1
|
Gazeau N, Beauvais D, Tilmont R, Srour M, Ferrant E, Safar V, Fouillet L, Flandrin-Gresta P, Gower N, Chauvet P, Duployez N, Podvin B, Demaret J, Huet S, Sujobert P, Ghesquières H, Damaj G, Bachy E, Morschhauser F, Yakoub-Agha I, Heiblig M, Sesques P. Myeloid neoplasms after CD19-directed CAR T cells therapy in long-term B-cell lymphoma responders, a rising risk over time? Leukemia 2025:10.1038/s41375-025-02605-7. [PMID: 40275069 DOI: 10.1038/s41375-025-02605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/09/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025]
Abstract
Therapy-related myeloid neoplasms (t-MN), including myelodysplastic neoplasms (t-MDS) and acute myeloid leukemia (t-AML), have emerged as significant late complications after CAR T cell therapy. We retrospectively analyzed 539 patients with B cell lymphoma treated with CD19 directed CAR T cell therapy across four French centers. Cumulative incidences of t-MN was estimated with relapse or death treated as competing risk. Univariate and propensity score matching (PSM) analyses were conducted to assess risk factors with age and the number of prior treatments as covariates. After a median follow-up of 25 months, the cumulative incidence of t-MN was 4.5% at 2 years. T-MN occurred predominantly as t-MDS (62%) and t-AML (38%) with high cytogenetic risk. Median overall survival after t-MN diagnosis was 4.5 months. In univariate analysis, older age (p < 0.01), higher MCV (p < 0.01), and higher ICANS grade (p = 0.04) were associated with increased risk of t-MN. After PSM, MCV and ICANS grade remained significant risk factors. CAR T cell products with CD28 co-stimulatory domains trended towards higher t-MN risk (p = 0.09). NGS analysis showed that 85.7% of t-MN had pre-existing mutations, most commonly TP53. This study highlights t-MN as a severe late complication of CAR T cell therapy. MCV and ICANS grade were identified as key risk factors.
Collapse
Affiliation(s)
- Nicolas Gazeau
- Hematology Department, Centre Hospitalier Universitaire de Lille, Lille, France.
| | - David Beauvais
- Hematology Department, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Rémi Tilmont
- Hematology Department, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Micha Srour
- Hematology Department, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Emmanuelle Ferrant
- Hematology Department, Hospices Civils de Lyon, Pierre Bénite, Lyon, France
| | - Violaine Safar
- Hematology Department, Hospices Civils de Lyon, Pierre Bénite, Lyon, France
| | - Ludovic Fouillet
- Hematology Department, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
| | | | - Nicolas Gower
- Hematology Department, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Paul Chauvet
- Hematology Department, Centre Hospitalier Universitaire de Lille, Lille, France
- CHU de Lille, Université de Lille, Inserm UMR1277, CNRS UMR9020-CANTHER, Lille, France
| | - Nicolas Duployez
- Biology and Pathology Center, Laboratory of Hematology, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Benjamin Podvin
- Biology and Pathology Center, Laboratory of Hematology, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Julie Demaret
- Biology and Pathology Center, Laboratory of Immunology, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Sarah Huet
- Laboratory of Hematology, Centre Hospitalier Universitaire Lyon-Sud, Hospices Civils de Lyon, Pierre-Benite, France
| | - Pierre Sujobert
- Laboratory of Hematology, Centre Hospitalier Universitaire Lyon-Sud, Hospices Civils de Lyon, Pierre-Benite, France
| | - Hervé Ghesquières
- Hematology Department, Hospices Civils de Lyon, Pierre Bénite, Lyon, France
| | - Gandhi Damaj
- Hematology Department, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Emmanuel Bachy
- Hematology Department, Hospices Civils de Lyon, Pierre Bénite, Lyon, France
| | - Franck Morschhauser
- Hematology Department, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Ibrahim Yakoub-Agha
- Hematology Department, Centre Hospitalier Universitaire de Lille, Lille, France
- CHU de Lille, Université de Lille, INSERM U1286, Infinite, 59000, Lille, France
| | - Maël Heiblig
- Hematology Department, Hospices Civils de Lyon, Pierre Bénite, Lyon, France
| | - Pierre Sesques
- Hematology Department, Hospices Civils de Lyon, Pierre Bénite, Lyon, France
| |
Collapse
|
2
|
Dulery R, Guiraud V, Choquet S, Thieblemont C, Bachy E, Barete S, Todesco È, Arnulf B, Boissel N, Baruchel A, Bay JO, Le Gouill S, Houot R. T cell malignancies after CAR T cell therapy in the DESCAR-T registry. Nat Med 2025; 31:1130-1133. [PMID: 39779930 DOI: 10.1038/s41591-024-03458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
The risk of T cell malignancies after chimeric antigen receptor (CAR) T cell therapy is a concern, although the true incidence remains unclear. Here we analyzed the DESCAR-T registry database, encompassing all pediatric and adult patients with hematologic malignancies who received CAR T cell therapy in France since 1 July 2018. Of the 3,066 patients included (2,536 B cell lymphoma, 162 B cell acute lymphoblastic leukemia (ALL) and 368 multiple myeloma), 1,680 (54.8%) received axicabtagene ciloleucel, 205 (6.7%) brexucabtagene autoleucel, 44 (1.4%) lisocabtagene maraleucel and 769 (25.1%) tisagenlecleucel. All multiple myeloma patients received idecabtagene vicleucel, with none receiving ciltacabtagene autoleucel. After a median follow-up of 12.7 months for B cell lymphoma, 17.7 months for B cell ALL and 6.3 months for multiple myeloma, only one (0.03%) patient developed a T cell malignancy after CAR T infusion. Specifically, the patient was diagnosed with a primary cutaneous CD30+ T cell lymphoproliferative disorder (anaplastic lymphoma kinase-negative) 3 years after receiving tisagenlecleucel therapy for diffuse large B cell lymphoma. This was associated with the integration of a CAR clone into the tumor suppressor gene PLAAT4 (phospholipase A and acyltransferase 4). Thus, the development of this secondary T cell malignancy might be linked to the use of CAR T cell therapy. In conclusion, our findings indicate a very low risk of T cell malignancy after CAR T cell therapy.
Collapse
Affiliation(s)
- Remy Dulery
- Department of Clinical Hematology and Cellular Therapy, Sorbonne University, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, INSERM, UMRs 938, Centre de recherche Saint-Antoine (CRSA), Paris, France.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Vincent Guiraud
- Department of Virology, Sorbonne University, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Sylvain Choquet
- Department of Clinical Hematology, Sorbonne University, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Catherine Thieblemont
- Hemato-oncology, Paris Cité University, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France
| | - Emmanuel Bachy
- Hematology Department, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Stéphane Barete
- Unit of Dermatology, Sorbonne University, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Ève Todesco
- Department of Virology, Sorbonne University, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Bertrand Arnulf
- Department of Immuno-Hematology, Paris Cité University, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nicolas Boissel
- Hematology Adolescents and Young Adult Unit, Paris Cité University, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, URP-3518, Institut de Recherche Saint-Louis, Paris, France
| | - André Baruchel
- Department of Pediatric Hematology and Immunology, Paris Cité University, Hôpital Universitaire Robert Debré, Assistance Publique-Hôpitaux de Paris, EA3518, Institut de Recherche Saint-Louis, Paris, France
| | - Jacques-Olivier Bay
- Department of Adult Clinical Hematology and Cellular Therapy, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Steven Le Gouill
- Department of Hematology, Versailles Saint-Quentin University, Institut Curie, Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), U1288 Inserm/Institut Curie Centre de recherche, Saint-Cloud, France
| | - Roch Houot
- Department of Hematology, University Hospital of Rennes, UMR U1236, INSERM, University of Rennes, French Blood Establishment, Rennes, France
| |
Collapse
|
3
|
Zhuang Q, Jin S, Wang W, Wang Y, Tong H, Liu Z, Sun J. Clonal hematopoiesis of indeterminate potential: the root cause of, and fertile ground for, hematological malignancies. Trends Mol Med 2025; 31:252-264. [PMID: 39490273 DOI: 10.1016/j.molmed.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Clonal hematopoiesis (CH) of indeterminate potential (CHIP), characterized by propagation of blood cell clones carrying somatic mutations in specific driver genes, is increasingly recognized as a critical factor in the development of hematological malignancies. This phenomenon, which often emerges with age, underscores the complex interplay between genetic predisposition and environmental influences in cancer initiation and progression. Recent years have witnessed significant advances in our understanding of the link between CHIP and hematological diseases. In this review, we provide a comprehensive overview of the features of CHIP and explore its role in promoting tumorigenesis and influencing treatment outcomes for blood cancers. Finally, we summarize current available tools for risk stratification and discuss management strategies for patients with CHIP.
