1
|
McKinney RA, Wang G. Langerhans Cell Histiocytosis and Other Histiocytic Lesions. Head Neck Pathol 2025; 19:26. [PMID: 39998733 PMCID: PMC11861498 DOI: 10.1007/s12105-025-01766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Histiocytoses, including Langerhans cell histiocytosis (LCH), comprise a diverse group of histiocytic disorders characterized by the abnormal accumulation and proliferation of histiocytes in various tissues or organs throughout the body, ranging from benign, self-limited conditions to aggressive malignancies and systemic inflammatory syndromes. These lesions present unique diagnostic challenges due to their broad spectrum of clinical presentations, overlapping histopathological and immunophenotypical features, and genetic complexity. METHODS This review analyzes major histiocytic lesions, focusing on their epidemiology, clinical presentations, histologic and immunophenotypic features, and genetic characteristics to facilitate accurate diagnosis and differentiation among these histiocytoses. RESULTS LCH, a well-recognized lesion, can affect various organ systems and necessitates differentiation from other types of histiocytoses such as Erdheim-Chester disease (ECD), Rosai-Dorfman-Destombes disease (RDD), and cutaneous and mucocutaneous non-Langerhans cell histiocytoses. Some histiocytic lesions, such as histiocytic sarcoma, are inherently malignant, while others, like hemophagocytic lymphohistiocytosis (HLH), manifest as severe, potentially life-threatening systemic inflammatory syndromes. Recent molecular genetic studies revealed recurrent genetic alterations in the MAPK pathway, such as BRAF V600E and MAP2K1 in LCH and ECD, and KRAS, NRAS, and MAP2K1 mutations in a subset of RDD. Malignant histiocytoses frequently show alterations in tumor suppressor genes like TP53 and CDKN2A. CONCLUSION Precise classification of histiocytic lesions relies on a comprehensive diagnostic approach that integrates clinical, histologic, immunophenotypic, and genetic data. Recent genetic advances shed light on these conditions' unique but occasionally overlapping pathogenic mechanisms. Molecular genetics advancements continue to refine diagnostic accuracy and present new therapeutic targets, especially for aggressive or treatment-resistant cases.
Collapse
Affiliation(s)
- Reed A McKinney
- Head and Neck Pathology, The Joint Pathology Center, Silver Spring, MD, USA
| | - Guanghua Wang
- Molecular Diagnostics Laboratories, The Joint Pathology Center, Bethesda, MD, USA.
| |
Collapse
|
2
|
Zhu R, Zhao Y, Yin H, Shu L, Ma Y, Tao Y. Identification of immune-related hub genes and potential molecular mechanisms involved in COVID-19 via integrated bioinformatics analysis. Sci Rep 2024; 14:29964. [PMID: 39622956 PMCID: PMC11612211 DOI: 10.1038/s41598-024-81803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024] Open
Abstract
COVID-19, caused by the SARS-CoV-2 virus, poses significant health challenges worldwide, particularly due to severe immune-related complications. Understanding the molecular mechanisms and identifying key immune-related genes (IRGs) involved in COVID-19 pathogenesis is critical for developing effective prevention and treatment strategies. This study employed computational tools to analyze biological data (bioinformatics) and a method for inferring causal relationships based on genetic variations, known as Mendelian randomization (MR), to explore the roles of IRGs in COVID-19. We identified differentially expressed genes (DEGs) from datasets available in the Gene Expression Omnibus (GEO), comparing COVID-19 patients with healthy controls. IRGs were sourced from the ImmPort database. We conducted functional enrichment analysis, pathway analysis, and immune infiltration assessments to determine the biological significance of the identified IRGs. A total of 360 common differential IRGs were identified. Among these genes, CD1C, IL1B, and SLP1 have emerged as key IRGs with potential protective effects against COVID-19. Pathway enrichment analysis revealed that CD1C is involved in terpenoid backbone biosynthesis and Th17 cell differentiation, while IL1B is linked to B-cell receptor signaling and the NF-kappa B signaling pathway. Significant correlations were observed between key genes and various immune cells, suggesting that they influence immune cell modulation in COVID-19. This study provides new insights into the immune mechanisms underlying COVID-19, highlighting the crucial role of IRGs in disease progression. These findings suggest that CD1C and IL1B could be potential therapeutic targets. The integrated bioinformatics and MR analysis approach offers a robust framework for further exploring immune responses in COVID-19 patients, as well as for targeted therapy and vaccine development.
Collapse
Affiliation(s)
- Rui Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yaping Zhao
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, 312000, China
| | - Hui Yin
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Linfeng Shu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuhang Ma
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yingli Tao
- Department of Reproductive Immunology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China.
| |
Collapse
|
3
|
Wang CJ, Zhu T, Zhao CZ, Cui H, Wang D, Zhao ZJ, Huang XT, Li HL, Liu FF, Zhang R, Li ZG, Cui L. BRAF-V600E mutations in plasma and peripheral blood mononuclear cells correlate with prognosis of pediatric Langerhans cell histiocytosis treated with first-line therapy. Pediatr Blood Cancer 2024; 71:e31099. [PMID: 38845144 DOI: 10.1002/pbc.31099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 07/26/2024]
Abstract
BACKGROUND The clinical relevance of BRAF-V600E alleles in peripheral blood mononuclear cells (PBMCs) and the prognostic impact of the mutants in cell-free (cf) and PBMC DNAs of Langerhans cell histiocytosis (LCH) have not been fully clarified in pediatric LCH. METHODS We retrospectively determined the levels of BRAF-V600E mutation in paired plasma and PBMC samples at the time of diagnosis of LCH. Subsequently, we performed a separate or combined analysis of the clinical and prognostic impact of the mutants. RESULTS We assessed BRAF-V600E mutation in peripheral blood from 94 patients of childhood LCH. Our data showed that cfBRAF-V600E was related to young age, multiple-system (MS) disease, involvements of organs with high risk, increased risk of relapse, and worse progression-free survival (PFS) of patients. We also observed that the presence of BRAF-V600E in PBMCs at baseline was significantly associated with MS LCH with risk organ involvement, younger age, and disease progression or relapse. The coexisting of plasma(+)/PBMC(+) identified 36.2% of the patients with the worst outcome, and the hazard ratio was more significant than either of the two alone or neither, indicating that combined analysis of the mutation in plasma and PBMCs was more accurate to predict relapse than evaluation of either one. CONCLUSIONS Concurrent assessment of BRAF-V600E mutation in plasma and PBMCs significantly impacted the prognosis of children with LCH. Further prospective studies with larger cohorts need to validate the results of this study.
