1
|
Choi E, Duan C, Bai XC. Regulation and function of insulin and insulin-like growth factor receptor signalling. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00826-3. [PMID: 39930003 DOI: 10.1038/s41580-025-00826-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 03/24/2025]
Abstract
Receptors of insulin and insulin-like growth factors (IGFs) are receptor tyrosine kinases whose signalling controls multiple aspects of animal physiology throughout life. In addition to regulating metabolism and growth, insulin-IGF receptor signalling has recently been linked to a variety of new, cell type-specific functions. In the last century, key questions have focused on how structural differences of insulin and IGFs affect receptor activation, and how insulin-IGF receptor signalling translates into pleiotropic biological functions. Technological advances such as cryo-electron microscopy have provided a detailed understanding of how native and engineered ligands activate insulin-IGF receptors. In this Review, we highlight recent structural and functional insights into the activation of insulin-IGF receptors, and summarize new agonists and antagonists developed for intervening in the activation of insulin-IGF receptor signalling. Furthermore, we discuss recently identified regulatory mechanisms beyond ligand-receptor interactions and functions of insulin-IGF receptor signalling in diseases.
Collapse
Affiliation(s)
- Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Sun S, Li Y, Li Y, Niu Y, Hu Z, Deng C, Chen Y, Hu B, Huang Y, Deng X. Delayed Administration of IGFBP7 Improved Bone Defect Healing via ZO-1 Dependent Vessel Stabilization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406965. [PMID: 39698844 PMCID: PMC11809352 DOI: 10.1002/advs.202406965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/25/2024] [Indexed: 12/20/2024]
Abstract
The vascular response following injury is pivotal for successful bone-defect repair but constitutes a major hurdle in the field of regenerative medicine. Throughout this process, vessel stabilization is crucial to provide an adequate nutrient supply and facilitate efficient waste removal. Therefore, this study investigated whether promoting vascular stabilization improves bone defect repair outcomes. The findings show that insulin-like growth factor-binding protein (IGFBP) 7 exhibits a novel biological function in attenuating vascular permeability and enhancing vascular wall integrity. The potential underlying mechanism involves the up-regulation of insulin-like growth factor 1 receptor (IGF1R) expression by IGFBP7 on endothelial cell membrane, followed by activation of the downstream PI3K/AKT signaling pathway and upregulated expression of the tight junction protein zonula occludens-1 (ZO-1). IGFBP7 delayed administration in mice with cranial defects significantly improved bone defect healing by increasing ZO-1 and CD31 co-localization within vessel walls and optimizing the perfusion function of the final vascular network. Furthermore, the application of the typical tight junction regulator AT1001 effectively promoted ZO-1-dependent vascular stabilization and facilitated bone defect repair. This study presents a new approach to enhance bone defect healing via vascular stabilization-targeted interventions and significantly advances the understanding of the complex interplay between osteogenesis and angiogenesis in bone defect healing.
Collapse
Affiliation(s)
- Shiyu Sun
- Department of General DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Yao Li
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Yuman Li
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Yuting Niu
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Zhewen Hu
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Chenyu Deng
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
| | - Yiming Chen
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Bo Hu
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Ying Huang
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xuliang Deng
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental MaterialsBeijing100081P. R. China
| |
Collapse
|
3
|
Godina C, Pollak MN, Jernström H. Targeting IGF-IR improves neoadjuvant chemotherapy efficacy in breast cancers with low IGFBP7 expression. NPJ Precis Oncol 2024; 8:212. [PMID: 39362991 PMCID: PMC11450189 DOI: 10.1038/s41698-024-00712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
There has been a long-standing interest in targeting the type 1 insulin-like growth factor receptor (IGF-1R) signaling system in breast cancer due to its key role in neoplastic proliferation and survival. However, no IGF-1R targeting agent has shown substantial clinical benefit in controlled phase 3 trials, and no biomarker has been shown to have clinical utility in the prediction of benefit from an IGF-1R targeting agent. IGFBP7 is an atypical insulin-like growth factor binding protein as it has a higher affinity for the IGF-1R than IGF ligands. We report that low IGFBP7 gene expression identifies a subset of breast cancers for which the addition of ganitumab, an anti-IGF-1R monoclonal antibody, to neoadjuvant chemotherapy, substantially improved the pathological complete response rate compared to neoadjuvant chemotherapy alone. The pCR rate in the chemotherapy plus ganitumab arm was 46.9% in patients in the lowest quartile of IGFBP7 expression, in contrast to only 5.6% in the highest quartile. Furthermore, high IGFBP7 expression predicted increased distant metastasis risk. If our findings are confirmed, decisions to halt the development of IGF-1R targeting drugs, which were based on disappointing results of prior trials that did not use predictive biomarkers, should be reviewed.
