1
|
Cantor J. The Potential Role of Cigarette Smoke, Elastic Fibers, and Secondary Lung Injury in the Transition of Pulmonary Emphysema to Combined Pulmonary Fibrosis and Emphysema. Int J Mol Sci 2024; 25:11793. [PMID: 39519344 PMCID: PMC11546355 DOI: 10.3390/ijms252111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Combined pulmonary fibrosis and emphysema (CPFE) is a distinct syndrome associated with heavy smoking. The fibrotic component of the disease is generally believed to be superimposed on previously existing pulmonary emphysema, but the mechanisms responsible for these changes remain poorly understood. To better understand the pathogenesis of CPFE, we performed a series of experiments that focused on the relationships between lung elastic fibers, cigarette smoke, and secondary lung injury. The results indicate that even brief smoke exposure predisposes the lung to additional forms of lung injury that may cause alveolar wall fibrosis. The proinflammatory activity of smoke-induced structural alterations in elastic fibers may contribute to this process by enhancing secondary lung inflammation, including acute exacerbations of chronic obstructive pulmonary disease. Furthermore, the levels of the unique elastin crosslinks, desmosine and isodesmosine, in blood, urine, and sputum may serve as biomarkers for the transition from pulmonary emphysema to interstitial fibrosis. While the long-term effects of these inflammatory reactions were not examined, the current studies provide insight into the potential relationships between elastic fiber injury, cigarette smoke, and secondary lung injury. Determining the mechanisms involved in combined pulmonary emphysema and fibrosis and developing a sensitive biomarker for this type of lung injury may permit timely therapeutic intervention that could mitigate the high risk of respiratory failure associated with this condition.
Collapse
Affiliation(s)
- Jerome Cantor
- School of Pharmacy and Allied Health Sciences, St John's University, Queens, NY 11439, USA
| |
Collapse
|
2
|
Joe YA, Lee MJ, Choi HS. Experimental Mouse Models and Human Lung Organoid Models for Studying Chronic Obstructive Pulmonary Disease. Biomol Ther (Seoul) 2024; 32:685-696. [PMID: 39410708 PMCID: PMC11535291 DOI: 10.4062/biomolther.2024.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a leading cause of morbidity and mortality throughout the world, is a highly complicated disease that includes chronic airway inflammation, airway remodeling, emphysema, and mucus hypersecretion. For respiratory function, an intact lung structure is required for efficient air flow through conducting airways and gas exchange in alveoli. Structural changes in small airways and inflammation are major features of COPD. At present, mechanisms involved in the genesis and development of COPD are poorly understood. Currently, there are no effective treatments for COPD. To develop better treatment strategies, it is necessary to study mechanisms of COPD using proper experimental models that can recapitulate distinctive features of human COPD. Therefore, this review will discuss representative established mouse models to investigate inflammatory processes and basic mechanisms of COPD. In addition, human COPD-mimicking human lung organoid models are introduced to help researchers overcome limits of mouse COPD models.
Collapse
Affiliation(s)
- Young Ae Joe
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Min Ju Lee
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hong Seok Choi
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
3
|
Matsuoka T, Dan K, Takanashi K, Ogino A. Early Effects of Porcine Placental Extracts and Stem Cell-Derived Exosomes on Aging Stress in Skin Cells. J Funct Biomater 2024; 15:306. [PMID: 39452604 PMCID: PMC11509013 DOI: 10.3390/jfb15100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
The initial efficacy of placental extracts (Pla-Exts) and human mesenchymal stem-cell-derived exosomes (hMSC-Exo) against aging-induced stress in human dermal fibroblasts (HDFs) was examined. The effect of Pla-Ext alone, hMSC-Exo alone, the combined effect of Pla-Ext and hMSC-Exo, and the effect of hMSC-Exo (Pla/MSC-Exo) recovered from cultures with Pla-Ext added to hMSC were verified using collagen, elastin, and hyaluronic acid synthase mRNA levels for each effect. Cells were subjected to photoaging (UV radiation), glycation (glycation end-product stimulation), and oxidation (H2O2 stimulation) as HDF stressors. Pla-Ext did not significantly affect normal skin fibroblasts with respect to intracellular parameters; however, a pro-proliferative effect was observed. Pla-Ext induced resistance to several stresses in skin fibroblasts (UV irradiation, glycation stimulation, H2O2 stimulation) and inhibited reactive oxygen species accumulation following H2O2 stimulation. Although the effects of hMSC-Exo alone or the combination of hMSC-Exo and Pla-Ext are unknown, pretreated hMSC-Exo stimulated with Pla-Ext showed changes that conferred resistance to aging stress. This suggests that Pla-Ext supplementation may cause some changes in the surface molecules or hMSC-Exo content (e.g., microRNA). In skin cells, the direct action of Pla-Ext and exosomes secreted from cultured hMSCs pretreated with Pla-Ext (Pla/MSC-Exo) also conferred resistance to early aging stress.
Collapse
Affiliation(s)
| | - Katsuaki Dan
- Department of Pathophysiology, Yokohama University of Pharmacy, Yokohama-shi 245-0066, Kanagawa, Japan; (K.D.); (K.T.)
- Division of Research and Development, Research Organization of Biological Activity, Shibuya-ku 150-0001, Tokyo, Japan
| | - Keita Takanashi
- Department of Pathophysiology, Yokohama University of Pharmacy, Yokohama-shi 245-0066, Kanagawa, Japan; (K.D.); (K.T.)
| | - Akihiro Ogino
- Department of Plastic and Reconstructive Surgery, Toho University Omori Medical Center, Ota-ku 143-8541, Tokyo, Japan;
| |
Collapse
|
4
|
Murphy MP, Zieger M, Henry M, Meleady P, Mueller C, McElvaney NG, Reeves EP. Citrullination, a novel posttranslational modification of elastin, is involved in COPD pathogenesis. Am J Physiol Lung Cell Mol Physiol 2024; 327:L600-L606. [PMID: 39137524 DOI: 10.1152/ajplung.00185.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
Elastin is an extracellular matrix protein (ECM) that supports elasticity of the lung, and in patients with chronic obstructive pulmonary disease (COPD) and emphysema, the structural changes that reduce the amount of elastic recoil, lead to loss of pulmonary function. We recently demonstrated that elastin is a target of peptidyl arginine deiminase (PAD) enzyme-induced citrullination, thereby leading to enhanced susceptibility of this ECM protein to proteolysis. This study aimed to investigate the impact of PAD activity in vivo and furthermore assessed whether pharmacological inhibition of PAD activity protects against pulmonary emphysema. Using a Serpina1a-e knockout mouse model, previously shown to develop inflammation-mediated emphysema, we validated the involvement of PADs in airway disease. In line with emphysema development, intratracheal administration of lipopolysaccharide in combination with PADs provoked significant airspace enlargement (P < 0.001) and diminished lung function, including loss of lung tissue elastance (P = 0.0217) and increases in lung volumes (P = 0.0463). Intraperitoneal treatment of mice with the PAD inhibitor, BB-Cl-amidine, prevented PAD/LPS-mediated lung function decline and emphysema and reduced levels of citrullinated airway elastin (P = 0.0199). These results provide evidence for the impact of PADs on lung function decline, indicating promising potential for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.NEW & NOTEWORTHY This study provides evidence for the impact of peptidyl arginine deiminase (PAD) enzymes on lung function decline, indicating promising potential for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.
Collapse
Affiliation(s)
- Mark P Murphy
- Department of Medicine, Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Marina Zieger
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States
- Department of Ophthalmology, Tufts Medical Center, Center for Translational Ocular Immunology, Boston, Massachusetts, United States
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Christian Mueller
- Genomic Medicine Unit, Sanofi, Waltham, Massachusetts, United States
| | - Noel G McElvaney
- Department of Medicine, Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Emer P Reeves
- Department of Anaesthesia and Critical Care Medicine, Pulmonary Clinical Science, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
5
|
Narasaraju T, Neeli I, Criswell SL, Krishnappa A, Meng W, Silva V, Bila G, Vovk V, Serhiy Z, Bowlin GL, Meyer N, Luning Prak ET, Radic M, Bilyy R. Neutrophil Activity and Extracellular Matrix Degradation: Drivers of Lung Tissue Destruction in Fatal COVID-19 Cases and Implications for Long COVID. Biomolecules 2024; 14:236. [PMID: 38397474 PMCID: PMC10886497 DOI: 10.3390/biom14020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Pulmonary fibrosis, severe alveolitis, and the inability to restore alveolar epithelial architecture are primary causes of respiratory failure in fatal COVID-19 cases. However, the factors contributing to abnormal fibrosis in critically ill COVID-19 patients remain unclear. This study analyzed the histopathology of lung specimens from eight COVID-19 and six non-COVID-19 postmortems. We assessed the distribution and changes in extracellular matrix (ECM) proteins, including elastin and collagen, in lung alveoli through morphometric analyses. Our findings reveal the significant degradation of elastin fibers along the thin alveolar walls of the lung parenchyma, a process that precedes the onset of interstitial collagen deposition and widespread intra-alveolar fibrosis. Lungs with collapsed alveoli and organized fibrotic regions showed extensive fragmentation of elastin fibers, accompanied by alveolar epithelial cell death. Immunoblotting of lung autopsy tissue extracts confirmed elastin degradation. Importantly, we found that the loss of elastin was strongly correlated with the induction of neutrophil elastase (NE), a potent protease that degrades ECM. This study affirms the critical role of neutrophils and neutrophil enzymes in the pathogenesis of COVID-19. Consistently, we observed increased staining for peptidyl arginine deiminase, a marker for neutrophil extracellular trap release, and myeloperoxidase, an enzyme-generating reactive oxygen radical, indicating active neutrophil involvement in lung pathology. These findings place neutrophils and elastin degradation at the center of impaired alveolar function and argue that elastolysis and alveolitis trigger abnormal ECM repair and fibrosis in fatal COVID-19 cases. Importantly, this study has implications for severe COVID-19 complications, including long COVID and other chronic inflammatory and fibrotic disorders.
Collapse
Affiliation(s)
- Teluguakula Narasaraju
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; or (T.N.); (I.N.); (V.S.)
- Department of Microbiology, Adichunchanagiri Institute of Medical Sciences, Center for Research and Innovation, Adichunchanagiri University, Mandya 571448, India
| | - Indira Neeli
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; or (T.N.); (I.N.); (V.S.)
| | - Sheila L. Criswell
- Department of Diagnostic and Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Amita Krishnappa
- Department of Pathology, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, Mandya 571448, India;
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.M.); (E.T.L.P.)
| | - Vasuki Silva
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; or (T.N.); (I.N.); (V.S.)
| | - Galyna Bila
- Department of Histology, Cytology, Histology & Embryology, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (G.B.); (R.B.)
| | - Volodymyr Vovk
- Department of Pathological Anatomy and Forensic Medicine, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
- Lviv Regional Pathological Anatomy Office, CU ENT (Pulmonology Lviv Regional Diagnostic Center), 79000 Lviv, Ukraine;
| | - Zolotukhin Serhiy
- Lviv Regional Pathological Anatomy Office, CU ENT (Pulmonology Lviv Regional Diagnostic Center), 79000 Lviv, Ukraine;
| | - Gary L. Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA;
| | - Nuala Meyer
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Pulmonary, Allergy, and Critical Care Medicine and Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eline T. Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.M.); (E.T.L.P.)
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; or (T.N.); (I.N.); (V.S.)
| | - Rostyslav Bilyy
- Department of Histology, Cytology, Histology & Embryology, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (G.B.); (R.B.)
| |
Collapse
|
6
|
Moll M, Silverman EK. Precision Approaches to Chronic Obstructive Pulmonary Disease Management. Annu Rev Med 2024; 75:247-262. [PMID: 37827193 DOI: 10.1146/annurev-med-060622-101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. COPD heterogeneity has hampered progress in developing pharmacotherapies that affect disease progression. This issue can be addressed by precision medicine approaches, which focus on understanding an individual's disease risk, and tailoring management based on pathobiology, environmental exposures, and psychosocial issues. There is an urgent need to identify COPD patients at high risk for poor outcomes and to understand at a mechanistic level why certain individuals are at high risk. Genetics, omics, and network analytic techniques have started to dissect COPD heterogeneity and identify patients with specific pathobiology. Drug repurposing approaches based on biomarkers of specific inflammatory processes (i.e., type 2 inflammation) are promising. As larger data sets, additional omics, and new analytical approaches become available, there will be enormous opportunities to identify high-risk individuals and treat COPD patients based on their specific pathophysiological derangements. These approaches show great promise for risk stratification, early intervention, drug repurposing, and developing novel therapeutic approaches for COPD.