Collapse
Affiliation(s)
- Qiqi Zhuang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
| | - Shengjie Jin
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Wei Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China; Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China; Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China.
| | - Zuyun Liu
- The Second Affiliated Hospital, and School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jie Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Luo Q, Zhou L, Luo D, Yu L. Clonal hematopoiesis of indeterminate potential (CHIP): A potential contributor to lymphoma. Crit Rev Oncol Hematol 2025; 206:104589. [PMID: 39667716 DOI: 10.1016/j.critrevonc.2024.104589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024] Open
Abstract
Clonal hematopoiesis (CH) typically refers to the clonal expansion of hematopoietic stem cells (HSCs) due to genetic mutations, serving as the pathogenic basis for various diseases. Clonal hematopoiesis of indeterminate potential (CHIP) is a subtype of CH, emerging as a significant risk factor for myeloid malignancies and cardiovascular diseases, which has attracted increasing attention. However, recent research has unveiled previously overlooked links between CHIP and lymphoma. This paper reviews the relationship between CHIP and lymphoma, focusing on the role and mechanism of TET2 and DNMT3A-mediated CHIP in lymphoma from the perspective of laboratory research and clinical observation. Additionally, we explore the therapeutic implications of targeting CHIP genes and inflammatory pathways in lymphoma. Our findings underscore the multifaceted influence of CHIP on lymphoma development and provide a promising avenue for therapeutic interventions in CHIP mediated lymphoma.
Collapse
Affiliation(s)
- QingQing Luo
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Nanchang, Jiangxi, China
| | - LiLi Zhou
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Nanchang, Jiangxi, China
| | - DaYa Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Li Yu
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Ullrich F, Bröckelmann PJ, Turki AT, Khan AM, Chiru ED, Vetter M, von Tresckow B, Wirth R, Cordoba R, Ortiz-Maldonado V, Fülöp T, Neuendorff NR. Impact of immunological aging on T cell-mediated therapies in older adults with multiple myeloma and lymphoma. J Immunother Cancer 2024; 12:e009462. [PMID: 39622581 PMCID: PMC11624774 DOI: 10.1136/jitc-2024-009462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/24/2024] [Indexed: 12/09/2024] Open
Abstract
The treatment landscape for lymphoma and multiple myeloma, which disproportionally affect older adults, has been transformed by the advent of T cell-mediated immunotherapies, including immune checkpoint inhibition, T cell-engaging bispecific antibodies, and chimeric antigen receptor (CAR) T cell therapy, during the last decade. These treatment modalities re-enable the patient's own immune system to combat malignant cells and offer the potential for sustained remissions and cure for various diseases.Age profoundly affects the physiological function of the immune system. The process of biological aging is largely driven by inflammatory signaling, which is reciprocally fueled by aging-related alterations of physiology and metabolism. In the T cell compartment, aging contributes to T cell senescence and exhaustion, increased abundance of terminally differentiated cells, a corresponding attrition in naïve T cell numbers, and a decrease in the breadth of the receptor repertoire. Furthermore, inflammatory signaling drives aging-related pathologies and contributes to frailty in older individuals. Thus, there is growing evidence of biological aging modulating the efficacy and toxicity of T cell-mediated immunotherapies.Here, we review the available evidence from biological and clinical studies focusing on the relationship between T cell-mediated treatment of hematologic malignancies and age. We discuss biological features potentially impacting clinical outcomes in various scenarios, and potential strategies to improve the safety and efficacy of immune checkpoint inhibitors, T cell-engaging bispecific antibodies, and CAR-T cell therapy in older patients.
Collapse
Affiliation(s)
- Fabian Ullrich
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center and German Cancer Consortium (DKTK partner site Essen), University Duisburg-Essen, University Hospital Essen, Essen, Nordrhein-Westfalen, Germany
| | - Paul J Bröckelmann
- Faculty of Medicine and University Hospital of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Nordrhein-Westfalen, Germany
| | - Amin T Turki
- Department of Hematology and Oncology, University Hospital Marien Hospital Herne, Herne, Nordrhein-Westfalen, Germany
- Institute for Artificial Intelligence in Medicine, University Duisburg-Essen, University Hospital Essen, Essen, Nordrhein-Westfalen, Germany
| | - Abdullah M Khan
- Division of Hematology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Elena-Diana Chiru
- Cancer Center Baselland, University of Basel Faculty of Medicine, Basel, Liestal, Switzerland
| | - Marcus Vetter
- Cancer Center Baselland, University of Basel Faculty of Medicine, Basel, Liestal, Switzerland
| | - Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center and German Cancer Consortium (DKTK partner site Essen), University Duisburg-Essen, University Hospital Essen, Essen, Nordrhein-Westfalen, Germany
| | - Rainer Wirth
- Department of Geriatrics, Ruhr University Bochum, University Hospital Marien Hospital Herne, Herne, Germany
| | - Raul Cordoba
- Department of Hematology, Lymphoma Unit, Hospital Universitario Fundacion Jimenez Diaz, Madrid, Spain
| | - Valentín Ortiz-Maldonado
- Department of Hematology, Oncoimmunotherapy Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Tamas Fülöp
- Department of Medicine, Division of Geriatrics, Research Center on Aging, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nina Rosa Neuendorff
- Department of Geriatrics, Ruhr University Bochum, University Hospital Marien Hospital Herne, Herne, Germany
| |
Collapse
|
6
|
Yang Y, Peng H, Wang J, Li F. New insights into CAR T-cell hematological toxicities: manifestations, mechanisms, and effective management strategies. Exp Hematol Oncol 2024; 13:110. [PMID: 39521987 PMCID: PMC11549815 DOI: 10.1186/s40164-024-00573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy represents a highly efficacious treatment modality demonstrated to enhance outcomes in patients afflicted with malignancies, particularly those enduring relapsed or refractory hematological malignancies. However, the escalating adoption of CAR T-cell therapy has unveiled several life-threatening toxicities, notably cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), infections, and hematological toxicities (HTs), thereby hindering the broad implementation of CAR T-cell therapy. HTs encompass a spectrum of adverse effects, including cytopenias, hemophagocytic lymphohistiocytosis (HLH), coagulopathies, and B-cell aplasia. While our comprehension of the underlying mechanisms governing CRS and ICANS is advancing, the intricate pathophysiology of HTs remains inadequately elucidated. Such knowledge gaps may precipitate suboptimal therapeutic decisions, potentially culminating in substantial medical resource depletion and detriment to patients' quality of life. In this comprehensive review, based on recent updated findings, we delineate various mechanisms contributing to HTs subsequent to CAR T-cell therapy, explicate manifestations of HTs, and proffer strategic interventions to mitigate this relevant clinical challenge.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongwei Peng
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fei Li
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Clinical Research Center for Hematologic Disease, Nanchang, Jiangxi, China.
- Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
7
|
Hamilton MP, Alizadeh AA. Rarity & Risk of Secondary Hematologic Neoplasms after CAR T-cell Therapies. Transplant Cell Ther 2024; 30:936-938. [PMID: 39326982 DOI: 10.1016/j.jtct.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Affiliation(s)
- Mark P Hamilton
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ash A Alizadeh
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
8
|
Hamilton MP, Miklos DB, Alizadeh AA. Risk of Second Tumors and T-Cell Lymphoma after CAR T-Cell Therapy. Reply. N Engl J Med 2024; 391:870-871. [PMID: 39231355 DOI: 10.1056/nejmc2408733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
MESH Headings
- Humans
- Immunotherapy, Adoptive/adverse effects
- Lymphoma, T-Cell/diagnosis
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/immunology
- Neoplasms, Second Primary/diagnosis
- Neoplasms, Second Primary/genetics
- Neoplasms, Second Primary/immunology
- Receptors, Chimeric Antigen/immunology
- Risk
- Clonal Hematopoiesis/genetics
- Clonal Hematopoiesis/immunology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
- Lymphoma, B-Cell/virology
- Herpesvirus 4, Human/isolation & purification
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/adverse effects
- Biological Products/administration & dosage
- Biological Products/adverse effects
- Cytokine Release Syndrome/genetics
- Cytokine Release Syndrome/immunology
Collapse
|
9
|
Bouziana S, Bouzianas D. The Current Landscape of Secondary Malignancies after CAR T-Cell Therapies: How Could Malignancies Be Prevented? Int J Mol Sci 2024; 25:9518. [PMID: 39273462 PMCID: PMC11395546 DOI: 10.3390/ijms25179518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have revolutionised the field of haematological malignancies by achieving impressive remission rates in patients with highly refractory haematological malignancies, improving overall survival. To date, six commercial anti-CD19 and anti-BCMA CAR T-cell products have been approved by the Food and Drug Administration (FDA) for the treatment of relapsed/refractory B-cell haematological malignancies and multiple myeloma. The indications for CAR T-cell therapies are gradually expanding, with these therapies being investigated in a variety of diseases, including non-malignant ones. Despite the great success, there are several challenges surrounding CAR T-cell therapies, such as non-durable responses and high-grade toxicities. In addition, a new safety concern was added by the FDA on 28 November 2023 following reports of T-cell malignancies in patients previously treated with either anti-CD19 or anti-BCMA autologous CAR T-cell therapies both in clinical trials and in the real-world setting. Since then, several reports have been published presenting the incidence and analysing the risks of other secondary malignancies after CAR T-cell therapies. In this opinion article, the current landscape of secondary malignancies after CAR T-cell therapies is presented, along with a proposed strategy for future research aiming at potentially diminishing or abrogating the risk of developing secondary malignancies after CAR T-cell therapies.
Collapse
Affiliation(s)
- Stella Bouziana
- Department of Hematology, King’s College Hospital, London SE59RS, UK
| | - Dimitrios Bouzianas
- BReMeL, Biopharmaceutical and Regenerative Medicine Laboratories, 55534 Thessaloniki, Greece;
| |
Collapse
|
10
|
Petrone G, Turker I, Natarajan P, Bolton KL. Clinical and Therapeutic Implications of Clonal Hematopoiesis. Annu Rev Genomics Hum Genet 2024; 25:329-351. [PMID: 39190914 DOI: 10.1146/annurev-genom-120722-100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Clonal hematopoiesis (CH) is an age-related process whereby hematopoietic stem and progenitor cells (HSPCs) acquire mutations that lead to a proliferative advantage and clonal expansion. The most commonly mutated genes are epigenetic regulators, DNA damage response genes, and splicing factors, which are essential to maintain functional HSPCs and are frequently involved in the development of hematologic malignancies. Established risk factors for CH, including age, prior cytotoxic therapy, and smoking, increase the risk of acquiring CH and/or may increase CH fitness. CH has emerged as a novel risk factor in many age-related diseases, such as hematologic malignancies, cardiovascular disease, diabetes, and autoimmune disorders, among others. Future characterization of the mechanisms driving CH evolution will be critical to develop preventative and therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Petrone
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Isik Turker
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kelly L Bolton
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
11
|
Ruella M, June CH. CAR T-cell Resistance to Oncogenic Transformation. Blood Cancer Discov 2024; 5:229-233. [PMID: 38713827 PMCID: PMC11215395 DOI: 10.1158/2643-3230.bcd-23-0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/09/2024] Open
Abstract
In this commentary, we discuss the investigation into reports of T-cell malignancies following chimeric antigen receptor T-cell therapy. We argue that although these cases should be thoroughly examined, current data suggest that such risks with autologous chimeric antigen receptor T cells are remarkably low compared with other cancer treatments. We also emphasize the importance of continued research, transparent reporting, and participation in postauthorization safety studies.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/genetics
- T-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Neoplasms/immunology
- Neoplasms/therapy
Collapse
Affiliation(s)
- Marco Ruella
- Department of Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania.
- Center for Cellular Immunotherapies, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania.
- Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Carl H. June
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania.
- Center for Cellular Immunotherapies, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania.
- Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
12
|
Rejeski K, Jain MD, Shah NN, Perales MA, Subklewe M. Immune effector cell-associated haematotoxicity after CAR T-cell therapy: from mechanism to management. Lancet Haematol 2024; 11:e459-e470. [PMID: 38734026 DOI: 10.1016/s2352-3026(24)00077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 05/13/2024]
Abstract
Genetically engineered chimeric antigen receptor (CAR) T cells have become an effective treatment option for several advanced B-cell malignancies. Haematological side-effects, classified in 2023 as immune effector cell-associated haematotoxicity (ICAHT), are very common and can predispose for clinically relevant infections. As haematopoietic reconstitution after CAR T-cell therapy differs from chemotherapy-associated myelosuppression, a novel classification system for early and late ICAHT has been introduced. Furthermore, a risk stratification score named CAR-HEMATOTOX has been developed to identify candidates at high risk of ICAHT, thereby enabling risk-based interventional strategies. Therapeutically, growth factor support with granulocyte colony-stimulating factor (G-CSF) is the mainstay of treatment, with haematopoietic stem cell (HSC) boosts available for patients who are refractory to G-CSF (if available). Although the underlying pathophysiology remains poorly understood, translational studies from the past 3 years suggest that CAR T-cell-induced inflammation and baseline haematopoietic function are key contributors to prolonged cytopenia. In this Review, we provide an overview of the spectrum of haematological toxicities after CAR T-cell therapy and offer perspectives on future translational and clinical developments.
Collapse
Affiliation(s)
- Kai Rejeski
- Adult BMT and Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany; Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany.
| | - Michael D Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miguel-Angel Perales
- Adult BMT and Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marion Subklewe
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany; Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany.
| |
Collapse
|
13
|
Balducci L, Falandry C, Silvio Monfardini. Senotherapy, cancer, and aging. J Geriatr Oncol 2024; 15:101671. [PMID: 37977898 DOI: 10.1016/j.jgo.2023.101671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION We aimed to highlight the effects of senotherapy on the prevention and treatment of cancer in older individuals. The aim of senotherapy is to eliminate senescent cells. These cells express the senescence-associated secretory phenotype (SASP). With production of inflammatory cytokines, growth factors, and different type of proteases, the SASP is responsible for aging-associated disability and diseases. All mammalian cells experience senescence. The main agents of aging include fibroblasts and adipose cells. Senescent tumor cells may undergo genomic reprogramming and re-enter cell cycle with a stem cell phenotype. MATERIALS AND METHODS We conducted a Medline search for the following key words: senotherapy, senolysis, senomorphic agents. We provide a narrative review of the finding. RESULTS Different agents may eliminate senescent cells from cell cultures and murine models. These include metformin, rapamycin, desatinib, quercitin, fisetin, ruloxitinib, and BCL2 inhibitors. A randomized controlled study of metformin in 3,000 patients aged 65-79 without glucose intolerance aiming to establish whether senotherapy may prevent or reverse disability and aging associated diseases, including cancer, is ongoing. Senotherapy prolongs the life span and decreases the incidence of cancer in experimental animal models, as well as delays and reverses disability. Senescent tumor cells are found prior to treatment and after chemotherapy and radiation. These elements may be responsible for tumor recurrence and treatment refractoriness. DISCUSSION Senotherapy may have substantial effects on cancer management including decreased incidence and aggressiveness of cancer, improved tolerance of antineoplastic treatment, and prevention of relapse after primary treatment. Senotherapy may ameliorate several complications of cancer chemotherapy.