Collapse
Affiliation(s)
- Christopher Godina
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University Cancer Center/Kamprad, Lund University and Skåne University Hospital, Barngatan 4, SE-221 85, Lund, Sweden.
| | - Michael N Pollak
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Oncology, McGill University, Montreal, QC, Canada
| | - Helena Jernström
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University Cancer Center/Kamprad, Lund University and Skåne University Hospital, Barngatan 4, SE-221 85, Lund, Sweden.
| |
Collapse
|
4
|
Chen L, Hui L, Li J. The multifaceted role of insulin-like growth factor binding protein 7. Front Cell Dev Biol 2024; 12:1420862. [PMID: 39081862 PMCID: PMC11286461 DOI: 10.3389/fcell.2024.1420862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Insulin-like growth factor binding protein 7 (IGFBP7) serves as a crucial extracellular matrix protein, exerting pivotal roles in both physiological and pathological processes. This comprehensive review meticulously delineates the structural attributes of IGFBP7, juxtaposing them with other members within the IGFBP families, and delves into the expression patterns across various tissues. Furthermore, the review thoroughly examines the multifaceted functions of IGFBP7, encompassing its regulatory effects on cell proliferation, apoptosis, and migration, elucidating the underlying mechanistic pathways. Moreover, it underscores the compelling roles in tumor progression, acute kidney injury, and reproductive processes. By rigorously elucidating the diverse functionalities and regulatory networks of IGFBP7 across various physiological and pathological contexts, this review aims to furnish a robust theoretical framework and delineate future research trajectories for leveraging IGFBP7 in disease diagnosis, therapeutic interventions, and pharmaceutical innovations.
Collapse
Affiliation(s)
| | | | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation and Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Lit KK, Zhirenova Z, Blocki A. Insulin-like growth factor-binding protein 7 (IGFBP7): A microenvironment-dependent regulator of angiogenesis and vascular remodeling. Front Cell Dev Biol 2024; 12:1421438. [PMID: 39045455 PMCID: PMC11263173 DOI: 10.3389/fcell.2024.1421438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/25/2024] Open
Abstract
Insulin-like Growth Factor-Binding Protein 7 (IGFBP7) is an extracellular matrix (ECM) glycoprotein, highly enriched in activated vasculature during development, physiological and pathological tissue remodeling. Despite decades of research, its role in tissue (re-)vascularization is highly ambiguous, exhibiting pro- and anti-angiogenic properties in different tissue remodeling states. IGFBP7 has multiple binding partners, including structural ECM components, cytokines, chemokines, as well as several receptors. Based on current evidence, it is suggested that IGFBP7's bioactivity is strongly dependent on the microenvironment it is embedded in. Current studies indicate that during physiological angiogenesis, IGFBP7 promotes endothelial cell attachment, luminogenesis, vessel stabilization and maturation. Its effects on other stages of angiogenesis and vessel function remain to be determined. IGFBP7 also modulates the pro-angiogenic properties of other signaling factors, such as VEGF-A and IGF, and potentially acts as a growth factor reservoir, while its actual effects on the factors' signaling may depend on the environment IGFBP7 is embedded in. Besides (re-)vascularization, IGFBP7 clearly promotes progenitor and stem cell commitment and may exhibit anti-inflammatory and anti-fibrotic properties. Nonetheless, its role in inflammation, immunomodulation, fibrosis and cellular senescence is again likely to be context-dependent. Future studies are required to shed more light on the intricate functioning of IGFBP7.