Collapse
Affiliation(s)
- Matthew Moll
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; ,
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary, Critical Care, Sleep and Allergy, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; ,
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Booth S, Hsieh A, Mostaco-Guidolin L, Koo HK, Wu K, Aminazadeh F, Yang CX, Quail D, Wei Y, Cooper JD, Paré PD, Hogg JC, Vasilescu DM, Hackett TL. A Single-Cell Atlas of Small Airway Disease in Chronic Obstructive Pulmonary Disease: A Cross-Sectional Study. Am J Respir Crit Care Med 2023; 208:472-486. [PMID: 37406359 DOI: 10.1164/rccm.202303-0534oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023] Open
Abstract
Rationale: Emerging data demonstrate that the smallest conducting airways, terminal bronchioles, are the early site of tissue destruction in chronic obstructive pulmonary disease (COPD) and are reduced by as much as 41% by the time someone is diagnosed with mild (Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage 1) COPD. Objectives: To develop a single-cell atlas that describes the structural, cellular, and extracellular matrix alterations underlying terminal bronchiole loss in COPD. Methods: This cross-sectional study of 262 lung samples derived from 34 ex-smokers with normal lung function (n = 10) or GOLD stage 1 (n = 10), stage 2 (n = 8), or stage 4 (n = 6) COPD was performed to assess the morphology, extracellular matrix, single-cell atlas, and genes associated with terminal bronchiole reduction using stereology, micro-computed tomography, nonlinear optical microscopy, imaging mass spectrometry, and transcriptomics. Measurements and Main Results: The lumen area of terminal bronchioles progressively narrows with COPD severity as a result of the loss of elastin fibers within alveolar attachments, which was observed before microscopic emphysematous tissue destruction in GOLD stage 1 and 2 COPD. The single-cell atlas of terminal bronchioles in COPD demonstrated M1-like macrophages and neutrophils located within alveolar attachments and associated with the pathobiology of elastin fiber loss, whereas adaptive immune cells (naive, CD4, and CD8 T cells, and B cells) are associated with terminal bronchiole wall remodeling. Terminal bronchiole pathology was associated with the upregulation of genes involved in innate and adaptive immune responses, the interferon response, and the degranulation of neutrophils. Conclusions: This comprehensive single-cell atlas highlights terminal bronchiole alveolar attachments as the initial site of tissue destruction in centrilobular emphysema and an attractive target for disease modification.
Collapse
Affiliation(s)
- Steven Booth
- Centre for Heart Lung Innovation
- Department of Anesthesiology, Pharmacology and Therapeutics, and
| | - Aileen Hsieh
- Centre for Heart Lung Innovation
- Department of Anesthesiology, Pharmacology and Therapeutics, and
| | - Leila Mostaco-Guidolin
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada
| | - Hyun-Kyoung Koo
- Centre for Heart Lung Innovation
- Department of Anesthesiology, Pharmacology and Therapeutics, and
| | - Keith Wu
- Centre for Heart Lung Innovation
- Department of Anesthesiology, Pharmacology and Therapeutics, and
| | - Fatemeh Aminazadeh
- Centre for Heart Lung Innovation
- Department of Anesthesiology, Pharmacology and Therapeutics, and
| | | | - Daniela Quail
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada; and
| | - Yuhong Wei
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada; and
| | - Joel D Cooper
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - James C Hogg
- Centre for Heart Lung Innovation
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dragoş M Vasilescu
- Centre for Heart Lung Innovation
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation
- Department of Anesthesiology, Pharmacology and Therapeutics, and
| |
Collapse
|
8
|
Fagiola M, Reznik S, Riaz M, Qyang Y, Lee S, Avella J, Turino G, Cantor J. The relationship between elastin cross linking and alveolar wall rupture in human pulmonary emphysema. Am J Physiol Lung Cell Mol Physiol 2023; 324:L747-L755. [PMID: 37014816 DOI: 10.1152/ajplung.00284.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
To better define the role of mechanical forces in pulmonary emphysema, we employed methods recently developed in our laboratory to identify microscopic level relationships between airspace size and elastin-specific desmosine and isodesmosine (DID) cross links in normal and emphysematous human lungs. Free DID in wet tissue (a biomarker for elastin degradation) and total DID in formalin-fixed, paraffin-embedded (FFPE) tissue sections were measured using liquid chromatography-tandem mass spectrometry and correlated with alveolar diameter, as determined by the mean linear intercept (MLI) method. There was a positive correlation between free lung DID and MLI (P < 0.0001) in formalin-fixed lungs, and elastin breakdown was greatly accelerated when airspace diameter exceeded 400 µm. In FFPE tissue, DID density was markedly increased beyond 300 µm (P < 0.0001) and leveled off around 400 µm. Elastic fiber surface area similarly peaked at around 400 µm, but to a much lesser extent than DID density, indicating that elastin cross linking is markedly increased in response to early changes in airspace size. These findings support the hypothesis that airspace enlargement is an emergent phenomenon in which initial proliferation of DID cross links to counteract alveolar wall distention is followed by a phase transition involving rapid acceleration of elastin breakdown, alveolar wall rupture, and progression to an active disease state that is less amenable to therapeutic intervention.NEW & NOTEWORTHY The current findings support the hypothesis that airspace enlargement is an emergent phenomenon in which initial proliferation of DID cross links to counteract alveolar wall distention is followed by a phase transition involving rapid acceleration of elastin breakdown, alveolar wall rupture, and progression to an active disease state that is less amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Michael Fagiola
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, United States
- Nassau County Medical Examiner, Department of Forensic Toxicology, East Meadow, New York, United States
| | - Sandra Reznik
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, United States
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Muhammad Riaz
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Yibing Qyang
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Seoyeon Lee
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Joseph Avella
- Nassau County Medical Examiner, Department of Forensic Toxicology, East Meadow, New York, United States
| | - Gerard Turino
- Department of Medicine, Mount Sinai - St. Luke's Medical Center, New York, New York, United States
| | - Jerome Cantor
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, United States
| |
Collapse
|
9
|
Procknow SS, Kozel BA. Emerging mechanisms of elastin transcriptional regulation. Am J Physiol Cell Physiol 2022; 323:C666-C677. [PMID: 35816641 PMCID: PMC9448287 DOI: 10.1152/ajpcell.00228.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022]
Abstract
Elastin provides recoil to tissues that stretch such as the lung, blood vessels, and skin. It is deposited in a brief window starting in the prenatal period and extending to adolescence in vertebrates, and then slowly turns over. Elastin insufficiency is seen in conditions such as Williams-Beuren syndrome and elastin-related supravalvar aortic stenosis, which are associated with a range of vascular and connective tissue manifestations. Regulation of the elastin (ELN) gene occurs at multiple levels including promoter activation/inhibition, mRNA stability, interaction with microRNAs, and alternative splicing. However, these mechanisms are incompletely understood. Better understanding of the processes controlling ELN gene expression may improve medicine's ability to intervene in these rare conditions, as well as to replace age-associated losses by re-initiating elastin production. This review describes what is known about the ELN gene promoter structure, transcriptional regulation by cytokines and transcription factors, and posttranscriptional regulation via mRNA stability and micro-RNA and highlights new approaches that may influence regenerative medicine.
Collapse
Affiliation(s)
- Sara S Procknow
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Beth A Kozel
- Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
10
|
Duhig EE. Usual interstitial pneumonia: a review of the pathogenesis and discussion of elastin fibres, type II pneumocytes and proposed roles in the pathogenesis. Pathology 2022; 54:517-525. [PMID: 35778287 DOI: 10.1016/j.pathol.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/11/2022] [Accepted: 05/22/2022] [Indexed: 10/17/2022]
Abstract
The pathogenesis of idiopathic pulmonary fibrosis (IPF) and its histological counterpart, usual interstitial pneumonia (UIP) remains debated. IPF/UIP is a disease characterised by respiratory restriction, and while there have been recent advances in treatment, mortality remains high. Genetic and environmental factors predispose to its development and aberrant alveolar repair is thought to be central. Following alveolar injury, the type II pneumocyte (AEC2) replaces the damaged thin type I pneumocytes. Despite the interstitial fibroblast being considered instrumental in formation of the fibrosis, there has been little consideration for a role for AEC2 in the repair of the septal interstitium. Elastin is a complex protein that conveys flexibility and recoil to the lung. The fibroblast is presumed to produce elastin but there is evidence that the AEC2 may have a role in production or deposition. While the lung is an elastic organ, the role of elastin in repair of lung injury and its possible role in UIP has not been explored in depth. In this paper, pathogenetic mechanisms of UIP involving AEC2 and elastin are reviewed and the possible role of AEC2 in elastin generation is proposed.
Collapse
Affiliation(s)
- Edwina E Duhig
- Sullivan Nicolaides Pathology, The John Flynn Hospital, Tugun, Qld, Australia; UQ Thoracic Research Centre, The Prince Charles Hospital, Chermside, Qld, Australia; Faculty of Medicine, The University of Queensland, Herston, Qld, Australia.
| |
Collapse
|
11
|
Fagiola M, Gu G, Avella J, Cantor J. Free Lung Desmosine: A Potential Biomarker for Elastic Fiber Injury in Pulmonary Emphysema. Biomarkers 2022; 27:319-324. [PMID: 35170389 DOI: 10.1080/1354750x.2022.2043443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Desmosine and isodesmosine (DID) are biomarkers for elastic fiber damage in pulmonary emphysema. However, current methods for measuring lung DID involve tissue hydrolysis and lack specificity for those fibers undergoing breakdown. To address this limitation, free (nonpeptide-bound) DID content in unhydrolyzed tissues was evaluated as a more accurate biomarker in an animal model of pulmonary emphysema. METHODS Hamsters were treated with either cigarette smoke and lipopolysaccharide (LPS), room air and LPS, or room air alone (controls). Free DID levels in fresh and formalin-fixed lungs were measured by LC-MS/MS and correlated with the mean linear intercept (MLI) measure of airspace size. RESULTS There was no significant difference in free DID between fresh and formalin-fixed lungs. Animals treated with smoke and LPS had significantly higher levels of free DID than the LPS only group (359 vs. 93.1 ng/g wet lung, respectively; p = 0.0012) and room air controls (undetectable levels; p = 0.0002). There was a significant positive correlation between free DID and MLI (p < 0.0001). CONCLUSIONS The results support the hypothesis that free lung DID is a sensitive indicator of alveolar wall injury that may be used to study the development of pulmonary emphysema in both animal models and post-mortem human lung tissue.
Collapse
Affiliation(s)
- Michael Fagiola
- St. John's University, Department of Pharmaceutical Sciences, 8000 Utopia Parkway, Queens, NY, USA, 11439.,Nassau County Medical Examiner, Department of Forensic Toxicology, East Meadow, NY, USA, 11554
| | - George Gu
- St. John's University, Department of Pharmaceutical Sciences, 8000 Utopia Parkway, Queens, NY, USA, 11439
| | - Joseph Avella
- Nassau County Medical Examiner, Department of Forensic Toxicology, East Meadow, NY, USA, 11554
| | - Jerome Cantor
- St. John's University, Department of Pharmaceutical Sciences, 8000 Utopia Parkway, Queens, NY, USA, 11439
| |
Collapse
|
12
|
Boraldi F, Lofaro FD, Cossarizza A, Quaglino D. The "Elastic Perspective" of SARS-CoV-2 Infection and the Role of Intrinsic and Extrinsic Factors. Int J Mol Sci 2022; 23:ijms23031559. [PMID: 35163482 PMCID: PMC8835950 DOI: 10.3390/ijms23031559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Elastin represents the structural component of the extracellular matrix providing elastic recoil to tissues such as skin, blood vessels and lungs. Elastogenic cells secrete soluble tropoelastin monomers into the extracellular space where these monomers associate with other matrix proteins (e.g., microfibrils and glycoproteins) and are crosslinked by lysyl oxidase to form insoluble fibres. Once elastic fibres are formed, they are very stable, highly resistant to degradation and have an almost negligible turnover. However, there are circumstances, mainly related to inflammatory conditions, where increased proteolytic degradation of elastic fibres may lead to consequences of major clinical relevance. In severely affected COVID-19 patients, for instance, the massive recruitment and activation of neutrophils is responsible for the profuse release of elastases and other proteolytic enzymes which cause the irreversible degradation of elastic fibres. Within the lungs, destruction of the elastic network may lead to the permanent impairment of pulmonary function, thus suggesting that elastases can be a promising target to preserve the elastic component in COVID-19 patients. Moreover, intrinsic and extrinsic factors additionally contributing to damaging the elastic component and to increasing the spread and severity of SARS-CoV-2 infection are reviewed.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.D.L.)
| | - Francesco Demetrio Lofaro
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.D.L.)
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.D.L.)
