1
|
Chow RD, Velu P, Deihimi S, Belman J, Youn A, Shah N, Luger SM, Carroll MP, Morrissette J, Bowman RL. Persistent postremission clonal hematopoiesis shapes the relapse trajectories of acute myeloid leukemia. Blood Adv 2025; 9:1888-1899. [PMID: 39938015 PMCID: PMC12008691 DOI: 10.1182/bloodadvances.2024015149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/14/2025] Open
Abstract
ABSTRACT Mutations found in acute myeloid leukemia (AML) such as DNMT3A, TET2, and ASXL1 can be found in the peripheral blood of healthy adults, a phenomenon termed clonal hematopoiesis (CH). These mutations are thought to represent the earliest genetic events in the evolution of AML. Genomic studies on samples acquired at diagnosis, remission, and at relapse have demonstrated significant stability of CH mutations after induction chemotherapy. Meanwhile, later mutations in genes such as NPM1 and FLT3 have been shown to contract at remission, and in the case of FLT3 often are absent at relapse. We sought to understand how early CH mutations influence subsequent evolutionary trajectories throughout remission and relapse in response to induction chemotherapy. We assembled a retrospective cohort of patients diagnosed with de novo AML at our institution that underwent genomic sequencing at diagnosis, remission, and/or relapse (total N = 182 patients). FLT3 and NPM1 mutations were generally eliminated at complete remission but subsequently reemerged upon relapse, whereas DNMT3A, TET2, and ASXL1 mutations often persisted through remission. CH-related mutations exhibited distinct constellations of co-occurring genetic alterations, with NPM1 and FLT3 mutations enriched in DNMT3Amut AML, whereas CBL and SRSF2 mutations were enriched in TET2mut and ASXL1mut AML, respectively. In the case of NPM1 and FLT3 mutations, these differences vanished at the time of complete remission yet readily reemerged upon relapse, indicating the reproducible nature of these genetic interactions. Thus, CH-associated mutations that likely precede malignant transformation subsequently shape the evolutionary trajectories of AML through diagnosis, therapy, and relapse.
Collapse
Affiliation(s)
- Ryan D. Chow
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Priya Velu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Weill Cornell School of Medicine, Cornell University, New York, NY
| | - Safoora Deihimi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jonathan Belman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Angela Youn
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nisargbhai Shah
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Selina M. Luger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Martin P. Carroll
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jennifer Morrissette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Robert L. Bowman
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
2
|
Butler JT, Yashar WM, Swords R. Breaking the Bone Marrow Barrier: Peripheral Blood as a Gateway to Measurable Residual Disease Detection in Acute Myelogenous Leukemia. Am J Hematol 2025; 100:638-651. [PMID: 39777414 PMCID: PMC11886496 DOI: 10.1002/ajh.27586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous disease with high rates of relapse after initial treatment. Identifying measurable residual disease (MRD) following initial therapy is essential to assess response, predict patient outcomes, and identify those in need of additional intervention. Currently, MRD analysis relies on invasive, serial bone marrow (BM) biopsies, which complicate sample availability and processing time and negatively impact patient experience. Additionally, finding a positive result can generate more questions than answers, causing anxiety for both the patient and the provider. Peripheral blood (PB) evaluation has shown promise in detecting MRD and is now recommended by the European Leukemia Net for AML for certain genetic abnormalities. PB-based sampling allows for more frequent testing intervals and better temporal resolution of malignant expansion while sparing patients additional invasive procedures. In this review, we will discuss the current state of PB testing for MRD evaluation with a focus on next-generation sequencing methodologies that are capable of MRD detection across AML subtypes.
Collapse
MESH Headings
- Humans
- Neoplasm, Residual/diagnosis
- Neoplasm, Residual/blood
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Bone Marrow/pathology
- High-Throughput Nucleotide Sequencing
Collapse
Affiliation(s)
- John T. Butler
- Radiation Medicine and Applied Science, Moores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| | - William M. Yashar
- Knight Cancer InstituteOregon Health & Science UniversityPortlandOregonUSA
- Division of Oncologic Sciences, Department of MedicineOregon Health & Science UniversityPortlandOregonUSA
- Department of Biomedical EngineeringOregon Health & Science UniversityPortlandOregonUSA
| | - Ronan Swords
- Division of Oncologic Sciences, Department of MedicineOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
3
|
Gang M, Othus M, Walter RB. Significance of Measurable Residual Disease in Patients Undergoing Allogeneic Hematopoietic Cell Transplantation for Acute Myeloid Leukemia. Cells 2025; 14:290. [PMID: 39996762 PMCID: PMC11853423 DOI: 10.3390/cells14040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) remains an important curative-intent treatment for many patients with acute myeloid leukemia (AML), but AML recurrence after allografting is common. Many factors associated with relapse after allogeneic HCT have been identified over the years. Central among these is measurable ("minimal") residual disease (MRD) as detected by multiparameter flow cytometry, quantitative polymerase chain reaction, and/or next-generation sequencing. Demonstration of a strong, independent prognostic role of pre- and early post-HCT MRD has raised hopes MRD could also serve as a predictive biomarker to inform treatment decision-making, with emerging data indicating the potential value to guide candidacy assessment for allografting as a post-remission treatment strategy, the selection of conditioning intensity, use of small molecule inhibitors as post-HCT maintenance therapy, and preemptive infusion of donor lymphocytes. Monitoring for leukemia recurrence after HCT and surrogacy for treatment response are other considerations for the clinical use of MRD data. In this review, we will outline the current landscape of MRD as a biomarker for patients with AML undergoing HCT and discuss areas of uncertainty and ongoing research.
Collapse
Affiliation(s)
- Margery Gang
- Hematology and Oncology Fellowship Program, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA 98109, USA;
| | - Megan Othus
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA;
| | - Roland B. Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Poon G, Vedi A, Sanders M, Laurenti E, Valk P, Blundell JR. Single-cell DNA sequencing reveals pervasive positive selection throughout preleukemic evolution. CELL GENOMICS 2025; 5:100744. [PMID: 39842433 PMCID: PMC11872528 DOI: 10.1016/j.xgen.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/03/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025]
Abstract
The representation of driver mutations in preleukemic hematopoietic stem cells (pHSCs) provides a window into the somatic evolution that precedes acute myeloid leukemia (AML). Here, we isolate pHSCs from the bone marrow of 16 patients diagnosed with AML and perform single-cell DNA sequencing on thousands of cells to reconstruct phylogenetic trees of the major driver clones in each patient. We develop a computational framework that can infer levels of positive selection operating during preleukemic evolution from the statistical properties of these phylogenetic trees. Combining these data with 67 previously published phylogenetic trees, we find that the highly variable structures of preleukemic trees emerge naturally from a simple model of somatic evolution with pervasive positive selection typically in the range of 9%-24% per year. At these levels of positive selection, we show that the identification of early multiple-mutant clones could be used to identify individuals at risk of future AML.
Collapse
Affiliation(s)
- Gladys Poon
- Early Cancer Institute, University of Cambridge, Cambridge, UK.
| | - Aditi Vedi
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Mathijs Sanders
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Elisa Laurenti
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Peter Valk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | |
Collapse
|
5
|
Roshal M, Gao Q. Flow cytometry evaluation of acute myeloid leukemia minimal residual disease based on an understanding of the normal maturation patterns in the blast compartments. Am J Clin Pathol 2025:aqae187. [PMID: 39921543 DOI: 10.1093/ajcp/aqae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/03/2025] [Indexed: 02/10/2025] Open
Abstract
OBJECTIVE Detection of minimal/measurable disease (MRD) in acute myeloid leukemia (AML) is critical for both clinical decision-making and prognostication, yet remains a challenge. Flow cytometry is a well-established method for MRD detection. Flow cytometric (FC) evaluation of MRD must consider a complex maturational pattern of normal hematopoietic development to separate normal from abnormal progenitors. Here, we offer an example of an interpretive approach based on a thorough understanding of stage- and lineage-specific hematopoietic maturation. METHODS We provide a comprehensive overview of blast maturation from early precursors (hematopoietic stem cells) to committed late-stage unilineage progenitors and commonly observed stage-specific abnormalities based on cases we have encountered in practice. We emphasize the importance of stage-specific comparisons for accurate MRD detection by flow cytometry. RESULTS The AML blasts almost invariably show abnormal phenotypes, and the phenotypes may evolve upon therapy. The detected phenotypes are necessarily confined to the target antigens included in the panel. It is therefore critical to evaluate a range of antigens to establish a specific stage/state of lineage commitment and detect potential common abnormalities. Moreover, enough cells must be acquired to allow for the detection of MRD at desired levels. Significant technical and analytical validation is critical. CONCLUSIONS Flow cytometry offers a powerful single-cell-based platform for MRD detection in AML, and the results have been proven critical for disease management. Leukemia-associated phenotype-informed difference from the normal approach presented in this review presents an analytical framework for sensitive and accurate MRD detection.
Collapse
Affiliation(s)
- Mikhail Roshal
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, US
| | - Qi Gao
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, US
| |
Collapse
|
6
|
Lecornec N, Duchmann M, Itzykson R. Single-cell sequencing applications in acute myeloid leukemia. Leuk Lymphoma 2025; 66:175-189. [PMID: 39496597 DOI: 10.1080/10428194.2024.2422833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of malignancies with poor prognosis. AML result from the proliferation of immature myeloid cells blocked at a variable stage of differentiation. Beyond inter-patient heterogeneity, AMLs are characterized by genetic and phenotypic intra-patient heterogeneity. Despite major advances in deciphering AML biology with bulk sequencing studies, pivotal questions remain unanswered. Analyses at the single-cell level could thus transform our understanding of these neoplasms. We review recent progresses in single-cell sequencing technologies from cell processing to bioinformatic pipelines. We next discuss how single-cell applications have helped understand the genetic and functional intra-leukemic heterogeneity, emphasizing aspects related to leukemic stem cells, clonal evolution and measurable residual disease (MRD) monitoring. We finally delineate how single-cell technologies could be implemented in routine clinical practice to improve patient management.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Single-Cell Analysis/methods
- Neoplasm, Residual/genetics
- Neoplasm, Residual/diagnosis
- Biomarkers, Tumor/genetics
- High-Throughput Nucleotide Sequencing/methods
- Clonal Evolution
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/metabolism
- Computational Biology/methods
- Prognosis
Collapse
Affiliation(s)
- Nicolas Lecornec
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Université Paris Cité, Paris, France
- Département d'Immuno-Hématologie Pédiatrique, Hôpital Robert-Debré, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Matthieu Duchmann
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Université Paris Cité, Paris, France
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Raphael Itzykson
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Université Paris Cité, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
7
|
Drucker M, Lee D, Zhang X, Kain B, Bowman M, Nicolet D, Wang Z, Stone RM, Mrózek K, Carroll AJ, Starczynowski DT, Levine RL, Byrd JC, Eisfeld AK, Salomonis N, Grimes HL, Bowman RL, Miles LA. Genotype-immunophenotype relationships in NPM1-mutant AML clonal evolution uncovered by single cell multiomic analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623033. [PMID: 39605444 PMCID: PMC11601460 DOI: 10.1101/2024.11.11.623033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Acute myeloid leukemia (AML) is a multi-clonal disease, existing as a milieu of clones with unique but related genotypes as initiating clones acquire subsequent mutations. However, bulk sequencing cannot fully capture AML clonal architecture or the clonal evolution that occurs as patients undergo therapy. To interrogate clonal evolution, we performed simultaneous single cell molecular profiling and immunophenotyping on 43 samples from 32 NPM1-mutant AML patients at different stages of disease. Here we show that diagnosis and relapsed AML samples display similar clonal architecture patterns, but signaling mutations can drive increased clonal diversity specifically at relapse. We uncovered unique genotype-immunophenotype relationships regardless of disease state, suggesting leukemic lineage trajectories can be hard-wired by the mutations present. Analysis of longitudinal samples from patients on therapy identified dynamic clonal, transcriptomic, and immunophenotypic changes. Our studies provide resolved understanding of leukemic clonal evolution and the relationships between genotype and cell state in leukemia biology.