Collapse
Affiliation(s)
- Kwok Keung Lit
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine (CNRM), Hong Kong Science Park, Shatin, Hong Kong SAR, China
| | - Zhamilya Zhirenova
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine (CNRM), Hong Kong Science Park, Shatin, Hong Kong SAR, China
| | - Anna Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine (CNRM), Hong Kong Science Park, Shatin, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
6
|
Yu LC, He R, Wang DX, Qi D. Activated Clec4n hi Neutrophils Aggravate Lung Injury in an Endothelial IGFBP7-Dependent Manner. Am J Respir Cell Mol Biol 2024; 71:66-80. [PMID: 38574235 DOI: 10.1165/rcmb.2024-0017oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024] Open
Abstract
The role of endothelial cells in acute lung injury (ALI) has been widely elaborated, but little is known about the role of different subtypes of endothelial cells in ALI. ALI models were established by lipopolysaccharide. Single-cell RNA sequencing was used to identify differential molecules in endothelial subtypes and the heterogeneity of lung immune cells. Specific antibodies were used to block insulin-like growth factor binding protein 7 (IGFBP7), and AAVshIGP7 was used to specifically knock down IGFBP7. Here, we found that IGFBP7 was the most differentially expressed molecule in diverse subsets of endothelial cells and that IGFBP7 was strongly associated with inflammatory responses. Elevated IGFBP7 significantly exacerbated barrier dysfunction in ALI, whereas blockade of IGFBP7 partially reversed barrier damage. General capillary cells are the primary source of elevated serum IGFBP7 after ALI. Using single-cell RNA sequencing, we identified significantly increased Clec4nhi neutrophils in mice with ALI, whereas IGFBP7 knockdown significantly reduced infiltration of Clec4nhi cells and mitigated barrier dysfunction in ALI. In addition, we found that IGFBP7 activated the NF-κB signaling axis by promoting phosphorylation and ubiquitination degradation of F-box/WD repeat-containing protein 2 (FBXW2), thereby exacerbating barrier dysfunction in ALI. Taken together, our data indicate that blockade of serum IGFBP7 or IGFBP7 depletion in general capillary cells reversed barrier damage in ALI. Therefore, targeting IGFBP7 depletion could be a novel strategy for treating ALI.
Collapse
Affiliation(s)
- Lin-Chao Yu
- Department of Respiratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui He
- Department of Respiratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dao-Xin Wang
- Department of Respiratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Qi
- Department of Respiratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Tsilingiris D, Vallianou NG, Spyrou N, Kounatidis D, Christodoulatos GS, Karampela I, Dalamaga M. Obesity and Leukemia: Biological Mechanisms, Perspectives, and Challenges. Curr Obes Rep 2024; 13:1-34. [PMID: 38159164 PMCID: PMC10933194 DOI: 10.1007/s13679-023-00542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW To examine the epidemiological data on obesity and leukemia; evaluate the effect of obesity on leukemia outcomes in childhood acute lymphoblastic leukemia (ALL) survivors; assess the potential mechanisms through which obesity may increase the risk of leukemia; and provide the effects of obesity management on leukemia. Preventive (diet, physical exercise, obesity pharmacotherapy, bariatric surgery) measures, repurposing drugs, candidate therapeutic agents targeting oncogenic pathways of obesity and insulin resistance in leukemia as well as challenges of the COVID-19 pandemic are also discussed. RECENT FINDINGS Obesity has been implicated in the development of 13 cancers, such as breast, endometrial, colon, renal, esophageal cancers, and multiple myeloma. Leukemia is estimated to account for approximately 2.5% and 3.1% of all new cancer incidence and mortality, respectively, while it represents the most frequent cancer in children younger than 5 years. Current evidence indicates that obesity may have an impact on the risk of leukemia. Increased birthweight may be associated with the development of childhood leukemia. Obesity is also associated with worse outcomes and increased mortality in leukemic patients. However, there are several limitations and challenges in meta-analyses and epidemiological studies. In addition, weight gain may occur in a substantial number of childhood ALL survivors while the majority of studies have documented an increased risk of relapse and mortality among patients with childhood ALL and obesity. The main pathophysiological pathways linking obesity to leukemia include bone marrow adipose tissue; hormones such as insulin and the insulin-like growth factor system as well as sex hormones; pro-inflammatory cytokines, such as IL-6 and TNF-α; adipocytokines, such as adiponectin, leptin, resistin, and visfatin; dyslipidemia and lipid signaling; chronic low-grade inflammation and oxidative stress; and other emerging mechanisms. Obesity represents a risk factor for leukemia, being among the only known risk factors that could be prevented or modified through weight loss, healthy diet, and physical exercise. Pharmacological interventions, repurposing drugs used for cardiometabolic comorbidities, and bariatric surgery may be recommended for leukemia and obesity-related cancer prevention.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Nikolaos Spyrou
- Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, 1190 One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | | | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Str, 12462, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527, Athens, Greece.