Collapse
Affiliation(s)
| | - Claire Falandry
- Service de Gériatrie, Centre Hospitaliser Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France; Laboratoire CarMeN, Inserm U1060, INRA U1397, Université Claude Bernard Lyon, France.
| | - Silvio Monfardini
- Director Oncopaedia Project European School of Oncology. Director Emeritus Division of Medical Oncology Istituto Oncologico Veneto, Padova., Italy.
| |
Collapse
|
14
|
Ghilardi G, Fraietta JA, Gerson JN, Van Deerlin VM, Morrissette JJD, Caponetti GC, Paruzzo L, Harris JC, Chong EA, Susanibar Adaniya SP, Svoboda J, Nasta SD, Ugwuanyi OH, Landsburg DJ, Fardella E, Waxman AJ, Chong ER, Patel V, Pajarillo R, Kulikovskaya I, Lieberman DB, Cohen AD, Levine BL, Stadtmauer EA, Frey NV, Vogl DT, Hexner EO, Barta SK, Porter DL, Garfall AL, Schuster SJ, June CH, Ruella M. T cell lymphoma and secondary primary malignancy risk after commercial CAR T cell therapy. Nat Med 2024; 30:984-989. [PMID: 38266761 DOI: 10.1038/s41591-024-02826-w] [Citation(s) in RCA: 113] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
We report a T cell lymphoma (TCL) occurring 3 months after anti-CD19 chimeric antigen receptor (CAR) T cell immunotherapy for non-Hodgkin B cell lymphoma. The TCL was diagnosed from a thoracic lymph node upon surgery for lung cancer. The TCL exhibited CD8+ cytotoxic phenotype and a JAK3 variant, while the CAR transgene was very low. The T cell clone was identified at low levels in the blood before CAR T infusion and in lung cancer. To assess the overall risk of secondary primary malignancy after commercial CAR T (CD19, BCMA), we analyzed 449 patients treated at the University of Pennsylvania. At a median follow-up of 10.3 months, 16 patients (3.6%) had a secondary primary malignancy. The median onset time was 26.4 and 9.7 months for solid and hematological malignancies, respectively. The projected 5-year cumulative incidence is 15.2% for solid and 2.3% for hematological malignancies. Overall, one case of TCL was observed, suggesting a low risk of TCL after CAR T.
Collapse
Affiliation(s)
- Guido Ghilardi
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - James N Gerson
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Personalized Diagnostics, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer J D Morrissette
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Personalized Diagnostics, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriel C Caponetti
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Paruzzo
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jaryse C Harris
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Elise A Chong
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sandra P Susanibar Adaniya
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Jakub Svoboda
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sunita D Nasta
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ositadimma H Ugwuanyi
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Landsburg
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Eugenio Fardella
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Adam J Waxman
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Emeline R Chong
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Vrutti Patel
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Raymone Pajarillo
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Irina Kulikovskaya
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - David B Lieberman
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Personalized Diagnostics, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Adam D Cohen
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward A Stadtmauer
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Noelle V Frey
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Dan T Vogl
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth O Hexner
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan K Barta
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - David L Porter
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Alfred L Garfall
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen J Schuster
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Ruella
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Jiang P, Yang P, Wang W, Cao J, Chen W, Fu J, Lu L, Lu Y, Zhu X. Management of neurotoxicity syndrome complicated by autologous hematopoietic stem cell transplantation bridge to chimeric antigen receptor T-Cell therapy: A case report. Asia Pac J Oncol Nurs 2024; 11:100368. [PMID: 38426045 PMCID: PMC10904158 DOI: 10.1016/j.apjon.2023.100368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/25/2023] [Indexed: 03/02/2024] Open
Abstract
Effectively addressing the challenges posed by relapsed and refractory diffuse large B-cell lymphoma, particularly when employing autologous hematopoietic stem cell transplantation and CAR-T therapy, requires a comprehensive approach to treatment and nursing. This case report emphasizes a nursing strategy focused on managing neurotoxicity post-CAR-T therapy. Nursing interventions include the identification of neurotoxicity symptoms, neuropsychiatric management, careful support during lumbar puncture and intrathecal administration, psychological assistance, and adaptive nutritional guidance. The diligent application of treatment and nursing care resulted in a remarkable recovery for the patient, as evidenced by the alleviation of central facial paralysis, improvement in swallowing function (from Grade 4 to Grade 2), and enhanced vocalization. Consistent and specialized nursing care is paramount for effectively managing complications, especially neurotoxicity, in patients undergoing CAR-T therapy. A thorough monitoring of symptoms and personalized care contribute to optimizing treatment outcomes and ensuring patient safety.
Collapse
Affiliation(s)
- Pingfang Jiang
- National Clinical Research Center for Hematologic Diseases, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Hematopoietic Transplant Institute, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Pan Yang
- National Clinical Research Center for Hematologic Diseases, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Hematopoietic Transplant Institute, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Nursing College of Soochow University, Suzhou, China
| | - Weijuan Wang
- National Clinical Research Center for Hematologic Diseases, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Hematopoietic Transplant Institute, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jialei Cao
- National Clinical Research Center for Hematologic Diseases, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Hematopoietic Transplant Institute, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Wei Chen
- National Clinical Research Center for Hematologic Diseases, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Hematopoietic Transplant Institute, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jianhong Fu
- National Clinical Research Center for Hematologic Diseases, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Hematopoietic Transplant Institute, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lin Lu
- Nursing College of Soochow University, Suzhou, China
| | - Yin Lu
- National Clinical Research Center for Hematologic Diseases, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Hematopoietic Transplant Institute, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaming Zhu
- National Clinical Research Center for Hematologic Diseases, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Hematopoietic Transplant Institute, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Galli E, Frioni F, Malara T, Attardi E, Bellesi S, Hohaus S, Sica S, Sorà F, Chiusolo P. FLT3 Mutated Acute Myeloid Leukemia after CD19 CAR-t Cells. Mediterr J Hematol Infect Dis 2024; 16:e2024029. [PMID: 38468840 PMCID: PMC10927208 DOI: 10.4084/mjhid.2024.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Chimeric Antigen Receptor T-cells have improved the life expectancy of severely pretreated patients with aggressive hematological cancers; for this reason, therapy-related myeloid leukemias are becoming of great concern in this field, despite their clonal phylogenesis and mutational landscape have not been fully explored yet. This case discusses a 33-year-old man with refractory large B-cell lymphoma, treated with Chimeric Antigen Receptor T-cell (CAR-T) therapy as the 7th line of treatment. Despite a persistent partial response, the patient developed therapy-related acute myeloid leukemia (t-AML) six months post-CAR-T, revealing pre-existing clonal hematopoiesis. The myeloid malignancy exhibited an unusual hypocellular/dysplastic pattern, progressing to an established blast phase with cytopenia. Treatment with demethylating agents and BCL2 inhibitors proved ineffective, leading to t-AML with hyperleukocytosis and FLT3-ITD gain, resulting in the patient's death. This case underscores the impact of severe pretreatment and bone marrow impairment in CAR-T-associated t-AML, emphasizing their role over insertional mutagenesis. Furthermore, it highlights the retention of classic therapy-related leukemia characteristics, including the potential for acquiring FLT3 mutations and displaying dysplastic morphology in these secondary leukemias.
Collapse
Affiliation(s)
- Eugenio Galli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma
| | - Filippo Frioni
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Roma
| | - Tanja Malara
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma
| | - Enrico Attardi
- Dipartimento di Oncoematologia, Fondazione PTV Policlinico Tor Vergata, Roma
| | - Silvia Bellesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma
| | - Stefan Hohaus
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Roma
| | - Simona Sica
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Roma
| | - Federica Sorà
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Roma
| | - Patrizia Chiusolo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Roma
| |
Collapse
|
17
|
Banerjee R, Poh C, Hirayama AV, Gauthier J, Cassaday RD, Shadman M, Cowan AJ, Till BG, Green DJ, Kiem HP, Gopal AK, Maloney DG. Answering the "Doctor, can CAR-T therapy cause cancer?" question in clinic. Blood Adv 2024; 8:895-898. [PMID: 38197942 PMCID: PMC10875255 DOI: 10.1182/bloodadvances.2023012336] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Affiliation(s)
- Rahul Banerjee
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Christina Poh
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Alexandre V. Hirayama
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Jordan Gauthier
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Ryan D. Cassaday
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Mazyar Shadman
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Andrew J. Cowan
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Brian G. Till
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Damian J. Green
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Ajay K. Gopal
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - David G. Maloney
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
18
|
Galli E, Fresa A, Bellesi S, Metafuni E, Maiolo E, Pansini I, Frioni F, Autore F, Limongiello MA, Innocenti I, Giammarco S, Chiusolo P, Zini G, Sorà F. Hematopoiesis and immune reconstitution after CD19 directed chimeric antigen receptor T-cells (CAR-T): A comprehensive review on incidence, risk factors and current management. Eur J Haematol 2024; 112:184-196. [PMID: 37491951 DOI: 10.1111/ejh.14052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
Impaired function of hematopoiesis after treatment with chimeric antigen T-cells (CAR-T) is a frequent finding and can interest a wide range of patients, regardless of age and underlying disease. Trilinear cytopenias, as well as hypogammaglobulinemia, B-cell aplasia, and T-cell impairment, can severely affect the infectious risk of CAR-T recipients, as well as their quality of life. In this review, we provide an overview of defects in hematopoiesis after CAR-T, starting with a summary of different definitions and thresholds. We then move to summarize the main pathogenetic mechanisms of cytopenias, and we offer insight into cytomorphological aspects, the role of clonal hematopoiesis, and the risk of secondary myeloid malignancies. Subsequently, we expose the major findings and reports on T-cell and B-cell quantitative and functional impairment after CAR-T. Finally, we provide an overview of current recommendations and leading experiences regarding the management of cytopenias and defective B- and T-cell function.
