F, Wang L, Wang Q. Deoxyribonucleic Acid 5-Hydroxymethylation in Cell-Free Deoxyribonucleic Acid, a Novel Cancer Biomarker in the Era of Precision Medicine. Front Cell Dev Biol 2021; 9:744990. [PMID: 34957093 PMCID: PMC8703110 DOI: 10.3389/fcell.2021.744990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Aberrant methylation has been regarded as a hallmark of cancer. 5-hydroxymethylcytosine (5hmC) is recently identified as the ten-eleven translocase (ten-eleven translocase)-mediated oxidized form of 5-methylcytosine, which plays a substantial role in DNA demethylation. Cell-free DNA has been introduced as a promising tool in the liquid biopsy of cancer. There are increasing evidence indicating that 5hmC in cell-free DNA play an active role during carcinogenesis. However, it remains unclear whether 5hmC could surpass classical markers in cancer detection, treatment, and prognosis. Here, we systematically reviewed the recent advances in the clinic and basic research of DNA 5-hydroxymethylation in cancer, especially in cell-free DNA. We further discuss the mechanisms underlying aberrant 5hmC patterns and carcinogenesis. Synergistically, 5-hydroxymethylation may act as a promising biomarker, unleashing great potential in early cancer detection, prognosis, and therapeutic strategies in precision oncology.
Collapse
Affiliation(s)
- Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Yixin Zhou
- Department of Thyroid and Breast Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Luqiao, China
| | - Lijie Chen
- Department of Thyroid and Breast Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Luqiao, China
| | - Abdul Saad Bissessur
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Jida Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Siwei Ju
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaoqin Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Fei Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Feilin Cao
- Department of Thyroid and Breast Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Luqiao, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qinchuan Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Angeles AK, Janke F, Bauer S, Christopoulos P, Riediger AL, Sültmann H. Liquid Biopsies beyond Mutation Calling: Genomic and Epigenomic Features of Cell-Free DNA in Cancer. Cancers (Basel) 2021; 13:5615. [PMID: 34830770 PMCID: PMC8616179 DOI: 10.3390/cancers13225615] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/12/2023] Open
Abstract
Cell-free DNA (cfDNA) analysis using liquid biopsies is a non-invasive method to gain insights into the biology, therapy response, mechanisms of acquired resistance and therapy escape of various tumors. While it is well established that individual cancer treatment options can be adjusted by panel next-generation sequencing (NGS)-based evaluation of driver mutations in cfDNA, emerging research additionally explores the value of deep characterization of tumor cfDNA genomics and fragmentomics as well as nucleosome modifications (chromatin structure), and methylation patterns (epigenomics) for comprehensive and multi-modal assessment of cfDNA. These tools have the potential to improve disease monitoring, increase the sensitivity of minimal residual disease identification, and detection of cancers at earlier stages. Recent progress in emerging technologies of cfDNA analysis is summarized, the added potential clinical value is highlighted, strengths and limitations are identified and compared with conventional targeted NGS analysis, and current challenges and future directions are discussed.
Collapse
Affiliation(s)
- Arlou Kristina Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (A.K.A.); (F.J.); (S.B.)
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
- Translational Lung Research Center, German Center for Lung Research (DZL) at Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Florian Janke
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (A.K.A.); (F.J.); (S.B.)
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
- Translational Lung Research Center, German Center for Lung Research (DZL) at Heidelberg University Hospital, 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Simone Bauer
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (A.K.A.); (F.J.); (S.B.)
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
- Translational Lung Research Center, German Center for Lung Research (DZL) at Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Petros Christopoulos
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
- Translational Lung Research Center, German Center for Lung Research (DZL) at Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Oncology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany
| | - Anja Lisa Riediger
- Helmholtz Young Investigator Group, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Department of Urology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (A.K.A.); (F.J.); (S.B.)