- Correspondence:
| |
Collapse
|
13
|
Karsdal MA, Genovese F, Rasmussen DGK, Bay-Jensen AC, Mortensen JH, Holm Nielsen S, Willumsen N, Jensen C, Manon-Jensen T, Jennings L, Reese-Petersen AL, Henriksen K, Sand JM, Bager C, Leeming DJ. Considerations for understanding protein measurements: Identification of formation, degradation and more pathological relevant epitopes. Clin Biochem 2021; 97:11-24. [PMID: 34453894 DOI: 10.1016/j.clinbiochem.2021.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVES There is a need for precision medicine and an unspoken promise of an optimal approach for identification of the right patients for value-based medicine based on big data. However, there may be a misconception that measurement of proteins is more valuable than measurement of fewer selected biomarkers. In population-based research, variation may be somewhat eliminated by quantity. However, this fascination of numbers may limit the attention to and understanding of the single. This review highlights that protein measurements (with collagens as examples) may mean different things depending on the targeted epitope - formation or degradation of tissues, and even signaling potential of proteins. DESIGN AND METHODS PubMed was searched for collagen, neo-epitope, biomarkers. RESULTS Ample examples of assays with specific epitopes, either pathological such as HbA1c, or domain specific such as pro-peptides, which total protein arrays would not have identified were evident. CONCLUSIONS We suggest that big data may be considered as the funnel of data points, in which most important parameters will be selected. If the technical precision is low or the biological accuracy is limited, and we include suboptimal quality of biomarkers, disguised as big data, we may not be able to fulfill the promise of helping patients searching for the optimal treatment. Alternatively, if the technical precision of the total protein quantification is high, but we miss the functional domains with the most considerable biological meaning, we miss the most important and valuable information of a given protein. This review highlights that measurements of the same protein in different ways may provide completely different meanings. We need to understand the pathological importance of each epitope quantified to maximize protein measurements.
Collapse
Affiliation(s)
- M A Karsdal
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark.
| | - F Genovese
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - D G K Rasmussen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - A C Bay-Jensen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - J H Mortensen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - S Holm Nielsen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - N Willumsen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - C Jensen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - T Manon-Jensen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | | | | | - K Henriksen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - J M Sand
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - C Bager
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - D J Leeming
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| |
Collapse
|
14
|
Modeling Extracellular Matrix-Cell Interactions in Lung Repair and Chronic Disease. Cells 2021; 10:cells10082145. [PMID: 34440917 PMCID: PMC8394761 DOI: 10.3390/cells10082145] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/18/2021] [Indexed: 01/11/2023] Open
|
15
|
Sun B, Tomita B, Salinger A, Tilvawala RR, Li L, Hakami H, Liu T, Tsoyi K, Rosas IO, Reinhardt DP, Thompson PR, Ho IC. PAD2-mediated citrullination of Fibulin-5 promotes elastogenesis. Matrix Biol 2021; 102:70-84. [PMID: 34274450 DOI: 10.1016/j.matbio.2021.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
The formation of elastic fibers is active only in the perinatal period. How elastogenesis is developmentally regulated is not fully understood. Citrullination is a unique form of post-translational modification catalyzed by peptidylarginine deiminases (PADs), including PAD1-4. Its physiological role is largely unknown. By using an unbiased proteomic approach of lung tissues, we discovered that FBLN5 and LTBP4, two key elastogenic proteins, were temporally modified in mouse and human lungs. We further demonstrated that PAD2 citrullinated FBLN5 preferentially in young lungs compared to adult lungs. Genetic ablation of PAD2 resulted in attenuated elastogenesis in vitro and age-dependent emphysema in vivo. Mechanistically, citrullination protected FBLN5 from proteolysis and subsequent inactivation of its elastogenic activity. Furthermore, citrullinated but not native FBLN5 partially rescued in vitro elastogenesis in the absence of PAD activity. Our data uncover a novel function of citrullination, namely promoting elastogenesis, and provide additional insights to how elastogenesis is regulated.
Collapse
Affiliation(s)
- Bo Sun
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Beverly Tomita
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Ari Salinger
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ronak R Tilvawala
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ling Li
- Department of Anatomy and Cell Biology and Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada
| | - Hana Hakami
- Department of Anatomy and Cell Biology and Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada
| | - Tao Liu
- Harvard Medical School, Boston, MA 02115, USA; Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Konstantin Tsoyi
- Pulmonary, Critical Care and Sleep Medicine Section, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ivan O Rosas
- Pulmonary, Critical Care and Sleep Medicine Section, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dieter P Reinhardt
- Department of Anatomy and Cell Biology and Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - I-Cheng Ho
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Chen DL, Agapov E, Wu K, Engle JT, Solingapuram Sai KK, Arentson E, Spayd KJ, Moreland KT, Toth K, Byers DE, Pierce RA, Atkinson JJ, Laforest R, Gelman AE, Holtzman MJ. Selective Imaging of Lung Macrophages Using [ 11C]PBR28-Based Positron Emission Tomography. Mol Imaging Biol 2021; 23:905-913. [PMID: 34137002 DOI: 10.1007/s11307-021-01617-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 01/17/2023]
Abstract
PURPOSE We tested whether the translocator protein (TSPO)-targeted positron emission tomography (PET) tracer, N-acetyl-N-(2-[11C]methoxybenzyl)-2-phenoxy-5-pyridinamine ([11C]PBR28), could distinguish macrophage dominant from neutrophilic inflammation better than 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) in mouse models of lung inflammation and assessed TSPO association with macrophages in lung tissue from the mouse models and in patients with chronic obstructive pulmonary disease (COPD). PROCEDURES MicroPET imaging quantified [11C]PBR28 and [18F]FDG lung uptake in wild-type (Wt) C57BL/6J or heterozygous transgenic monocyte-deficient Wt/opT mice at 49 days after Sendai virus (SeV) infection, during macrophage-dominant inflammation, and in Wt mice at 3 days after SeV infection or 24 h after endotoxin instillation during neutrophilic inflammation. Immunohistochemical staining for TSPO in macrophages and neutrophils was performed using Mac3 and Ly6G for cell identification in mouse lung sections and CD68 and neutrophil elastase (NE) in human lung sections taken from explanted lungs from patients with COPD undergoing lung transplantation and donor lungs rejected for transplantation. Differences in tracer uptake among SeV-infected, endotoxin-treated, and uninfected/untreated control mice and in TSPO staining between neutrophils and macrophage populations in human lung sections were tested using analysis of variance. RESULTS In Wt mice, [11C]PBR28 uptake (% injected dose/ml lung tissue) increased significantly with macrophage-dominant inflammation at 49 days (D49) after SeV infection compared to controls (p = <0.001) but not at 3 days (D49) after SeV infection (p = 0.167). [11C]PBR28 uptake was unchanged at 24 h after endotoxin instillation (p = 0.958). [18F]FDG uptake increased to a similar degree in D3 and D49 SeV-infected and endotoxin-treated Wt mice compared to controls with no significant difference in the degree of increase among the tested conditions. [11C]PBR28 but not [18F]FDG lung uptake at D49 post-SeV infection was attenuated in Wt/opT mice compared to Wt mice. TSPO localized predominantly to macrophages in mouse lung tissue by immunostaining, and TSPO staining intensity was significantly higher in CD68+ cells compared to neutrophils in the human lung sections. CONCLUSIONS PET imaging with [11C]PBR28 can specifically detect macrophages versus neutrophils during lung inflammation and may be a useful biomarker of macrophage accumulation in lung disease.
Collapse
Affiliation(s)
- Delphine L Chen
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA. .,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Radiology, University of Washington, Seattle Cancer Care Alliance, 1144 Eastlake Ave E, # LG2-200, Seattle, WA, 98109, USA.
| | - Eugene Agapov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kangyun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacquelyn T Engle
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Elizabeth Arentson
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine J Spayd
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kirby T Moreland
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelsey Toth
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Derek E Byers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard A Pierce
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey J Atkinson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard Laforest
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew E Gelman
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
17
|
Schmelzer CEH, Duca L. Elastic fibers: formation, function, and fate during aging and disease. FEBS J 2021; 289:3704-3730. [PMID: 33896108 DOI: 10.1111/febs.15899] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 01/09/2023]
Abstract
Elastic fibers are extracellular components of higher vertebrates and confer elasticity and resilience to numerous tissues and organs such as large blood vessels, lungs, and skin. Their formation and maturation take place in a complex multistage process called elastogenesis. It requires interactions between very different proteins but also other molecules and leads to the deposition and crosslinking of elastin's precursor on a scaffold of fibrillin-rich microfibrils. Mature fibers are exceptionally resistant to most influences and, under healthy conditions, retain their biomechanical function over the life of the organism. However, due to their longevity, they accumulate damages during aging. These are caused by proteolytic degradation, formation of advanced glycation end products, calcification, oxidative damage, aspartic acid racemization, lipid accumulation, carbamylation, and mechanical fatigue. The resulting changes can lead to diminution or complete loss of elastic fiber function and ultimately affect morbidity and mortality. Particularly, the production of elastokines has been clearly shown to influence several life-threatening diseases. Moreover, the structure, distribution, and abundance of elastic fibers are directly or indirectly influenced by a variety of inherited pathological conditions, which mainly affect organs and tissues such as skin, lungs, or the cardiovascular system. A distinction can be made between microfibril-related inherited diseases that are the result of mutations in diverse microfibril genes and indirectly affect elastogenesis, and elastinopathies that are linked to changes in the elastin gene. This review gives an overview on the formation, structure, and function of elastic fibers and their fate over the human lifespan in health and disease.
Collapse
Affiliation(s)
- Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 MEDyC, SFR CAP-Sante, Université de Reims Champagne-Ardenne, France
| |
Collapse
|
18
|
Mehraban S, Gu G, Ma S, Liu X, Turino G, Cantor J. The Proinflammatory Activity of Structurally Altered Elastic Fibers. Am J Respir Cell Mol Biol 2020; 63:699-706. [PMID: 32790529 DOI: 10.1165/rcmb.2020-0064oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mechanisms responsible for the increased loss of pulmonary function following acute lung inflammation in chronic obstructive pulmonary disease remain poorly understood. To investigate this process, our laboratory developed a hamster model that uses a single intratracheal instillation of LPS to superimpose an inflammatory response on lungs treated with intratracheal elastase 1 week earlier. Parameters measured at 2 days after LPS included total leukocyte content and percent neutrophils in BAL fluid (BALF), and BALF levels of both total and peptide-free elastin-specific crosslinks, desmosine and isodesmosine (DID). Airspace enlargement, measured by the mean linear intercept method, and relative interstitial elastic fiber surface area were determined at 1 week after LPS. Compared with animals only treated with elastase, those receiving elastase/LPS showed statistically significant increases in mean linear intercept (156.2 vs. 85.5 μm), BALF leukocytes (187 vs. 37.3 × 104 cells), neutrophils (39% vs. 3.4%), and free DID (182% vs. 97% of controls), which exceeded the sum of the individual effects of the two agents. Despite increased elastin breakdown, the elastase/LPS group had significantly greater elastic fiber surface area than controls (49% vs. 26%) owing to fragmentation and splaying of the fibers. Additional experiments showed that the combination of elastin peptides and LPS significantly enhanced their separate effects on BALF neutrophils and BALF DID in vivo and leukocyte chemotaxis in vitro. The results suggest that structural changes in elastic fibers have proinflammatory activity and may contribute to the decline in pulmonary function related to chronic obstructive pulmonary disease exacerbations.
Collapse
Affiliation(s)
- Shadi Mehraban
- St. John's University, Queens, New York; and Mount Sinai-St. Luke's Hospital Center, New York, New York
| | - George Gu
- St. John's University, Queens, New York; and Mount Sinai-St. Luke's Hospital Center, New York, New York
| | - Shuren Ma
- St. John's University, Queens, New York; and Mount Sinai-St. Luke's Hospital Center, New York, New York
| | - Xingjian Liu
- St. John's University, Queens, New York; and Mount Sinai-St. Luke's Hospital Center, New York, New York
| | - Gerard Turino
- St. John's University, Queens, New York; and Mount Sinai-St. Luke's Hospital Center, New York, New York
| | - Jerome Cantor
- St. John's University, Queens, New York; and Mount Sinai-St. Luke's Hospital Center, New York, New York
| |
Collapse
|
19
|
Leng L, Cao R, Ma J, Mou D, Zhu Y, Li W, Lv L, Gao D, Zhang S, Gong F, Zhao L, Qiu B, Xiang H, Hu Z, Feng Y, Dai Y, Zhao J, Wu Z, Li H, Zhong W. Pathological features of COVID-19-associated lung injury: a preliminary proteomics report based on clinical samples. Signal Transduct Target Ther 2020; 5:240. [PMID: 33060566 PMCID: PMC7557250 DOI: 10.1038/s41392-020-00355-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has emerged as a global health emergency due to its association with severe pneumonia and relative high mortality. However, the molecular characteristics and pathological features underlying COVID-19 pneumonia remain largely unknown. To characterize molecular mechanisms underlying COVID-19 pathogenesis in the lung tissue using a proteomic approach, fresh lung tissues were obtained from newly deceased patients with COVID-19 pneumonia. After virus inactivation, a quantitative proteomic approach combined with bioinformatics analysis was used to detect proteomic changes in the SARS-CoV-2-infected lung tissues. We identified significant differentially expressed proteins involved in a variety of fundamental biological processes including cellular metabolism, blood coagulation, immune response, angiogenesis, and cell microenvironment regulation. Several inflammatory factors were upregulated, which was possibly caused by the activation of NF-κB signaling. Extensive dysregulation of the lung proteome in response to SARS-CoV-2 infection was discovered. Our results systematically outlined the molecular pathological features in terms of the lung response to SARS-CoV-2 infection, and provided the scientific basis for the therapeutic target that is urgently needed to control the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ling Leng
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, 102206, Beijing, China
| | - Danlei Mou
- Department of Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, 100069, Beijing, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, 102206, Beijing, China
| | - Wei Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
| | - Luye Lv
- Institute of NBC Defense, 102205, Beijing, China
| | - Dunqin Gao
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Shikun Zhang
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Feng Gong
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Lei Zhao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
| | - Bintao Qiu
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Haiping Xiang
- Department of Radiology, Beijing YouAn Hospital, Capital Medical of University, 100069, Beijing, China
| | - Zhongjie Hu
- Beijing YouAn Hospital, Capital Medical University, 100069, Beijing, China
| | - Yingmei Feng
- Beijing YouAn Hospital, Capital Medical University, 100069, Beijing, China
| | - Yan Dai
- Department of Respiratory and Critical Care Medicine, Nanyang Central Hospital, 473000, Henan, China
| | - Jiang Zhao
- Department of Respiratory and Critical Care Medicine, Nanyang Central Hospital, 473000, Henan, China
| | - Zhihong Wu
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China.
| | - Hongjun Li
- Department of Radiology, Beijing YouAn Hospital, Capital Medical of University, 100069, Beijing, China.