Collapse
Affiliation(s)
- Eugenio Galli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alberto Fresa
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Bellesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elena Maiolo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ilaria Pansini
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Filippo Frioni
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Autore
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Assunta Limongiello
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Idanna Innocenti
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Sabrina Giammarco
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Patrizia Chiusolo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gina Zini
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Sorà
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
19
|
Xie Z, Lasho T, Khurana A, Ferrer A, Finke C, Mangaonkar AA, Ansell S, Fernandez J, Shah MV, Al-Kali A, Gangat N, Abeykoon J, Witzig TE, Patnaik MM. Prognostic relevance of clonal hematopoiesis in myeloid neoplastic transformation in patients with follicular lymphoma treated with radioimmunotherapy. Haematologica 2024; 109:509-520. [PMID: 37646653 PMCID: PMC10828786 DOI: 10.3324/haematol.2023.283727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
While novel radioisotope therapies continue to advance cancer care, reports of therapy-related myeloid neoplasms (t-MN) have generated concern. The prevalence and role of clonal hematopoiesis (CH) in this process remain to be defined. We hypothesized that: (i) CH is prevalent in relapsed follicular lymphoma and is associated with t-MN transformation, and (ii) radiation in the form of radioimmunotherapy (RIT) plays a role in clonal progression. In this retrospective cohort study, we evaluated the prevalence and prognostic impact of CH on clinical outcomes in 58 heavily pre-treated follicular lymphoma patients who received RIT. Patients had been given a median of four lines of therapy before RIT. The prevalence of CH prior to RIT was 46%, while it was 67% (P=0.15) during the course of RIT and subsequent therapies in the paired samples. Fourteen (24%) patients developed t-MN. Patients with t-MN had a higher variant allele fraction (38% vs. 15%; P=0.02) and clonal complexity (P=0.03) than those without. The spectrum of CH differed from that in age-related CH, with a high prevalence of DNA damage repair and response pathway mutations, absence of spliceosome mutations, and a paucity of signaling mutations. While there were no clear clinical associations between RIT and t-MN, or overall survival, patients with t-MN had a higher mutant clonal burden, along with extensive chromosomal abnormalities (median survival, afer t-MN diagnosis, 0.9 months). The baseline prevalence of CH was high, with an increase in prevalence on exposure to RIT and subsequent therapies. The high rates of t-MN with marked clonal complexities and extensive chromosomal damage underscore the importance of better identifying and studying genotoxic stressors accentuated by therapeutic modalities.
Collapse
Affiliation(s)
- Zhuoer Xie
- Mayo Clinic, Department of Internal Medicine, Hematology Division, Rochester, MN, United States; Malignant Hematology Department, H. Lee Moffitt Cancer Center and Research Institute, FL
| | - Terra Lasho
- Mayo Clinic, Department of Internal Medicine, Hematology Division, Rochester, MN
| | - Arushi Khurana
- Mayo Clinic, Department of Internal Medicine, Hematology Division, Rochester, MN
| | - Alejandro Ferrer
- Mayo Clinic, Department of Internal Medicine, Hematology Division, Rochester, MN
| | - Christy Finke
- Mayo Clinic, Department of Internal Medicine, Hematology Division, Rochester, MN
| | | | - Stephen Ansell
- Mayo Clinic, Department of Internal Medicine, Hematology Division, Rochester, MN
| | - Jenna Fernandez
- Mayo Clinic, Department of Internal Medicine, Hematology Division, Rochester, MN
| | - Mithun Vinod Shah
- Mayo Clinic, Department of Internal Medicine, Hematology Division, Rochester, MN
| | - Aref Al-Kali
- Mayo Clinic, Department of Internal Medicine, Hematology Division, Rochester, MN
| | - Naseema Gangat
- Mayo Clinic, Department of Internal Medicine, Hematology Division, Rochester, MN
| | - Jithma Abeykoon
- Mayo Clinic, Department of Internal Medicine, Hematology Division, Rochester, MN
| | - Thomas E Witzig
- Mayo Clinic, Department of Internal Medicine, Hematology Division, Rochester, MN
| | - Mrinal M Patnaik
- Mayo Clinic, Department of Internal Medicine, Hematology Division, Rochester, MN.
| |
Collapse
|
20
|
Cacic AM, Schulz FI, Germing U, Dietrich S, Gattermann N. Molecular and clinical aspects relevant for counseling individuals with clonal hematopoiesis of indeterminate potential. Front Oncol 2023; 13:1303785. [PMID: 38162500 PMCID: PMC10754976 DOI: 10.3389/fonc.2023.1303785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) has fascinated the medical community for some time. Discovered about a decade ago, this phenomenon links age-related alterations in hematopoiesis not only to the later development of hematological malignancies but also to an increased risk of early-onset cardiovascular disease and some other disorders. CHIP is detected in the blood and is characterized by clonally expanded somatic mutations in cancer-associated genes, predisposing to the development of hematologic neoplasms such as MDS and AML. CHIP-associated mutations often involve DNA damage repair genes and are frequently observed following prior cytotoxic cancer therapy. Genetic predisposition seems to be a contributing factor. It came as a surprise that CHIP significantly elevates the risk of myocardial infarction and stroke, and also contributes to heart failure and pulmonary hypertension. Meanwhile, evidence of mutant clonal macrophages in vessel walls and organ parenchyma helps to explain the pathophysiology. Besides aging, there are some risk factors promoting the appearance of CHIP, such as smoking, chronic inflammation, chronic sleep deprivation, and high birth weight. This article describes fundamental aspects of CHIP and explains its association with hematologic malignancies, cardiovascular disorders, and other medical conditions, while also exploring potential progress in the clinical management of affected individuals. While it is important to diagnose conditions that can lead to adverse, but potentially preventable, effects, it is equally important not to stress patients by confronting them with disconcerting findings that cannot be remedied. Individuals with diagnosed or suspected CHIP should receive counseling in a specialized outpatient clinic, where professionals from relevant medical specialties may help them to avoid the development of CHIP-related health problems. Unfortunately, useful treatments and clinical guidelines for managing CHIP are still largely lacking. However, there are some promising approaches regarding the management of cardiovascular disease risk. In the future, strategies aimed at restoration of gene function or inhibition of inflammatory mediators may become an option.
Collapse
Affiliation(s)
- Anna Maria Cacic
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Felicitas Isabel Schulz
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Norbert Gattermann
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| |
Collapse
|
21
|
Hamilton MP, Miklos DB. Chimeric Antigen Receptor T-Cell Therapy in Aggressive B-Cell Lymphoma. Hematol Oncol Clin North Am 2023; 37:1053-1075. [PMID: 37349153 DOI: 10.1016/j.hoc.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a revolutionary therapy increasingly used in the treatment of non-Hodgkin B-cell lymphoma. This review focuses on the use of CAR T-cell therapy in aggressive B-cell lymphoma including clinical indications, known short- and long-term toxicity, mechanisms of CAR T-cell efficacy and tumor resistance, and future directions in the treatment of aggressive lymphoma with CAR T-cell therapy.