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
- Translational Lung Research Center, German Center for Lung Research (DZL) at Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Papageorgiou SG, Thomopoulos TP, Katagas I, Bouchla A, Pappa V. Prognostic molecular biomarkers in diffuse large B-cell lymphoma in the rituximab era and their therapeutic implications. Ther Adv Hematol 2021; 12:20406207211013987. [PMID: 34104369 PMCID: PMC8150462 DOI: 10.1177/20406207211013987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) represents a group of tumors characterized by substantial heterogeneity in terms of their pathological and biological features, a causal factor of their varied clinical outcome. This variation has persisted despite the implementation of rituximab in treatment regimens over the last 20 years. In this context, prognostic biomarkers are of great importance in order to identify high-risk patients that might benefit from treatment intensification or the introduction of novel therapeutic agents. Herein, we review current knowledge on specific immunohistochemical or genetic biomarkers that might be useful in clinical practice. Gene-expression profiling is a tool of special consideration in this effort, as it has enriched our understanding of DLBCL biology and has allowed for the classification of DLBCL by cell-of-origin as well as by more elaborate molecular signatures based on distinct gene-expression profiles. These subgroups might outperform individual biomarkers in terms of prognostication; however, their use in clinical practice is still limited. Moreover, the underappreciated role of the tumor microenvironment in DLBCL prognosis is discussed in terms of prognostic gene-expression signatures, as well as in terms of individual biomarkers of prognostic significance. Finally, the efficacy of novel therapeutic agents for the treatment of DLBCL patients are discussed and an evidence-based therapeutic approach by specific genetic subgroup is suggested.
Collapse
Affiliation(s)
- Sotirios G. Papageorgiou
- Second Department of Internal Medicine and Research Unit, University General Hospital ‘Attikon’, 1 Rimini Street, Haidari, Athens 12462, Greece
| | - Thomas P. Thomopoulos
- Second Department of Internal Medicine and Research Unit, Hematology Unit, University General Hospital, ‘Attikon’, Haidari, Athens, Greece
| | - Ioannis Katagas
- Second Department of Internal Medicine and Research Unit, Hematology Unit, University General Hospital, ‘Attikon’, Haidari, Athens, Greece
| | - Anthi Bouchla
- Second Department of Internal Medicine and Research Unit, Hematology Unit, University General Hospital, ‘Attikon’, Haidari, Athens, Greece
| | - Vassiliki Pappa
- Second Department of Internal Medicine and Research Unit, Hematology Unit, University General Hospital, ‘Attikon’, Haidari, Athens, Greece
| |
Collapse
|
23
|
Yao L, Xu H, Wo J, Zhao M, Liu Z, Dong T, Xiao S. Prognostic value of circulating tumor DNA in lymphoma: a meta-analysis. Clin Exp Med 2021; 22:1-7. [PMID: 33990849 DOI: 10.1007/s10238-021-00718-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/03/2021] [Indexed: 01/11/2023]
Abstract
Circulating tumor DNA (ctDNA) can be used to evaluate the prognosis of lymphoma. However, there is no uniform consensus about the mechanistic role that ctDNA plays in the prognosis of lymphoma. This meta-analysis explores the prognostic value of ctDNA in lymphoma, especially in diffuse large B cell lymphoma (DLBCL). All relevant reports published as of May 14, 2020, were retrieved by searching electronic databases in Pubmed, Embase and Cochrane Library. The prognostic value of ctDNA was evaluated using meta-analysis. Revman 5.3 software was used for prognostic data extraction and analysis. Eight studies, including a total of 767 lymphoma patients, were enrolled in this meta-analysis. Five out of eight studies investigated the association between ctDNA levels and progression-free survival (PFS) in 501 lymphoma patients, indicating that high levels of ctDNA were significantly associated with poor PFS (HR 2.24, 95%CI: 1.63-3.08, P < 0.00001). We conducted a subgroup analysis of 379 patients with DLBCL across three of the studies and came to the same conclusion (HR 2.01, 95%CI: 1.42-2.85, P < 0.0001). Two studies with a total of 192 lymphoma patients described the association between ctDNA levels and event-free survival (EFS), showing that high levels of ctDNA were also associated with adverse EFS (HR 4.53, 95%CI: 1.79-11.47, P = 0.001). The remaining two studies analyzed the potential clinical value of ctDNA for predicting the overall survival time (OS) of DLBCL patients, demonstrating that high levels of ctDNA correlated with inferior OS (HR 3.09, 95%CI: 1.50-6.35, P = 0.002). Our meta-analysis showed that high levels of ctDNA were associated with poor prognosis in patients with lymphoma, especially DLBCL.