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China.
| |
Collapse
|
20
|
Zhou JS, Li ZY, Xu XC, Zhao Y, Wang Y, Chen HP, Zhang M, Wu YF, Lai TW, Di CH, Dong LL, Liu J, Xuan NX, Zhu C, Wu YP, Huang HQ, Yan FG, Hua W, Wang Y, Xiong WN, Qiu H, Chen T, Weng D, Li HP, Zhou X, Wang L, Liu F, Lin X, Ying SM, Li W, Imamura M, Choi ME, Stampfli MR, Choi AMK, Chen ZH, Shen HH. Cigarette smoke-initiated autoimmunity facilitates sensitisation to elastin-induced COPD-like pathologies in mice. Eur Respir J 2020; 56:13993003.00404-2020. [PMID: 32366484 DOI: 10.1183/13993003.00404-2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
It is currently not understood whether cigarette smoke exposure facilitates sensitisation to self-antigens and whether ensuing auto-reactive T cells drive chronic obstructive pulmonary disease (COPD)-associated pathologies.To address this question, mice were exposed to cigarette smoke for 2 weeks. Following a 2-week period of rest, mice were challenged intratracheally with elastin for 3 days or 1 month. Rag1-/- , Mmp12-/- , and Il17a-/- mice and neutralising antibodies against active elastin fragments were used for mechanistic investigations. Human GVAPGVGVAPGV/HLA-A*02:01 tetramer was synthesised to assess the presence of elastin-specific T cells in patients with COPD.We observed that 2 weeks of cigarette smoke exposure induced an elastin-specific T cell response that led to neutrophilic airway inflammation and mucus hyperproduction following elastin recall challenge. Repeated elastin challenge for 1 month resulted in airway remodelling, lung function decline and airspace enlargement. Elastin-specific T cell recall responses were dose dependent and memory lasted for over 6 months. Adoptive T cell transfer and studies in T cells deficient Rag1-/- mice conclusively implicated T cells in these processes. Mechanistically, cigarette smoke exposure-induced elastin-specific T cell responses were matrix metalloproteinase (MMP)12-dependent, while the ensuing immune inflammatory processes were interleukin 17A-driven. Anti-elastin antibodies and T cells specific for elastin peptides were increased in patients with COPD.These data demonstrate that MMP12-generated elastin fragments serve as a self-antigen and drive the cigarette smoke-induced autoimmune processes in mice that result in a bronchitis-like phenotype and airspace enlargement. The study provides proof of concept of cigarette smoke-induced autoimmune processes and may serve as a novel mouse model of COPD.
Collapse
Affiliation(s)
- Jie-Sen Zhou
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,These authors contribute equally to this work
| | - Zhou-Yang Li
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,These authors contribute equally to this work
| | - Xu-Chen Xu
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Zhao
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Wang
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Pin Chen
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zhang
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin-Fang Wu
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian-Wen Lai
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chun-Hong Di
- Dept of Clinical Laboratory, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ling-Ling Dong
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Liu
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan-Xia Xuan
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhu
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Ping Wu
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua-Qiong Huang
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fu-Gui Yan
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Hua
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Wang
- Dept of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Wei-Ning Xiong
- Dept of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Hui Qiu
- Dept of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tao Chen
- Dept of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dong Weng
- Dept of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui-Ping Li
- Dept of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaobo Zhou
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lie Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Liu
- Institute for Immunology, Tsinghua University School of Medicine, Tsinghua University-Peking University Jointed Center for Life Sciences, Beijing, China
| | - Xin Lin
- Institute for Immunology, Tsinghua University School of Medicine, Tsinghua University-Peking University Jointed Center for Life Sciences, Beijing, China
| | - Song-Min Ying
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Li
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mitsuru Imamura
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Dept of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA
| | - Martin R Stampfli
- Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, and Dept of Medicine, Firestone Institute for Respiratory Health at St Joseph's Healthcare, McMaster University, Hamilton, ON, Canada.,State Key Lab of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, NY, USA.,These authors contribute equally to this work
| | - Zhi-Hua Chen
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,These authors contribute equally to this work
| | - Hua-Hao Shen
- Key Lab of Respiratory Disease of Zhejiang Province, Dept of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China .,State Key Lab of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China.,These authors contribute equally to this work
| |
Collapse
|
21
|
Oxidative Stress: A Possible Trigger for Pelvic Organ Prolapse. J Immunol Res 2020; 2020:3791934. [PMID: 32953891 PMCID: PMC7481916 DOI: 10.1155/2020/3791934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 01/23/2023] Open
Abstract
Pelvic organ prolapse is a frequent health problem in women, encountered worldwide, its physiopathology being still incompletely understood. The integrity of the pelvic-supportive structures is a key element that prevents the prolapse of the pelvic organs. Numerous researchers have underlined the role of connective tissue molecular changes in the pathogenesis of pelvic organ prolapse and have raised the attention upon oxidative stress as an important element involved in its appearance. The advancements made over the years in terms of molecular biology have allowed researchers to investigate how the constituent elements of the pelvic-supportive structures react in conditions of oxidative stress. The purpose of this paper is to underline the importance of oxidative stress in the pathogenesis of pelvic organ prolapse, as well as to highlight the main oxidative stress molecular changes that appear at the level of the pelvic-supportive structures. Sustained mechanical stress is proven to be a key factor in the appearance of pelvic organ prolapse, correlating with increased levels of free radicals production and mitochondrial-induced fibroblasts apoptosis, the rate of cellular apoptosis depending on the intensity of the mechanical stress, and the period of time the mechanical stress is applied. Oxidative stress hinders normal cellular signaling pathways, as well as different important cellular components like proteins, lipids, and cellular DNA, therefore significantly interfering with the process of collagen and elastin synthesis.
Collapse
|
22
|
Langton AK, Tsoureli-Nikita E, Merrick H, Zhao X, Antoniou C, Stratigos A, Akhtar R, Derby B, Sherratt MJ, Watson RE, Griffiths CE. The systemic influence of chronic smoking on skin structure and mechanical function. J Pathol 2020; 251:420-428. [PMID: 32472631 DOI: 10.1002/path.5476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
Abstract
One of the major functions of human skin is to provide protection from the environment. Although we cannot entirely avoid, for example, sun exposure, it is likely that exposure to other environmental factors could affect cutaneous function. A number of studies have identified smoking as one such factor that leads to both facial wrinkle formation and a decline in skin function. In addition to the direct physical effects of tobacco smoke on skin, its inhalation has additional profound systemic effects for the smoker. The adverse effects on the respiratory and cardiovascular systems from smoking are well known. Central to the pathological changes associated with smoking is the elastic fibre, a key component of the extracellular matrices of lungs. In this study we examined the systemic effect of chronic smoking (>40 cigarettes/day; >5 years) on the histology of the cutaneous elastic fibre system, the nanostructure and mechanics of one of its key components, the fibrillin-rich microfibril, and the micromechanical stiffness of the dermis and epidermis. We show that photoprotected skin of chronic smokers exhibits significant remodelling of the elastic fibre network (both elastin and fibrillin-rich microfibrils) as compared to the skin of age- and sex-matched non-smokers. This remodelling is not associated with increased gelatinase activity (as identified by in situ zymography). Histological remodelling is accompanied by significant ultrastructural changes to extracted fibrillin-rich microfibrils. Finally, using scanning acoustic microscopy, we demonstrated that chronic smoking significantly increases the stiffness of both the dermis and the epidermis. Taken together, these data suggest an unappreciated systemic effect of chronic inhalation of tobacco smoke on the cutaneous elastic fibre network. Such changes may in part underlie the skin wrinkling and loss of skin elasticity associated with smoking. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Abigail K Langton
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Evridiki Tsoureli-Nikita
- First Department of Dermatology, Andreas Syggros Hospital of Cutaneous & Venereal Diseases, Athens University Medical School, Athens, Greece
| | - Holly Merrick
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Xuegen Zhao
- School of Materials, The University of Manchester, Manchester, UK
| | - Christina Antoniou
- First Department of Dermatology, Andreas Syggros Hospital of Cutaneous & Venereal Diseases, Athens University Medical School, Athens, Greece
| | - Alexander Stratigos
- First Department of Dermatology, Andreas Syggros Hospital of Cutaneous & Venereal Diseases, Athens University Medical School, Athens, Greece
| | - Riaz Akhtar
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool, UK
| | - Brian Derby
- School of Materials, The University of Manchester, Manchester, UK
| | - Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Rachel Eb Watson
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Christopher Em Griffiths
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
23
|
Brandsma C, Van den Berge M, Hackett T, Brusselle G, Timens W. Recent advances in chronic obstructive pulmonary disease pathogenesis: from disease mechanisms to precision medicine. J Pathol 2020; 250:624-635. [PMID: 31691283 PMCID: PMC7216938 DOI: 10.1002/path.5364] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a devastating lung disease with a high personal and societal burden. Exposure to toxic particles and gases, including cigarette smoke, is the main risk factor for COPD. Together with smoking cessation, current treatment strategies of COPD aim to improve symptoms and prevent exacerbations, but there is no disease-modifying treatment. The biggest drawback of today's COPD treatment regimen is the 'one size fits all' pharmacological intervention, mainly based on disease severity and symptoms and not the individual's disease pathology. To halt the worrying increase in the burden of COPD, disease management needs to be advanced with a focus on personalized treatment. The main pathological feature of COPD includes a chronic and abnormal inflammatory response within the lungs, which results in airway and alveolar changes in the lung as reflected by (small) airways disease and emphysema. Here we discuss recent developments related to the abnormal inflammatory response, ECM and age-related changes, structural changes in the small airways and the role of sex-related differences, which are all relevant to explain the individual differences in the disease pathology of COPD and improve disease endotyping. Furthermore, we will discuss the most recent developments of new treatment strategies using biologicals to target specific pathological features or disease endotypes of COPD. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Corry‐Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical BiologyGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| | - Maarten Van den Berge
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary DiseasesGroningenThe Netherlands
| | - Tillie‐Louise Hackett
- Centre for Heart Lung InnovationUnive rsity of British ColumbiaVancouverCanada
- Department of Anesthesiology, Pharmacology and TherapeuticsUniversity of British ColumbiaVancouverCanada
| | - Guy Brusselle
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
- Department of Epidemiology and Respiratory MedicineErasmus Medical Center RotterdamRotterdamThe Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical BiologyGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| |
Collapse
|
24
|
Cao Y, Lee BH, Irvine SA, Wong YS, Bianco Peled H, Venkatraman S. Inclusion of Cross-Linked Elastin in Gelatin/PEG Hydrogels Favourably Influences Fibroblast Phenotype. Polymers (Basel) 2020; 12:polym12030670. [PMID: 32192137 PMCID: PMC7183321 DOI: 10.3390/polym12030670] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
The capacity of a biomaterial to innately modulate cell behavior while meeting the mechanical property requirements of the implant is a much sought-after goal within bioengineering. Here we covalently incorporate soluble elastin into a gelatin–poly (ethylene glycol) (PEG) hydrogel for three-dimensional (3D) cell encapsulation to achieve these properties. The inclusion of elastin into a previously optimized gelatin–PEG hydrogel was then evaluated for effects on entrapped fibroblasts, with the aim to assess the hydrogel as an extracellular matrix (ECM)-mimicking 3D microenvironment for cellular guidance. Soluble elastin was incorporated both physically and covalently into novel gelatin/elastin hybrid PEG hydrogels with the aim to harness the cellular interactivity and mechanical tunability of both elastin and gelatin. This design allowed us to assess the benefits of elastin-containing hydrogels in guiding fibroblast activity for evaluation as a potential dermal replacement. It was found that a gelatin–PEG hydrogel with covalently conjugated elastin, supported neonatal fibroblast viability, promoted their proliferation from 7.3% to 13.5% and guided their behavior. The expression of collagen alpha-1(COL1A1) and elastin in gelatin/elastin hybrid gels increased 16-fold and 6-fold compared to control sample at day 9, respectively. Moreover, cells can be loaded into the hydrogel precursor solution, deposited, and the matrix cross-linked without affecting the incorporated cells adversely, thus enabling a potential injectable system for dermal wound healing.