Collapse
Affiliation(s)
- Chan-Juan Wang
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Ting Zhu
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Chen-Zi Zhao
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Hua Cui
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Dong Wang
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Zi-Jing Zhao
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Xiao-Tong Huang
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Hua-Lin Li
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Fei-Fei Liu
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Rui Zhang
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Zhi-Gang Li
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Lei Cui
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| |
Collapse
|
4
|
Cournoyer E, Ferrell J, Sharp S, Ray A, Jordan M, Dandoy C, Grimley M, Roy S, Lorsbach R, Merrow AC, Nelson A, Bartlett A, Picarsic J, Kumar A. Dabrafenib and trametinib in Langerhans cell histiocytosis and other histiocytic disorders. Haematologica 2024; 109:1137-1148. [PMID: 37731389 PMCID: PMC10985423 DOI: 10.3324/haematol.2023.283295] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
The standard treatment for Langerhans cell histiocytosis (LCH) is chemotherapy, although the failure rates are high. Since MAP-kinase activating mutations are found in most cases, BRAF- and MEK-inhibitors have been used successfully to treat patients with refractory or relapsed disease. However, data on long-term responses in children are limited and there are no data on the use of these inhibitors as first-line therapy. We treated 34 patients (26 with LCH, 2 with juvenile xanthogranuloma, 2 with Rosai-Dorfman disease, and 4 with presumed single site-central nervous system histiocytosis) with dabrafenib and/or trametinib, either as first line or after relapse or failure of chemotherapy. Sixteen patients, aged 1.3-21 years, had disease that was recurrent or refractory to chemotherapy, nine of whom had multisystem LCH with risk-organ involvement. With a median treatment duration of 4.3 years, 15 (94%) patients have sustained favorable responses. Eighteen patients, aged 0.2-45 years, received an inhibitor as first-line treatment. All of these have had sustained favorable responses, with a median treatment duration of 2.5 years. Three patients with presumed isolated central nervous system/pituitary stalk histiocytosis had stabilization or improvement of their disease. Overall, inhibitors were well tolerated. Five patients with single-system LCH discontinued therapy and remain off therapy without recurrence. In contrast, all four patients with multisystem disease who discontinued therapy had to restart treatment. Our data suggest that children suffering from histiocytoses can be treated safely and effectively with dabrafenib or trametinib. Additional studies are, however, needed to determine the long-term safety and optimal duration of therapy.
Collapse
Affiliation(s)
- Eily Cournoyer
- Cincinnati Children's Hospital Medical Center Residency Training Program, Cincinnati
| | - Justin Ferrell
- Cincinnati Children's Hospital Medical Center Residency Training Program, Cincinnati
| | - Susan Sharp
- University of Cincinnati College of Medicine, Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati
| | - Anish Ray
- Division of Hematology and Oncology, Cook Children's Hospital, Fort Worth, Texas
| | - Michael Jordan
- University of Cincinnati College of Medicine, Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati
| | - Christopher Dandoy
- University of Cincinnati College of Medicine, Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati
| | - Michael Grimley
- University of Cincinnati College of Medicine, Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati
| | - Somak Roy
- University of Cincinnati College of Medicine, Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati
| | - Robert Lorsbach
- University of Cincinnati College of Medicine, Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati
| | - Arnold C Merrow
- University of Cincinnati College of Medicine, Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati
| | - Adam Nelson
- University of Cincinnati College of Medicine, Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati
| | - Allison Bartlett
- University of Cincinnati College of Medicine, Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati
| | - Jennifer Picarsic
- University of Cincinnati College of Medicine, Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati
| | - Ashish Kumar
- University of Cincinnati College of Medicine, Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati.
| |
Collapse
|
5
|
Sconocchia T, Foßelteder J, Sconocchia G, Reinisch A. Langerhans cell histiocytosis: current advances in molecular pathogenesis. Front Immunol 2023; 14:1275085. [PMID: 37965340 PMCID: PMC10642229 DOI: 10.3389/fimmu.2023.1275085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Langerhans cell histiocytosis (LCH) is a rare and clinically heterogeneous hematological disease characterized by the accumulation of mononuclear phagocytes in various tissues and organs. LCH is often characterized by activating mutations of the mitogen-activated protein kinase (MAPK) pathway with BRAFV600E being the most recurrent mutation. Although this discovery has greatly helped in understanding the disease and in developing better investigational tools, the process of malignant transformation and the cell of origin are still not fully understood. In this review, we focus on the newest updates regarding the molecular pathogenesis of LCH and novel suggested pathways with treatment potential.