Collapse
Affiliation(s)
- Morgan Drucker
- Division of Hematology/Oncology, Cancer & Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati OH USA
| | - Darren Lee
- University of Cincinnati College of Medicine, Cincinnati OH USA
| | - Xuan Zhang
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH USA
| | - Bailee Kain
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH USA
| | - Michael Bowman
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA USA
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Columbus, OH USA
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus OH USA
| | - Zhe Wang
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH USA
| | | | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Columbus, OH USA
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus OH USA
| | - Andrew J. Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA
| | - Daniel T. Starczynowski
- Division of Experimental Hematology & Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati OH USA
- Department of Pediatrics, University of Cincinnati, Cincinnati OH USA
- University of Cincinnati Cancer Center, Cincinnati OH USA
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John C. Byrd
- University of Cincinnati Cancer Center, Cincinnati OH USA
- Department of Internal Medicine, University of Cincinnati, Cincinnati OH USA
| | - Ann-Kathrin Eisfeld
- The Ohio State University Comprehensive Cancer Center, Columbus, OH USA
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus OH USA
- Division of Hematology Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati, Cincinnati OH USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - H. Leighton Grimes
- Department of Pediatrics, University of Cincinnati, Cincinnati OH USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH USA
| | - Robert L. Bowman
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA USA
| | - Linde A. Miles
- Division of Experimental Hematology & Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati OH USA
- Department of Pediatrics, University of Cincinnati, Cincinnati OH USA
- University of Cincinnati Cancer Center, Cincinnati OH USA
| |
Collapse
|
8
|
Aertgeerts M, Meyers S, Demeyer S, Segers H, Cools J. Unlocking the Complexity: Exploration of Acute Lymphoblastic Leukemia at the Single Cell Level. Mol Diagn Ther 2024; 28:727-744. [PMID: 39190087 DOI: 10.1007/s40291-024-00739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. ALL originates from precursor lymphocytes that acquire multiple genomic changes over time, including chromosomal rearrangements and point mutations. While a large variety of genomic defects was identified and characterized in ALL over the past 30 years, it was only in recent years that the clonal heterogeneity was recognized. Thanks to the latest advancements in single-cell sequencing techniques, which have evolved from the analysis of a few hundred cells to the analysis of thousands of cells simultaneously, the study of tumor heterogeneity now becomes possible. Different modalities can be explored at the single-cell level: DNA, RNA, epigenetic modifications, and intracellular and cell surface proteins. In this review, we describe these techniques and highlight their advantages and limitations in the study of ALL biology. Moreover, multiomics technologies and the incorporation of the spatial dimension can provide insight into intercellular communication. We describe how the different single-cell sequencing technologies help to unravel the molecular complexity of ALL, shedding light on its development, its heterogeneity, its interaction with the leukemia microenvironment and possible relapse mechanisms.
Collapse
Affiliation(s)
- Margo Aertgeerts
- Department of Oncology, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven-UZ Leuven, Leuven, Belgium
| | - Sarah Meyers
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven-UZ Leuven, Leuven, Belgium
| | - Sofie Demeyer
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven-UZ Leuven, Leuven, Belgium
| | - Heidi Segers
- Department of Oncology, KU Leuven, Leuven, Belgium.
- Leuvens Kanker Instituut (LKI), KU Leuven-UZ Leuven, Leuven, Belgium.
- Department of Pediatric Hematology and Oncology, UZ Leuven, Leuven, Belgium.
| | - Jan Cools
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Center for Cancer Biology, VIB, Leuven, Belgium.
- Leuvens Kanker Instituut (LKI), KU Leuven-UZ Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Kim J, Schanzer N, Singh RS, Zaman MI, Garcia-Medina JS, Proszynski J, Ganesan S, Dan Landau, Park CY, Melnick AM, Mason CE. DOGMA-seq and multimodal, single-cell analysis in acute myeloid leukemia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:67-108. [PMID: 39864897 DOI: 10.1016/bs.ircmb.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Acute myeloid leukemia (AML) is a complex cancer, yet advances in recent years from integrated genomics methods have helped improve diagnosis, treatment, and means of patient stratification. A recent example of a powerful, multimodal method is DOGMA-seq, which can measure chromatin accessibility, gene expression, and cell-surface protein levels from the same individual cell simultaneously. Previous bimodal single-cell techniques, such as CITE-seq (Cellular indexing of transcriptomes and epitopes), have only permitted the transcriptome and cell-surface protein expression measurement. DOGMA-seq, however, builds on this foundation and has implications for examining epigenomic, transcriptomic, and proteomic interactions between various cell types. This technique has the potential to be particularly useful in the study of cancers such as AML. This is because the cellular mechanisms that drive AML are rather heterogeneous and require a more complete understanding of the interplay between the genetic mutations, disruptions in RNA transcription and translation, and surface protein expression that cause these cancers to develop and evolve. This technique will hopefully contribute to a more clear and complete understanding of the growth and progression of complex cancers.
Collapse
Affiliation(s)
- JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Nathan Schanzer
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Ruth Subhash Singh
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Mohammed I Zaman
- Department of Biophysics and Physiology, Stony Brook University, Stony Brook, NY, United States
| | - J Sebastian Garcia-Medina
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Jacqueline Proszynski
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Saravanan Ganesan
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States; New York Genome Center, New York, NY, United States
| | - Dan Landau
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | | | - Ari M Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
10
|
Chow RD, Velu P, Deihimi S, Belman J, Youn A, Shah N, Luger SM, Carroll MP, Morrissette J, Bowman RL. Early drivers of clonal hematopoiesis shape the evolutionary trajectories of de novo acute myeloid leukemia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.31.24312756. [PMID: 39252918 PMCID: PMC11383471 DOI: 10.1101/2024.08.31.24312756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Mutations commonly found in AML such as DNMT3A, TET2 and ASXL1 can be found in the peripheral blood of otherwise healthy adults - a phenomenon referred to as clonal hematopoiesis (CH). These mutations are thought to represent the earliest genetic events in the evolution of AML. Genomic studies on samples acquired at diagnosis, remission, and at relapse have demonstrated significant stability of CH mutations following induction chemotherapy. Meanwhile, later mutations in genes such as NPM1 and FLT3, have been shown to contract at remission and in the case of FLT3 often are absent at relapse. We sought to understand how early CH mutations influence subsequent evolutionary trajectories throughout remission and relapse in response to induction chemotherapy. Here, we assembled a retrospective cohort of patients diagnosed with de novo AML at our institution that underwent genomic sequencing at diagnosis as well as at the time of remission and/or relapse (total n = 182 patients). Corroborating prior studies, FLT3 and NPM1 mutations were generally eliminated at the time of cytologic complete remission but subsequently reemerged upon relapse, whereas DNMT3A, TET2 and ASXL1 mutations often persisted through remission. Early CH-related mutations exhibited distinct constellations of co-occurring genetic alterations, with NPM1 and FLT3 mutations enriched in DNMT3A mut AML, while CBL and SRSF2 mutations were enriched in TET2 mut and ASXL1 mut AML, respectively. In the case of NPM1 and FLT3 mutations, these differences vanished at the time of complete remission yet readily reemerged upon relapse, indicating the reproducible nature of these genetic interactions. Thus, early CH-associated mutations that precede malignant transformation subsequently shape the evolutionary trajectories of AML through diagnosis, therapy, and relapse.
Collapse
Affiliation(s)
- Ryan D. Chow
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priya Velu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell School of Medicine, Cornell University, New York, NY, USA
| | - Safoora Deihimi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Belman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela Youn
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nisargbhai Shah
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selina M. Luger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martin P. Carroll
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Morrissette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert L Bowman
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Moshref M, Lo JHH, McKay A, Camperi J, Schroer J, Ueno N, Wang S, Gulati S, Tarighat S, Durinck S, Lee HY, Chen D. Assessing a single-cell multi-omic analytic platform to characterize ex vivo-engineered T-cell therapy products. Front Bioeng Biotechnol 2024; 12:1417070. [PMID: 39229457 PMCID: PMC11368872 DOI: 10.3389/fbioe.2024.1417070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/11/2024] [Indexed: 09/05/2024] Open
Abstract
Genetically engineered CD8+ T cells are being explored for the treatment of various cancers. Analytical characterization represents a major challenge in the development of genetically engineered cell therapies, especially assessing the potential off-target editing and product heterogeneity. As conventional sequencing techniques only provide information at the bulk level, they are unable to detect off-target CRISPR translocation or editing events occurring in minor cell subpopulations. In this study, we report the analytical development of a single-cell multi-omics DNA and protein assay to characterize genetically engineered cell products for safety and genotoxicity assessment. We were able to quantify on-target edits, off-target events, and potential translocations at the targeting loci with per-cell granularity, providing important characterization data of the final cell product. Conclusion: A single-cell multi-omics approach provides the resolution required to understand the composition of cellular products and identify critical quality attributes (CQAs).
Collapse
Affiliation(s)
- Maryam Moshref
- Cell Therapy Engineering and Development, Genentech, South San Francisco, CA, United States
| | - Jerry Hung-Hao Lo
- Oncology Bioinformatics, Genentech, South San Francisco, CA, United States
| | - Andrew McKay
- Pharma Technical Development Bioinformatics, Genentech, South San Francisco, CA, United States
| | - Julien Camperi
- Cell Therapy Engineering and Development, Genentech, South San Francisco, CA, United States
| | - Joseph Schroer
- Cell Therapy Engineering and Development, Genentech, South San Francisco, CA, United States
| | - Norikiyo Ueno
- Cell and Gene Therapy Business Unit, Mission Bio, South San Francisco, CA, United States
| | - Shu Wang
- Bioinformatics Department, Mission Bio, South San Francisco, CA, United States
| | - Saurabh Gulati
- Bioinformatics Department, Mission Bio, South San Francisco, CA, United States
| | - Somayeh Tarighat
- Cell Therapy Engineering and Development, Genentech, South San Francisco, CA, United States
| | - Steffen Durinck
- Oncology Bioinformatics, Genentech, South San Francisco, CA, United States
| | - Ho Young Lee
- Cell Therapy Engineering and Development, Genentech, South San Francisco, CA, United States
| | - Dayue Chen
- Cell Therapy Engineering and Development, Genentech, South San Francisco, CA, United States
| |
Collapse
|
12
|
Vormittag-Nocito E, Sukhanova M, Godley LA. The impact of next-generation sequencing for diagnosis and disease understanding of myeloid malignancies. Expert Rev Mol Diagn 2024; 24:591-600. [PMID: 39054632 DOI: 10.1080/14737159.2024.2383445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Defining the chromosomal and molecular changes associated with myeloid neoplasms (MNs) optimizes clinical care through improved diagnosis, prognosis, treatment planning, and patient monitoring. This review will concisely describe the techniques used to profile MNs clinically today, with descriptions of challenges and emerging approaches that may soon become standard-of-care. AREAS COVERED In this review, the authors discuss molecular assessment of MNs using non-sequencing techniques, including conventional cytogenetic analysis, fluorescence in situ hybridization, chromosomal genomic microarray testing; as well as DNA- or RNA-based next-generation sequencing (NGS) assays; and sequential monitoring via digital PCR or measurable residual disease assays. The authors explain why distinguishing somatic from germline alleles is critical for optimal management. Finally, they introduce emerging technologies, such as long-read, whole exome/genome, and single-cell sequencing, which are reserved for research purposes currently but will become clinical tests soon. EXPERT OPINION The authors describe challenges to the adoption of comprehensive genomic tests for those in resource-constrained environments and for inclusion into clinical trials. In the future, all aspects of patient care will likely be influenced by the adaptation of artificial intelligence and mathematical modeling, fueled by rapid advances in telecommunications.