| |
Collapse
|
8
|
Girolamo DD, Benavente-Diaz M, Murolo M, Grimaldi A, Lopes PT, Evano B, Kuriki M, Gioftsidi S, Laville V, Tinevez JY, Letort G, Mella S, Tajbakhsh S, Comai G. Extraocular muscle stem cells exhibit distinct cellular properties associated with non-muscle molecular signatures. Development 2024; 151:dev202144. [PMID: 38240380 DOI: 10.1242/dev.202144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024]
Abstract
Skeletal muscle stem cells (MuSCs) are recognised as functionally heterogeneous. Cranial MuSCs are reported to have greater proliferative and regenerative capacity when compared with those in the limb. A comprehensive understanding of the mechanisms underlying this functional heterogeneity is lacking. Here, we have used clonal analysis, live imaging and single cell transcriptomic analysis to identify crucial features that distinguish extraocular muscle (EOM) from limb muscle stem cell populations. A MyogeninntdTom reporter showed that the increased proliferation capacity of EOM MuSCs correlates with deferred differentiation and lower expression of the myogenic commitment gene Myod. Unexpectedly, EOM MuSCs activated in vitro expressed a large array of extracellular matrix components typical of mesenchymal non-muscle cells. Computational analysis underscored a distinct co-regulatory module, which is absent in limb MuSCs, as driver of these features. The EOM transcription factor network, with Foxc1 as key player, appears to be hardwired to EOM identity as it persists during growth, disease and in vitro after several passages. Our findings shed light on how high-performing MuSCs regulate myogenic commitment by remodelling their local environment and adopting properties not generally associated with myogenic cells.
Collapse
Affiliation(s)
- Daniela Di Girolamo
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Maria Benavente-Diaz
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Sorbonne Universités, Complexité du Vivant, F-75005 Paris, France
| | - Melania Murolo
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Alexandre Grimaldi
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Sorbonne Universités, Complexité du Vivant, F-75005 Paris, France
| | - Priscilla Thomas Lopes
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Brendan Evano
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Mao Kuriki
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Stamatia Gioftsidi
- Université Paris-Est, 77420 Champs-sur- Marne, France
- Freie Universität Berlin, 14195 Berlin, Germany
- Inserm, IMRB U955-E10, 94000 Créteil, France
| | - Vincent Laville
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, 75015 Paris, France
| | - Gaëlle Letort
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Sebastian Mella
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Glenda Comai
- Stem Cells and Development Unit, 25 rue du Dr Roux, Institut Pasteur, 75015 Paris, France
- UMR CNRS 3738, Institut Pasteur, Paris, France
| |
Collapse
|
9
|
Zhao Z, Zhao Q, Wang H, Wei L, Wang S, Li S, Yuan D, Wang Z. Integrated transcriptomic and metabolomic analyses identify key factors in the vitellogenesis of juvenile Sichuan bream (Sinibrama taeniatus). FRONTIERS IN MARINE SCIENCE 2023; 10. [DOI: 10.3389/fmars.2023.1243767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Vitellogenesis is the most important stage of ovarian maturation in fish, involving the synthesis and transport of essential yolk substances and their complex mechanisms and coordination process. The liver is the main tissue involved in the vitellogenesis of oviparous animals, but studies of vitellogenesis in fish rarely include the liver and ovary as a whole. The aim of this study was to explore the molecular mechanism and associated regulatory factors behind vitellogenesis in Sichuan bream (Sinibrama taeniatus). The different stages of oogenesis were first identified by successive histological observations. Then, ovary and liver tissues that developed to 115 days (stage II, previtellogenesis stage), 165 days (stage III, vitellogenesis stage) and 185 days (stage IV, late-vitellogenesis stage) were collected for transcriptomic and metabolomic analyses, and serum testosterone (T), 17β-estradiol (E2), vitellogenin (Vtg), triiodothyronine (T3), and thyroxine (T4) levels were measured at the corresponding stages. We found that energy redistribution during vitellogenesis is mainly regulated through glycolysis, fatty acid biosynthesis and the citrate cycle pathway. In the liver, energy metabolism was promoted by activating glucolipid metabolic pathways to provide sufficient ATP, but at the same time, the ovary tends to retain nutrients rather than decompose them to produce energy. In addition, we have identified several key factors involved in the metabolism of neutral lipids, polar lipids, amino acids and vitamins, which are involved in the assembly and transport of important yolk nutrients. The initiation of vitellogenesis was found to be associated with a surge in serum E2 levels, but the sustained increase in Vtg levels in the late stage may be due more to upregulation of the estrogen receptor. These results provide valuable information about the regulation of ovarian development in cultured fish.