Collapse
Affiliation(s)
- Tommaso Sconocchia
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Johannes Foßelteder
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy
| | - Andreas Reinisch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Milne P, Bomken S, Slater O, Kumar A, Nelson A, Roy S, Velazquez J, Mankad K, Nicholson J, Yeomanson D, Grundy R, Kamal A, Penn A, Pears J, Millen G, Morland B, Hayden J, Lam J, Madkhali M, MacDonald J, Singh P, Pagan S, Rodriguez-Galindo C, Minkov M, Donadieu J, Picarsic J, Allen C, Bigley V, Collin M. Lineage switching of the cellular distribution of BRAFV600E in multisystem Langerhans cell histiocytosis. Blood Adv 2023; 7:2171-2176. [PMID: 36112425 PMCID: PMC10196915 DOI: 10.1182/bloodadvances.2021006732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/29/2022] [Accepted: 08/13/2022] [Indexed: 11/20/2022] Open
Abstract
Most children with high-risk Langerhans cell histiocytosis (LCH) have BRAFV600E mutation. BRAFV600E alleles are detectable in myeloid mononuclear cells at diagnosis but it is not known if the cellular distribution of mutation evolves over time. Here, the profiles of 16 patients with high-risk disease were analyzed. Two received conventional salvage chemotherapy, 4 patients on inhibitors were tracked at intervals of 3 to 6 years, and 10 patients, also given inhibitors, were analyzed more than 2 years after diagnosis. In contrast to the patients responding to salvage chemotherapy who completely cleared BRAFV600E within 6 months, children who received inhibitors maintained high BRAFV600E alleles in their blood. At diagnosis, mutation was detected predominantly in monocytes and myeloid dendritic cells. With time, mutation switched to the T-cell compartment, which accounted for most of the mutational burden in peripheral blood mononuclear cells, more than 2 years from diagnosis (median, 85.4%; range, 44.5%-100%). The highest level of mutation occurred in naïve CD4+ T cells (median, 51.2%; range, 3.8%-93.5%). This study reveals an unexpected lineage switch of BRAFV600E mutation in high-risk LCH, which may influence monitoring strategies for the potential withdrawal of inhibitor treatment and has new implications for the pathogenesis of neurodegeneration, which occurred in 4 patients.
Collapse
Affiliation(s)
- Paul Milne
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research, Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom
| | - Simon Bomken
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Olga Slater
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Ashish Kumar
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Adam Nelson
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Somak Roy
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Jessica Velazquez
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX
| | - Kshitij Mankad
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - James Nicholson
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Dan Yeomanson
- Sheffield Children’s Hospital, Sheffield Children’s NHS Foundation Trust, Sheffield, United Kingdom
| | - Richard Grundy
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, United Kingdom
- Nottingham Children’s Hospital, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Ahmed Kamal
- Nottingham Children’s Hospital, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Anthony Penn
- Royal Manchester Children’s Hospital, Manchester University, NHS Foundation Trust, Manchester, United Kingdom
| | - Jane Pears
- Children’s Health Ireland, Dublin, Ireland
| | - Gerard Millen
- Haematology and Oncology, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
| | - Bruce Morland
- Haematology and Oncology, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
| | - James Hayden
- Paediatric Oncology, Alder Hey Children’s NHS Foundation Trust, Liverpool, United Kingdom
| | - Jason Lam
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research, Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom
| | - Maymoon Madkhali
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Laboratory and Blood Bank, Samtah General Hospital, Jazan Health, Ministry of Health, Samtah, Kingdom of Saudi Arabia
| | - Jamie MacDonald
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research, Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom
| | - Preeti Singh
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research, Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom
| | - Sarah Pagan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research, Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom
| | | | - Milen Minkov
- St. Anna Children’s Hospital, Children’s Cancer Research Institute, Vienna, Austria
| | - Jean Donadieu
- Department of Pediatric Haematology and Oncology, Hôpital Armand-Trousseau, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris, France
| | - Jennifer Picarsic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Carl Allen
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX
| | - Venetia Bigley
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research, Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom
| | - Matthew Collin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Institute for Health and Care Research, Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Chen X, Zhang J, Lei X, Yang L, Li W, Zheng L, Zhang S, Ding Y, Shi J, Zhang L, Li J, Tang T, Jia W. CD1C is associated with breast cancer prognosis and immune infiltrates. BMC Cancer 2023; 23:129. [PMID: 36755259 PMCID: PMC9905770 DOI: 10.1186/s12885-023-10558-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND The tumor microenvironment (TME) in breast cancer plays a vital role in occurrence, development, and therapeutic responses. However, immune and stroma constituents in the TME are major obstacles to understanding and treating breast cancer. We evaluated the significance of TME-related genes in breast cancer. METHODS Invasive breast cancer (BRCA) samples were retrieved from the TCGA and GEO databases. Stroma and immune scores of samples as well as the proportion of tumor infiltrating immune cells (TICs) were calculated using the ESTIMATE and CIBERSORT algorithms. TME-related differentially expressed genes (DEGs) were analyzed by a protein interaction (PPI) network and univariate Cox regression to determine CD1C as a hub gene. Subsequently, the prognostic value of CD1C, its response to immunotherapy, and its mechanism in the TME were further studied. RESULTS In BRCA, DEGs were determined to identify CD1C as a hub gene. The expression level of CD1C in BRCA patients was verified based on the TCGA database, polymerase chain reaction (PCR) results, and western blot analysis. Immunohistochemical staining (IHC) results revealed a correlation between prognosis, clinical features, and CD1C expression in BRCA. Enrichment analysis of GSEA and GSVA showed that CD1C participates in immune-associated signaling pathways. CIBERSORT showed that CD1C levels were associated with tumor immune infiltrating cells (TILs), such as different kinds of T cells. Gene co-expression analysis showed that CD1C and the majority of immune-associated genes were co-expressed in BRCA. In renal cell carcinoma, patients with a high expression of CD1C had a better immunotherapy effect. CONCLUSION CD1C is an important part of the TME and participates in immune activity regulation in breast tumors. CD1C is expected to become a prognostic marker and a new treatment target for breast cancer.