Collapse
Affiliation(s)
- Erica Vormittag-Nocito
- Division of Genomics, Department of Pathology and the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Madina Sukhanova
- Division of Genomics, Department of Pathology and the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lucy A Godley
- Division of Hematology/Oncology, Department of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
13
|
Schwede M, Jahn K, Kuipers J, Miles LA, Bowman RL, Robinson T, Furudate K, Uryu H, Tanaka T, Sasaki Y, Ediriwickrema A, Benard B, Gentles AJ, Levine R, Beerenwinkel N, Takahashi K, Majeti R. Mutation order in acute myeloid leukemia identifies uncommon patterns of evolution and illuminates phenotypic heterogeneity. Leukemia 2024; 38:1501-1510. [PMID: 38467769 PMCID: PMC11250774 DOI: 10.1038/s41375-024-02211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Acute myeloid leukemia (AML) has a poor prognosis and a heterogeneous mutation landscape. Although common mutations are well-studied, little research has characterized how the sequence of mutations relates to clinical features. Using published, single-cell DNA sequencing data from three institutions, we compared clonal evolution patterns in AML to patient characteristics, disease phenotype, and outcomes. Mutation trees, which represent the order of select mutations, were created for 207 patients from targeted panel sequencing data using 1 639 162 cells, 823 mutations, and 275 samples. In 224 distinct orderings of mutated genes, mutations related to DNA methylation typically preceded those related to cell signaling, but signaling-first cases did occur, and had higher peripheral cell counts, increased signaling mutation homozygosity, and younger patient age. Serial sample analysis suggested that NPM1 and DNA methylation mutations provide an advantage to signaling mutations in AML. Interestingly, WT1 mutation evolution shared features with signaling mutations, such as WT1-early being proliferative and occurring in younger individuals, trends that remained in multivariable regression. Some mutation orderings had a worse prognosis, but this was mediated by unfavorable mutations, not mutation order. These findings add a dimension to the mutation landscape of AML, identifying uncommon patterns of leukemogenesis and shedding light on heterogeneous phenotypes.
Collapse
Affiliation(s)
- Matthew Schwede
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, School of Medicine, Stanford, CA, USA
| | - Katharina Jahn
- Biomedical Data Science, Institute for Computer Science, Free University of Berlin, Berlin, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Linde A Miles
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Robert L Bowman
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Troy Robinson
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ken Furudate
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hidetaka Uryu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tomoyuki Tanaka
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuya Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Asiri Ediriwickrema
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Brooks Benard
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Andrew J Gentles
- Department of Biomedical Data Science, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - Ross Levine
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA.
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
14
|
Zhang L, Deeb G, Deeb KK, Vale C, Peker Barclift D, Papadantonakis N. Measurable (Minimal) Residual Disease in Myelodysplastic Neoplasms (MDS): Current State and Perspectives. Cancers (Basel) 2024; 16:1503. [PMID: 38672585 PMCID: PMC11048433 DOI: 10.3390/cancers16081503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Myelodysplastic Neoplasms (MDS) have been traditionally studied through the assessment of blood counts, cytogenetics, and morphology. In recent years, the introduction of molecular assays has improved our ability to diagnose MDS. The role of Measurable (minimal) Residual Disease (MRD) in MDS is evolving, and molecular and flow cytometry techniques have been used in several studies. In this review, we will highlight the evolving concept of MRD in MDS, outline the various techniques utilized, and provide an overview of the studies reporting MRD and the correlation with outcomes.
Collapse
Affiliation(s)
- Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - George Deeb
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kristin K. Deeb
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Colin Vale
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Deniz Peker Barclift
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nikolaos Papadantonakis
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Gronlund JK, Veigaard C, Juhl-Christensen C, Skou AS, Melsvik D, Ommen HB. Droplet digital PCR for sensitive relapse detection in acute myeloid leukaemia patients transplanted by reduced intensity conditioning. Eur J Haematol 2024; 112:601-610. [PMID: 38197567 DOI: 10.1111/ejh.14151] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Follow-up after allogeneic transplantation in acute myeloid leukaemia (AML) is guided by measurable residual disease (MRD) testing. Quantitative polymerase chain reaction (qPCR) is the preferred MRD platform but unfortunately, 40%-60% of AML patients have no high-quality qPCR target. This study aimed to improve MRD testing by utilising droplet digital PCR (ddPCR). ddPCR offers patient-specific monitoring but concerns of tracking clonal haematopoiesis rather than malignant cells prompt further validation. METHODS Retrospectively, we performed MRD testing on blood and bone marrow samples from AML patients transplanted by reduced-intensity conditioning. RESULTS The applicability of ddPCR was 39/42 (92.9%). Forty-five ddPCR assays were validated with a 0.0089% median sensitivity. qPCR targeting NPM1 mutation detected relapse 46 days before ddPCR (p = .03). ddPCR detected relapse 34.5 days before qPCR targeting WT1 overexpression (p = .03). In non-relapsing patients, zero false positive ddPCR MRD relapses were observed even when monitoring targets associated with clonal haematopoiesis such as DNMT3A, TET2, and ASXL1 mutations. CONCLUSION These results confirm that qPCR targeting NPM1 mutations or fusion transcripts are superior in MRD testing. In the absence of such targets, ddPCR is a promising alternative demonstrating (a) high applicability, (b) high sensitivity, and (c) zero false positive MRD relapses in non-relapsing patients.
Collapse
Affiliation(s)
| | | | | | - Anne-Sofie Skou
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Dorte Melsvik
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Beier Ommen
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
16
|
Herrity E, Pereira MP, Kim DDH. Acute myeloid leukaemia relapse after allogeneic haematopoietic stem cell transplantation: Mechanistic diversity and therapeutic directions. Br J Haematol 2023; 203:722-735. [PMID: 37787151 DOI: 10.1111/bjh.19121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
Emerging biological and clinical data, along with advances in new technologies, have exposed the mechanistic diversity in post-haematopoietic stem cell transplant (HCT) relapse. Post-HCT relapse mechanisms are relevant for guiding sophisticated selection of therapeutic interventions and identification of areas for further research. Clonal evolution and emergence of resistant leukemic strains is a common mechanism shared by relapse post-chemotherapy and post-HCT, other mechanisms such as leukemic immune escape and donor T cell exhaustion are unique entities to post-HCT relapse. Due to diversity in the mechanisms behind post-HCT relapse, the subsequent clinical approach relies on clinician discretion, rather than objective evidence. Lack of standardized selection based on post-HCT relapse mechanism(s) could be a contributing factor to observed poor outcomes. Therapeutic strategies including donor lymphocyte infusion (DLI), second transplant, immunotherapies, hypomethylating agents, and targeted strategies are supported options and efficacy may be enhanced when post-HCT AML relapse mechanism is established and guides treatment selection. This review aims, through compilation of supporting studies, to describe mechanisms of post-HCT relapse and their implications for subsequent treatment selection and inspiration for future research.
Collapse
Affiliation(s)
- Elizabeth Herrity
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mariana Pinto Pereira
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Dennis Dong Hwan Kim
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Leukemia Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Hematology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Patel SA, Cerny J, Gerber WK, Ramanathan M, Ediriwickrema A, Tanenbaum B, Hutchinson L, Meng X, Flahive J, Barton B, Gillis‐Smith AJ, Suzuki S, Khedr S, Selove W, Higgins AW, Miron PM, Simin K, Woda B, Gerber JM. Prognostic heterogeneity and clonal dynamics within distinct subgroups of myelodysplastic syndrome and acute myeloid leukemia with TP53 disruptions. EJHAEM 2023; 4:1059-1070. [PMID: 38024632 PMCID: PMC10660125 DOI: 10.1002/jha2.791] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 12/01/2023]
Abstract
TP53 aberrations constitute the highest risk subset of myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML). The International Consensus Classification questions the blast threshold between MDS and AML. In this study, we assess the distinction between MDS and AML for 76 patients with TP53 aberrations. We observed no significant differences between MDS and AML regarding TP53 genomics. Median overall survival (OS) was 223 days for the entire group, but prognostic discrimination within subgroups showed the most inferior OS (46 days) for AML with multihit allelic state plus TP53 variant allele frequency (VAF) > 50%. In multivariate analysis, unadjusted Cox models revealed the following variables as independent risk factors for mortality: AML (vs. MDS) (hazard ratio [HR]: 2.50, confidence interval [CI]: 1.4-4.4, p = 0.001), complex karyotype (HR: 3.00, CI: 1.4-6.1, p = 0.003), multihit status (HR: 2.30, CI 1.3-4.2, p = 0.005), and absence of hematopoietic cell transplant (HCT) (HR: 3.90, CI: 1.8-8.9, p = 0.0009). Clonal dynamic modeling showed a significant reduction in TP53 VAF with front-line hypomethylating agents. These findings clarify the impact of specific covariates on outcomes of TP53-aberrant myeloid neoplasms, irrespective of the diagnosis of MDS versus AML, and may influence HCT decisions.
Collapse
Affiliation(s)
- Shyam A. Patel
- Division of Hematology and Oncology, Department of MedicineUMass Memorial Medical Center, UMass Chan Medical SchoolWorcesterMassachusettsUnited States
| | - Jan Cerny
- Division of Hematology and Oncology, Department of MedicineUMass Memorial Medical Center, UMass Chan Medical SchoolWorcesterMassachusettsUnited States
| | - William K. Gerber
- Division of Hematology and Oncology, Department of MedicineUMass Memorial Medical Center, UMass Chan Medical SchoolWorcesterMassachusettsUnited States
| | - Muthalagu Ramanathan
- Division of Hematology and Oncology, Department of MedicineUMass Memorial Medical Center, UMass Chan Medical SchoolWorcesterMassachusettsUnited States
| | - Asiri Ediriwickrema
- Institute for Stem Cell Biology & Regenerative Medicine; Division of Hematology, Department of MedicineStanford UniversityStanfordCaliforniaUnited States
| | - Benjamin Tanenbaum
- Division of Hematology and Oncology, Department of MedicineUMass Memorial Medical Center, UMass Chan Medical SchoolWorcesterMassachusettsUnited States
| | - Lloyd Hutchinson
- Department of PathologyUMass Memorial Medical Center, UMass Chan Medical SchoolWorcesterMassachusettsUnited States
| | - Xiuling Meng
- Department of PathologyUMass Memorial Medical Center, UMass Chan Medical SchoolWorcesterMassachusettsUnited States
| | - Julie Flahive
- Department of Population & Quantitative Health SciencesUMass Chan Medical SchoolWorcesterMassachusettsUnited States
| | - Bruce Barton
- Department of Population & Quantitative Health SciencesUMass Chan Medical SchoolWorcesterMassachusettsUnited States
| | - Andrew J. Gillis‐Smith
- Division of Hematology and Oncology, Department of MedicineUMass Memorial Medical Center, UMass Chan Medical SchoolWorcesterMassachusettsUnited States
| | - Sakiko Suzuki
- Division of Hematology and Oncology, Department of MedicineUMass Memorial Medical Center, UMass Chan Medical SchoolWorcesterMassachusettsUnited States
| | - Salwa Khedr
- Department of PathologyUMass Memorial Medical Center, UMass Chan Medical SchoolWorcesterMassachusettsUnited States
| | - William Selove
- Department of PathologyUMass Memorial Medical Center, UMass Chan Medical SchoolWorcesterMassachusettsUnited States
| | - Anne W. Higgins
- Department of PathologyUMass Memorial Medical Center, UMass Chan Medical SchoolWorcesterMassachusettsUnited States
| | - Patricia M. Miron
- Department of PathologyUMass Memorial Medical Center, UMass Chan Medical SchoolWorcesterMassachusettsUnited States
| | - Karl Simin
- Dept. of MolecularCell & Cancer BiologyUMass Chan Medical SchoolWorcesterMassachusettsUnited States
| | - Bruce Woda
- Department of PathologyUMass Memorial Medical Center, UMass Chan Medical SchoolWorcesterMassachusettsUnited States
| | - Jonathan M. Gerber
- Division of Hematology and Oncology, Department of MedicineUMass Memorial Medical Center, UMass Chan Medical SchoolWorcesterMassachusettsUnited States
| |
Collapse
|
18
|
Bae SG, Kim HJ, Kim MY, Kim DDH, Shin SI, Ahn JS, Park J. Identification of Cell Type-Specific Effects of DNMT3A Mutations on Relapse in Acute Myeloid Leukemia. Mol Cells 2023; 46:611-626. [PMID: 37853686 PMCID: PMC10590706 DOI: 10.14348/molcells.2023.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 10/20/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease caused by distinctive mutations in individual patients; therefore, each patient may display different cell-type compositions. Although most patients with AML achieve complete remission (CR) through intensive chemotherapy, the likelihood of relapse remains high. Several studies have attempted to characterize the genetic and cellular heterogeneity of AML; however, our understanding of the cellular heterogeneity of AML remains limited. In this study, we performed single-cell RNA sequencing (scRNAseq) of bone marrow-derived mononuclear cells obtained from same patients at different AML stages (diagnosis, CR, and relapse). We found that hematopoietic stem cells (HSCs) at diagnosis were abnormal compared to normal HSCs. By improving the detection of the DNMT3A R882 mutation with targeted scRNAseq, we identified that DNMT3A-mutant cells that mainly remained were granulocyte-monocyte progenitors (GMPs) or lymphoid-primed multipotential progenitors (LMPPs) from CR to relapse and that DNMT3A-mutant cells have gene signatures related to AML and leukemic cells. Copy number variation analysis at the single-cell level indicated that the cell type that possesses DNMT3A mutations is an important factor in AML relapse and that GMP and LMPP cells can affect relapse in patients with AML. This study advances our understanding of the role of DNMT3A in AML relapse and our approach can be applied to predict treatment outcomes.