Collapse
Affiliation(s)
- Mark P Hamilton
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - David B Miklos
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
22
|
Panagiota V, Kerschbaum JF, Penack O, Stein CM, Arends CM, Koenecke C, Strzelecka PM, Kloos A, Wiegand L, Lasch A, Altwasser R, Halik A, Gabdoulline R, Thomson J, Weibl K, Franke GN, Berger C, Hasenkamp J, Ayuk F, Na IK, Beutel G, Keller U, Bullinger L, Wulf GG, Kröger N, Vucinic V, Heuser M, Damm F. Clinical Implications and Dynamics of Clonal Hematopoiesis in Anti-CD19 CAR T-cell Treated Patients. Hemasphere 2023; 7:e957. [PMID: 37799345 PMCID: PMC10550045 DOI: 10.1097/hs9.0000000000000957] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/08/2023] [Indexed: 10/07/2023] Open
Abstract
Recent evidence revealed important interactions between clonal hematopoiesis (CH) and cellular therapies established for the treatment of hematologic malignancies. The impact of CH on safety, efficacy, and outcome of chimeric antigen receptor (CAR) T-cell therapy is currently under investigation. We analyzed 110 patients with relapsed/refractory B-cell non-Hodgkin lymphoma (n = 105) or acute lymphoblastic leukemia (ALL) (n = 5), treated with Axicabtagene-Ciloleucel (39%), Tisagenlecleucel (51%), or Brexucabtagene autoleucel (10%). Using error-corrected targeted sequencing, a high CH prevalence of 56.4% (variant allele frequency [VAF] ≥1%) at the time of CAR T-cell infusion was detected. The most frequently mutated gene was PPM1D followed by DNMT3A, TET2, ASXL1, and TP53. Variant allele frequencies were significantly lower in B and T cells compared with monocytes and granulocytes. CH did not increase the risk of CAR T-related toxicities. The incidences of cytokine release syndrome and immune effector-cell-associated neurotoxicity syndrome were similar between CHpos and CHneg patients, regardless of clone size, age, or CAR T product. Prolonged cytopenias were not associated with CH. Best overall response rates (ORRs) were numerically but not significantly higher in CHpos patients (ORR 76.7% versus 62.2%; P = 0.13). Furthermore, CH status did not predict progression-free survival or overall survival. Lastly, sequential analysis showed a modest VAF increase of 1.3% and acquisition of novel mutations within 100 days postinfusion. CH was frequent in large B-cell lymphoma/ALL patients receiving CAR T-cells but did not affect toxicity nor treatment response or outcome.
Collapse
Affiliation(s)
- Victoria Panagiota
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Johanna Franziska Kerschbaum
- Department of Hematology, Oncology, and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany
| | - Olaf Penack
- Department of Hematology, Oncology, and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany
| | - Catarina M. Stein
- Department of Hematology, Oncology, and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany
| | - Christopher M. Arends
- Department of Hematology, Oncology, and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Germany
| | - Christian Koenecke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Paulina M. Strzelecka
- Department of Hematology, Oncology, and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany
| | - Arnold Kloos
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Laura Wiegand
- Department of Hematology, Oncology, and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany
| | - Alina Lasch
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Robert Altwasser
- Department of Hematology, Oncology, and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany
| | - Adriane Halik
- Department of Hematology, Oncology, and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Germany
| | - Razif Gabdoulline
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Julia Thomson
- Department of Hematology and Medical Oncology, University Medicine Göttingen, Germany
| | - Konstantin Weibl
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, University of Leipzig Medical Center, Leipzig, Germany
| | - Georg-Nikolaus Franke
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, University of Leipzig Medical Center, Leipzig, Germany
| | - Carolina Berger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Germany
| | - Justin Hasenkamp
- Department of Hematology and Medical Oncology, University Medicine Göttingen, Germany
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Germany
| | - Il-Kang Na
- Department of Hematology, Oncology, and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
| | - Gernot Beutel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology, and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gerald Georg Wulf
- Department of Hematology and Medical Oncology, University Medicine Göttingen, Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Germany
| | - Vladan Vucinic
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, University of Leipzig Medical Center, Leipzig, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Frederik Damm
- Department of Hematology, Oncology, and Cancer Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
23
|
Rejeski K, Subklewe M, Aljurf M, Bachy E, Balduzzi A, Barba P, Bruno B, Benjamin R, Carrabba MG, Chabannon C, Ciceri F, Corradini P, Delgado J, Di Blasi R, Greco R, Houot R, Iacoboni G, Jäger U, Kersten MJ, Mielke S, Nagler A, Onida F, Peric Z, Roddie C, Ruggeri A, Sánchez-Guijo F, Sánchez-Ortega I, Schneidawind D, Schubert ML, Snowden JA, Thieblemont C, Topp M, Zinzani PL, Gribben JG, Bonini C, Sureda A, Yakoub-Agha I. Immune effector cell-associated hematotoxicity: EHA/EBMT consensus grading and best practice recommendations. Blood 2023; 142:865-877. [PMID: 37300386 DOI: 10.1182/blood.2023020578] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Hematological toxicity is the most common adverse event after chimeric antigen receptor (CAR) T-cell therapy. Cytopenias can be profound and long-lasting and can predispose for severe infectious complications. In a recent worldwide survey, we demonstrated that there remains considerable heterogeneity in regard to current practice patterns. Here, we sought to build consensus on the grading and management of immune effector cell-associated hematotoxicity (ICAHT) after CAR T-cell therapy. For this purpose, a joint effort between the European Society for Blood and Marrow Transplantation (EBMT) and the European Hematology Association (EHA) involved an international panel of 36 CAR T-cell experts who met in a series of virtual conferences, culminating in a 2-day meeting in Lille, France. On the basis of these deliberations, best practice recommendations were developed. For the grading of ICAHT, a classification system based on depth and duration of neutropenia was developed for early (day 0-30) and late (after day +30) cytopenia. Detailed recommendations on risk factors, available preinfusion scoring systems (eg, CAR-HEMATOTOX score), and diagnostic workup are provided. A further section focuses on identifying hemophagocytosis in the context of severe hematotoxicity. Finally, we review current evidence and provide consensus recommendations for the management of ICAHT, including growth factor support, anti-infectious prophylaxis, transfusions, autologous hematopoietic stem cell boost, and allogeneic hematopoietic cell transplantation. In conclusion, we propose ICAHT as a novel toxicity category after immune effector cell therapy, provide a framework for its grading, review literature on risk factors, and outline expert recommendations for the diagnostic workup and short- and long-term management.
Collapse
Affiliation(s)
- Kai Rejeski
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Mahmoud Aljurf
- Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Emmanuel Bachy
- Department of Hematology, Hospices Civils de Lyon and Université Claude Bernard Lyon 1, Lyon, France
| | - Adriana Balduzzi
- Pediatric Transplantation Unit, Department of Medicine and Surgery, University of Milan-Bicocca-Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Pere Barba
- Department of Hematology, Vall d'Hebron University Hospital, Experimental Hematology, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Benedetto Bruno
- Division of Hematology and Cell Therapy Unit, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Reuben Benjamin
- School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Matteo G Carrabba
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Milan, Italy
| | - Christian Chabannon
- Institut Paoli-Calmettes Comprehensive Cancer Centre and Module Biothérapies du Centre d'Investigations Cliniques de Marseille, INSERM-Aix-Marseille Université-AP-HM-IPC, CBT-1409, Marseille, France
| | - Fabio Ciceri
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Milan, Italy
| | - Paolo Corradini
- Division of Hematology and Stem Cell Transplantation, Fondazione IRCCS Instituto Nazionale dei Tumori, University of Milan, Milan, Italy
| | - Julio Delgado
- Oncoimmunotherapy Unit, Department of Hematology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Roberta Di Blasi
- Université de Paris, Assistance Publique-Hopitaux de Paris, Service d'hémato-oncologie, Paris, France
| | - Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Milan, Italy
| | - Roch Houot
- Department of Hematology, CHU Rennes, University of Rennes, INSERM U1236, Rennes, France
| | - Gloria Iacoboni
- Department of Hematology, Vall d'Hebron University Hospital, Experimental Hematology, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ulrich Jäger
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Marie José Kersten
- Department of Hematology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Stephan Mielke
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Department of Laboratory Medicine and Medicine Huddinge, Karolinska University Hospital and Institute, Stockholm, Sweden
| | - Arnon Nagler
- Division of Hematology, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | - Francesco Onida
- Hematology and Bone Marrow Transplantation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Zinaida Peric
- Department of Hematology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Claire Roddie
- Department of Hematology, University College London Hospital, London, United Kingdom
| | - Annalisa Ruggeri
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Milan, Italy
| | - Fermín Sánchez-Guijo
- University of Salamanca, IBSAL-University Hospital of Salamanca, Salamanca, Spain
| | - Isabel Sánchez-Ortega
- Executive Office, European Society for Blood and Marrow Transplantation, Barcelona, Spain
| | - Dominik Schneidawind
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | | | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Catherine Thieblemont
- Université de Paris, Assistance Publique-Hopitaux de Paris, Service d'hémato-oncologie, Paris, France
| | - Max Topp
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - John G Gribben
- Barts Cancer Institute, Queen Mary, University of London, London, United Kingdom
| | - Chiara Bonini
- Division of Immunology, Transplantation and Infectious Disease, Experimental Hematology Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Anna Sureda
- Clinical Hematology Department, Institut Català d'Oncologia-L'Hospitalet, Barcelona, Spain
| | | |
Collapse
|
24
|
Buttigieg MM, Rauh MJ. Clonal Hematopoiesis: Updates and Implications at the Solid Tumor-Immune Interface. JCO Precis Oncol 2023; 7:e2300132. [PMID: 37343201 PMCID: PMC10309572 DOI: 10.1200/po.23.00132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Recent larger-scale studies of patients with cancer and longitudinal population cohorts have revealed how age-related expansions of mutant hematopoietic cells (clonal hematopoiesis [CH]) have differential associations with incident and prevalent cancers and their outcomes. Increasing recognition and deeper understanding of genetic subtypes of CH are yielding insights into the tumor-immune interface that may help to explain the heterogeneous impact of CH on tumorigenesis and treatment. Herein, we update the expanding influence of CH in precision oncology and propose important research and clinical questions to address to effectively manage and harness CH in oncology patients.