Collapse
Affiliation(s)
- Xiao Chen
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
| | - Jianzhong Zhang
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
| | - Xinhan Lei
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
| | - Lei Yang
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
| | - Wanwan Li
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
| | - Lu Zheng
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
| | - Shuai Zhang
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
| | - Yihan Ding
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
| | - Jianing Shi
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
| | - Lei Zhang
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
| | - Jia Li
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
| | - Tong Tang
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China
| | - WenJun Jia
- The General Surgery Department of The Second Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
8
|
Detection of Immune Microenvironment Changes and Immune-Related Regulators in Langerhans Cell Histiocytosis Bone Metastasis. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1447435. [PMID: 36714021 PMCID: PMC9879691 DOI: 10.1155/2023/1447435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
The inflammation/immune response pathway is considered a key contributor to the development of Langerhans cell histiocytosis (LCH) bone metastasis. However, the dynamic changes in the immune microenvironment of LCH bone metastasis and critical regulators are still unclear. Expression profiling by arrays of GSE16395, GSE35340, and GSE122476 was applied to detect the immune microenvironment changes in the development of LCH bone metastasis. The single-cell high-throughput sequencing of GSE133704, involved in LCH bone lesions, was analyzed. The online database Metascape and gene set variation analysis (GSVA) algorithms were used to detect the gene function of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The protein-protein interaction (PPI) network of hub regulators was constructed by the STRING database. In these results, key immune cells, such as Tem cells, NK T cells, CD8(+) T cells, and Th1 cells, were identified in LCH bone metastasis. These genes, which include LAG3, TSPAN5, LPAR5, VEGFA, CXCL16, CD74, and MARCKS, may significantly correlate with the cellular infiltration of B cells, aDCs, pDCs, cytotoxic cells, T cells, CD8+ T cells, T helper cells, and Tcm cells. In conclusion, our study constructed an atlas of the immune microenvironment of LCH bone metastasis. Genes including LAG3, TSPAN5, LPAR5, VEGFA, CXCL16, CD74, and MARCKS may be involved in the development of LCH bone metastasis. The hub gene-immune cell interactive map may be a potential prognostic biomarker for the progression of LCH bone metastasis and synergetic targets for immunotherapy in LCH patients.
Collapse
|
9
|
Kvedaraite E, Milne P, Khalilnezhad A, Chevrier M, Sethi R, Lee HK, Hagey DW, von Bahr Greenwood T, Mouratidou N, Jädersten M, Lee NYS, Minnerup L, Yingrou T, Dutertre CA, Benac N, Hwang YY, Lum J, Loh AHP, Jansson J, Teng KWW, Khalilnezhad S, Weili X, Resteu A, Liang TH, Guan NL, Larbi A, Howland SW, Arnell H, Andaloussi SEL, Braier J, Rassidakis G, Galluzzo L, Dzionek A, Henter JI, Chen J, Collin M, Ginhoux F. Notch-dependent cooperativity between myeloid lineages promotes Langerhans cell histiocytosis pathology. Sci Immunol 2022; 7:eadd3330. [PMID: 36525505 PMCID: PMC7614120 DOI: 10.1126/sciimmunol.add3330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Langerhans cell histiocytosis (LCH) is a potentially fatal neoplasm characterized by the aberrant differentiation of mononuclear phagocytes, driven by mitogen-activated protein kinase (MAPK) pathway activation. LCH cells may trigger destructive pathology yet remain in a precarious state finely balanced between apoptosis and survival, supported by a unique inflammatory milieu. The interactions that maintain this state are not well known and may offer targets for intervention. Here, we used single-cell RNA-seq and protein analysis to dissect LCH lesions, assessing LCH cell heterogeneity and comparing LCH cells with normal mononuclear phagocytes within lesions. We found LCH discriminatory signatures pointing to senescence and escape from tumor immune surveillance. We also uncovered two major lineages of LCH with DC2- and DC3/monocyte-like phenotypes and validated them in multiple pathological tissue sites by high-content imaging. Receptor-ligand analyses and lineage tracing in vitro revealed Notch-dependent cooperativity between DC2 and DC3/monocyte lineages during expression of the pathognomonic LCH program. Our results present a convergent dual origin model of LCH with MAPK pathway activation occurring before fate commitment to DC2 and DC3/monocyte lineages and Notch-dependent cooperativity between lineages driving the development of LCH cells.
Collapse
Affiliation(s)
- Egle Kvedaraite
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Pathology, Karolinska University Laboratory, Stockholm, Sweden
| | - Paul Milne
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Northern Centre for Cancer Care, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Ahad Khalilnezhad
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Marion Chevrier
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Raman Sethi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Hong Kai Lee
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Daniel W. Hagey
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tatiana von Bahr Greenwood
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Oncology, Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia Mouratidou
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Martin Jädersten
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Yee Shin Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Lara Minnerup
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Tan Yingrou
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- National Skin Center, National Healthcare Group, Singapore
| | - Charles-Antoine Dutertre
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nathan Benac
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - You Yi Hwang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Amos Hong Pheng Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women’s and Children’s Hospital, Singapore
| | - Jessica Jansson
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Karen Wei Weng Teng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Shabnam Khalilnezhad
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Xu Weili
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Anastasia Resteu
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Northern Centre for Cancer Care, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Tey Hong Liang
- National Skin Centre, National Healthcare Group, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore
| | - Ng Lai Guan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Shanshan Wu Howland
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Henrik Arnell
- Department of Clinical Pathology, Karolinska University Laboratory, Stockholm, Sweden
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Samir EL Andaloussi
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jorge Braier
- Hospital Nacional de Pediatría Dr Prof JP Garrahan, Pathology Department, Buenos Aires, Argentina
| | - Georgios Rassidakis
- Department of Clinical Pathology, Karolinska University Laboratory, Stockholm, Sweden
| | - Laura Galluzzo
- Hospital Nacional de Pediatría Dr Prof JP Garrahan, Pathology Department, Buenos Aires, Argentina
| | | | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Oncology, Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, Department of Microbiology and Immunology, Narional Unietsoty of Sinapore (NUS)
| | - Matthew Collin
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Northern Centre for Cancer Care, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
10
|
Gao XM, Li J, Cao XX. Signaling pathways, microenvironment, and targeted treatments in Langerhans cell histiocytosis. Cell Commun Signal 2022; 20:195. [PMID: 36536400 PMCID: PMC9764551 DOI: 10.1186/s12964-022-00917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/11/2022] [Indexed: 12/23/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is an inflammatory myeloid malignancy in the "L-group" histiocytosis. Mitogen-activated protein kinase (MAPK) pathway activating mutations are detectable in nearly all LCH lesions. However, the pathogenic roles of MAPK pathway activation in the development of histiocytosis are still elusive. This review will summarize research concerning the landscape and pathogenic roles of MAPK pathway mutations and related treatment opportunities in Langerhans cell histiocytosis. Video abstract.