Collapse
|
10
|
Artico LL, Ruas JS, Teixeira Júnior JR, Migita NA, Seguchi G, Shi X, Brandalise SR, Castilho RF, Yunes JA. IGFBP7 Fuels the Glycolytic Metabolism in B-Cell Precursor Acute Lymphoblastic Leukemia by Sustaining Activation of the IGF1R-Akt-GLUT1 Axis. Int J Mol Sci 2023; 24:ijms24119679. [PMID: 37298628 DOI: 10.3390/ijms24119679] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/21/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Increased glycolytic metabolism plays an important role in B-cell precursor Acute Lymphoblastic Leukemia (BCP-ALL). We previously showed that IGFBP7 exerts mitogenic and prosuvival effects in ALL by promoting IGF1 receptor (IGF1R) permanence on the cell surface, thus prolonging Akt activation upon IGFs/insulin stimulation. Here, we show that sustained activation of the IGF1R-PI3K-Akt axis concurs with GLUT1 upregulation, which enhances energy metabolism and increases glycolytic metabolism in BCP-ALL. IGFBP7 neutralization with a monoclonal antibody or the pharmacological inhibition of the PI3K-Akt pathway was shown to abrogate this effect, restoring the physiological levels of GLUT1 on the cell surface. The metabolic effect described here may offer an additional mechanistic explanation for the strong negative impact seen in ALL cells in vitro and in vivo after the knockdown or antibody neutralization of IGFBP7, while reinforcing the notion that it is a valid target for future therapeutic interventions.
Collapse
Affiliation(s)
- Leonardo Luís Artico
- Centro Infantil Boldrini, Campinas 13083-210, SP, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil
| | | | - José Ricardo Teixeira Júnior
- Centro Infantil Boldrini, Campinas 13083-210, SP, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil
| | | | | | - Xinghua Shi
- Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA
| | | | - Roger Frigério Castilho
- Department of Pathology, School of Medical Sciences, University of Campinas, Campinas 13083-887, SP, Brazil
| | | |
Collapse
|
11
|
Feng H, Wang X, Zhou H, Mai K, He G, Liu C. Involvement of insulin-like growth factor binding proteins (IGFBPs) and activation of insulin/IGF-like signaling (IIS)-target of rapamycin (TOR) signaling cascade in pacific white shrimp, Litopenaeus vannamei exposed to acute low-salinity. AQUACULTURE REPORTS 2023; 30:101627. [DOI: 10.1016/j.aqrep.2023.101627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Liu Y, Shen S, Yan Z, Yan L, Ding H, Wang A, Xu Q, Sun L, Yuan Y. Expression characteristics and their functional role of IGFBP gene family in pan-cancer. BMC Cancer 2023; 23:371. [PMID: 37088808 PMCID: PMC10124011 DOI: 10.1186/s12885-023-10832-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Insulin-like growth factor binding proteins (IGFBPs) are critical regulators of the biological activities of insulin-like growth factors. The IGFBP family plays diverse roles in different types of cancer, which we still lack comprehensive and pleiotropic understandings so far. METHODS Multi-source and multi-dimensional data, extracted from The Cancer Genome Atlas (TCGA), Oncomine, Cancer Cell Line Encyclopedia (CCLE), and the Human Protein Atlas (HPA) was used for bioinformatics analysis by R language. Immunohistochemistry and qRT-PCR were performed to validate the results of the database analysis results. Bibliometrics and literature review were used for summarizing the research progress of IGFBPs in the field of tumor. RESULTS The members of IGFBP gene family are differentially expressed in various cancer types. IGFBPs expression can affect prognosis of different cancers. The expression of IGFBPs expression is associated with multiple signal transduction pathways. The expression of IGFBPs is significantly correlated with tumor mutational burden, microsatellite instability, tumor stemness and tumor immune microenvironment. The qRT-PCR experiments verified the lower expression of IGFBP2 and IGFBP6 in gastric cancer and the lower expression of IGFBP6 in colorectal cancer. Immunohistochemistry validated a marked downregulation of IGFBP2 protein in gastric cancer tissues. The keywords co-occurrence analysis of IGFBP related publications in cancer showed relative research have been more concentrating on the potential of IGFBPs as tumor diagnostic and prognostic markers and developing cancer therapies. CONCLUSIONS These findings provide frontier trend of IGFBPs related research and new clues for identifying novel therapeutic targets for various cancers.