Collapse
Affiliation(s)
- Seo-Gyeong Bae
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Hyeoung-Joon Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Hwasun 58128, Korea
- Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea
| | - Mi Yeon Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Hwasun 58128, Korea
| | - Dennis Dong Hwan Kim
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - So-I Shin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Jae-Sook Ahn
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Hwasun 58128, Korea
- Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
19
|
Rosenquist R, Bernard E, Erkers T, Scott DW, Itzykson R, Rousselot P, Soulier J, Hutchings M, Östling P, Cavelier L, Fioretos T, Smedby KE. Novel precision medicine approaches and treatment strategies in hematological malignancies. J Intern Med 2023; 294:413-436. [PMID: 37424223 DOI: 10.1111/joim.13697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Genetic testing has been applied for decades in clinical routine diagnostics of hematological malignancies to improve disease (sub)classification, prognostication, patient management, and survival. In recent classifications of hematological malignancies, disease subtypes are defined by key recurrent genetic alterations detected by conventional methods (i.e., cytogenetics, fluorescence in situ hybridization, and targeted sequencing). Hematological malignancies were also one of the first disease areas in which targeted therapies were introduced, the prime example being BCR::ABL1 inhibitors, followed by an increasing number of targeted inhibitors hitting the Achilles' heel of each disease, resulting in a clear patient benefit. Owing to the technical advances in high-throughput sequencing, we can now apply broad genomic tests, including comprehensive gene panels or whole-genome and whole-transcriptome sequencing, to identify clinically important diagnostic, prognostic, and predictive markers. In this review, we give examples of how precision diagnostics has been implemented to guide treatment selection and improve survival in myeloid (myelodysplastic syndromes and acute myeloid leukemia) and lymphoid malignancies (acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and chronic lymphocytic leukemia). We discuss the relevance and potential of monitoring measurable residual disease using ultra-sensitive techniques to assess therapy response and detect early relapses. Finally, we bring up the promising avenue of functional precision medicine, combining ex vivo drug screening with various omics technologies, to provide novel treatment options for patients with advanced disease. Although we are only in the beginning of the field of precision hematology, we foresee rapid development with new types of diagnostics and treatment strategies becoming available to the benefit of our patients.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
- PRISM Center for Personalized Medicine, Gustave Roussy, Villejuif, France
| | - Tom Erkers
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - David W Scott
- BC Cancer's Centre for Lymphoid Cancer, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Raphael Itzykson
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Rousselot
- Department of Hematology, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Jean Soulier
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Hématologie Biologique, APHP, Hôpital Saint-Louis, Paris, France
| | - Martin Hutchings
- Department of Haematology and Phase 1 Unit, Rigshospitalet, Copenhagen, Denmark
| | - Päivi Östling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Karin E Smedby
- Department of Hematology, Karolinska University Hospital, Solna, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Hou Y, Yao H, Lin JM. Recent advancements in single-cell metabolic analysis for pharmacological research. J Pharm Anal 2023; 13:1102-1116. [PMID: 38024859 PMCID: PMC10658044 DOI: 10.1016/j.jpha.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 12/01/2023] Open
Abstract
Cellular heterogeneity is crucial for understanding tissue biology and disease pathophysiology. Pharmacological research is being advanced by single-cell metabolic analysis, which offers a technique to identify variations in RNA, proteins, metabolites, and drug molecules in cells. In this review, the recent advancement of single-cell metabolic analysis techniques and their applications in drug metabolism and drug response are summarized. High-precision and controlled single-cell isolation and manipulation are provided by microfluidics-based methods, such as droplet microfluidics, microchamber, open microfluidic probe, and digital microfluidics. They are used in tandem with variety of detection techniques, including optical imaging, Raman spectroscopy, electrochemical detection, RNA sequencing, and mass spectrometry, to evaluate single-cell metabolic changes in response to drug administration. The advantages and disadvantages of different techniques are discussed along with the challenges and future directions for single-cell analysis. These techniques are employed in pharmaceutical analysis for studying drug response and resistance pathway, therapeutic targets discovery, and in vitro disease model evaluation.
Collapse
Affiliation(s)
- Ying Hou
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongren Yao
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
21
|
Robinson TM, Bowman RL, Persaud S, Liu Y, Neigenfind R, Gao Q, Zhang J, Sun X, Miles LA, Cai SF, Sciambi A, Llanso A, Famulare C, Goldberg A, Dogan A, Roshal M, Levine RL, Xiao W. Single-cell genotypic and phenotypic analysis of measurable residual disease in acute myeloid leukemia. SCIENCE ADVANCES 2023; 9:eadg0488. [PMID: 37729414 PMCID: PMC10881057 DOI: 10.1126/sciadv.adg0488] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/21/2023] [Indexed: 09/22/2023]
Abstract
Measurable residual disease (MRD), defined as the population of cancer cells that persist following therapy, serves as the critical reservoir for disease relapse in acute myeloid leukemia and other malignancies. Understanding the biology enabling MRD clones to resist therapy is necessary to guide the development of more effective curative treatments. Discriminating between residual leukemic clones, preleukemic clones, and normal precursors remains a challenge with current MRD tools. Here, we developed a single-cell MRD (scMRD) assay by combining flow cytometric enrichment of the targeted precursor/blast population with integrated single-cell DNA sequencing and immunophenotyping. Our scMRD assay shows high sensitivity of approximately 0.01%, deconvolutes clonal architecture, and provides clone-specific immunophenotypic data. In summary, our scMRD assay enhances MRD detection and simultaneously illuminates the clonal architecture of clonal hematopoiesis/preleukemic and leukemic cells surviving acute myeloid leukemia therapy.
Collapse
Affiliation(s)
- Troy M. Robinson
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert L. Bowman
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sonali Persaud
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying Liu
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Molecular Diagnostic Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rosemary Neigenfind
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qi Gao
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jingping Zhang
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaotian Sun
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Linde A. Miles
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sheng F. Cai
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Christopher Famulare
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aaron Goldberg
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mikhail Roshal
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wenbin Xiao
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
22
|
Volchkov EV, Khozyainova AA, Gurzhikhanova MK, Larionova IV, Matveev VE, Evseev DA, Ignatova AK, Menyailo ME, Venyov DA, Vorobev RS, Semchenkova AA, Olshanskaya YV, Denisov EV, Maschan MA. Potential value of high-throughput single-cell DNA sequencing of Juvenile myelomonocytic leukemia: report of two cases. NPJ Syst Biol Appl 2023; 9:41. [PMID: 37684264 PMCID: PMC10491583 DOI: 10.1038/s41540-023-00303-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare myeloproliferative disease of early childhood that develops due to mutations in the genes of the RAS-signaling pathway. Next-generation high throughput sequencing (NGS) enables identification of various secondary molecular genetic events that can facilitate JMML progression and transformation into secondary acute myeloid leukemia (sAML). The methods of single-cell DNA sequencing (scDNA-seq) enable overcoming limitations of bulk NGS and exploring genetic heterogeneity at the level of individual cells, which can help in a better understanding of the mechanisms leading to JMML progression and provide an opportunity to evaluate the response of leukemia to therapy. In the present work, we applied a two-step droplet microfluidics approach to detect DNA alterations among thousands of single cells and to analyze clonal dynamics in two JMML patients with sAML transformation before and after hematopoietic stem cell transplantation (HSCT). At the time of diagnosis both of our patients harbored only "canonical" mutations in the RAS signaling pathway genes detected by targeted DNA sequencing. Analysis of samples from the time of transformation JMML to sAML revealed additional genetic events that are potential drivers for disease progression in both patients. ScDNA-seq was able to measure of chimerism level and detect a residual tumor clone in the second patient after HSCT (sensitivity of less than 0.1% tumor cells). The data obtained demonstrate the value of scDNA-seq to assess the clonal evolution of JMML to sAML, response to therapy and engraftment monitoring.
Collapse
Affiliation(s)
- E V Volchkov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (D. Rogachev NMRCPHOI) of Ministry of Healthсare of the Russian Federation, 1, Samory Mashela St., Moscow, 117997, Russia.
- Laboratory of Single Cell Biology, Research Institute of Molecular and Cellular Medicine, RUDN University, Moscow, 117198, Russia.
| | - A A Khozyainova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - M Kh Gurzhikhanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (D. Rogachev NMRCPHOI) of Ministry of Healthсare of the Russian Federation, 1, Samory Mashela St., Moscow, 117997, Russia
| | - I V Larionova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - V E Matveev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (D. Rogachev NMRCPHOI) of Ministry of Healthсare of the Russian Federation, 1, Samory Mashela St., Moscow, 117997, Russia
| | - D A Evseev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (D. Rogachev NMRCPHOI) of Ministry of Healthсare of the Russian Federation, 1, Samory Mashela St., Moscow, 117997, Russia
| | - A K Ignatova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (D. Rogachev NMRCPHOI) of Ministry of Healthсare of the Russian Federation, 1, Samory Mashela St., Moscow, 117997, Russia
| | - M E Menyailo
- Laboratory of Single Cell Biology, Research Institute of Molecular and Cellular Medicine, RUDN University, Moscow, 117198, Russia
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - D A Venyov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (D. Rogachev NMRCPHOI) of Ministry of Healthсare of the Russian Federation, 1, Samory Mashela St., Moscow, 117997, Russia
| | - R S Vorobev
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - A A Semchenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (D. Rogachev NMRCPHOI) of Ministry of Healthсare of the Russian Federation, 1, Samory Mashela St., Moscow, 117997, Russia
| | - Yu V Olshanskaya
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (D. Rogachev NMRCPHOI) of Ministry of Healthсare of the Russian Federation, 1, Samory Mashela St., Moscow, 117997, Russia
| | - E V Denisov
- Laboratory of Single Cell Biology, Research Institute of Molecular and Cellular Medicine, RUDN University, Moscow, 117198, Russia
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - M A Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (D. Rogachev NMRCPHOI) of Ministry of Healthсare of the Russian Federation, 1, Samory Mashela St., Moscow, 117997, Russia.