Collapse
Affiliation(s)
- Xue-min Gao
- grid.506261.60000 0001 0706 7839Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Li
- grid.506261.60000 0001 0706 7839Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-xin Cao
- grid.506261.60000 0001 0706 7839Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Milne P, Abhyankar H, Scull B, Singh P, Chakraborty R, Allen CE, Collin M. Cellular distribution of mutations and association with disease risk in Langerhans cell histiocytosis without BRAFV600E. Blood Adv 2022; 6:4901-4904. [PMID: 35816634 PMCID: PMC9631653 DOI: 10.1182/bloodadvances.2022007519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Paul Milne
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - Harshal Abhyankar
- Texas Children’s Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX; and
| | - Brooks Scull
- Texas Children’s Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX; and
| | - Preeti Singh
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | - Rikhia Chakraborty
- Texas Children’s Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX; and
| | - Carl E. Allen
- Texas Children’s Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX; and
- Baylor College of Medicine, Houston, TX
| | - Matthew Collin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| |
Collapse
|
12
|
Olexen CM, Rosso DA, Nowak W, Fortunati D, Errasti AE, Carrera Silva EA. Monitoring Circulating CD207 +CD1a + Cells in Langerhans Cell Histiocytosis and Clinical Implications. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:270-279. [PMID: 35768149 DOI: 10.4049/jimmunol.2200147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Langerhans cell histiocytosis (LCH) is a disorder characterized by an abnormal accumulation of CD207+ and CD1a+ cells in almost any tissue. Currently, there is a lack of prognostic markers to follow up patients and track disease reactivation or treatment response. Putative myeloid precursors CD207+ and CD1a+ cells were previously identified circulating in the blood. Therefore, we aim to develop a sensitive tracing method to monitor circulating CD207+ and CD1a+ cells in a drop of blood sample of patients with LCH. A total of 202 blood samples from patients with LCH and 23 controls were tested using flow cytometry. A standardized cellular score was defined by quantifying CD207+ and CD1a+ expression in monocytes and dendritic cells, based on CD11b, CD14, CD11c, and CD1c subpopulations, resulting in a unique value for each sample. The scoring system was validated by a receiver operating characteristic curve showing a reliable discriminatory capacity (area under the curve of 0.849) with a threshold value of 14, defining the presence of circulating CD207+ and CD1a+ cells. Interestingly, a fraction of patients with no evident clinical manifestation at the time of sampling also showed presence of these cells (29.6%). We also found a differential expression of CD207 and CD1a depending on the organ involvement, and a positive correlation between the cellular score and plasma inflammatory markers such as soluble CD40L, soluble IL-2Ra, and CXCL12. In conclusion, the analysis of circulating CD207 and CD1a cells in a small blood sample will allow setting a cellular score with minimal invasiveness, helping with prognostic accuracy, detecting early reactivation, and follow-up.
Collapse
Affiliation(s)
- Cinthia Mariel Olexen
- Instituto de Medicina Experimental, Academia Nacional de Medicina-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires, Argentina
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego Alfredo Rosso
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina;
- Hospital de Niños Pedro de Elizalde, Buenos Aires, Argentina; and
- Hospital de Clínicas General San Martin, Departamento de Pediatría, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Wanda Nowak
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela Fortunati
- Hospital de Clínicas General San Martin, Departamento de Pediatría, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea Emilse Errasti
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina;
| | - Eugenio Antonio Carrera Silva
- Instituto de Medicina Experimental, Academia Nacional de Medicina-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires, Argentina;
| |
Collapse
|
13
|
Åkefeldt SO, Ismail MB, Belot A, Salvatore G, Bissay N, Gavhed D, Aricò M, Henter JI, Valentin H, Delprat C. Neutralizing Anti-IL-17A Antibody Demonstrates Preclinical Activity Enhanced by Vinblastine in Langerhans Cell Histiocytosis. Front Oncol 2022; 11:780191. [PMID: 35127485 PMCID: PMC8814633 DOI: 10.3389/fonc.2021.780191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasm characterised by the accumulation into granulomas of apoptosis-resistant pathological dendritic cells (LCH-DCs). LCH outcome ranges from self-resolving to fatal. Having previously shown that, (i) monocyte-derived DCs (Mo-DCs) from LCH patients differentiate into abnormal and pro-inflammatory IL-17A-producing DCs, and (ii) recombinant IL-17A induces survival and chemoresistance of healthy Mo-DCs, we investigated the link between IL-17A and resistance to apoptosis of LCH-DCs. In LCH granulomas, we uncovered the strong expression of BCL2A1 (alias BFL1), an anti-apoptotic BCL2 family member. In vitro, intracellular IL-17A expression was correlated with BCL2A1 expression and survival of Mo-DCs from LCH patients. Based on the chemotherapeutic drugs routinely used as first or second line LCH therapy, we treated these cells with vinblastine, or cytarabine and cladribine. Our preclinical results indicate that high doses of these drugs decreased the expression of Mcl-1, the main anti-apoptotic BCL2 family member for myeloid cells, and killed Mo-DCs from LCH patients ex vivo, without affecting BCL2A1 expression. Conversely, neutralizing anti-IL-17A antibodies decreased BCL2A1 expression, the downregulation of which lowered the survival rate of Mo-DCs from LCH patients. Interestingly, the in vitro combination of low-dose vinblastine with neutralizing anti-IL-17A antibodies killed Mo-DCs from LCH patients. In conclusion, we show that BCL2A1 expression induced by IL-17A links the inflammatory environment to the unusual pro-survival gene activation in LCH-DCs. Finally, these preclinical data support that targeting both Mcl-1 and BCL2A1 with low-dose vinblastine and anti-IL-17A biotherapy may represent a synergistic combination for managing recurrent or severe forms of LCH.