Collapse
Affiliation(s)
- Laiyu Yao
- Department of Medicine, Medical College of Qingdao University, 266003, Qingdao, China
| | - Hong Xu
- Department of Hematology, The Affiliated Hospital of Qingdao University, 266003, Qingdao, China
| | - Jinshan Wo
- Department of Cardiovascular Medicine, The Affiliated Hospital of Qingdao University, 266003, Qingdao, China
| | - Meiqing Zhao
- Department of Hematology, Eighth People's Hospital of Qingdo, 266003, Qingdao, China
| | - Zhihe Liu
- Department of Hematology, The Affiliated Hospital of Qingdao University, 266003, Qingdao, China
| | - Tieying Dong
- Department of Hematology, The Affiliated Hospital of Qingdao University, 266003, Qingdao, China
| | - Shuxin Xiao
- Department of Hematology, The Affiliated Hospital of Qingdao University, 266003, Qingdao, China.
| |
Collapse
|
24
|
Lv L, Liu Y. Clinical Application of Liquid Biopsy in Non-Hodgkin Lymphoma. Front Oncol 2021; 11:658234. [PMID: 33816315 PMCID: PMC8013700 DOI: 10.3389/fonc.2021.658234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) is a common type of hematological malignant tumor, composed of multiple subtypes that originate from B lymphocytes, T lymphocytes, and natural killer cells. A diagnosis of NHL depends on the results of a pathology examination, which requires an invasive tissue biopsy. However, due to their invasive nature, tissue biopsies have many limitations in clinical applications, especially in terms of evaluating the therapeutic response and monitoring tumor progression. To overcome these limitations of traditional tissue biopsies, a technique known as "liquid biopsies" (LBs) was proposed. LBs refer to noninvasive examinations that can provide biological tumor data for analysis. Many studies have shown that LBs can be broadly applied to the diagnosis, treatment, prognosis, and monitoring of NHL. This article will briefly review various LB methods that aim to improve NHL management, including the evaluation of cell-free DNA/circulating tumor DNA, microRNA, and tumor-derived exosomes extracted from peripheral blood in NHL.
Collapse
Affiliation(s)
- Liwei Lv
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanbo Liu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Chen HY, Zhang WL, Zhang L, Yang P, Li F, Yang ZR, Wang J, Pang M, Hong Y, Yan C, Li W, Liu J, Xu N, Chen L, Xiao XB, Qin Y, He XH, Liu H, Zhu HC, He C, Lin J, Jing HM. 5-Hydroxymethylcytosine profiles of cfDNA are highly predictive of R-CHOP treatment response in diffuse large B cell lymphoma patients. Clin Epigenetics 2021; 13:33. [PMID: 33573703 PMCID: PMC7879534 DOI: 10.1186/s13148-020-00973-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) remains the standard chemotherapy regimen for diffuse large B cell lymphoma (DLBCL) patients, not all patients are responsive to the scheme, and there is no effective method to predict treatment response. METHODS We utilized 5hmC-Seal to generate genome-wide 5hmC profiles in plasma cell-free DNA (cfDNA) from 86 DLBCL patients before they received R-CHOP chemotherapy. To investigate the correlation between 5hmC modifications and curative effectiveness, we separated patients into training (n = 56) and validation (n = 30) cohorts and developed a 5hmC-based logistic regression model from the training cohort to predict the treatment response in the validation cohort. RESULTS In this study, we identified thirteen 5hmC markers associated with treatment response. The prediction performance of the logistic regression model, achieving 0.82 sensitivity and 0.75 specificity (AUC = 0.78), was superior to existing clinical indicators, such as LDH and stage. CONCLUSIONS Our findings suggest that the 5hmC modifications in cfDNA at the time before R-CHOP treatment are associated with treatment response and that 5hmC-Seal may potentially serve as a clinical-applicable, minimally invasive approach to predict R-CHOP treatment response for DLBCL patients.
Collapse
Affiliation(s)
- Hang-Yu Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, 100871, People's Republic of China
| | - Wei-Long Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Lei Zhang
- Yang Sheng Tang Natural Medicine Research Institute, Hangzhou, 310024, People's Republic of China
| | - Ping Yang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Fang Li
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Ze-Ruo Yang
- Yang Sheng Tang Natural Medicine Research Institute, Hangzhou, 310024, People's Republic of China
| | - Jing Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Meng Pang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Yun Hong
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Changjian Yan
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Wei Li
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Jia Liu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Nuo Xu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, 100871, People's Republic of China
| | - Long Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, 100871, People's Republic of China
| | - Xiu-Bing Xiao
- Lymphoma Head and Neck Oncology, Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Yan Qin
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Xiao-Hui He
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Hui Liu
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Beijing, 1000730, People's Republic of China
| | - Hai-Chuan Zhu
- Institute of Biology and Medicine, College of Life and Health 20 Sciences, Wuhan University of Science and Technology, Hubei, 430081, People's Republic of China
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Jian Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, 100871, People's Republic of China.