Collapse
Affiliation(s)
- Ye Cao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.C.); (B.H.L.); (S.A.I.); (Y.S.W.)
- The Inter-Departmental Program for Biotechnology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Bae Hoon Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.C.); (B.H.L.); (S.A.I.); (Y.S.W.)
| | - Scott Alexander Irvine
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.C.); (B.H.L.); (S.A.I.); (Y.S.W.)
| | - Yee Shan Wong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (Y.C.); (B.H.L.); (S.A.I.); (Y.S.W.)
| | - Havazelet Bianco Peled
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
- Correspondence: (H.B.P.); (S.V.)
| | - Subramanian Venkatraman
- Subramanian Venkatraman, Materials Science and Engineering, National University of Singapore, Singapore 119077, Singapore
- Correspondence: (H.B.P.); (S.V.)
| |
Collapse
|
25
|
Janssen R, Wouters EFM, Janssens W, Daamen WF, Hagedoorn P, de Wit HAJM, Serré J, Gayan-Ramirez G, Franssen FME, Reynaert NL, von der Thüsen JH, Frijlink HW. Copper-Heparin Inhalation Therapy To Repair Emphysema: A Scientific Rationale. Int J Chron Obstruct Pulmon Dis 2019; 14:2587-2602. [PMID: 32063701 PMCID: PMC6884741 DOI: 10.2147/copd.s228411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/31/2019] [Indexed: 12/02/2022] Open
Abstract
Current pharmacotherapy of chronic obstructive pulmonary disease (COPD) aims at reducing respiratory symptoms and exacerbation frequency. Effective therapies to reduce disease progression, however, are still lacking. Furthermore, COPD medications showed less favorable effects in emphysema than in other COPD phenotypes. Elastin fibers are reduced and disrupted, whereas collagen levels are increased in emphysematous lungs. Protease/antiprotease imbalance has historically been regarded as the sole cause of emphysema. However, it is nowadays appreciated that emphysema may also be provoked by perturbations in the sequential repair steps following elastolysis. Essentiality of fibulin-5 and lysyl oxidase-like 1 in the elastin restoration process is discussed, and it is argued that copper deficiency is a plausible reason for failing elastin repair in emphysema patients. Since copper-dependent lysyl oxidases crosslink elastin as well as collagen fibers, copper supplementation stimulates accumulation of both proteins in the extracellular matrix. Restoration of abnormal elastin fibers in emphysematous lungs is favorable, whereas stimulating pulmonary fibrosis formation by further increasing collagen concentrations and organization is detrimental. Heparin inhibits collagen crosslinking while stimulating elastin repair and might therefore be the ideal companion of copper for emphysema patients. Efficacy and safety considerations may lead to a preference of pulmonary administration of copper-heparin over systemic administration.
Collapse
Affiliation(s)
- Rob Janssen
- Department of Pulmonary Medicine, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Emiel FM Wouters
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Wim Janssens
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Willeke F Daamen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul Hagedoorn
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, Groningen, University of Groningen, Groningen, The Netherlands
| | - Hugo AJM de Wit
- Department of Clinical Pharmacy, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Jef Serré
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Frits ME Franssen
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Niki L Reynaert
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
26
|
Jeon BN, Song JY, Huh JW, Yang WI, Hur MW. Derepression of matrix metalloproteinase gene transcription and an emphysema-like phenotype in transcription factor Zbtb7c knockout mouse lungs. FEBS Lett 2019; 593:2665-2674. [PMID: 31222731 DOI: 10.1002/1873-3468.13501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022]
Abstract
Dysregulated matrix metalloproteinase (MMP) gene expression is a major cause of the degradation of lung tissue that is integral to emphysema pathogenesis. Cigarette smoking (CS) increases MMP gene expression, a major contributor to emphysema development. We previously reported that Zbtb7c is a transcriptional repressor of several Mmp genes (Mmps-8, -10, -13, and -16). Here, we show that Zbtb7c knockout mice have mild emphysema-like phenotypes, including alveolar wall destruction, enlarged alveoli, and upregulated Mmp genes. Alveolar size and Mmp gene expression in Zbtb7c-/- mouse lungs are increased more severely upon exposure to CS, compared to those of Zbtb7c+/+ mouse lungs. These observations suggest that Zbtb7c degradation or absence may contribute to the pathogenesis of emphysema.
Collapse
Affiliation(s)
- Bu-Nam Jeon
- Brain Korea 21 Plus Project for Medical Science, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, Seoul, Korea
| | - Ji-Yang Song
- Brain Korea 21 Plus Project for Medical Science, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, Seoul, Korea
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Woo-Ick Yang
- Department of Pathology, Yonsei University School of Medicine, Seoul, Korea
| | - Man-Wook Hur
- Brain Korea 21 Plus Project for Medical Science, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Keeler SP, Agapov EV, Hinojosa ME, Letvin AN, Wu K, Holtzman MJ. Influenza A Virus Infection Causes Chronic Lung Disease Linked to Sites of Active Viral RNA Remnants. THE JOURNAL OF IMMUNOLOGY 2018; 201:2354-2368. [PMID: 30209189 DOI: 10.4049/jimmunol.1800671] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022]
Abstract
Clinical and experimental observations suggest that chronic lung disease is linked to respiratory viral infection. However, the long-term aspect of this relationship is not yet defined using a virus that replicates at properly high levels in humans and a corresponding animal model. In this study, we show that influenza A virus infection achieves 1 × 106-fold increases in viral load in the lung and dose-dependent severity of acute illness in mice. Moreover, these events are followed by persistence of negative- and positive-strand viral RNA remnants for 15 wk and chronic lung disease for at least 26 wk postinfection. The disease is manifested by focal areas of bronchiolization and mucus production that contain increased levels of viral RNA remnants along with mucin Muc5ac and Il13 mRNA compared with uninvolved areas of the lung. Excess mucus production and associated airway hyperreactivity (but not fibrosis or emphysema) are partially attenuated with loss of IL-13 production or signaling (using mice with IL-13 or STAT6 deficiency). These deficiencies cause reciprocal increases in l17a mRNA and neutrophils in the lung; however, none of these disease endpoints are changed with IL-13/IL-17a compared with IL-13 deficiency or STAT6/IL-17a compared with STAT6 deficiency. The results establish the capacity of a potent human respiratory virus to produce chronic lung disease focally at sites of active viral RNA remnants, likely reflecting locations of viral replication that reprogram the region. Viral dose dependency of disease also implicates high-level viral replication and severity of acute infection as determinants of chronic lung diseases such as asthma and COPD with IL-13-dependent and IL-13/IL-17-independent mechanisms.
Collapse
Affiliation(s)
- Shamus P Keeler
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Eugene V Agapov
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael E Hinojosa
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Adam N Letvin
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
28
|
Ayala P, Vivar R, Montalva R, Olmos P, Meneses M, Borzone GR. Elastin degradation products in acute lung injury induced by gastric contents aspiration. Respir Res 2018; 19:165. [PMID: 30170599 PMCID: PMC6119254 DOI: 10.1186/s12931-018-0873-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
Background Gastric contents aspiration is a high-risk condition for acute lung injury (ALI). Consequences range from subclinical pneumonitis to respiratory failure, depending on the volume of aspirate. A large increment in inflammatory cells, an important source of elastase, potentially capable of damaging lung tissue, has been described in experimental models of aspiration. We hypothesized that in early stages of aspiration-induced ALI, there is proteolytic degradation of elastin, preceding collagen deposition. Our aim was to evaluate whether after a single orotracheal instillation of gastric fluid, there is evidence of elastin degradation. Methods Anesthesized Sprague-Dawley rats received a single orotracheal instillation of gastric fluid and were euthanized 4, 12 and 24 h and at day 4 after instillation (n = 6/group). We used immunodetection of soluble elastin in lung tissue and BALF and correlated BALF levels of elastin degradation products with markers of ALI. We investigated possible factors involved in elastin degradation and evaluated whether a similar pattern of elastin degradation can be found in BALF samples of patients with interstitial lung diseases known to have aspirated. Non-parametric ANOVA (Kruskall-Wallis) and linear regression analysis were used. Results We found evidence of early proteolytic degradation of lung elastin. Elastin degradation products are detected both in lung tissue and BALF in the first 24 h and are significantly reduced at day 4. They correlate significantly with ALI markers, particularly PMN cell count, are independent of acidity and have a similar molecular weight as those obtained using pancreatic elastase. Evaluation of BALF from patients revealed the presence of elastin degradation products not present in controls that are similar to those found in BALF of rats treated with gastric fluid. Conclusions A single instillation of gastric fluid into the lungs induces early proteolytic degradation of elastin, in relation to the magnitude of alveolar-capillary barrier derangement. PMN-derived proteases released during ALI are mostly responsible for this damage. BALF from patients showed elastin degradation products similar to those found in rats treated with gastric fluid. Long-lasting effects on lung elastic properties could be expected under conditions of repeated instillations of gastric fluid in experimental animals or repeated aspiration events in humans.
Collapse
Affiliation(s)
- Pedro Ayala
- Department of Respiratory Diseases and Medical Research Center, Pontificia Universidad Católica de Chile, Marcoleta 350, piso 1, Santiago, Chile
| | - Raúl Vivar
- Department of Respiratory Diseases and Medical Research Center, Pontificia Universidad Católica de Chile, Marcoleta 350, piso 1, Santiago, Chile
| | - Rebeca Montalva
- Department of Respiratory Diseases and Medical Research Center, Pontificia Universidad Católica de Chile, Marcoleta 350, piso 1, Santiago, Chile
| | - Pablo Olmos
- Department of Diabetes and Nutrition, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel Meneses
- Pathology Unit, Instituto Nacional del Tórax, Santiago, Chile
| | - Gisella R Borzone
- Department of Respiratory Diseases and Medical Research Center, Pontificia Universidad Católica de Chile, Marcoleta 350, piso 1, Santiago, Chile.
| |
Collapse
|
29
|
Sun J, Liu T, Yan Y, Huo K, Zhang W, Liu H, Shi Z. The role of Th1/Th2 cytokines played in regulation of specific CD4 + Th1 cell conversion and activation during inflammatory reaction of chronic obstructive pulmonary disease. Scand J Immunol 2018; 88:e12674. [PMID: 29752829 DOI: 10.1111/sji.12674] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/06/2018] [Indexed: 01/08/2023]
Abstract
CD4 + Th1-CXCR3 signalling pathway may play a key role in chronic obstructive pulmonary disease (COPD). The aim of this study was to explore Th1/Th2 cytokines ratio differences in patients in different stages of COPD and to confirm the hypothesis that elastin exposure might serve as an antigen to initiate the stimulation of CD4 + Th1-CXCR3 immune inflammation pathway. Patients of COPD in different stages and normal individuals were enrolled. Ten millilitres of peripheral blood was drawn from patients. The concentration of CXCR3, IFN-γ, IL-2, IL-4 and IL-13 in plasma was detected by ELISA. The Naïve CD4+ T cells were isolated from the peripheral blood mononuclear cells, which were stimulated by elastin and collagen before determining the level of IFN-γ secretion by ELISPOT. Compared with control group, the concentration of CXCR3 in the acute exacerbation COPD (AECOPD) group was higher (P < .05). The concentration of IFN-γ and IL-2 in AECOPD group was lower than that in remission (P < .05). The concentration of IFN-γ in the AECOPD and remission was higher than that in controls (P < .05), while IL-2 was opposite (P < .01). The concentration of IL-4 and IL-13 in AECOPD group was higher than that in the controls (P < .05). The CD4+ Th1 cells stimulated by the elastin as antigen secreted more IFN-γ than that by collagen (P < .01). CXCR3 was highly expressed in patients with COPD. There were different Th1/Th2 cytokines in different stages of COPD. The CD4+Th1-specific conversion and activation may be an initiator of COPD immune inflammatory response.
Collapse
Affiliation(s)
- J Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - T Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Y Yan
- Intensive Care Unit, Shaanxi Provincial Tumor Hospital, Xi'an, Shaanxi, China
| | - K Huo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - W Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - H Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Z Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
30
|
Hussell T, Lui S, Jagger C, Morgan D, Brand O. The consequence of matrix dysfunction on lung immunity and the microbiome in COPD. Eur Respir Rev 2018; 27:27/148/180032. [PMID: 29950305 DOI: 10.1183/16000617.0032-2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/12/2018] [Indexed: 12/23/2022] Open
Abstract
The pulmonary extracellular matrix (ECM) is a complex network of proteins which primarily defines tissue architecture and regulates various biochemical and biophysical processes. It is a dynamic system comprising two main structures (the interstitial matrix and the basement membrane) which undergo continuous, yet highly regulated, remodelling. This remodelling process is essential for tissue homeostasis and uncontrolled regulation can lead to pathological states including chronic obstructive pulmonary disease (COPD). Altered expression of ECM proteins, as observed in COPD, can contribute to the degradation of alveolar walls and thickening of the small airways which can cause limitations in airflow. Modifications in ECM composition can also impact immune cell migration and retention in the lung with migrating cells becoming entrapped in the diseased airspaces. Furthermore, ECM changes affect the lung microbiome, aggravating and advancing disease progression. A dysbiosis in bacterial diversity can lead to infection, inducing epithelial injury and pro-inflammatory reactions. Here we review the changes noted in the different ECM components in COPD and discuss how an imbalance in microbial commensalism can impact disease development.