Collapse
Affiliation(s)
- Selma Olsson Åkefeldt
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Mohamad Bachar Ismail
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Faculty of Science, Lebanese University, Tripoli, Lebanon
| | - Alexandre Belot
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.,Pediatric Nephrology, Rheumatology, Dermatology Unit, HFME, Hospices Civils de Lyon, Bron, France
| | - Giulia Salvatore
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Radiotherapy Unit, Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Nathalie Bissay
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Unité de recherche "Lymphoma Immuno-Biology", Faculté de Médecine Lyon-Sud, Oullins, France
| | - Désirée Gavhed
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | | | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Hélène Valentin
- Centre de Recherche en Cancérologie de Lyon (CRCL) - INSERM U1052 - CNRS UMR5286 - Centre Léon Bérard, Lyon, France
| | - Christine Delprat
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Centre de Recherche en Cancérologie de Lyon (CRCL) - INSERM U1052 - CNRS UMR5286 - Centre Léon Bérard, Lyon, France
| |
Collapse
|
14
|
Mine KL, de Marco R, Raimundo TRF, Ernesto JV, Medina-Pestana JO, Tedesco-Silva H, Gerbase-DeLima M. High soluble HLA-DQB2 levels in posttransplant serum are associated with kidney graft dysfunction. Int J Immunogenet 2022; 49:63-69. [PMID: 35083872 DOI: 10.1111/iji.12569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/20/2021] [Accepted: 01/08/2022] [Indexed: 11/27/2022]
Abstract
HLA-DQB2 is a gene of limited polymorphism, with unknown function that presents at least two transcript variants: v1, which encodes the full-length beta-chain, and v2, which lacks exon 4 and could give rise to a soluble protein. We previously showed a strong correlation between high v2 expression in preimplantation biopsies (PIB) of kidneys from young (18- to 49-year olds) but not from old, deceased donors and 1-year posttransplant low (estimated glomerular filtration rate < 45 ml/min/1.73 m2 ) graft function (GF). In this study, we aimed to investigate the impact of posttransplant soluble HLA-DQB2 (sDQB2) serum levels, v1 expression in PIB, and recipient HLA-DQB2 rs7453920 A/G polymorphism on GF. sDQB2 was evaluated by enzyme-linked immunosorbent assay in sera from 114 recipients, collected at least 1 year (median 2.1 years) after transplantation. Higher sDQB2 levels were observed in recipients of kidneys from young, but not from old, donors that had a ≥30% decline in GF within 1 year after blood collection for sDQB2 determination. Among the 15 recipients of kidneys from young donors with sDQB2 ≥ 1.52 ng/ml, 40% presented a ≥30% decline in GF, whereas this occurred in none of the 43 recipients with lower sDQB2 levels (p = 0.007; OR: 36.5). Expression of HLA-DQB2 variant 1, measured by reverse transcription-polymerase chain reaction (RT-PCR) in 92 PIB from young or old donors, did not significantly differ between transplants with high or low 4-year GF. HLA-DQB2 rs7453920 single nucleotide polymorphism (SNP) frequencies did not significantly differ between recipients with low or high 4-year GF. We conclude that HLA-DQB2 variant 1 expression in PIB and recipient rs7453920 SNP polymorphism are not associated with graft outcome. On the other hand, the association, in transplants of kidneys from young donors, between high posttransplant serum sDQB2 levels and decline in GF is a very interesting finding that deserves a validation study in a larger cohort.
Collapse
Affiliation(s)
- Karina L Mine
- Instituto de Imunogenética, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
| | - Renato de Marco
- Instituto de Imunogenética, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
| | - Tamiris R F Raimundo
- Instituto de Imunogenética, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
| | - Julia V Ernesto
- Instituto de Imunogenética, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
| | - José O Medina-Pestana
- Nephrology Division, Hospital do Rim, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Hélio Tedesco-Silva
- Nephrology Division, Hospital do Rim, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Gerbase-DeLima
- Instituto de Imunogenética, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
| |
Collapse
|
15
|
Abstract
ABSTRACT Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase pathway activation has recently been found to be associated with almost all Langerhans cell histiocytosis cases. In BRAF V600E mutation-positive cases, this activation is seen as a downstream activation. In addition, cyclin D1 is a downstream target of the MAPK pathway. Recent studies have argued in favor of using cyclin D1 as a potential neoplastic marker to differentiate Langerhans cell histiocytosis from other reactive Langerhans cell proliferations in the skin and lymph nodes. Therefore, we chose to study the immunohistochemical expression of cyclin D1 in cutaneous xanthogranuloma (XG) cases. Fifteen XG cases were retrieved and stained for cyclin D1, BRAF (v-raf murine sarcoma viral oncogene homolog B1), CD1a, and langerin (CD207). Twelve cases showed strong and diffuse nuclear positivity for cyclin D1, both in the XG cells and in the multinucleated osteoclast-like giant cells. Three cases showed focal weak nuclear staining for cyclin D1. All 15 cases showed negative immunoreactivity for BRAF, CD1a, and CD207. Although limited by small sample size, we conclude that most cases of cutaneous XG should show at least weak nuclear staining with cyclin D1. The histogenesis of XG is still largely unknown, and the finding of cyclin D1 positivity in a majority of cases may indicate a role for the MAPK/extracellular signal-regulated kinase pathway in cutaneous XG.