Collapse
Affiliation(s)
- Yingnan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shixuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ziwei Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Lirong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hanxi Ding
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
13
|
Guo Y, Zhang K, Geng W, Chen B, Wang D, Wang Z, Tian W, Li H, Zhang Y, Jiang R, Li Z, Tian Y, Kang X, Liu X. Evolutionary analysis and functional characterization reveal the role of the insulin-like growth factor system in a diversified selection of chickens (Gallus gallus). Poult Sci 2022; 102:102411. [PMID: 36587453 PMCID: PMC9816805 DOI: 10.1016/j.psj.2022.102411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The insulin-like growth factor (IGF) system plays an indispensable role in embryonic and postnatal development in mammals. However, the effects of the system on growth, carcass, and egg-laying traits, and diversified selection have not been systematically studied in chickens. In the present study, firstly the composition and gene structures of the chicken IGF system were investigated using phylogenetic tree and conserved synteny analysis. Then the effects of the genetic variations in the IGF system genes on breeding of specialized varieties were explored by principal component analysis. In addition, the spatiotemporal expression properties of the genes in this system were analyzed by RT-qPCR and the functions of the genes in egg production performance and growth were explored by association study. Moreover, the effects of IGF-binding proteins 3 (IGFBP3) on skeletal muscle development in chicken were investigated by cell cycle analysis, 5-ethynyl-2'-deoxyuridine (EdU) and Cell Counting Kit-8 (CCK-8) assays. The results showed that the chicken IGF system included 13 members which could be classified into 3 groups based on their amino acid sequences: IGF binding proteins 1 to 5 and 7 (IGFBP1-5 and 7) belonged to the first group; IGF 1 and 2 (IGF1 and IGF2), and IGF 1 and 2 receptor (IGF1R and IGF2R) belonged to the second group; and IGF2 binding proteins 1-3 (IGF2BP1-3) belonged to the third group. The IGF2BP1 and 3, and IGFBP2, 3, and 7 genes likely contributed more to the formation of both the specialized meat-type and egg-type lines, whereas IGFBP1 and 5 likely contributed more to the formation of the egg-type lines. The SNPs in the IGF2BP3 and IGFBP2 and 5 genes were significantly associated with egg number, and SNPs in the IGFBP3 promoter region were significantly associated with body weight, breast muscle weight and leg muscle weight. The IGFBP3 inhibited proliferation but promoted differentiation of chicken primary myoblasts (CPMs). These results provide insights into the roles of the IGF system in the diversified selection of chickens. The SNPs associated with egg-laying performance, growth, and carcass traits could be used as genetic markers for breeding selection of chickens in the future.
Collapse
Affiliation(s)
- Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ke Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Wanzhuo Geng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Botong Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Dandan Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China.
| |
Collapse
|
14
|
Zhang Z, Yang K, Zhang H. Targeting Leukemia-Initiating Cells and Leukemic Niches: The Next Therapy Station for T-Cell Acute Lymphoblastic Leukemia? Cancers (Basel) 2022; 14:cancers14225655. [PMID: 36428753 PMCID: PMC9688677 DOI: 10.3390/cancers14225655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive subtype of hematological malignancy characterized by its high heterogeneity and potentially life-threatening clinical features. Despite the advances in risk stratification and therapeutic management of T-ALL, patients often suffer from treatment failure and chemotherapy-induced toxicity, calling for greater efforts to improve therapeutic efficacy and safety in the treatment of T-ALL. During the past decades, increasing evidence has shown the indispensable effects of leukemia-initiating cells (LICs) and leukemic niches on T-ALL initiation and progression. These milestones greatly facilitate precision medicine by interfering with the pathways that are associated with LICs and leukemic niches or by targeting themselves directly. Most of these novel agents, either alone or in combination with conventional chemotherapy, have shown promising preclinical results, facilitating them to be further evaluated under clinical trials. In this review, we summarize the latest discoveries in LICs and leukemic niches in terms of T-ALL, with a particular highlight on the current precision medicine. The challenges and future prospects are also discussed.
Collapse
Affiliation(s)
- Ziting Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Kun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- Correspondence: ; Tel.: +86-158-7796-3252
| |
Collapse
|