| | - Hong-Mei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| |
Collapse
|
26
|
Chiu BCH, Chen C, You Q, Chiu R, Venkataraman G, Zeng C, Zhang Z, Cui X, Smith SM, He C, Zhang W. Alterations of 5-hydroxymethylation in circulating cell-free DNA reflect molecular distinctions of subtypes of non-Hodgkin lymphoma. NPJ Genom Med 2021; 6:11. [PMID: 33574286 PMCID: PMC7878492 DOI: 10.1038/s41525-021-00179-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023] Open
Abstract
The 5-methylcytosines (5mC) have been implicated in the pathogenesis of diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). However, the role of 5-hydroxymethylcytosines (5hmC) that are generated from 5mC through active demethylation, in lymphomagenesis is unknown. We profiled genome-wide 5hmC in circulating cell-free DNA (cfDNA) from 73 newly diagnosed patients with DLBCL and FL. We identified 294 differentially modified genes between DLBCL and FL. The differential 5hmC in the DLBCL/FL-differentiating genes co-localized with enhancer marks H3K4me1 and H3K27ac. A four-gene panel (CNN2, HMG20B, ACRBP, IZUMO1) robustly represented the overall 5hmC modification pattern that distinguished FL from DLBCL with an area under curve of 88.5% in the testing set. The median 5hmC modification levels in signature genes showed potential for separating patients for risk of all-cause mortality. This study provides evidence that genome-wide 5hmC profiles in cfDNA differ between DLBCL and FL and could be exploited as a non-invasive approach.
Collapse
Affiliation(s)
- Brian C-H Chiu
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA.
| | - Chang Chen
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qiancheng You
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Rudyard Chiu
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Chang Zeng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiaolong Cui
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Sonali M Smith
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology; Institute for Biophysical Dynamics; and Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
27
|
Lakhotia R, Roschewski M. Circulating tumour DNA in B-cell lymphomas: current state and future prospects. Br J Haematol 2021; 193:867-881. [PMID: 33550600 DOI: 10.1111/bjh.17251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022]
Abstract
Circulating tumour DNA (ctDNA) is a highly versatile analyte and an emerging biomarker for detection of tumour-specific sequences in lymphoid malignancies. Since ctDNA is derived from tumour cells throughout the body, it overcomes fundamental limitations of tissue biopsies by capturing the complete molecular profile of tumours, including those from inaccessible anatomic locations. Assays for ctDNA are minimally invasive and serial sampling monitors the effectiveness of therapy and identifies minimal residual disease below the detection limit of standard imaging scans. Dynamic changes in ctDNA levels measure real-time tumour kinetics, and early reductions in ctDNA during treatment correlate with clinical outcomes in multiple B-cell lymphomas. After therapy, ctDNA can effectively discriminate between patients who achieved a complete molecular remission from those with residual treatment-resistant disease. Serial monitoring of ctDNA after therapy can detect early molecular relapse and identify drug-resistant clones that harbour targetable mutations. In order for ctDNA to reach its full potential, the standardization and harmonization of the optimal pre-analytical and analytical techniques for B-cell lymphomas is a critically necessary requirement. Prospective validation of ctDNA within clinical studies is also required to determine its clinical utility as an adjunctive decision-making tool.