| |
Collapse
|
23
|
Takahashi K, Tanaka T. Clonal evolution and hierarchy in myeloid malignancies. Trends Cancer 2023; 9:707-715. [PMID: 37302922 PMCID: PMC10766088 DOI: 10.1016/j.trecan.2023.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Myeloid malignancies, a group of hematopoietic disorders that includes acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), and myeloproliferative neoplasms (MPNs), are caused by the accumulation of genetic and epigenetic changes in hematopoietic stem and progenitor cells (HSPCs) over time. Despite the relatively low number of genomic drivers compared with other forms of cancer, the process by which these changes shape the genomic architecture of myeloid malignancies remains elusive. Recent advancements in clonal hematopoiesis research and the use of cutting-edge single cell technologies have shed new light on the developmental process of myeloid malignancies. In this review, we delve into the intricacies of clonal evolution in myeloid malignancies and its implications for the development of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Tomoyuki Tanaka
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Li SQ, Chen M, Huang XY, Wang H, Chang YJ. Challenges facing minimal residual disease testing for acute myeloid leukemia and promising strategies to overcome them. Expert Rev Hematol 2023; 16:981-990. [PMID: 37978882 DOI: 10.1080/17474086.2023.2285985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Minimal residual disease (MRD) has been an important biomarker for relapse prediction and treatment choice in patients with acute myeloid leukemia (AML). False-positive or false-negative MRD results due to the low specificity and sensitivity of techniques such as multiparameter flow cytometry (MFC), real-time quantitative polymerase chain reaction, and next-generation sequencing, as well as the biological characteristics of residual leukemia cells, including antigen shift, clone involution, heterogeneous genome of the blast cells, and lack of specific targets, all restrict the clinical use of MRD. AREAS COVERED We summarized the challenges of the techniques for MRD detection, and their application in the clinical setting. We also discussed strategies to overcome these challenges, such as the MFC MRD method based on leukemia stem cells, single-cell DNA sequencing or single-cell RNA sequencing for the investigation of biological characteristics of residual leukemia cells, and the potential of omics techniques for MRD detection. We further noted out that prospective clinical trials are needed to answer clinical questions related to MRD in patients with AML. EXPERT OPINION MRD is an important biomarker for individual therapy of patients with AML. In the future, it is important to increase the specificity and sensitivity of the detection techniques.
Collapse
Affiliation(s)
- Si-Qi Li
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Beijing, Xicheng District, P.R.C
| | - Man Chen
- Department of Laboratory Medicine, Hebei Yanda Ludaopei Hospital, Langfang, Hebei, P.R.C
| | - Xi-Yi Huang
- Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, P.R.C
| | - Hui Wang
- Department of Laboratory Medicine, Hebei Yanda Ludaopei Hospital, Langfang, Hebei, P.R.C
| | - Ying-Jun Chang
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Beijing, Xicheng District, P.R.C
| |
Collapse
|
25
|
Van de Sande B, Lee JS, Mutasa-Gottgens E, Naughton B, Bacon W, Manning J, Wang Y, Pollard J, Mendez M, Hill J, Kumar N, Cao X, Chen X, Khaladkar M, Wen J, Leach A, Ferran E. Applications of single-cell RNA sequencing in drug discovery and development. Nat Rev Drug Discov 2023; 22:496-520. [PMID: 37117846 PMCID: PMC10141847 DOI: 10.1038/s41573-023-00688-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/30/2023]
Abstract
Single-cell technologies, particularly single-cell RNA sequencing (scRNA-seq) methods, together with associated computational tools and the growing availability of public data resources, are transforming drug discovery and development. New opportunities are emerging in target identification owing to improved disease understanding through cell subtyping, and highly multiplexed functional genomics screens incorporating scRNA-seq are enhancing target credentialling and prioritization. ScRNA-seq is also aiding the selection of relevant preclinical disease models and providing new insights into drug mechanisms of action. In clinical development, scRNA-seq can inform decision-making via improved biomarker identification for patient stratification and more precise monitoring of drug response and disease progression. Here, we illustrate how scRNA-seq methods are being applied in key steps in drug discovery and development, and discuss ongoing challenges for their implementation in the pharmaceutical industry.
Collapse
Affiliation(s)
| | | | | | - Bart Naughton
- Computational Neurobiology, Eisai, Cambridge, MA, USA
| | - Wendi Bacon
- EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
- The Open University, Milton Keynes, UK
| | | | - Yong Wang
- Precision Bioinformatics, Prometheus Biosciences, San Diego, CA, USA
| | | | - Melissa Mendez
- Genomic Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | - Jon Hill
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Namit Kumar
- Informatics & Predictive Sciences, Bristol Myers Squibb, San Diego, CA, USA
| | - Xiaohong Cao
- Genomic Research Center, AbbVie Inc., Cambridge, MA, USA
| | - Xiao Chen
- Magnet Biomedicine, Cambridge, MA, USA
| | - Mugdha Khaladkar
- Human Genetics and Computational Biology, GlaxoSmithKline, Collegeville, PA, USA
| | - Ji Wen
- Oncology Research and Development Unit, Pfizer, La Jolla, CA, USA
| | | | | |
Collapse
|
26
|
Lim J, Chin V, Fairfax K, Moutinho C, Suan D, Ji H, Powell JE. Transitioning single-cell genomics into the clinic. Nat Rev Genet 2023:10.1038/s41576-023-00613-w. [PMID: 37258725 DOI: 10.1038/s41576-023-00613-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
The use of genomics is firmly established in clinical practice, resulting in innovations across a wide range of disciplines such as genetic screening, rare disease diagnosis and molecularly guided therapy choice. This new field of genomic medicine has led to improvements in patient outcomes. However, most clinical applications of genomics rely on information generated from bulk approaches, which do not directly capture the genomic variation that underlies cellular heterogeneity. With the advent of single-cell technologies, research is rapidly uncovering how genomic data at cellular resolution can be used to understand disease pathology and mechanisms. Both DNA-based and RNA-based single-cell technologies have the potential to improve existing clinical applications and open new application spaces for genomics in clinical practice, with oncology, immunology and haematology poised for initial adoption. However, challenges in translating cellular genomics from research to a clinical setting must first be overcome.
Collapse
Affiliation(s)
- Jennifer Lim
- Cellular Science, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Department of Oncology, St George Hospital, Sydney, NSW, Australia
- The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Venessa Chin
- Cellular Science, Garvan Institute of Medical Research, Sydney, NSW, Australia
- The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Kirsten Fairfax
- School of Medicine, University of Tasmania, Hobart, Australia
| | - Catia Moutinho
- Cellular Science, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Dan Suan
- Cellular Science, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Hanlee Ji
- School of Medicine, Stanford University, Palo Alto, CA, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
| | - Joseph E Powell
- Cellular Science, Garvan Institute of Medical Research, Sydney, NSW, Australia.
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
27
|
Christodoulou MI, Zaravinos A. Single-Cell Analysis in Immuno-Oncology. Int J Mol Sci 2023; 24:8422. [PMID: 37176128 PMCID: PMC10178969 DOI: 10.3390/ijms24098422] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The complexity of the cellular and non-cellular milieu surrounding human tumors plays a decisive role in the course and outcome of disease. The high variability in the distribution of the immune and non-immune compartments within the tumor microenvironments (TME) among different patients governs the mode of their response or resistance to current immunotherapeutic approaches. Through deciphering this diversity, one can tailor patients' management to meet an individual's needs. Single-cell (sc) omics technologies have given a great boost towards this direction. This review gathers recent data about how multi-omics profiling, including the utilization of single-cell RNA sequencing (scRNA-seq), assay for transposase-accessible chromatin with sequencing (scATAC-seq), T-cell receptor sequencing (scTCR-seq), mass, tissue-based, or microfluidics cytometry, and related bioinformatics tools, contributes to the high-throughput assessment of a large number of analytes at single-cell resolution. Unravelling the exact TCR clonotype of the infiltrating T cells or pinpointing the classical or novel immune checkpoints across various cell subsets of the TME provide a boost to our comprehension of adaptive immune responses, their antigen specificity and dynamics, and grant suggestions for possible therapeutic targets. Future steps are expected to merge high-dimensional data with tissue localization data, which can serve the investigation of novel multi-modal biomarkers for the selection and/or monitoring of the optimal treatment from the current anti-cancer immunotherapeutic armamentarium.
Collapse
Affiliation(s)
- Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Group, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus
| |
Collapse
|
28
|
Ogbue O, Unlu S, Ibodeng GO, Singh A, Durmaz A, Visconte V, Molina JC. Single-Cell Next-Generation Sequencing to Monitor Hematopoietic Stem-Cell Transplantation: Current Applications and Future Perspectives. Cancers (Basel) 2023; 15:cancers15092477. [PMID: 37173944 PMCID: PMC10177286 DOI: 10.3390/cancers15092477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) are genetically complex and diverse diseases. Such complexity makes challenging the monitoring of response to treatment. Measurable residual disease (MRD) assessment is a powerful tool for monitoring response and guiding therapeutic interventions. This is accomplished through targeted next-generation sequencing (NGS), as well as polymerase chain reaction and multiparameter flow cytometry, to detect genomic aberrations at a previously challenging leukemic cell concentration. A major shortcoming of NGS techniques is the inability to discriminate nonleukemic clonal hematopoiesis. In addition, risk assessment and prognostication become more complicated after hematopoietic stem-cell transplantation (HSCT) due to genotypic drift. To address this, newer sequencing techniques have been developed, leading to more prospective and randomized clinical trials aiming to demonstrate the prognostic utility of single-cell next-generation sequencing in predicting patient outcomes following HSCT. This review discusses the use of single-cell DNA genomics in MRD assessment for AML/MDS, with an emphasis on the HSCT time period, including the challenges with current technologies. We also touch on the potential benefits of single-cell RNA sequencing and analysis of accessible chromatin, which generate high-dimensional data at the cellular resolution for investigational purposes, but not currently used in the clinical setting.
Collapse
Affiliation(s)
- Olisaemeka Ogbue
- Internal Medicine, Cleveland Clinic Fairview Hospital, Cleveland, OH 44111, USA
| | - Serhan Unlu
- Internal Medicine, Cleveland Clinic Fairview Hospital, Cleveland, OH 44111, USA
| | - Gogo-Ogute Ibodeng
- Internal Medicine, Infirmary Health's Thomas Hospital, Fairhope, AL 36607, USA
| | - Abhay Singh
- Department of Hematology Medical Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Taussig Cancer Center, Cleveland, OH 44106, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Taussig Cancer Center, Cleveland, OH 44106, USA
| | - John C Molina
- Department of Hematology Medical Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
29
|
Chianese U, Papulino C, Megchelenbrink W, Tambaro FP, Ciardiello F, Benedetti R, Altucci L. Epigenomic machinery regulating pediatric AML: clonal expansion mechanisms, therapies, and future perspectives. Semin Cancer Biol 2023; 92:84-101. [PMID: 37003397 DOI: 10.1016/j.semcancer.2023.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a genetic, epigenetic, and transcriptional etiology mainly presenting somatic and germline abnormalities. AML incidence rises with age but can also occur during childhood. Pediatric AML (pAML) accounts for 15-20% of all pediatric leukemias and differs considerably from adult AML. Next-generation sequencing technologies have enabled the research community to "paint" the genomic and epigenomic landscape in order to identify pathology-associated mutations and other prognostic biomarkers in pAML. Although current treatments have improved the prognosis for pAML, chemoresistance, recurrence, and refractory disease remain major challenges. In particular, pAML relapse is commonly caused by leukemia stem cells that resist therapy. Marked patient-to-patient heterogeneity is likely the primary reason why the same treatment is successful for some patients but, at best, only partially effective for others. Accumulating evidence indicates that patient-specific clonal composition impinges significantly on cellular processes, such as gene regulation and metabolism. Although our understanding of metabolism in pAML is still in its infancy, greater insights into these processes and their (epigenetic) modulation may pave the way toward novel treatment options. In this review, we summarize current knowledge on the function of genetic and epigenetic (mis)regulation in pAML, including metabolic features observed in the disease. Specifically, we describe how (epi)genetic machinery can affect chromatin status during hematopoiesis, leading to an altered metabolic profile, and focus on the potential value of targeting epigenetic abnormalities in precision and combination therapy for pAML. We also discuss the possibility of using alternative epidrug-based therapeutic approaches that are already in clinical practice, either alone as adjuvant treatments and/or in combination with other drugs.