Collapse
Affiliation(s)
- Marco M Buttigieg
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
25
|
Sun T, Li D, Huang L, Zhu X. Inflammatory abrasion of hematopoietic stem cells: a candidate clue for the post-CAR-T hematotoxicity? Front Immunol 2023; 14:1141779. [PMID: 37223096 PMCID: PMC10200893 DOI: 10.3389/fimmu.2023.1141779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/25/2023] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has shown remarkable effects in treating various hematological malignancies. However, hematotoxicity, specifically neutropenia, thrombocytopenia, and anemia, poses a serious threat to patient prognosis and remains a less focused adverse effect of CAR-T therapy. The mechanism underlying lasting or recurring late-phase hematotoxicity, long after the influence of lymphodepletion therapy and cytokine release syndrome (CRS), remains elusive. In this review, we summarize the current clinical studies on CAR-T late hematotoxicity to clarify its definition, incidence, characteristics, risk factors, and interventions. Owing to the effectiveness of transfusing hematopoietic stem cells (HSCs) in rescuing severe CAR-T late hematotoxicity and the unignorable role of inflammation in CAR-T therapy, this review also discusses possible mechanisms of the harmful influence of inflammation on HSCs, including inflammatory abrasion of the number and the function of HSCs. We also discuss chronic and acute inflammation. Cytokines, cellular immunity, and niche factors likely to be disturbed in CAR-T therapy are highlighted factors with possible contributions to post-CAR-T hematotoxicity.
Collapse
|
26
|
Reed SC, Croessmann S, Park BH. CHIP Happens: Clonal Hematopoiesis of Indeterminate Potential and Its Relationship to Solid Tumors. Clin Cancer Res 2023; 29:1403-1411. [PMID: 36454121 PMCID: PMC10106364 DOI: 10.1158/1078-0432.ccr-22-2598] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is characterized by the expansion of hematopoietic cells harboring leukemia-associated somatic mutations in otherwise healthy people and occurs in at least 10% of adults over 70. It is well established that people with CHIP have increased rates of hematologic malignancy, increased risk of cardiovascular disease, and worse all-cause mortality compared with those without CHIP. Despite recent advancements in understanding CHIP as it relates to these known outcomes, much remains to be learned about the development and role of CHIP in other disease states. Emerging research has identified high rates of CHIP in patients with solid tumors, driven in part by oncologic therapy, and revealed associations between CHIP and differential outcomes in both solid tumors and other diseases. Recent studies have demonstrated that CHIP can contribute to dysregulated inflammatory signaling in multiple contexts, underscoring the importance of interrogating how CHIP might alter tumor immunology. Here, we review the role of CHIP mutations in clonal expansion of hematopoietic cells, explore the relationship between CHIP and solid tumors, and discuss the potential roles of CHIP in inflammation and solid tumor biology.
Collapse
Affiliation(s)
- Sarah C. Reed
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sarah Croessmann
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ben Ho Park
- The Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
27
|
Xie Z, Zeidan AM. CHIPing away the progression potential of CHIP: A new reality in the making. Blood Rev 2023; 58:101001. [PMID: 35989137 DOI: 10.1016/j.blre.2022.101001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022]
Abstract
Over the past few years, we have gained a deeper understanding of clonal hematopoiesis of indeterminate potential (CHIP), especially with regard to the epidemiology, clinical sequelae, and mechanical aspects. However, interventional strategies to prevent or delay the potential negative consequences of CHIP remain underdeveloped. In this review, we highlight the latest updates on clonal hematopoiesis research, including molecular mechanisms and clinical implications, with a particular focus on the evolving strategies for the interventions that are being evaluated in ongoing observational and interventional trials. There remains an urgent need to formulate standardized and evidence-based recommendations and guidelines for evaluating and managing individuals with clonal hematopoiesis. In addition, patient-centric endpoints must be defined for clinical trials, which will enable us to continue the robust development of effective preventive strategies and improve clinical outcomes.
Collapse
Affiliation(s)
- Zhuoer Xie
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center and Smilow Cancer Hospital, Yale University School of Medicine, CT, United States.
| |
Collapse
|
28
|
Eder LN, Martinovic D, Mazzeo P, Ganster C, Hasenkamp J, Thomson J, Trummer A, Haase D, Wulf G. Fatal Progression of Mutated TP53-Associated Clonal Hematopoiesis following Anti-CD19 CAR-T Cell Therapy. Curr Oncol 2023; 30:1146-1150. [PMID: 36661736 PMCID: PMC9858310 DOI: 10.3390/curroncol30010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
We present the case of a 64-year-old man diagnosed with large B-cell lymphoma who relapsed twice after standard-of-care therapy. Due to persisting cytopenia, Next generation sequencing analysis was performed, revealing a small TP53-mutated clone. As a third-line therapy, the patient was treated with CAR-T cells, which resulted in complete remission. However, this treatment also led to the expansion of the TP53-mutated clone and therapy-related myelodysplasia with a complex aberrant karyotype. This case may serve as a paradigmatic example of clonal hematopoietic progression in a patient undergoing CAR-T cell therapy, especially in the context of a TP53-mutated clone.
Collapse
Affiliation(s)
- Lea Naomi Eder
- Department of Hematology and Medical Oncology, University Medicine Goettingen, 37075 Göttingen, Germany
| | - Danilo Martinovic
- Department of Hematology and Medical Oncology, University Medicine Goettingen, 37075 Göttingen, Germany
| | - Paolo Mazzeo
- Department of Hematology and Medical Oncology, University Medicine Goettingen, 37075 Göttingen, Germany
| | - Christina Ganster
- Department of Hematology and Medical Oncology, University Medicine Goettingen, 37075 Göttingen, Germany
| | - Justin Hasenkamp
- Department of Hematology and Medical Oncology, University Medicine Goettingen, 37075 Göttingen, Germany
| | - Julia Thomson
- Department of Hematology and Medical Oncology, University Medicine Goettingen, 37075 Göttingen, Germany
| | - Arne Trummer
- Department of Hematology and Oncology, Städtisches Klinikum Braunschweig, 38114 Braunschweig, Germany
| | - Detlef Haase
- Department of Hematology and Medical Oncology, University Medicine Goettingen, 37075 Göttingen, Germany
| | - Gerald Wulf
- Department of Hematology and Medical Oncology, University Medicine Goettingen, 37075 Göttingen, Germany
| |
Collapse
|
29
|
Teipel R, von Bonin M, Stölzel F, Schetelig J, Thiede C, Bornhäuser M. [Relevance of clonal hematopoiesis for cellular therapies]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2022; 63:1126-1132. [PMID: 36149441 PMCID: PMC9606068 DOI: 10.1007/s00108-022-01403-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
The detection of clonal hematopoiesis (CH) in patients with hematologic neoplasms who are undergoing a cellular therapy is common. The most frequently used cellular therapy procedures include autologous and allogeneic hematopoietic stem cell transplantation (HSCT) and, more recently, chimeric antigen receptor (CAR) T‑cell therapy. All three procedures differ fundamentally in terms of harvesting and manufacturing aspects as well as usage of the respective cell product. Therefore, the importance of CH in relation to the respective treatment method must be evaluated and assessed differently. In autologous HSCT, the extent of previous cytotoxic therapy significantly contributes to the high prevalence of CH. The clinically most important aspect is the development of secondary neoplasms from a pre-existing CH clone and the potential risk for enhanced cardiovascular side effects. In allogeneic HSCT, the donor selection with respect to the age largely determines the probability for the presence of CH. In this setting, the development of secondary malignancies only plays a minor role compared to the autologous HSCT. In fact, the induction of a graft versus host (GvH) or a graft versus leukemia (GvL) effect and its influence on progression-free and overall survival seem to be of possible clinical relevance. The CAR T‑cell therapy is closely linked to inflammatory reactions regarding its mode of action and the associated side effects. In this context CH might be closely linked to the effectiveness and side effects of the CAR T‑cell therapy. Initial data reported a high prevalence of CH in patients before CAR T‑cell therapy and indicated an increased rate of inflammatory side effects, although no negative effect on survival has yet been demonstrated.