Collapse
Affiliation(s)
- Rahul Lakhotia
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
28
|
Cai Z, Zhang J, He Y, Xia L, Dong X, Chen G, Zhou Y, Hu X, Zhong S, Wang Y, Chen H, Xie D, Liu X, Liu J. Liquid biopsy by combining 5-hydroxymethylcytosine signatures of plasma cell-free DNA and protein biomarkers for diagnosis and prognosis of hepatocellular carcinoma. ESMO Open 2021; 6:100021. [PMID: 33508734 PMCID: PMC7841321 DOI: 10.1016/j.esmoop.2020.100021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 11/14/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Liquid biopsy based on 5-hydroxymethylcytosine (5hmC) signatures of plasma cell-free DNA (cfDNA) originating from tumor cells provides a novel approach for early diagnosis in hepatocellular carcinoma (HCC). Here, we sought to develop a reliable model using cfDNA 5hmC signatures and protein biomarkers for diagnosis and prognosis of HCC. PATIENTS AND METHODS We carried out genome-wide 5hmC sequencing of cfDNA samples collected from 165 healthy volunteers, 62 liver cirrhosis (LC) patients and 135 HCC patients. A sensitive 5hmC diagnostic model was developed based on 5hmC signatures selected by sparse Partial Least Squares Discriminant Analysis and cross-validation to define the weighted diagnostic score (wd-score). Then, we combined protein biomarkers with the wd-score to build a more robust score (HCC score) by logistic regression. RESULTS The distribution pattern of differential 5hmC regions could clearly distinguish HCC patients, LC patients and healthy volunteers. The wd-score based on 64 5hmC signatures in cfDNA achieves 93.24% of area under the curve (AUC) to distinguish HCC patients from non-HCC patients, and the HCC score by combing protein biomarkers achieves 92.75% of AUC to distinguish HCC patients from LC patients. Meanwhile, the HCC score showed high capacity for screening high recurrence risk patients after receiving surgical resection, and appeared to be an independent indicator for both relapse-free survival (P = 0.00865) and overall survival (P = 0.000739). Furthermore, the values of the HCC score in patients' longitudinal plasma samples were positively associated with tumor burden dynamics during follow-up. CONCLUSION We have developed and validated a novel non-invasive liquid biopsy strategy for HCC diagnosis, prognosis and surveillance during HCC progression.
Collapse
Affiliation(s)
- Z Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China
| | - J Zhang
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Y He
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, P. R. China; Laboratory of Nervous System Disease and Brain Functions, Clinical Research Institute, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China
| | - L Xia
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - X Dong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China
| | - G Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China
| | - Y Zhou
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China
| | - X Hu
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - S Zhong
- Tailai Inc., Shanghai, P. R. China
| | - Y Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China
| | - H Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | - D Xie
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, P. R. China.
| | - X Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China.
| | - J Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China; Mengchao Med-X Center, Fuzhou University, Fuzhou, P. R. China.
| |
Collapse
|
29
|
Cui XL, Nie J, Ku J, Dougherty U, West-Szymanski DC, Collin F, Ellison CK, Sieh L, Ning Y, Deng Z, Zhao CWT, Bergamaschi A, Pekow J, Wei J, Beadell AV, Zhang Z, Sharma G, Talwar R, Arensdorf P, Karpus J, Goel A, Bissonnette M, Zhang W, Levy S, He C. A human tissue map of 5-hydroxymethylcytosines exhibits tissue specificity through gene and enhancer modulation. Nat Commun 2020; 11:6161. [PMID: 33268789 PMCID: PMC7710742 DOI: 10.1038/s41467-020-20001-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
DNA 5-hydroxymethylcytosine (5hmC) modification is known to be associated with gene transcription and frequently used as a mark to investigate dynamic DNA methylation conversion during mammalian development and in human diseases. However, the lack of genome-wide 5hmC profiles in different human tissue types impedes drawing generalized conclusions about how 5hmC is implicated in transcription activity and tissue specificity. To meet this need, we describe the development of a 5hmC tissue map by characterizing the genomic distributions of 5hmC in 19 human tissues derived from ten organ systems. Subsequent sequencing results enabled the identification of genome-wide 5hmC distributions that uniquely separates samples by tissue type. Further comparison of the 5hmC profiles with transcriptomes and histone modifications revealed that 5hmC is preferentially enriched on tissue-specific gene bodies and enhancers. Taken together, the results provide an extensive 5hmC map across diverse human tissue types that suggests a potential role of 5hmC in tissue-specific development; as well as a resource to facilitate future studies of DNA demethylation in pathogenesis and the development of 5hmC as biomarkers.