Collapse
Affiliation(s)
- Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Chiara Papulino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Wout Megchelenbrink
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Princess Máxima Center, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.
| | - Francesco Paolo Tambaro
- Bone Marrow Transplant Unit, Pediatric Oncology Department AORN Santobono Pausilipon, 80129, Naples Italy.
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Biogem Institute of Molecular and Genetic Biology, 83031 Ariano Irpino, Italy; IEOS, Institute for Endocrinology and Oncology "Gaetano Salvatore" (IEOS), 80131 Naples, Italy.
| |
Collapse
|
30
|
VanOudenhove J, Halene S, Mendez L. Is it the time to integrate novel sequencing technologies into clinical practice? Curr Opin Hematol 2023; 30:70-77. [PMID: 36602939 DOI: 10.1097/moh.0000000000000754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW The aim of this study was to provide insight into how novel next-generation sequencing (NGS) techniques are set to revolutionize clinical practice. RECENT FINDINGS Advances in sequencing technologies have focused on improved capture of mutations and reads and cellular resolution. Both short and long read DNA sequencing technology are being refined and combined in novel ways with other multiomic approaches to gain unprecedented biological insight into disease. Single-cell (sc)DNA-seq and integrated scDNA-seq with immunophenotyping provide granular information on disease composition such as clonal hierarchy, co-mutation status, zygosity, clonal diversity and genotype phenotype correlations. These and other techniques can identify rare cell populations providing the opportunity for increased sensitivity in measurable residual disease monitoring and precise characterization of residual clones permitting distinction of leukemic from pre/nonmalignant clones. SUMMARY Increasing genetics-based mechanistic insights and classification of myeloid diseases along with a decrease in the cost of high-throughput NGS mean novel sequencing technologies are closer to being a reality in standard clinical practice. These technologies are poised to improve diagnostics, our ability to monitor treatment response and minimal residual disease and allow the study of premalignant conditions such as clonal haematopoiesis.
Collapse
Affiliation(s)
- Jennifer VanOudenhove
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center and Smilow Cancer Hospital, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
31
|
Chin L, Wong CYG, Gill H. Targeting and Monitoring Acute Myeloid Leukaemia with Nucleophosmin-1 ( NPM1) Mutation. Int J Mol Sci 2023; 24:3161. [PMID: 36834572 PMCID: PMC9958584 DOI: 10.3390/ijms24043161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Mutations in NPM1, also known as nucleophosmin-1, B23, NO38, or numatrin, are seen in approximately one-third of patients with acute myeloid leukaemia (AML). A plethora of treatment strategies have been studied to determine the best possible approach to curing NPM1-mutated AML. Here, we introduce the structure and function of NPM1 and describe the application of minimal residual disease (MRD) monitoring using molecular methods by means of quantitative polymerase chain reaction (qPCR), droplet digital PCR (ddPCR), next-generation sequencing (NGS), and cytometry by time of flight (CyTOF) to target NPM1-mutated AML. Current drugs, now regarded as the standard of care for AML, as well as potential drugs still under development, will also be explored. This review will focus on the role of targeting aberrant NPM1 pathways such as BCL-2 and SYK; as well as epigenetic regulators (RNA polymerase), DNA intercalators (topoisomerase II), menin inhibitors, and hypomethylating agents. Aside from medication, the effects of stress on AML presentation have been reported, and some possible mechanisms outlined. Moreover, targeted strategies will be briefly discussed, not only for the prevention of abnormal trafficking and localisation of cytoplasmic NPM1 but also for the elimination of mutant NPM1 proteins. Lastly, the advancement of immunotherapy such as targeting CD33, CD123, and PD-1 will be mentioned.
Collapse
Affiliation(s)
| | | | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Measurable Residual Disease and Clonal Evolution in Acute Myeloid Leukemia from Diagnosis to Post-Transplant Follow-Up: The Role of Next-Generation Sequencing. Biomedicines 2023; 11:biomedicines11020359. [PMID: 36830896 PMCID: PMC9953407 DOI: 10.3390/biomedicines11020359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
It has now been ascertained that acute myeloid leukemias-as in most type of cancers-are mixtures of various subclones, evolving by acquiring additional somatic mutations over the course of the disease. The complexity of leukemia clone architecture and the phenotypic and/or genotypic drifts that can occur during treatment explain why more than 50% of patients-in hematological remission-could relapse. Moreover, the complexity and heterogeneity of clone architecture represent a hindrance for monitoring measurable residual disease, as not all minimal residual disease monitoring methods are able to detect genetic mutations arising during treatment. Unlike with chemotherapy, which imparts a relatively short duration of selective pressure on acute myeloid leukemia clonal architecture, the immunological effect related to allogeneic hematopoietic stem cell transplant is prolonged over time and must be overcome for relapse to occur. This means that not all molecular abnormalities detected after transplant always imply inevitable relapse. Therefore, transplant represents a critical setting where a measurable residual disease-based strategy, performed during post-transplant follow-up by highly sensitive methods such as next-generation sequencing, could optimize and improve treatment outcome. The purpose of our review is to provide an overview of the role of next-generation sequencing in monitoring both measurable residual disease and clonal evolution in acute myeloid leukemia patients during the entire course of the disease, with special focus on the transplant phase.
Collapse
|
33
|
Ediriwickrema A, Gentles AJ, Majeti R. Single-cell genomics in AML: extending the frontiers of AML research. Blood 2023; 141:345-355. [PMID: 35926108 PMCID: PMC10082362 DOI: 10.1182/blood.2021014670] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/06/2022] [Accepted: 07/23/2022] [Indexed: 01/31/2023] Open
Abstract
The era of genomic medicine has allowed acute myeloid leukemia (AML) researchers to improve disease characterization, optimize risk-stratification systems, and develop new treatments. Although there has been significant progress, AML remains a lethal cancer because of its remarkably complex and plastic cellular architecture. This degree of heterogeneity continues to pose a major challenge, because it limits the ability to identify and therefore eradicate the cells responsible for leukemogenesis and treatment failure. In recent years, the field of single-cell genomics has led to unprecedented strides in the ability to characterize cellular heterogeneity, and it holds promise for the study of AML. In this review, we highlight advancements in single-cell technologies, outline important shortcomings in our understanding of AML biology and clinical management, and discuss how single-cell genomics can address these shortcomings as well as provide unique opportunities in basic and translational AML research.
Collapse
Affiliation(s)
- Asiri Ediriwickrema
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Andrew J. Gentles
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
34
|
Iacobucci I, Witkowski MT, Mullighan CG. Single-cell analysis of acute lymphoblastic and lineage-ambiguous leukemia: approaches and molecular insights. Blood 2023; 141:356-368. [PMID: 35926109 PMCID: PMC10023733 DOI: 10.1182/blood.2022016954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 01/31/2023] Open
Abstract
Despite recent progress in identifying the genetic drivers of acute lymphoblastic leukemia (ALL), prognosis remains poor for those individuals who experience disease recurrence. Moreover, acute leukemias of ambiguous lineage lack a biologically informed framework to guide classification and therapy. These needs have driven the adoption of multiple complementary single-cell sequencing approaches to explore key issues in the biology of these leukemias, including cell of origin, developmental hierarchy and ontogeny, and the molecular heterogeneity driving pathogenesis, progression, and therapeutic responsiveness. There are multiple single-cell techniques for profiling a specific modality, including RNA, DNA, chromatin accessibility and methylation; and an expanding range of approaches for simultaneous analysis of multiple modalities. Single-cell sequencing approaches have also enabled characterization of cell-intrinsic and -extrinsic features of ALL biology. In this review we describe these approaches and highlight the extensive heterogeneity that underpins ALL gene expression, cellular differentiation, and clonal architecture throughout disease pathogenesis and treatment resistance. In addition, we discuss the importance of the dynamic interactions that occur between leukemia cells and the nonleukemia microenvironment. We discuss potential opportunities and limitations of single-cell sequencing for the study of ALL biology and treatment responsiveness.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN
| | - Matthew T. Witkowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Charles G. Mullighan
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN
- Hematological Malignancies Program, St Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
35
|
Single-cell analysis reveals the chemotherapy-induced cellular reprogramming and novel therapeutic targets in relapsed/refractory acute myeloid leukemia. Leukemia 2023; 37:308-325. [PMID: 36543880 PMCID: PMC9898038 DOI: 10.1038/s41375-022-01789-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Chemoresistance and relapse are the leading cause of AML-related deaths. Utilizing single-cell RNA sequencing (scRNA-seq), we dissected the cellular states of bone marrow samples from primary refractory or short-term relapsed AML patients and defined the transcriptional intratumoral heterogeneity. We found that compared to proliferating stem/progenitor-like cells (PSPs), a subpopulation of quiescent stem-like cells (QSCs) were involved in the chemoresistance and poor outcomes of AML. By performing longitudinal scRNA-seq analyses, we demonstrated that PSPs were reprogrammed to obtain a QSC-like expression pattern during chemotherapy in refractory AML patients, characterized by the upregulation of CD52 and LGALS1 expression. Flow cytometric analysis further confirmed that the preexisting CD99+CD49d+CD52+Galectin-1+ (QSCs) cells at diagnosis were associated with chemoresistance, and these cells were further enriched in the residual AML cells of refractory patients. Interaction of CD52-SIGLEC10 between QSCs and monocytes may contribute to immune evading and poor outcomes. Furthermore, we identified that LGALS1 was a promising target for chemoresistant AML, and LGALS1 inhibitor could help eliminate QSCs and enhance the chemotherapy in patient-derived primary AML cells, cell lines, and AML xenograft models. Our results will facilitate a better understanding of the AML chemoresistance mechanism and the development of novel therapeutic strategies for relapsed/refractory AML patients.
Collapse
|
36
|
Ganzel C, Sun Z, Baslan T, Zhang Y, Gönen M, Abdel-Wahab OI, Racevskis J, Garrett-Bakelman F, Lowe SW, Fernandez HF, Ketterling R, Luger SM, Litzow M, Lazarus HM, Rowe JM, Tallman MS, Levine RL, Paietta E. Measurable residual disease by flow cytometry in acute myeloid leukemia is prognostic, independent of genomic profiling. Leuk Res 2022; 123:106971. [PMID: 36332294 PMCID: PMC9789386 DOI: 10.1016/j.leukres.2022.106971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/04/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Measurable residual disease (MRD) assessment provides a potent indicator of the efficacy of anti-leukemic therapy. It is unknown, however, whether integrating MRD with molecular profiling better identifies patients at risk of relapse. To investigate the clinical relevance of MRD in relation to a molecular-based prognostic schema, we measured MRD by flow cytometry in 189 AML patients enrolled in ECOG-ACRIN E1900 trial (NCT00049517) in morphologic complete remission (CR) (28.8 % of the original cohort) representing 44.4 % of CR patients. MRD positivity was defined as ≥ 0.1 % of leukemic bone marrow cells. Risk classification was based on standard cytogenetics, fluorescence-in-situ-hybridization, somatic gene analysis, and sparse whole genome sequencing for copy number ascertainment. At 84.6 months median follow-up of patients still alive at the time of analysis (range 47.0-120 months), multivariate analysis demonstrated that MRD status at CR (p = 0.001) and integrated molecular risk (p = 0.0004) independently predicted overall survival (OS). Among risk classes, MRD status significantly affected OS only in the favorable risk group (p = 0.002). Expression of CD25 (α-chain of the interleukin-2 receptor) by leukemic myeloblasts at diagnosis negatively affected OS independent of post-treatment MRD levels. These data suggest that integrating MRD with genetic profiling and pre-treatment CD25 expression may improve prognostication in AML.