Collapse
Affiliation(s)
- Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Sylvia Lui
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Christopher Jagger
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - David Morgan
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Oliver Brand
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| |
Collapse
|
31
|
Huo Y, Guan L, Xu J, Zhou L, Chen R. Tiotropium inhibits methacholine-induced extracellular matrix production via β-catenin signaling in human airway smooth muscle cells. Int J Chron Obstruct Pulmon Dis 2018; 13:1469-1481. [PMID: 29765214 PMCID: PMC5939907 DOI: 10.2147/copd.s158552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Airway remodeling is an important feature of chronic obstructive pulmonary disease (COPD) that is associated with disease severity and irreversible airflow limitation. An extensive alteration of the extracellular matrix (ECM) surrounding the airway smooth muscle (ASM) bundle is one of the pathological manifestations of airway remodeling, which contributes to the decline in lung function. Tiotropium, a long-acting inhaled muscarinic receptor antagonist, has been confirmed to play a role in preventing airway remodeling including ECM deposition beyond bronchodilation in vivo, but the relationship between ASM cell (ASMC) relaxation and ECM production remains unclear. Purpose In this study, we attempted to investigate the influence of tiotropium on ECM production by ASMCs and the underlying mechanism. Methods Tiotropium was added 30 minutes before the addition of methacholine to primary cultured human ASMCs. Protein expression was analylized by Western Blot and mRNA abundance was determined by real-time PCR. Results We found that tiotropium reduced collagen I protein expression, and the mRNA abundance of collagen I, fibronectin, and versican. β-catenin signaling was inactivated by inhibiting glycogen synthase kinase 3β (GSK3β) phosphorylation in this process. Tiotropum inhibited the amount of active β-catenin and its transcription activity. Furthermore, overexpression of active β-catenin by adenoviruses carrying the S33Y mutant resisted the suppressive effect of tiotropium on collagen I protein expression. However, silencing β-catenin by specific small interfering RNA enhanced the negative effect of tiotropium. Conclusion These findings suggest that relaxation of ASMCs by tiotropium can prevent ECM production through β-catenin signaling.
Collapse
Affiliation(s)
- Yating Huo
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lili Guan
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiawen Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Luqian Zhou
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
32
|
Huo Y, Xu J, Guan L, Wu W, Guo B, Yang Y, Lin L, Ou Y, Jiang F, Zhou L, Chen R. Methacholine induces extracellular matrix production by human airway smooth muscle cells through β-catenin signaling. Respir Physiol Neurobiol 2018; 254:55-63. [PMID: 29715518 DOI: 10.1016/j.resp.2018.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 04/21/2018] [Accepted: 04/28/2018] [Indexed: 11/28/2022]
Abstract
Altered extracellular matrix (ECM) production by airway smooth muscle cells (ASMCs) is an important feature of airway remodeling. Muscarinic receptor agonists contribute to ECM production in vivo, but the mechanisms involved remain unclear. This study attempted to investigate the role of methacholine in promoting ECM production by human ASMCs (HASMCs) and the underlying mechanism. We found that methacholine induced the expression of collagen I protein and multiple ECM genes. β-catenin signaling was activated in this process upon GSK3β phosphorylation, leading to upregulation of total and active β-catenin. Silencing β-catenin by specific small interfering RNA (siRNA) or with the β-catenin inhibitor, PKF115-584, decreased collagen I expression. Conversely, overexpression of active β-catenin by adenoviruses carrying the S33Y-β-catenin mutant increased the methacholine-induced collagen I expression. Furthermore, methacholine induced TGF-β expression in HASMCs, while pan-TGF-β-neutralizing antibody only partially decreased collagen I expression. These findings suggest that methacholine induced ECM production through β-catenin signaling and partially through TGF-β.
Collapse
Affiliation(s)
- Yating Huo
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Rd., Guangzhou 510120, China.
| | - Jiawen Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Rd., Guangzhou 510120, China.
| | - Lili Guan
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Rd., Guangzhou 510120, China.
| | - Weiliang Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Rd., Guangzhou 510120, China.
| | - Bingpeng Guo
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Rd., Guangzhou 510120, China.
| | - Yuqiong Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Rd., Guangzhou 510120, China.
| | - Lin Lin
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Rd., Guangzhou 510120, China.
| | - Yonger Ou
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Rd., Guangzhou 510120, China.
| | - Fangfang Jiang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Rd., Guangzhou 510120, China.
| | - Luqian Zhou
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Rd., Guangzhou 510120, China.
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Rd., Guangzhou 510120, China.
| |
Collapse
|
33
|
Parasaram V, Nosoudi N, Chowdhury A, Vyavahare N. Pentagalloyl glucose increases elastin deposition, decreases reactive oxygen species and matrix metalloproteinase activity in pulmonary fibroblasts under inflammatory conditions. Biochem Biophys Res Commun 2018; 499:24-29. [PMID: 29550472 DOI: 10.1016/j.bbrc.2018.03.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/11/2022]
Abstract
Emphysema is characterized by degradation of lung alveoli that leads to poor airflow in lungs. Irreversible elastic fiber degradation by matrix metalloproteinases (MMPs) and reactive oxygen species (ROS) activity leads to loss of elasticity and drives the progression of this disease. We investigated if a polyphenol, pentagalloyl glucose (PGG) can increase elastin production in pulmonary fibroblasts. We also studied the effect of PGG treatment in reducing MMP activity and ROS levels in cells. We exposed rat pulmonary fibroblasts to two different types of inflammatory environments i.e., tumor necrosis factor-α (TNF-α) and cigarette smoke extract (CSE) to mimic the disease. Parameters like lysyl oxidase (LOX) and elastin gene expression, MMP-9 activity in the medium, lysyl oxidase (LOX) activity and ROS levels were studied to assess the effect of PGG on pulmonary fibroblasts. CSE inhibited lysyl oxidase (LOX) enzyme activity that resulted in a decreased elastin formation. Similarly, TNF-α treated cells showed less elastin in the cell layers. Both these agents caused increase in MMP activity and ROS levels in cells. However, when supplemented with PGG treatment along with these two inflammatory agents, we saw a significant increase in elastin deposition, reduction in both MMP activity and ROS levels. Thus PGG, which has anti-inflammatory, anti-oxidant properties coupled with its ability to aid in elastic fiber formation, can be a multifunctional drug to potentially arrest the progression of emphysema.
Collapse
Affiliation(s)
| | - Nasim Nosoudi
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, OH, United States
| | - Aniqa Chowdhury
- Department of Bioengineering, Clemson University, SC, United States
| | - Naren Vyavahare
- Department of Bioengineering, Clemson University, SC, United States.
| |
Collapse
|
34
|
Zhou Y, Horowitz JC, Naba A, Ambalavanan N, Atabai K, Balestrini J, Bitterman PB, Corley RA, Ding BS, Engler AJ, Hansen KC, Hagood JS, Kheradmand F, Lin QS, Neptune E, Niklason L, Ortiz LA, Parks WC, Tschumperlin DJ, White ES, Chapman HA, Thannickal VJ. Extracellular matrix in lung development, homeostasis and disease. Matrix Biol 2018. [PMID: 29524630 DOI: 10.1016/j.matbio.2018.03.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, United States.
| | - Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, University of Michigan, United States.
| | - Alexandra Naba
- Department of Physiology & Biophysics, University of Illinois at Chicago, United States.
| | | | - Kamran Atabai
- Lung Biology Center, University of California, San Francisco, United States.
| | | | | | - Richard A Corley
- Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, United States.
| | - Bi-Sen Ding
- Weill Cornell Medical College, United States.
| | - Adam J Engler
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, United States.
| | - Kirk C Hansen
- Biochemistry & Molecular Genetics, University of Colorado Denver, United States.
| | - James S Hagood
- Pediatric Respiratory Medicine, University of California San Diego, United States.
| | - Farrah Kheradmand
- Division of Pulmonary and Critical Care, Baylor College of Medicine, United States.
| | - Qing S Lin
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, United States.
| | - Enid Neptune
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, United States.
| | - Laura Niklason
- Department of Anesthesiology, Yale University, United States.
| | - Luis A Ortiz
- Division of Environmental and Occupational Health, University of Pittsburgh, United States.
| | - William C Parks
- Department of Medicine, Cedars-Sinai Medical Center, United States.
| | - Daniel J Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, United States.
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, University of Michigan, United States.
| | - Harold A Chapman
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, United States.
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, United States.
| |
Collapse
|
35
|
Hou C, Peng D, Gao L, Tian D, Dai J, Luo Z, Liu E, Chen H, Zou L, Fu Z. Human umbilical cord-derived mesenchymal stem cells protect from hyperoxic lung injury by ameliorating aberrant elastin remodeling in the lung of O 2-exposed newborn rat. Biochem Biophys Res Commun 2017; 495:1972-1979. [PMID: 29242152 DOI: 10.1016/j.bbrc.2017.12.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 12/10/2017] [Indexed: 01/08/2023]
Abstract
The incidence and mortality rates of bronchopulmonary dysplasia (BPD) remain very high. Therefore, novel therapies are imminently needed to improve the outcome of this disease. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) show promising therapeutic effects on oxygen-induced model of BPD. In our experiment, UC-MSCs were intratracheally delivered into the newborn rats exposed to hyperoxia, a well-established BPD model. This study demonstrated that UC-MSCs reduce elastin expression stimulated by 90% O2 in human lung fibroblasts-a (HLF-a), and inhibit HLF-a transdifferentiation into myofibroblasts. In addition, the therapeutic effects of UC-MSCs in neonatal rats with BPD, UC-MSCs could inhibit lung elastase activity and reduce aberrant elastin expression and deposition in the lung of BPD rats. Overall, this study suggested that UC-MSCs could ameliorate aberrant elastin expression in the lung of hyperoxia-induced BPD model which may be associated with suppressing increased TGFβ1 activation.
Collapse
Affiliation(s)
- Chen Hou
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Danyi Peng
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Li Gao
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Otorhinolaryngology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Daiyin Tian
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jihong Dai
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Zhengxiu Luo
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Enmei Liu
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hong Chen
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, China; Department of Pediatrics, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lin Zou
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Center for Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China.
| | - Zhou Fu
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China.
| |
Collapse
|
36
|
Suzuki M, Sze MA, Campbell JD, Brothers JF, Lenburg ME, McDonough JE, Elliott WM, Cooper JD, Spira A, Hogg JC. The cellular and molecular determinants of emphysematous destruction in COPD. Sci Rep 2017; 7:9562. [PMID: 28842670 PMCID: PMC5573394 DOI: 10.1038/s41598-017-10126-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
The introduction of microCT has made it possible to show that the terminal bronchioles are narrowed and destroyed before the onset of emphysematous destruction in COPD. This report extends those observations to the cellular and molecular level in the centrilobular phenotype of emphysematous destruction in lungs donated by persons with very severe COPD (n = 4) treated by lung transplantation with unused donor lungs (n = 4) serving as controls. These lung specimens provided companion samples to those previously examined by microCT (n = 61) that we examined using quantitative histology (n = 61) and gene expression profiling (n = 48). The histological analysis showed that remodeling and destruction of the bronchiolar and alveolar tissue is associated with macrophage, CD4, CD8, and B cell infiltration with increased formation of tertiary lymphoid organs. Moreover, gene set enrichment analysis showed that genes known to be expressed by natural killer (NK), lymphoid tissue inducer (LTi), and innate lymphoid cell 1 (ILC1) cells, but not ILC2 or ILC3 cells, were enriched in the expression profiles associated with CD4, CD8, and B cell infiltration. Based on these findings, we postulate that the centrilobular phenotype of emphysematous destruction COPD is driven by a Th1 response activated by infiltrating ILC1, NK, and LTi cells.