Collapse
Affiliation(s)
- Raphael Teipel
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
| | - Malte von Bonin
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
| | - Friedrich Stölzel
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
| | - Johannes Schetelig
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
- DKMS Clinical Trials Unit, Dresden, Deutschland
| | - Christian Thiede
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
- AgenDix, Gesellschaft für angewandte molekulare Diagnostik mbH, Dresden, Deutschland
| | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland.
- Nationales Centrum für Tumorerkrankungen Dresden (NCT/UCC), Dresden, Deutschland.
| |
Collapse
|
30
|
Saini NY, Swoboda DM, Greenbaum U, Ma J, Patel RD, Devashish K, Das K, Tanner MR, Strati P, Nair R, Fayad L, Ahmed S, Lee HJ, Iyer SP, Steiner R, Jain N, Nastoupil L, Loghavi S, Tang G, Bassett RL, Jain P, Wang M, Westin JR, Green MR, Sallman DA, Padron E, Davila ML, Locke FL, Champlin RE, Garcia-Manero G, Shpall EJ, Kebriaei P, Flowers CR, Jain MD, Wang F, Futreal AP, Gillis N, Neelapu SS, Takahashi K. Clonal Hematopoiesis Is Associated with Increased Risk of Severe Neurotoxicity in Axicabtagene Ciloleucel Therapy of Large B-Cell Lymphoma. Blood Cancer Discov 2022; 3:385-393. [PMID: 35533245 PMCID: PMC9445749 DOI: 10.1158/2643-3230.bcd-21-0177] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/10/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
To explore the role of clonal hematopoiesis (CH) in chimeric antigen receptor (CAR) T-cell therapy outcomes, we performed targeted deep sequencing on buffy coats collected during the 21 days before lymphodepleting chemotherapy from 114 large B-cell lymphoma patients treated with anti-CD19 CAR T cells. We detected CH in 42 (36.8%) pretreatment samples, most frequently in PPM1D (19/114) and TP53 (13/114) genes. Grade ≥3 immune effector cell-associated neurotoxicity syndrome (ICANS) incidence was higher in CH-positive patients than CH-negative patients (45.2% vs. 25.0%, P = 0.038). Higher toxicities with CH were primarily associated with DNMT3A, TET2, and ASXL1 genes (DTA mutations). Grade ≥3 ICANS (58.9% vs. 25%, P = 0.02) and ≥3 cytokine release syndrome (17.7% vs. 4.2%, P = 0.08) incidences were higher in DTA-positive than in CH-negative patients. The estimated 24-month cumulative incidence of therapy-related myeloid neoplasms after CAR T-cell therapy was higher in CH-positive than CH-negative patients [19% (95% CI, 5.5-38.7) vs. 4.2% (95% CI, 0.3-18.4), P = 0.028]. SIGNIFICANCE Our study reveals that CH mutations, especially those associated with inflammation (DNMT3A, TET2, and ASXL1), are associated with severe-grade neurotoxicities in lymphoma patients receiving anti-CD19 CAR T-cell therapy. Further studies to investigate the mechanisms and interventions to improve toxicities in the context of CH are warranted. See related content by Uslu and June, p. 382. This article is highlighted in the In This Issue feature, p. 369.
Collapse
Affiliation(s)
- Neeraj Y. Saini
- Department of Stem Cell Transplantation and Cellular Therapy, The University
of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson
Cancer Center, Houston, Texas
| | - David M. Swoboda
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa,
Florida
| | - Uri Greenbaum
- Department of Stem Cell Transplantation and Cellular Therapy, The University
of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junsheng Ma
- Department of Biostatistics, The University of Texas MD Anderson Cancer
Center, Houston, Texas
| | - Romil D. Patel
- Department of Stem Cell Transplantation and Cellular Therapy, The University
of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kartik Devashish
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson
Cancer Center, Houston, Texas
| | - Kaberi Das
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson
Cancer Center, Houston, Texas
| | - Mark R. Tanner
- Department of Stem Cell Transplantation and Cellular Therapy, The University
of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paolo Strati
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson
Cancer Center, Houston, Texas
| | - Ranjit Nair
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson
Cancer Center, Houston, Texas
| | - Luis Fayad
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson
Cancer Center, Houston, Texas
| | - Sairah Ahmed
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson
Cancer Center, Houston, Texas
| | - Hun Ju Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson
Cancer Center, Houston, Texas
| | - Swaminathan P. Iyer
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson
Cancer Center, Houston, Texas
| | - Raphael Steiner
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson
Cancer Center, Houston, Texas
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center,
Houston, Texas
| | - Loretta Nastoupil
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson
Cancer Center, Houston, Texas
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer
Center, Houston, Texas
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer
Center, Houston, Texas
| | - Roland L. Bassett
- Department of Biostatistics, The University of Texas MD Anderson Cancer
Center, Houston, Texas
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson
Cancer Center, Houston, Texas
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson
Cancer Center, Houston, Texas
| | - Jason R. Westin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson
Cancer Center, Houston, Texas
| | - Michael R. Green
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson
Cancer Center, Houston, Texas
| | - David A. Sallman
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa,
Florida
| | - Eric Padron
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa,
Florida
| | - Marco L. Davila
- Department of Blood and Marrow Transplant and Cellular Immunotherapy,
Moffitt Cancer Center, Tampa, Florida
| | - Frederick L. Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy,
Moffitt Cancer Center, Tampa, Florida
| | - Richard E. Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University
of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University
of Texas MD Anderson Cancer Center, Houston, Texas
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University
of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher R. Flowers
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson
Cancer Center, Houston, Texas
| | - Michael D. Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy,
Moffitt Cancer Center, Tampa, Florida
| | - Feng Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer
Center, Houston, Texas
| | - Andrew P. Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer
Center, Houston, Texas
| | - Nancy Gillis
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa,
Florida
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa,
Florida
| | - Sattva S. Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson
Cancer Center, Houston, Texas
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center,
Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer
Center, Houston, Texas
| |
Collapse
|
31
|
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is common in patients with hematologic malignancies. Recent publications provide evidence that CHIP may affect chimeric antigen receptor T-cell therapy efficacy and that the incidence of treatment-related toxicities such as cytokine release syndrome and immune effector-cell associated neurotoxicity syndrome may be affected. See related article by Saini et al., p. 385 (8).
Collapse
Affiliation(s)
- Ugur Uslu
- Center for Cellular Immunotherapies and Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carl H. June
- Center for Cellular Immunotherapies and Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Game of clones: Diverse implications for clonal hematopoiesis in lymphoma and multiple myeloma. Blood Rev 2022; 56:100986. [PMID: 35753868 DOI: 10.1016/j.blre.2022.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022]
Abstract
Clonal hematopoiesis (CH) refers to the disproportionate expansion of hematopoietic stem cell clones and their corresponding progeny following the acquisition of somatic mutations. CH is common at the time of diagnosis in patients with blood cancers, including multiple myeloma (MM) and lymphoma. The presence of CH mutations correlates with IL-6 mediated inflammation and may result in lymphoma or MM modulation through microenvironment effects or by manifestations of the mutations themselves within the founding tumor clone. As might be expected with a variety of mutations and multiple potential mechanisms, CH exerts context-dependent effects, being protective in some settings and harmful in others. Though CH is very common in patients with hematologic malignancies, how it intersects with therapy and the natural disease course of these cancers are active areas of investigation. In lymphomas and MM specifically, patients have high rates of CH at diagnosis and are subsequently exposed to therapies, such as cytotoxic chemotherapy, that can cause CH progression to overt hematologic malignancy. The expanding diversity of treatment modalities for these cancers also increases the opportunities for CH to impact clinical outcome and modulate clinical responses. Here we review the basic biology and known health effects of CH, and we focus on the clinical relevance of CH in lymphoma and MM.
Collapse
|