Collapse
Affiliation(s)
- Chezi Ganzel
- Hematology Department, Shaare Zedek Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Israel.
| | - Zhuoxin Sun
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Timour Baslan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithat Gönen
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar I Abdel-Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Janis Racevskis
- Department of Oncology, Montefiore Medical Center, Bronx, NY, USA
| | - Francine Garrett-Bakelman
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Departments of Medicine and Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, USA; University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Hugo F Fernandez
- Malignant Hematology and Cellular Therapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Rhett Ketterling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Selina M Luger
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Litzow
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Jacob M Rowe
- Hematology Department, Shaare Zedek Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Martin S Tallman
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
37
|
Granroth G, Khera N, Arana Yi C. Progress and Challenges in Survivorship After Acute Myeloid Leukemia in Adults. Curr Hematol Malig Rep 2022; 17:243-253. [PMID: 36117228 PMCID: PMC9483315 DOI: 10.1007/s11899-022-00680-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Acute myeloid leukemia (AML) survivors face unique challenges affecting long-term outcomes and quality of life. There is scant literature on the long-term impact of AML treatment in physical and mental health, disease recurrence, and financial burden in survivors. RECENT FINDINGS Fatigue, mental health concerns, infections, sexual dysfunction, and increase cancer recurrence occur after AML treatment. Chronic graft-versus-host disease (GVHD) and infections are common concerns in AML after hematopoietic stem cell transplantation (HCT). Survivorship guidelines encompass symptoms and complications but fail to provide an individualized care plan for AML survivors. Studies in patient-reported outcomes (PROs) and health-related quality of life (HRQoL) are sparse. Here we discuss the most common aspects pertaining to AML survivorship, late complications, care delivery, prevention of disease recurrence, and potential areas for implementation.
Collapse
|
38
|
Integrated flow cytometry and sequencing to reconstruct evolutionary patterns from dysplasia to acute myeloid leukemia. Blood Adv 2022; 7:167-173. [PMID: 36240453 PMCID: PMC9811200 DOI: 10.1182/bloodadvances.2022008141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 01/18/2023] Open
Abstract
Clonal evolution in acute myeloid leukemia (AML) originates long before diagnosis and is a dynamic process that may affect survival. However, it remains uninvestigated during routine diagnostic workups. We hypothesized that the mutational status of bone marrow dysplastic cells and leukemic blasts, analyzed at the onset of AML using integrated multidimensional flow cytometry (MFC) immunophenotyping and fluorescence-activated cell sorting (FACS) with next-generation sequencing (NGS), could reconstruct leukemogenesis. Dysplastic cells were detected by MFC in 285 of 348 (82%) newly diagnosed patients with AML. Presence of dysplasia according to MFC and World Health Organization criteria had no prognostic value in older adults. NGS of dysplastic cells and blasts isolated at diagnosis identified 3 evolutionary patterns: stable (n = 12 of 21), branching (n = 4 of 21), and clonal evolution (n = 5 of 21). In patients achieving complete response (CR), integrated MFC and FACS with NGS showed persistent measurable residual disease (MRD) in phenotypically normal cell types, as well as the acquisition of genetic traits associated with treatment resistance. Furthermore, whole-exome sequencing of dysplastic and leukemic cells at diagnosis and of MRD uncovered different clonal involvement in dysplastic myelo-erythropoiesis, leukemic transformation, and chemoresistance. Altogether, we showed that it is possible to reconstruct leukemogenesis in ∼80% of patients with newly diagnosed AML, using techniques other than single-cell multiomics.
Collapse
|
39
|
Guess T, Potts CR, Bhat P, Cartailler JA, Brooks A, Holt C, Yenamandra A, Wheeler FC, Savona MR, Cartailler JP, Ferrell PB. Distinct Patterns of Clonal Evolution Drive Myelodysplastic Syndrome Progression to Secondary Acute Myeloid Leukemia. Blood Cancer Discov 2022; 3:316-329. [PMID: 35522837 PMCID: PMC9610896 DOI: 10.1158/2643-3230.bcd-21-0128] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/22/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Clonal evolution in myelodysplastic syndrome (MDS) can result in clinical progression and secondary acute myeloid leukemia (sAML). To dissect changes in clonal architecture associated with this progression, we performed single-cell genotyping of paired MDS and sAML samples from 18 patients. Analysis of single-cell genotypes revealed patient-specific clonal evolution and enabled the assessment of single-cell mutational cooccurrence. We discovered that changes in clonal architecture proceed via distinct patterns, classified as static or dynamic, with dynamic clonal architectures having a more proliferative phenotype by blast count fold change. Proteogenomic analysis of a subset of patients confirmed that pathogenic mutations were primarily confined to primitive and mature myeloid cells, though we also identify rare but present mutations in lymphocyte subsets. Single-cell transcriptomic analysis of paired sample sets further identified gene sets and signaling pathways involved in two cases of progression. Together, these data define serial changes in the MDS clonal landscape with clinical and therapeutic implications. SIGNIFICANCE Precise clonal trajectories in MDS progression are made possible by single-cell genomic sequencing. Here we use this technology to uncover the patterns of clonal architecture and clonal evolution that drive the transformation to secondary AML. We further define the phenotypic and transcriptional changes of disease progression at the single-cell level. See related article by Menssen et al., p. 330 (31). See related commentary by Romine and van Galen, p. 270. This article is highlighted in the In This Issue feature, p. 265.
Collapse
Affiliation(s)
- Tiffany Guess
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee.,Department of Pathology, Microbiology, and Immunology, VUMC, Nashville, Tennessee
| | - Chad R. Potts
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
| | - Pawan Bhat
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Justin A. Cartailler
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
| | - Austin Brooks
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
| | - Clinton Holt
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ashwini Yenamandra
- Department of Pathology, Microbiology, and Immunology, VUMC, Nashville, Tennessee
| | - Ferrin C. Wheeler
- Department of Pathology, Microbiology, and Immunology, VUMC, Nashville, Tennessee
| | - Michael R. Savona
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee.,Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Jean-Philippe Cartailler
- Creative Data Solutions Shared Resource, Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee
| | - P. Brent Ferrell
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee.,Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee.,Corresponding Author: P. Brent Ferrell Jr, Vanderbilt University Medical Center, 777 Preston Research Building, 2220 Pierce Avenue, Nashville, TN 37232. Phone: 615-875-8619; E-mail:
| |
Collapse
|
40
|
The Promise of Single-cell Technology in Providing New Insights Into the Molecular Heterogeneity and Management of Acute Lymphoblastic Leukemia. Hemasphere 2022; 6:e734. [PMID: 35651714 PMCID: PMC9148686 DOI: 10.1097/hs9.0000000000000734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
Drug resistance and treatment failure in pediatric acute lymphoblastic leukemia (ALL) are in part driven by tumor heterogeneity and clonal evolution. Although bulk tumor genomic analyses have provided some insight into these processes, single-cell sequencing has emerged as a powerful technique to profile individual cells in unprecedented detail. Since the introduction of single-cell RNA sequencing, we now have the capability to capture not only transcriptomic, but also genomic, epigenetic, and proteomic variation between single cells separately and in combination. This rapidly evolving field has the potential to transform our understanding of the fundamental biology of pediatric ALL and guide the management of ALL patients to improve their clinical outcome. Here, we discuss the impact single-cell sequencing has had on our understanding of tumor heterogeneity and clonal evolution in ALL and provide examples of how single-cell technology can be integrated into the clinic to inform treatment decisions for children with high-risk disease.
Collapse
|
41
|
Redavid I, Conserva MR, Anelli L, Zagaria A, Specchia G, Musto P, Albano F. Single-Cell Sequencing: Ariadne’s Thread in the Maze of Acute Myeloid Leukemia. Diagnostics (Basel) 2022; 12:diagnostics12040996. [PMID: 35454044 PMCID: PMC9024495 DOI: 10.3390/diagnostics12040996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is a haematological neoplasm resulting from the accumulation of genetic and epigenetic alterations. Patients’ prognoses vary with AML genetic heterogeneity, which hampers successful treatments. Single-cell approaches have provided new insights of the clonal architecture of AML, revealing the mutational history from diagnosis, during treatment and to relapse. In this review, we imagine single-cell technologies as the Ariadne’s thread that will guide us out of the AML maze, provide a precise identikit of the leukemic cell at single-cell resolution and explore genomic, transcriptomic, epigenetic and proteomic levels.
Collapse
Affiliation(s)
- Immacolata Redavid
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Maria Rosa Conserva
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Luisa Anelli
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Antonella Zagaria
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Giorgina Specchia
- School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Pellegrino Musto
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Francesco Albano
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
- Correspondence:
| |
Collapse
|
42
|
Complex biological questions being addressed using single cell sequencing technologies. SLAS Technol 2022; 27:143-149. [DOI: 10.1016/j.slast.2021.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Melnekoff DT, Laganà A. Single-Cell Sequencing Technologies in Precision Oncology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1361:269-282. [PMID: 35230694 DOI: 10.1007/978-3-030-91836-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Single-cell sequencing technologies are revolutionizing cancer research and are poised to become the standard for translational cancer studies. Rapidly decreasing costs and increasing throughput and resolution are paving the way for the adoption of single-cell technologies in clinical settings for personalized medicine applications. In this chapter, we review the state of the art of single-cell DNA and RNA sequencing technologies, the computational tools to analyze the data, and their potential application to precision oncology. We also discuss the advantages of single-cell over bulk sequencing for the dissection of intra-tumor heterogeneity and the characterization of subclonal cell populations, the implementation of targeted drug repurposing approaches, and describe advanced methodologies for multi-omics data integration and to assess cell signaling at single-cell resolution.
Collapse
Affiliation(s)
- David T Melnekoff
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandro Laganà
- Department of Genetics and Genomic Sciences, Department of Oncological Sciences, Mount Sinai Icahn School of Medicine, New York, NY, USA.
| |
Collapse
|
44
|
Cluzeau T, Lemoli RM, McCloskey J, Cooper T. Measurable Residual Disease in High-Risk Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:cancers14051278. [PMID: 35267586 PMCID: PMC8909238 DOI: 10.3390/cancers14051278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Assessment of measurable residual disease (MRD) identifies small numbers of acute myeloid leukemia (AML) cells that may remain after initiating treatment. The achievement of MRD negativity (no detectable AML cells remaining) typically predicts better outcomes for patients with AML. Some patients with AML have disease characteristics that put them at a higher risk of treatment failure or relapse; while outcomes for patients with high-risk AML are historically poor with traditional chemotherapy regimens, newer chemotherapy formulations (i.e., CPX-351) and targeted therapies may be more effective in achieving MRD negativity in these patients. Currently, there is no agreement on the best method for determining whether a patient has achieved MRD negativity, and the use of several different methods makes it difficult to compare outcomes across studies. Despite these challenges, regular monitoring of patients for the achievement of MRD negativity will become increasingly important in the routine management of patients with high-risk AML. Abstract Mounting evidence suggests measurable residual disease (MRD) assessments are prognostic in acute myeloid leukemia (AML). High-risk AML encompasses a subset of AML with poor response to therapy and prognosis, with features such as therapy-related AML, an antecedent hematologic disorder, extramedullary disease (in adults), and selected mutations and cytogenetic abnormalities. Historically, few patients with high-risk AML achieved deep and durable remission with conventional chemotherapy; however, newer agents might be more effective in achieving MRD-negative remission. CPX-351 (dual-drug liposomal encapsulation of daunorubicin/cytarabine at a synergistic ratio) demonstrated MRD-negativity rates of 36–64% across retrospective studies in adults with newly diagnosed high-risk AML and 84% in pediatric patients with first-relapse AML. Venetoclax (BCL2 inhibitor) demonstrated MRD-negativity rates of 33–53% in combination with hypomethylating agents for high-risk subgroups in studies of older adults with newly diagnosed AML who were ineligible for intensive therapy and 65% in combination with chemotherapy in pediatric patients with relapsed/refractory AML. However, there is no consensus on optimal MRD methodology in AML, and the use of different techniques, sample sources, sensitivity thresholds, and the timing of assessments limit comparisons across studies. Robust MRD analyses are needed in future clinical studies, and MRD monitoring should become a routine aspect of AML management.