Collapse
Affiliation(s)
- Xiao-Long Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Ji Nie
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Jeremy Ku
- Bluestar Genomics Inc., San Diego, CA, USA
| | | | - Diana C West-Szymanski
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA.,Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | - Laura Sieh
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | | | - Zifeng Deng
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Carolyn W T Zhao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | | | - Joel Pekow
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Alana V Beadell
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Geeta Sharma
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | | | - Jason Karpus
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Ajay Goel
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA. .,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
30
|
Han L, Chen C, Lu X, Song Y, Zhang Z, Zeng C, Chiu R, Li L, Xu M, He C, Zhang W, Duan S. Alterations of 5-hydroxymethylcytosines in circulating cell-free DNA reflect retinopathy in type 2 diabetes. Genomics 2020; 113:79-87. [PMID: 33221518 DOI: 10.1016/j.ygeno.2020.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 11/25/2022]
Abstract
Diabetic retinopathy (DR) is a common microvascular complication that may cause severe visual impairment and blindness in patients with type 2 diabetes mellitus (T2DM). Early detection of DR will expand the range of potential treatment options and enable better control of disease progression. Epigenetic dysregulation has been implicated in the pathogenesis of microvascular complications in patients with T2DM. We sought to explore the diagnostic value of 5-hydroxymethylcytosines (5hmC) in circulating cell-free DNA (cfDNA) for DR, taking advantage of a highly sensitive technique, the 5hmC-Seal. The genome-wide 5hmC profiles in cfDNA samples from 35 patients diagnosed with DR and 35 age-, gender-, diabetic duration-matched T2DM controls were obtained using the 5hmC-Seal, followed by a case-control analysis and external validation. The genomic distribution of 5hmC in cfDNA from patients with DR reflected potential gene regulatory relevance, showing co-localization with histone modification marks for active expression (e.g., H3K4me1). A three-gene signature (MESP1, LY6G6D, LINC01556) associated with DR was detected using the elastic net regularization on the multivariable logistic regression model, showing high accuracy to distinguish patients with DR from T2DM controls (AUC [area under curve] = 91.4%; 95% CI [confidence interval], 84.3- 98.5%), achieving a sensitivity of 88.6% and a specificity of 91.4%. In an external testing set, the 5hmC model detected 5 out of 6 DR patients and predicted 7 out of 8 non-DR patients with other microvascular complications. Circulating cfDNA from patients with DR contained 5hmC information that could be exploited for DR detection. As a novel non-invasive approach, the 5hmC-Seal holds the promise to be an integrated part of patient care and surveillance tool for T2DM patients.
Collapse
Affiliation(s)
- Liyuan Han
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China; Department of Global Health, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Chang Chen
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xingyu Lu
- Shanghai Epican Genetech Co., Ltd., Shanghai, China
| | - Yanqun Song
- Shanghai Epican Genetech Co., Ltd., Shanghai, China
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chang Zeng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rudyard Chiu
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Chuan He
- Department of Chemistry; Department of Biochemistry and Molecular Biology; Institute for Biophysical Dynamics; and the Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Insititute of Precision Medicine, Jining Medical University, Jining, Shandong, China.
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
31
|
Diffuse large B-cell lymphoma: Time to focus on circulating blood nucleic acids? Blood Rev 2020; 47:100776. [PMID: 33229139 DOI: 10.1016/j.blre.2020.100776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 01/10/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous neoplasm with diverse genetic abnormalities and outcomes. To date, DLBCL is invasively diagnosed by tissue biopsy and few biomarkers are available to predict patient outcome, treatment response and progression. The identification of patient-specific biomarkers would allow a "personalized medicine" approach for DLBCL patients. In this regard, "liquid biopsies" hold great promise, capturing the entire genetic landscape of the tumour and allowing a rapid and dynamic management of cancer. Liquid biopsy studies particularly focus on cell-free nucleic acids, such as cell-free DNA (cfDNA) and microRNAs, which are easy to collect and analyse. In accordance with the PRISMA criteria, we performed a systematic review on circulating nucleic acids as potential biomarkers for DLBCL management. The results suggest that combining information from the genetic (cfDNA) and epigenetic (microRNAs) landscape of the disease could lead to developing an integrated network of non-invasive biomarkers for the better management of DLBCL.