Collapse
|
16
|
BRAF V600E vs cell of origin: what governs LCH? Blood 2021; 138:1203-1204. [PMID: 34618000 DOI: 10.1182/blood.2021012907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/27/2021] [Indexed: 11/20/2022] Open
|
17
|
Mitogen-activating protein kinase pathway alterations in Langerhans cell histiocytosis. Curr Opin Oncol 2021; 33:101-109. [PMID: 33315630 DOI: 10.1097/cco.0000000000000707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Langerhans cell histiocytosis (LCH) is a rare disorder characterized by the infiltration of involved tissues by specialized dendritic cells. The demonstration of the constant activation of the mitogen-activated protein kinase (MAPK) pathway in LCH lesions has been a breakthrough in the understanding of the pathogenesis of this rare disease. We will summarize the current knowledge on MAPK alterations in LCH and the new therapeutic options indicated by these findings. RECENT FINDINGS Since the description of the B-Raf proto-oncogene, serine/threonine kinase (BRAF)V600E mutation in LCH lesions, several other molecular alterations affecting the MAPK pathway have been identified in most cases. Based on these driver alterations, LCH cells were shown to be derived from hematopoietic precursors, which yielded the current concept of LCH as a myeloid inflammatory neoplasia. MAPK pathway inhibitors have emerged as an innovative therapy in severe forms of LCH, resulting in virtually no acquired resistance. However, although they are highly effective, their effect is only temporary, as the disease relapses upon discontinuation of the treatment. SUMMARY LCH is an inflammatory myeloid neoplastic disorder, driven by mutations activating the MAPK pathway. MAPK-targeted treatments represent an important stepforward in the management of patients with severe progressive LCH.
Collapse
|
18
|
Bigenwald C, Le Berichel J, Wilk CM, Chakraborty R, Chen ST, Tabachnikova A, Mancusi R, Abhyankar H, Casanova-Acebes M, Laface I, Akturk G, Jobson J, Karoulia Z, Martin JC, Grout J, Rafiei A, Lin H, Manz MG, Baccarini A, Poulikakos PI, Brown BD, Gnjatic S, Lujambio A, McClain KL, Picarsic J, Allen CE, Merad M. BRAF V600E-induced senescence drives Langerhans cell histiocytosis pathophysiology. Nat Med 2021; 27:851-861. [PMID: 33958797 PMCID: PMC9295868 DOI: 10.1038/s41591-021-01304-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
Langerhans cell histiocytosis (LCH) is a potentially fatal condition characterized by granulomatous lesions with characteristic clonal mononuclear phagocytes (MNPs) harboring activating somatic mutations in mitogen-activated protein kinase (MAPK) pathway genes, most notably BRAFV600E. We recently discovered that the BRAFV600E mutation can also affect multipotent hematopoietic progenitor cells (HPCs) in multisystem LCH disease. How the BRAFV600E mutation in HPCs leads to LCH is not known. Here we show that enforced expression of the BRAFV600E mutation in early mouse and human multipotent HPCs induced a senescence program that led to HPC growth arrest, apoptosis resistance and a senescence-associated secretory phenotype (SASP). SASP, in turn, promoted HPC skewing toward the MNP lineage, leading to the accumulation of senescent MNPs in tissue and the formation of LCH lesions. Accordingly, elimination of senescent cells using INK-ATTAC transgenic mice, as well as pharmacologic blockade of SASP, improved LCH disease in mice. These results identify senescent cells as a new target for the treatment of LCH.
Collapse
Affiliation(s)
- Camille Bigenwald
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Le Berichel
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - C Matthias Wilk
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rikhia Chakraborty
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Steven T Chen
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra Tabachnikova
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebecca Mancusi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harshal Abhyankar
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Maria Casanova-Acebes
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilaria Laface
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guray Akturk
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jenielle Jobson
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zoi Karoulia
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jerome C Martin
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Grout
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anahita Rafiei
- Department of Medical Oncology and Hematology, University Hospital Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Howard Lin
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Alessia Baccarini
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Poulikos I Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D Brown
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amaia Lujambio
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenneth L McClain
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer Picarsic
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carl E Allen
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
19
|
Kinoshita M, Ogawa Y, Honobe A, Tomita O, Oishi N, Shimada S, Kondo T, Kawamura T. Expression of CD1 molecules and colony-stimulating factor 1 receptor in indeterminate cell histiocytosis. J Dermatol 2021; 48:1086-1089. [PMID: 33774864 DOI: 10.1111/1346-8138.15857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/17/2021] [Accepted: 03/04/2021] [Indexed: 01/15/2023]
Abstract
Indeterminate cell histiocytosis (ICH) and Langerhans cell histiocytosis (LCH) are rare histiocyte proliferating disorders with unknown etiologies. However, both tumor cells immunophenotypically share some features of Langerhans cells (LC), thereby expressing CD1a. Recent transcriptome analysis revealed that circulating CD1c+ myeloid dendritic cells are the potential precursor of LCH tumor cells. LC express CD1a as well as CD1c, but not CD1b. We discovered that both tumor cells express CD1c, but not CD1b, similar to LC. Moreover, like LC, both tumor cells express colony-stimulating factor 1 receptor (CSF-1R). Considering the crucial role of the interleukin (IL)-34/CSF-1R axis for the development and survival of LC, CSF-1R on both tumor cells might facilitate their survival and proliferation in situ. These data provide additional evidence to support the fact that ICH and LCH share immunophenotypical features with LC. In addition, we hypothesized that tumor cells in ICH and LCH survive and proliferate through IL-34-mediated CSF-1R signaling.