Collapse
Affiliation(s)
- Thomas Cluzeau
- Service d’hématologie, Université Cote d’Azur, CHU de Nice, 06200 Nice, France
- Correspondence: ; Tel.: +33-492035841; Fax: +33-492035895
| | - Roberto M. Lemoli
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
- Clinic of Hematology, Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - James McCloskey
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA;
| | - Todd Cooper
- Division of Hematology/Oncology, Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98105, USA;
| |
Collapse
|
45
|
Kim T, Lee H, Capo‐Chichi J, Chang MH, Yoo YS, Basi G, Ketela T, Smith AC, Tierens A, Zhang Z, Minden MD, Kim DDH. Single cell proteogenomic sequencing identifies a relapse-fated AML subclone carrying FLT3-ITD with CN-LOH at chr13q. EJHAEM 2022; 3:426-433. [PMID: 35846029 PMCID: PMC9175792 DOI: 10.1002/jha2.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/09/2023]
Abstract
Internal tandem duplication of the Feline McDonough Sarcoma (FMS)-like tyrosine kinase 3 (FLT3-ITD) is one of the most clinically relevant mutations in acute myeloid leukemia (AML), with a high FLT3-ITD allelic ratio (AR) (≥0.5) being strongly associated with poor prognosis. FLT3-ITDs are heterogeneous, varying in size and location, with some patients having multiple FLT3-ITDs. Bulk cell-based approaches are limited in their ability to reveal the clonal structure in such cases. Using single-cell proteogenomic sequencing (ScPGseq), we attempted to identify a relapse-fated subclone in an AML case with mutations in WT1, NPM1, and FLT3 tyrosine kinase domain and two FLT3-ITDs (21 bp and 39 bp) (low AR) at presentation, then relapsed only with WT1 and NPM1 mutations and one FLT3-ITD (high AR). This relapse-fated subclone at presentation (∼2.1% of sequenced cells) was characterized by the presence of a homozygous 21 bp FLT3-ITD resulting from copy neutral loss of heterozygosity (CN-LOH) of chr13q and an aberrant, immature myeloid cell surface signature, contrast to the cell surface phenotype at presentation. In contrast to results from multicolor flow-cytometry, ScPGseq not only enabled the early detection of rare relapse-fated subclone showing immature myeloid signature but also highlighted the presence of homozygous 21 bp FLT3-ITDs in the clone at presentation.
Collapse
Affiliation(s)
- TaeHyung Kim
- Division of Medical Oncology and HematologyPrincess Margaret Cancer CentreTorontoOntarioCanada,Department of Computer ScienceUniversity of TorontoTorontoOntarioCanada,The Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoOntarioCanada
| | - Hyewon Lee
- Division of Medical Oncology and HematologyPrincess Margaret Cancer CentreTorontoOntarioCanada,Center for Hematologic MalignanciesNational Cancer CenterGoyangRepublic of Korea
| | - Jose‐Mario Capo‐Chichi
- Department of Clinical Laboratory GeneticsGenome Diagnostics Laboratory Medicine ProgramUniversity of TorontoTorontoOntarioCanada
| | - Myung Hee Chang
- Division of Medical Oncology and HematologyPrincess Margaret Cancer CentreTorontoOntarioCanada,Division of Oncology‐HematologyDepartment of Internal MedicineNational Health Insurance Service Ilsan HospitalGoyangRepublic of Korea
| | - Young Seok Yoo
- Division of Medical Oncology and HematologyPrincess Margaret Cancer CentreTorontoOntarioCanada
| | - Gurbaksh Basi
- Princess Margaret Genomics CentrePrincess Margaret Cancer CentreTorontoOntarioCanada
| | - Troy Ketela
- Princess Margaret Genomics CentrePrincess Margaret Cancer CentreTorontoOntarioCanada
| | - Adam C. Smith
- Laboratory Medicine ProgramUniversity Health NetworkTorontoOntarioCanada,Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Anne Tierens
- Laboratory Medicine ProgramUniversity Health NetworkTorontoOntarioCanada,Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Zhaolei Zhang
- Department of Computer ScienceUniversity of TorontoTorontoOntarioCanada,The Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoOntarioCanada,Department of Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | - Mark D. Minden
- Division of Medical Oncology and HematologyPrincess Margaret Cancer CentreTorontoOntarioCanada
| | - Dennis Dong Hwan Kim
- Division of Medical Oncology and HematologyPrincess Margaret Cancer CentreTorontoOntarioCanada,Hans Messner Allogeneic Blood and Marrow Transplant UnitPrincess Margaret Cancer CentreTorontoOntarioCanada
| |
Collapse
|
46
|
Penter L, Gohil SH, Wu CJ. Natural Barcodes for Longitudinal Single Cell Tracking of Leukemic and Immune Cell Dynamics. Front Immunol 2022; 12:788891. [PMID: 35046946 PMCID: PMC8761982 DOI: 10.3389/fimmu.2021.788891] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
Blood malignancies provide unique opportunities for longitudinal tracking of disease evolution following therapeutic bottlenecks and for the monitoring of changes in anti-tumor immunity. The expanding development of multi-modal single-cell sequencing technologies affords newer platforms to elucidate the mechanisms underlying these processes at unprecedented resolution. Furthermore, the identification of molecular events that can serve as in-vivo barcodes now facilitate the tracking of the trajectories of malignant and of immune cell populations over time within primary human samples, as these permit unambiguous identification of the clonal lineage of cell populations within heterogeneous phenotypes. Here, we provide an overview of the potential for chromosomal copy number changes, somatic nuclear and mitochondrial DNA mutations, single nucleotide polymorphisms, and T and B cell receptor sequences to serve as personal natural barcodes and review technical implementations in single-cell analysis workflows. Applications of these methodologies include the study of acquired therapeutic resistance and the dissection of donor- and host cellular interactions in the context of allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Satyen H. Gohil
- Department of Academic Haematology, University College London Cancer Institute, London, United Kingdom
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
47
|
Benard BA, Leak LB, Azizi A, Thomas D, Gentles AJ, Majeti R. Clonal architecture predicts clinical outcomes and drug sensitivity in acute myeloid leukemia. Nat Commun 2021; 12:7244. [PMID: 34903734 PMCID: PMC8669028 DOI: 10.1038/s41467-021-27472-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
The impact of clonal heterogeneity on disease behavior or drug response in acute myeloid leukemia remains poorly understood. Using a cohort of 2,829 patients, we identify features of clonality associated with clinical features and drug sensitivities. High variant allele frequency for 7 mutations (including NRAS and TET2) associate with dismal prognosis; elevated GATA2 variant allele frequency correlates with better outcomes. Clinical features such as white blood cell count and blast percentage correlate with the subclonal abundance of mutations such as TP53 and IDH1. Furthermore, patients with cohesin mutations occurring before NPM1, or transcription factor mutations occurring before splicing factor mutations, show shorter survival. Surprisingly, a branched pattern of clonal evolution is associated with superior clinical outcomes. Finally, several mutations (including NRAS and IDH1) predict drug sensitivity based on their subclonal abundance. Together, these results demonstrate the importance of assessing clonal heterogeneity with implications for prognosis and actionable biomarkers for therapy.
Collapse
Affiliation(s)
- Brooks A Benard
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Logan B Leak
- Cancer Biology Program, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Armon Azizi
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
| | - Daniel Thomas
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrew J Gentles
- Department of Medicine (Biomedical Informatics/Quantitative Sciences unit), Stanford University, Stanford, CA, USA
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
48
|
Alpár D, Egyed B, Bödör C, Kovács GT. Single-Cell Sequencing: Biological Insight and Potential Clinical Implications in Pediatric Leukemia. Cancers (Basel) 2021; 13:5658. [PMID: 34830811 PMCID: PMC8616124 DOI: 10.3390/cancers13225658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/15/2023] Open
Abstract
Single-cell sequencing (SCS) provides high-resolution insight into the genomic, epigenomic, and transcriptomic landscape of oncohematological malignancies including pediatric leukemia, the most common type of childhood cancer. Besides broadening our biological understanding of cellular heterogeneity, sub-clonal architecture, and regulatory network of tumor cell populations, SCS can offer clinically relevant, detailed characterization of distinct compartments affected by leukemia and identify therapeutically exploitable vulnerabilities. In this review, we provide an overview of SCS studies focused on the high-resolution genomic and transcriptomic scrutiny of pediatric leukemia. Our aim is to investigate and summarize how different layers of single-cell omics approaches can expectedly support clinical decision making in the future. Although the clinical management of pediatric leukemia underwent a spectacular improvement during the past decades, resistant disease is a major cause of therapy failure. Currently, only a small proportion of childhood leukemia patients benefit from genomics-driven therapy, as 15-20% of them meet the indication criteria of on-label targeted agents, and their overall response rate falls in a relatively wide range (40-85%). The in-depth scrutiny of various cell populations influencing the development, progression, and treatment resistance of different disease subtypes can potentially uncover a wider range of driver mechanisms for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Donát Alpár
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (D.A.); (B.E.); (C.B.)
| | - Bálint Egyed
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (D.A.); (B.E.); (C.B.)
- 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (D.A.); (B.E.); (C.B.)
| | - Gábor T. Kovács
- 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
| |
Collapse
|
49
|
Cross NCP, Godfrey AL, Cargo C, Garg M, Mead AJ. The use of genetic tests to diagnose and manage patients with myeloproliferative and myeloproliferative/myelodysplastic neoplasms, and related disorders. Br J Haematol 2021; 195:338-351. [PMID: 34409596 DOI: 10.1111/bjh.17766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Nicholas C P Cross
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anna L Godfrey
- Haematopathology & Oncology Diagnostics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Catherine Cargo
- Haematological Malignancy Diagnostic Service, Leeds Cancer Centre, St James's University Hospital, Leeds, UK
| | - Mamta Garg
- Leicester Royal Infirmary, Infirmary Square, Leicester, UK
| | - Adam J Mead
- MRC Molecular Haematology Unit, NIHR Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
50
|
Récher C. The beginning of a new therapeutic era in acute myeloid leukemia. EJHAEM 2021; 2:823-833. [PMID: 35845213 PMCID: PMC9175720 DOI: 10.1002/jha2.252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
In the field of AML, the early 2000s were shaped by the advent of novel molecular biology technologies including high-throughput sequencing that improved prognostic classification, response evaluation through the quantification of minimal residual disease, and the launch of research on targeted therapies. Our knowledge of leukemogenesis, AML genetic diversity, gene-gene interactions, clonal evolution, and treatment response assessment has also greatly improved. New classifications based on chromosomal abnormalities and gene mutations are now integrated on a routine basis. These considerable efforts contributed to the discovery and development of promising drugs which specifically target gene mutations, apoptotic pathways and cell surface antigens as well as reformulate classical cytotoxic agents. In less than 2 years, nine novels drugs have been approved for the treatment of AML patients, and many others are being intensively investigated, in particular immune therapies. There are now numerous clinical research opportunities offered to clinicians, thanks to these new treatment options. We are only at the start of a new era which should see major disruptions in the way we understand, treat, and monitor patients with AML.
Collapse
Affiliation(s)
- Christian Récher
- Service d'HématologieCentre Hospitalier Universitaire de ToulouseInstitut Universitaire du Cancer de Toulouse OncopoleUniversité Toulouse III Paul SabatierCentre de Recherches en Cancérologie de ToulouseToulouseFrance
| |
Collapse
|