Collapse
|
32
|
Applebaum MA, Barr EK, Karpus J, West-Szymanski DC, Oliva M, Sokol EA, Zhang S, Zhang Z, Zhang W, Chlenski A, Salwen HR, Wilkinson E, Dobratic M, Grossman RL, Godley LA, Stranger BE, He C, Cohn SL. 5-Hydroxymethylcytosine Profiles in Circulating Cell-Free DNA Associate with Disease Burden in Children with Neuroblastoma. Clin Cancer Res 2020; 26:1309-1317. [PMID: 31852832 PMCID: PMC7073281 DOI: 10.1158/1078-0432.ccr-19-2829] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/05/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE 5-Hydroxymethylcytosine (5-hmC) is an epigenetic marker of open chromatin and active gene expression. We profiled 5-hmC with Nano-hmC-Seal technology using 10 ng of plasma-derived cell-free DNA (cfDNA) in blood samples from patients with neuroblastoma to determine its utility as a biomarker. EXPERIMENTAL DESIGN For the Discovery cohort, 100 5-hmC profiles were generated from 34 well children and 32 patients (27 high-risk, 2 intermediate-risk, and 3 low-risk) at various time points during the course of their disease. An independent Validation cohort encompassed 5-hmC cfDNA profiles (n = 29) generated from 21 patients (20 high-risk and 1 intermediate-risk). Metastatic burden was classified as high, moderate, low, or none per Curie metaiodobenzylguanidine scores and percentage of tumor cells in bone marrow. Genes with differential 5-hmC levels between samples according to metastatic burden were identified using DESeq2. RESULTS Hierarchical clustering using 5-hmC levels of 347 genes identified from the Discovery cohort defined four clusters of samples that were confirmed in the Validation cohort and corresponded to high, high-moderate, moderate, and low/no metastatic burden. Samples from patients with increased metastatic burden had increased 5-hmC deposition on genes in neuronal stem cell maintenance and epigenetic regulatory pathways. Further, 5-hmC cfDNA profiles generated with 1,242 neuronal pathway genes were associated with subsequent relapse in the cluster of patients with predominantly low or no metastatic burden (sensitivity 65%, specificity 75.6%). CONCLUSIONS cfDNA 5-hmC profiles in children with neuroblastoma correlate with metastatic burden and warrants development as a biomarker of treatment response and outcome.
Collapse
Affiliation(s)
- Mark A Applebaum
- Department of Pediatrics, University of Chicago, Chicago, Illinois.
| | - Erin K Barr
- Department of Pediatrics, Texas Tech University Health Sciences, Lubbock, Texas
| | - Jason Karpus
- Department of Chemistry, University of Chicago, Chicago, Illinois
| | | | - Meritxell Oliva
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Elizabeth A Sokol
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Sheng Zhang
- Department of Chemistry, University of Chicago, Chicago, Illinois
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University, Chicago, Illinois
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University, Chicago, Illinois
| | | | - Helen R Salwen
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Emma Wilkinson
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Marija Dobratic
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Robert L Grossman
- Institute for Genomics and Systems Biology, Center for Translational Data Science, University of Chicago, Chicago, Illinois
| | - Lucy A Godley
- Department of Medicine, University of Chicago, Chicago, Illinois
| | | | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, Illinois
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Susan L Cohn
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| |
Collapse
|
33
|
Weiser DA, West-Szymanski DC, Fraint E, Weiner S, Rivas MA, Zhao CWT, He C, Applebaum MA. Progress toward liquid biopsies in pediatric solid tumors. Cancer Metastasis Rev 2020; 38:553-571. [PMID: 31836951 DOI: 10.1007/s10555-019-09825-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pediatric solid tumors have long been known to shed tumor cells, DNA, RNA, and proteins into the blood. Recent technological advances have allowed for improved capture and analysis of these typically scant circulating materials. Efforts are ongoing to develop "liquid biopsy" assays as minimally invasive tools to address diagnostic, prognostic, and disease monitoring needs in childhood cancer care. Applying these highly sensitive technologies to serial liquid biopsies is expected to advance understanding of tumor biology, heterogeneity, and evolution over the course of therapy, thus opening new avenues for personalized therapy. In this review, we outline the latest technologies available for liquid biopsies and describe the methods, pitfalls, and benefits of the assays that are being developed for children with extracranial solid tumors. We discuss what has been learned in several of the most common pediatric solid tumors including neuroblastoma, sarcoma, Wilms tumor, and hepatoblastoma and highlight promising future directions for the field.
Collapse
Affiliation(s)
- Daniel A Weiser
- Department of Pediatrics, Albert Einstein College of Medicine and Children's Hospital at Montefiore, Bronx, NY, USA
| | | | - Ellen Fraint
- Department of Pediatrics, Albert Einstein College of Medicine and Children's Hospital at Montefiore, Bronx, NY, USA
| | - Shoshana Weiner
- Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA
| | - Marco A Rivas
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Carolyn W T Zhao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Mark A Applebaum
- Department of Pediatrics, The University of Chicago, 900 E. 57th St., KCBD 5116, Chicago, IL, 60637, USA.
| |
Collapse
|