Collapse
Affiliation(s)
- Manao Kinoshita
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Youichi Ogawa
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Akiko Honobe
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Ozumi Tomita
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Naoki Oishi
- Department of Pathology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shinji Shimada
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tetsuo Kondo
- Department of Pathology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tatsuyoshi Kawamura
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
20
|
Bone marrow-derived myeloid progenitors as driver mutation carriers in high- and low-risk Langerhans cell histiocytosis. Blood 2021; 136:2188-2199. [PMID: 32750121 DOI: 10.1182/blood.2020005209] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is a myeloid neoplasia, driven by sporadic activating mutations in the MAPK pathway. The misguided myeloid dendritic cell (DC) model proposes that high-risk, multisystem, risk-organ-positive (MS-RO+) LCH results from driver mutation in a bone marrow (BM)-resident multipotent hematopoietic progenitor, while low-risk, MS-RO- and single-system LCH would result from driver mutation in a circulating or tissue-resident, DC-committed precursor. We have examined the CD34+c-Kit+Flt3+ myeloid progenitor population as potential mutation carrier in all LCH disease manifestations. This population contains oligopotent progenitors of monocytes (Mo's)/macrophages (MΦs), osteoclasts (OCs), and DCs. CD34+c-Kit+Flt3+ cells from BM of MS-RO+ LCH patients produced Langerhans cell (LC)-like cells in vitro. Both LC-like and DC offspring from this progenitor carried the BRAF mutation, confirming their common origin. In both high- and low-risk LCH patients, CD34+c-Kit+Flt3+ progenitor frequency in blood was higher than in healthy donors. In one MS-RO+ LCH patient, CD34+c-Kit+Flt3+ cell frequency in blood and its BRAF-mutated offspring reported response to chemotherapy. CD34+c-Kit+Flt3+ progenitors from blood of both high- and low-risk LCH patients gave rise to DCs and LC-like cells in vitro, but the driver mutation was not easily detectable, likely due to low frequency of mutated progenitors. Mutant BRAF alleles were found in Mo's /MΦs, DCs, LC-like cells, and/or OC-like cells in lesions and/or Mo and DCs in blood of multiple low-risk patients. We therefore hypothesize that in both high- and low-risk LCH, the driver mutation is present in a BM-resident myeloid progenitor that can be mobilized to the blood.
Collapse
|
21
|
Oulee A, Ma F, Teles RMB, de Andrade Silva BJ, Pellegrini M, Klechevsky E, Harman AN, Rhodes JW, Modlin RL. Identification of Genes Encoding Antimicrobial Proteins in Langerhans Cells. Front Immunol 2021; 12:695373. [PMID: 34512625 PMCID: PMC8426439 DOI: 10.3389/fimmu.2021.695373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/06/2021] [Indexed: 12/03/2022] Open
Abstract
Langerhans cells (LCs) reside in the epidermis where they are poised to mount an antimicrobial response against microbial pathogens invading from the outside environment. To elucidate potential pathways by which LCs contribute to host defense, we mined published LC transcriptomes deposited in GEO and the scientific literature for genes that participate in antimicrobial responses. Overall, we identified 31 genes in LCs that encode proteins that contribute to antimicrobial activity, ten of which were cross-validated in at least two separate experiments. Seven of these ten antimicrobial genes encode chemokines, CCL1, CCL17, CCL19, CCL2, CCL22, CXCL14 and CXCL2, which mediate both antimicrobial and inflammatory responses. Of these, CCL22 was detected in seven of nine transcriptomes and by PCR in cultured LCs. Overall, the antimicrobial genes identified in LCs encode proteins with broad antibacterial activity, including against Staphylococcus aureus, which is the leading cause of skin infections. Thus, this study illustrates that LCs, consistent with their anatomical location, are programmed to mount an antimicrobial response against invading pathogens in skin.
Collapse
Affiliation(s)
- Aislyn Oulee
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Feiyang Ma
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rosane M B Teles
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bruno J de Andrade Silva
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Eynav Klechevsky
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrew N Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Jake W Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
22
|
Bonometti A. The triptych of mixed histiocytosis: a systematic review of 105 cases and proposed clinical classification. Leuk Lymphoma 2020; 62:32-44. [PMID: 32969291 DOI: 10.1080/10428194.2020.1824070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Histiocytoses are one of the ultimate diagnostic challenges that every physician face at least once in his/her life. Giving their protean manifestation and differentiated therapeutic needs, histiocytosis requires extensive characterization and multidisciplinary management. Mixed histiocytosis is an emerging group of syndromes defined by the overlap of Langerhans cell histiocytosis and another histiocytic disorder of different type. Despite rare, it may account for up to a fifth of systemic histiocytosis patients in some series. In this work, we comprehensively review for the first time the clinical, radiological, histopathological and molecular features of mixed histiocytosis in children and adults. Moreover, we propose a clinical classification in three groups that differentiate patients with systemic involvement and worse overall survival to other groups with more localized manifestations and indolent behavior, wanting to ease their recognition and treatment. Interestingly we also found that mixed histiocytosis harbor BRAFV600E mutations with a higher frequency comparing to all other histiocytoses, and may therefore benefit of specific inhibitory drugs.
Collapse
Affiliation(s)
- Arturo Bonometti
- Unit of Anatomic Pathology, Department of Molecular Medicine, IRCCS San Matteo Foundation, University of Pavia, Pavia, Italy
| | | |
Collapse
|
23
|
Clausen BE, Romani N, Stoitzner P. Meeting Report of the 16th International Langerhans Cell Workshop: Recent Developments in Langerhans Cell and Skin Dendritic Cell Biology and their Therapeutic Application. J Invest Dermatol 2020; 140:1315-1319. [PMID: 32199991 DOI: 10.1016/j.jid.2020.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Nikolaus Romani
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|