Collapse
Affiliation(s)
- Masaru Suzuki
- Centre for Heart Lung Innovation, St. Paul's Hospital, Departments of Medicine, and Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Marc A Sze
- Centre for Heart Lung Innovation, St. Paul's Hospital, Departments of Medicine, and Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joshua D Campbell
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - John F Brothers
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Marc E Lenburg
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - John E McDonough
- Centre for Heart Lung Innovation, St. Paul's Hospital, Departments of Medicine, and Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - W Mark Elliott
- Centre for Heart Lung Innovation, St. Paul's Hospital, Departments of Medicine, and Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joel D Cooper
- Division of Thoracic Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Avrum Spira
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - James C Hogg
- Centre for Heart Lung Innovation, St. Paul's Hospital, Departments of Medicine, and Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
37
|
Bihlet AR, Karsdal MA, Sand JMB, Leeming DJ, Roberts M, White W, Bowler R. Biomarkers of extracellular matrix turnover are associated with emphysema and eosinophilic-bronchitis in COPD. Respir Res 2017; 18:22. [PMID: 28103932 PMCID: PMC5248528 DOI: 10.1186/s12931-017-0509-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/13/2017] [Indexed: 01/06/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is characterized by airflow obstruction and loss of lung tissue mainly consisting of extracellular matrix (ECM). Three of the main ECM components are type I collagen, the main constituent in the interstitial matrix, type VI collagen, and elastin, the signature protein of the lungs. During pathological remodeling driven by inflammatory cells and proteases, fragments of these proteins are released into the bloodstream, where they may serve as biomarkers for disease phenotypes. The aim of this study was to investigate the lung ECM remodeling in healthy controls and COPD patients in the COPDGene study. Methods The COPDGene study recruited 10,300 COPD patients in 21 centers. A subset of 89 patients from one site (National Jewish Health), including 52 COPD patients, 12 never-smoker controls and 25 smokers without COPD controls, were studied for serum ECM biomarkers reflecting inflammation-driven type I and VI collagen breakdown (C1M and C6M, respectively), type VI collagen formation (Pro-C6), as well as elastin breakdown mediated by neutrophil elastase (EL-NE). Correlation of biomarkers with lung function, the SF-36 quality of life questionnaire, and other clinical characteristics was also performed. Results The circulating concentrations of biomarkers C6M, Pro-C6, and EL-NE were significantly elevated in COPD patients compared to never-smoking control patients (all p < 0.05). EL-NE was significantly elevated in emphysema patients compared to smoking controls (p < 0.05) and never-smoking controls (p < 0.005), by more than 250%. C1M was inversely associated with forced expiratory volume in 1 s (FEV1) (r = −0.344, p = 0.001), as was EL-NE (r = −0.302, p = 0.004) and Pro-C6 (r = −0.259, p = 0.015). In the patients with COPD, Pro-C6 was correlated with percent predicted Forced Vital Capacity (FVC) (r = 0.281, p = 0.046) and quality of life using SF-36. C6M and Pro-C6, were positively correlated with blood eosinophil numbers in COPD patients (r = 0.382, p = 0.006 and r = 0.351, p = 0.012, respectively). Conclusions These data suggest that type VI collagen turnover and elastin degradation by neutrophil elastase are associated with COPD-induced inflammation (eosinophil-bronchitis) and emphysema. Serological assessment of type VI collagen and elastin turnover may assist in identification of phenotypes likely to be associated with progression and amenable to precision medicine for clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Mustimbo Roberts
- Bristol-Meyers Squibb, 3551 Lawrenceville, Lawrence Township, NJ, 08648, USA
| | - Wendy White
- MedImmune, LLC, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Russell Bowler
- National Jewish Health, Denver, Colorado, 1400 Jackson Street, Room K715a, Denver, CO, 80206, USA
| |
Collapse
|
38
|
Van Dijk EM, Culha S, Menzen MH, Bidan CM, Gosens R. Elastase-Induced Parenchymal Disruption and Airway Hyper Responsiveness in Mouse Precision Cut Lung Slices: Toward an Ex vivo COPD Model. Front Physiol 2017; 7:657. [PMID: 28101062 PMCID: PMC5209351 DOI: 10.3389/fphys.2016.00657] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/14/2016] [Indexed: 12/31/2022] Open
Abstract
Background: COPD is a progressive lung disease characterized by emphysema and enhanced bronchoconstriction. Current treatments focused on bronchodilation can delay disease progression to some extent, but recovery or normalization of loss of lung function is impossible. Therefore, novel therapeutic targets are needed. The importance of the parenchyma in airway narrowing is increasingly recognized. In COPD, the parenchyma and extracellular matrix are altered, possibly affecting airway mechanics and enhancing bronchoconstriction. Our aim was to set up a comprehensive ex vivo Precision Cut Lung Slice (PCLS) model with a pathophysiology resembling that of COPD and integrate multiple readouts in order to study the relationship between parenchyma, airway functionality, and lung repair processes. Methods: Lungs of C57Bl/6J mice were sliced and treated ex vivo with elastase (2.5 μg/ml) or H2O2 (200 μM) for 16 h. Following treatment, parenchymal structure, airway narrowing, and gene expression levels of alveolar Type I and II cell repair were assessed. Results: Following elastase, but not H2O2 treatment, slices showed a significant increase in mean linear intercept (Lmi), reflective of emphysema. Only elastase-treated slices showed disorganization of elastin and collagen fibers. In addition, elastase treatment lowered both alveolar Type I and II marker expression, whereas H2O2 stimulation lowered alveolar Type I marker expression only. Furthermore, elastase-treated slices showed enhanced methacholine-induced airway narrowing as reflected by increased pEC50 (5.87 at basal vs. 6.50 after elastase treatment) and Emax values (47.96 vs. 67.30%), and impaired chloroquine-induced airway opening. The increase in pEC50 correlated with an increase in mean Lmi. Conclusion: Using this model, we show that structural disruption of elastin fibers leads to impaired alveolar repair, disruption of the parenchymal compartment, and altered airway biomechanics, enhancing airway contraction. This finding may have implications for COPD, as the amount of elastin fiber and parenchymal tissue disruption is associated with disease severity. Therefore, we suggest that PCLS can be used to model certain aspects of COPD pathophysiology and that the parenchymal tissue damage observed in COPD contributes to lung function decline by disrupting airway biomechanics. Targeting the parenchymal compartment may therefore be a promising therapeutic target in the treatment of COPD.
Collapse
Affiliation(s)
- Eline M Van Dijk
- Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Sule Culha
- Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Mark H Menzen
- Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Cécile M Bidan
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, LIPhy Grenoble, France
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| |
Collapse
|
39
|
Zaynagetdinov R, Sherrill TP, Gleaves LA, Hunt P, Han W, McLoed AG, Saxon JA, Tanjore H, Gulleman PM, Young LR, Blackwell TS. Chronic NF-κB activation links COPD and lung cancer through generation of an immunosuppressive microenvironment in the lungs. Oncotarget 2016; 7:5470-82. [PMID: 26756215 PMCID: PMC4868699 DOI: 10.18632/oncotarget.6562] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/02/2015] [Indexed: 11/25/2022] Open
Abstract
Nuclear Factor (NF)-κB is positioned to provide the interface between COPD and carcinogenesis through regulation of chronic inflammation in the lungs. Using a tetracycline-inducible transgenic mouse model that conditionally expresses activated IκB kinase β (IKKβ) in airway epithelium (IKTA), we found that sustained NF-κB signaling results in chronic inflammation and emphysema by 4 months. By 11 months of transgene activation, IKTA mice develop lung adenomas. Investigation of lung inflammation in IKTA mice revealed a substantial increase in M2-polarized macrophages and CD4+/CD25+/FoxP3+ regulatory T lymphocytes (Tregs). Depletion of alveolar macrophages in IKTA mice reduced Tregs, increased lung CD8+ lymphocytes, and reduced tumor numbers following treatment with the carcinogen urethane. Alveolar macrophages from IKTA mice supported increased generation of inducible Foxp3+ Tregs ex vivo through expression of TGFβ and IL-10. Targeting of TGFβ and IL-10 reduced the ability of alveolar macrophages from IKTA mice to induce Foxp3 expression on T cells. These studies indicate that sustained activation of NF-κB pathway links COPD and lung cancer through generation and maintenance of a pro-tumorigenic inflammatory environment consisting of alternatively activated macrophages and regulatory T cells.
Collapse
Affiliation(s)
- Rinat Zaynagetdinov
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
| | - Taylor P Sherrill
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
| | - Linda A Gleaves
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
| | - Pierre Hunt
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
| | - Wei Han
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
| | - Allyson G McLoed
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232 USA
| | - Jamie A Saxon
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232 USA
| | - Harikrishna Tanjore
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
| | - Peter M Gulleman
- Division of Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
| | - Lisa R Young
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA.,Division of Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
| | - Timothy S Blackwell
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA.,Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232 USA.,U.S. Department of Veterans Affairs, Nashville, TN, 37232 USA
| |
Collapse
|
40
|
Baarsma HA, Skronska-Wasek W, Mutze K, Ciolek F, Wagner DE, John-Schuster G, Heinzelmann K, Günther A, Bracke KR, Dagouassat M, Boczkowski J, Brusselle GG, Smits R, Eickelberg O, Yildirim AÖ, Königshoff M. Noncanonical WNT-5A signaling impairs endogenous lung repair in COPD. J Exp Med 2016; 214:143-163. [PMID: 27979969 PMCID: PMC5206496 DOI: 10.1084/jem.20160675] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/16/2016] [Accepted: 11/04/2016] [Indexed: 01/17/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. One main pathological feature of COPD is the loss of functional alveolar tissue without adequate repair (emphysema), yet the underlying mechanisms are poorly defined. Reduced WNT-β-catenin signaling is linked to impaired lung repair in COPD; however, the factors responsible for attenuating this pathway remain to be elucidated. Here, we identify a canonical to noncanonical WNT signaling shift contributing to COPD pathogenesis. We demonstrate enhanced expression of noncanonical WNT-5A in two experimental models of COPD and increased posttranslationally modified WNT-5A in human COPD tissue specimens. WNT-5A was increased in primary lung fibroblasts from COPD patients and induced by COPD-related stimuli, such as TGF-β, cigarette smoke (CS), and cellular senescence. Functionally, mature WNT-5A attenuated canonical WNT-driven alveolar epithelial cell wound healing and transdifferentiation in vitro. Lung-specific WNT-5A overexpression exacerbated airspace enlargement in elastase-induced emphysema in vivo. Accordingly, inhibition of WNT-5A in vivo attenuated lung tissue destruction, improved lung function, and restored expression of β-catenin-driven target genes and alveolar epithelial cell markers in the elastase, as well as in CS-induced models of COPD. We thus identify a novel essential mechanism involved in impaired mesenchymal-epithelial cross talk in COPD pathogenesis, which is amenable to therapy.
Collapse
Affiliation(s)
- Hoeke A Baarsma
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Wioletta Skronska-Wasek
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Kathrin Mutze
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Florian Ciolek
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Darcy E Wagner
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Gerrit John-Schuster
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Katharina Heinzelmann
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | | | - Ken R Bracke
- Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | | | | | - Guy G Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, 3000 Rotterdam, Netherlands
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Ali Ö Yildirim
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany
| |
Collapse
|
41
|
Burgess JK, Mauad T, Tjin G, Karlsson JC, Westergren-Thorsson G. The extracellular matrix - the under-recognized element in lung disease? J Pathol 2016; 240:397-409. [PMID: 27623753 PMCID: PMC5129494 DOI: 10.1002/path.4808] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/17/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022]
Abstract
The lung is composed of airways and lung parenchyma, and the extracellular matrix (ECM) contains the main building blocks of both components. The ECM provides physical support and stability to the lung, and as such it has in the past been regarded as an inert structure. More recent research has provided novel insights revealing that the ECM is also a bioactive environment that orchestrates the cellular responses in its environs. Changes in the ECM in the airway or parenchymal tissues are now recognized in the pathological profiles of many respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Only recently have we begun to investigate whether these ECM changes result from the disease process, or whether they constitute a driving factor that orchestrates the pathological outcomes. This review summarizes our current knowledge of the alterations in the ECM in asthma, COPD, and IPF, and the contributions of these alterations to the pathologies. Emerging data suggest that alterations in the composition, folding or rigidity of ECM proteins may alter the functional responses of cells within their environs, and in so doing change the pathological outcomes. These characteristics highlight potential avenues for targeting lung pathologies in the future. This may ultimately contribute to a better understanding of chronic lung diseases, and novel approaches for finding therapeutic solutions. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Janette K Burgess
- University of Groningen, University Medical Centre Groningen, GRIAC Research Institute, Department of Pathology and Medical Biology, Groningen, The Netherlands.,Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,Discipline of Pharmacology, The University of Sydney, NSW, Australia.,Central Clinical School, The University of Sydney, NSW, Australia
| | - Thais Mauad
- Department of Pathology, São Paulo University Medical School, São Paulo, Brazil
| | - Gavin Tjin
- Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,Central Clinical School, The University of Sydney, NSW, Australia
| | - Jenny C Karlsson
- Lung Biology, Department of Experimental Medical Sciences, Medical Faculty, Lund University, Lund, Sweden
| | | |
Collapse
|
42
|
Schlabritz-Loutsevitch N, Apostolakis-Kyrus K, Krutilina R, Hubbard G, Kocak M, Janjetovic Z, Sathanandam S, Slominski AT, Mari G, Dick E. Pregnancy-driven cardiovascular maternal miR-29 plasticity in obesity. J Med Primatol 2016; 45:297-303. [PMID: 27627870 DOI: 10.1111/jmp.12236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2016] [Indexed: 12/01/2022]
Abstract
BACKGROUND Obesity in pregnancy (MO) is a risk factor for maternal and/or fetal cardiovascular system disorders. This study evaluated maternal CVS expression of microRNA-29 family and its target molecules in MO to test the hypotheses: CVS miR-29 concentrations are increased in pregnancy and decreased in MO. METHODS Non-pregnant (n=4), pregnant obese (POb, n=4), and pregnant non-obese (PnOb, n=4) baboons (Papio spp.) were studied. Maternal left ventricle (LV), left atrium (LA), and aortic arch (AA) were collected at the end of gestation. Expression of MiR-29 and elastin (ELN) mRNA were quantified. RESULTS LA miR-29 (a, c) expression was highest in PnOb. In the LV, miR-29b expression trended lower (P=.059) for PnOb animals. ELN mRNA expression correlated positively with miR-29b expression in AA (r=.76, P=.03). CONCLUSION Maternal obesity diminishes miR-29 adaptation to pregnancy. Pharmacologic, tissue-specific targeting of miRNA-29 may represent a strategy for prevention and treatment of MO complications.
Collapse
Affiliation(s)
- N Schlabritz-Loutsevitch
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin, Odessa, TX, USA
| | - K Apostolakis-Kyrus
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - R Krutilina
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - G Hubbard
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - M Kocak
- Division of Biostatistics and Epidemiology, Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Z Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S Sathanandam
- Division of Pediatric Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - A T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.,VA Medical Center, Birmingham AL, USA
| | - G Mari
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - E Dick
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
43
|
Gaggar A, Weathington N. Bioactive extracellular matrix fragments in lung health and disease. J Clin Invest 2016; 126:3176-84. [PMID: 27584731 DOI: 10.1172/jci83147] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM) is the noncellular component critical in the maintenance of organ structure and the regulation of tissue development, organ structure, and cellular signaling. The ECM is a dynamic entity that undergoes continuous degradation and resynthesis. In addition to compromising structure, degradation of the ECM can liberate bioactive fragments that cause cellular activation and chemotaxis of a variety of cells. These fragments are termed matrikines, and their cellular activities are sentinel in the development and progression of tissue injury seen in chronic lung disease. Here, we discuss the matrikines that are known to be active in lung biology and their roles in lung disease. We also consider the use of matrikines as disease markers and potential therapeutic targets in lung disease.
Collapse
|
44
|
Boucherat O, Morissette MC, Provencher S, Bonnet S, Maltais F. Bridging Lung Development with Chronic Obstructive Pulmonary Disease. Relevance of Developmental Pathways in Chronic Obstructive Pulmonary Disease Pathogenesis. Am J Respir Crit Care Med 2016; 193:362-75. [PMID: 26681127 DOI: 10.1164/rccm.201508-1518pp] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic airflow limitation. This generic term encompasses emphysema and chronic bronchitis, two common conditions, each having distinct but also overlapping features. Recent epidemiological and experimental studies have challenged the traditional view that COPD is exclusively an adult disease occurring after years of inhalational insults to the lungs, pinpointing abnormalities or disruption of the pathways that control lung development as an important susceptibility factor for adult COPD. In addition, there is growing evidence that emphysema is not solely a destructive process because it is also characterized by a failure in cell and molecular maintenance programs necessary for proper lung development. This leads to the concept that tissue regeneration required stimulation of signaling pathways that normally operate during development. We undertook a review of the literature to outline the contribution of developmental insults and genes in the occurrence and pathogenesis of COPD, respectively.
Collapse
Affiliation(s)
- Olivier Boucherat
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Mathieu C Morissette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Steeve Provencher
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Sébastien Bonnet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - François Maltais
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| |
Collapse
|
45
|
Benjamin JT, van der Meer R, Im AM, Plosa EJ, Zaynagetdinov R, Burman A, Havrilla ME, Gleaves LA, Polosukhin VV, Deutsch GH, Yanagisawa H, Davidson JM, Prince LS, Young LR, Blackwell TS. Epithelial-Derived Inflammation Disrupts Elastin Assembly and Alters Saccular Stage Lung Development. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1786-1800. [PMID: 27181406 DOI: 10.1016/j.ajpath.2016.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/22/2022]
Abstract
The highly orchestrated interactions between the epithelium and mesenchyme required for normal lung development can be disrupted by perinatal inflammation in preterm infants, although the mechanisms are incompletely understood. We used transgenic (inhibitory κB kinase β transactivated) mice that conditionally express an activator of the NF-κB pathway in airway epithelium to investigate the impact of epithelial-derived inflammation during lung development. Epithelial NF-κB activation selectively impaired saccular stage lung development, with a phenotype comprising rapidly progressive distal airspace dilation, impaired gas exchange, and perinatal lethality. Epithelial-derived inflammation resulted in disrupted elastic fiber organization and down-regulation of elastin assembly components, including fibulins 4 and 5, lysyl oxidase like-1, and fibrillin-1. Fibulin-5 expression by saccular stage lung fibroblasts was consistently inhibited by treatment with bronchoalveolar lavage fluid from inhibitory κB kinase β transactivated mice, Escherichia coli lipopolysaccharide, or tracheal aspirates from preterm infants exposed to chorioamnionitis. Expression of a dominant NF-κB inhibitor in fibroblasts restored fibulin-5 expression after lipopolysaccharide treatment, whereas reconstitution of fibulin-5 rescued extracellular elastin assembly by saccular stage lung fibroblasts. Elastin organization was disrupted in saccular stage lungs of preterm infants exposed to systemic inflammation. Our study reveals a critical window for elastin assembly during the saccular stage that is disrupted by inflammatory signaling and could be amenable to interventions that restore elastic fiber assembly in the developing lung.
Collapse
Affiliation(s)
- John T Benjamin
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Riet van der Meer
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Amanda M Im
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Erin J Plosa
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rinat Zaynagetdinov
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ankita Burman
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Madeline E Havrilla
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Linda A Gleaves
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vasiliy V Polosukhin
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gail H Deutsch
- Department of Pathology, Seattle Children's Hospital, Seattle, Washington
| | - Hiromi Yanagisawa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jeffrey M Davidson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lawrence S Prince
- Department of Pediatrics, Division of Neonatology, University of California-San Diego, San Diego, California
| | - Lisa R Young
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pediatrics, Division of Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Timothy S Blackwell
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee; Nashville Veterans Affairs Medical Center, Nashville, Tennessee
| |
Collapse
|
46
|
Brandsma CA, van den Berge M, Postma D, Timens W. Fibulin-5 as a potential therapeutic target in COPD. Expert Opin Ther Targets 2016; 20:1031-3. [PMID: 26962995 DOI: 10.1517/14728222.2016.1164696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Corry-Anke Brandsma
- a Department of Pathology and Medical Biology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands.,b Groningen Research Institute for Asthma and COPD (GRIAC) , Groningen , The Netherlands
| | - Maarten van den Berge
- b Groningen Research Institute for Asthma and COPD (GRIAC) , Groningen , The Netherlands.,c Department of Pulmonary Diseases , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Dirkje Postma
- b Groningen Research Institute for Asthma and COPD (GRIAC) , Groningen , The Netherlands.,c Department of Pulmonary Diseases , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Wim Timens
- a Department of Pathology and Medical Biology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands.,b Groningen Research Institute for Asthma and COPD (GRIAC) , Groningen , The Netherlands
| |
Collapse
|
47
|
Bidan CM, Veldsink AC, Meurs H, Gosens R. Airway and Extracellular Matrix Mechanics in COPD. Front Physiol 2015; 6:346. [PMID: 26696894 PMCID: PMC4667091 DOI: 10.3389/fphys.2015.00346] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/06/2015] [Indexed: 12/28/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases worldwide, and is characterized by airflow obstruction that is not fully reversible with treatment. Even though airflow obstruction is caused by airway smooth muscle contraction, the extent of airway narrowing depends on a range of other structural and functional determinants that impact on active and passive tissue mechanics. Cells and extracellular matrix in the airway and parenchymal compartments respond both passively and actively to the mechanical stimulation induced by smooth muscle contraction. In this review, we summarize the factors that regulate airway narrowing and provide insight into the relative contributions of different constituents of the extracellular matrix and their biomechanical impact on airway obstruction. We then review the changes in extracellular matrix composition in the airway and parenchymal compartments at different stages of COPD, and finally discuss how these changes impact airway narrowing and the development of airway hyperresponsiveness. Finally, we position these data in the context of therapeutic research focused on defective tissue repair. As a conclusion, we propose that future works should primarily target mild or early COPD, prior to the widespread structural changes in the alveolar compartment that are more characteristic of severe COPD.
Collapse
Affiliation(s)
- Cécile M Bidan
- Department of Molecular Pharmacology, University of Groningen Groningen, Netherlands ; Groningen Research Institute for Asthma and COPD, University of Groningen Netherlands ; Laboratoire Interdisciplinaire de Physique (LIPhy), Université Grenoble Alpes Grenoble, France ; Centre National de la Recherche Scientifique, LIPhy Grenoble, France
| | - Annemiek C Veldsink
- Department of Molecular Pharmacology, University of Groningen Groningen, Netherlands ; Groningen Research Institute for Asthma and COPD, University of Groningen Netherlands
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen Groningen, Netherlands ; Groningen Research Institute for Asthma and COPD, University of Groningen Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen Groningen, Netherlands ; Groningen Research Institute for Asthma and COPD, University of Groningen Netherlands
| |
Collapse
|
48
|
Pan JH, Adair-Kirk TL, Patel AC, Huang T, Yozamp NS, Xu J, Reddy EP, Byers DE, Pierce RA, Holtzman MJ, Brody SL. Myb permits multilineage airway epithelial cell differentiation. Stem Cells 2015; 32:3245-56. [PMID: 25103188 DOI: 10.1002/stem.1814] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 07/14/2014] [Indexed: 12/12/2022]
Abstract
The epithelium of the pulmonary airway is specially differentiated to provide defense against environmental insults, but also subject to dysregulated differentiation that results in lung disease. The current paradigm for airway epithelial differentiation is a one-step program whereby a p63(+) basal epithelial progenitor cell generates a ciliated or secretory cell lineage, but the cue for this transition and whether there are intermediate steps are poorly defined. Here, we identify transcription factor Myb as a key regulator that permits early multilineage differentiation of airway epithelial cells. Myb(+) cells were identified as p63(-) and therefore distinct from basal progenitor cells, but were still negative for markers of differentiation. Myb RNAi treatment of primary-culture airway epithelial cells and Myb gene deletion in mice resulted in a p63(-) population with failed maturation of Foxj1(+) ciliated cells as well as Scbg1a1(+) and Muc5ac(+) secretory cells. Consistent with these findings, analysis of whole genome expression of Myb-deficient cells identified Myb-dependent programs for ciliated and secretory cell differentiation. Myb(+) cells were rare in human airways but were increased in regions of ciliated cells and mucous cell hyperplasia in samples from subjects with chronic obstructive pulmonary disease. Together, the results show that a p63(-) Myb(+) population of airway epithelial cells represents a distinct intermediate stage of differentiation that is required under normal conditions and may be heightened in airway disease.
Collapse
Affiliation(s)
- Jie-Hong Pan
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Xu LL, Lu YT, Zhang J, Wu L, Merrilees MJ, Qu JM. Knockdown of versican 1 blocks cigarette-induced loss of insoluble elastin in human lung fibroblasts. Respir Physiol Neurobiol 2015; 215:58-63. [DOI: 10.1016/j.resp.2015.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/19/2015] [Accepted: 05/11/2015] [Indexed: 01/25/2023]
|
50
|
Kamei M, Miyajima A, Fujisawa M, Matsuoka Y, Hirota T. Effects of postnatal dexamethasone treatment on mRNA expression profiles of genes related to alveolar development in an emphysema model in mice. J Toxicol Sci 2015; 39:665-70. [PMID: 25056791 DOI: 10.2131/jts.39.665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Emphysema can be induced in animals by postnatal treatment with dexamethasone (Dex) and such models have been widely used for various research. However, it is not clear what are the effects of Dex on assembly of alveolar elastic fibers in the emphysema model in mice. This study compared the expression profile of genes related to alveolar development between Dex treated and control mice during the treatment from postnatal day 3 (P3) to P14 with a 2-day break. From morphological observation of lung sections on P42, we confirmed the induction of emphysema in the treated mice. The mRNA expression level of fibrillin-1, which consists of microfibrils as a scaffold to form elastic fibers, and fibulin-5, which is a key protein reinforcing the fibers, reached maximum on P7 in control mice. However, in the Dex group, expression levels both types of mRNA were much lower with no clear expression peak. On the other hand, mRNA expression of tropoelastin, the main component in elastic fibers, reached maximum on P5 in the Dex group, which was 9 days earlier than in the control group. At this time, the amount of microfibrils might not be enough for tropoelastin to be deposited completely in Dex treated mice. This imbalance in the expression of tropoelastin and microfibril might interfere with the efficient formation of elastic fibers.
Collapse
Affiliation(s)
- Midori Kamei
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | | | | | | |
Collapse
|