1
|
Butrous G. Pulmonary hypertension aetiologies in different parts of the world. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2025; 20:100586. [PMID: 40330318 PMCID: PMC12054017 DOI: 10.1016/j.ijcchd.2025.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Pulmonary hypertension is a serious condition characterised by elevated blood pressure in the pulmonary arteries, caused by various aetiologies and via different pathological processes. Over the past seventy years, our understanding and management of this disorder have greatly improved, resulting in increased diagnosis and effective clinical management. Current epidemiological estimates are challenged by the increased awareness of this condition and the changing definitions and classification systems. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has also shown temporal changes in the epidemiology of pulmonary hypertension over the last thirty years, contributing to regional variations in prevalence and incidence. This review explores the complexities of global and regional variations in different types of pulmonary hypertension reported through many registries, databases and regional studies. Although these tools can help estimate prevalence and incidences, they may also underestimate the actual number of cases due to the continuously changing understanding of the condition and increase awareness globally. Therefore, continued research, international collaboration, and standardised data collection are essential for achieving a more accurate global view of pulmonary hypertension and developing effective management strategies for this serious condition that significantly impacts general health.
Collapse
Affiliation(s)
- Ghazwan Butrous
- Cardiopulmonary Sciences, School of Pharmcy, University of Kent, Canterbury, CT2 7NZ, UK
- Pulmonary Vascular Research Institute, 5 Tanner Street, London, SE1 3LE, UK
| |
Collapse
|
2
|
Philip JL, Caneba CA, Caggiano LR, Prakash N, Cheng TC, Barlow KA, Mustafa T, Tabima DM, Hacker TA, Masters KS, Chesler NC. Hypoxia modulates human pulmonary arterial adventitial fibroblast phenotype through HIF-1α activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635152. [PMID: 39975245 PMCID: PMC11838261 DOI: 10.1101/2025.01.27.635152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hypoxic pulmonary hypertension (HPH) develops in association with diseases characterized by low oxygen levels leading to pulmonary artery (PA) narrowing and death. Hypoxia has been linked to increased PA collagen and changes in PA adventitial fibroblast (PAAF) metabolism. However, the mechanisms by which hypoxia regulates PAAF function are unknown. Hypoxia-inducible factor-1α (HIF-1α) is a subunit of a transcription factor that is degraded in normoxia but stabilized in hypoxia and is involved in extracellular matrix remodeling by fibroblasts. We examined the role of hypoxia and HIF-1α in regulating PAAF function. Human PAAF (HPAAF) were cultured in normoxic and hypoxic conditions. Cells were further treated with HIF1-α inhibitor or no drug. Protein expression, mRNA expression, enzyme activity, and metabolite concentration were examined. Male C57BL6/J mice were exposed to 0 or 10 days of hypoxia after which right ventricular hemodynamics and tissue metabolism were assessed. Hypoxia led to an increase in collagen content and decrease in matrix metalloproteinase-2 (MMP2) activity. HIF-1α inhibition limited collagen accumulation and restored MMP2 activity. HPAAF demonstrated elevated lactic acid concentration and decreased ATP in hypoxia. HIF-1α inhibition blunted these effects. Mice exposed to hypoxia developed significant elevation in right ventricle systolic pressures and had decreased ATP levels in pulmonary tissue. This study investigated the mechanisms by which hypoxia drives HPAAF-mediated collagen accumulation and metabolic changes. We identify the key role of HIF-1α in regulating changes. These findings provide important insights into understanding HPAAF-mediated PA remodeling and help identify possible novel therapeutic targets.
Collapse
|
3
|
Suri C, Pande B, Sahithi LS, Sahu T, Verma HK. Interplay between Lung Diseases and Viral Infections: A Comprehensive Review. Microorganisms 2024; 12:2030. [PMID: 39458339 PMCID: PMC11510474 DOI: 10.3390/microorganisms12102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/16/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The intricate relationship between chronic lung diseases and viral infections is a significant concern in respiratory medicine. We explore how pre-existing lung conditions, including chronic obstructive pulmonary disease, asthma, and interstitial lung diseases, influence susceptibility, severity, and outcomes of viral infections. We also examine how viral infections exacerbate and accelerate the progression of lung disease by disrupting immune responses and triggering inflammatory pathways. By summarizing current evidence, this review highlights the bidirectional nature of these interactions, where underlying lung diseasesincrease vulnerability to viral infections, while these infections, in turn, worsen the clinical course. This review underscores the importance of preventive measures, such as vaccination, early detection, and targeted therapies, to mitigate adverse outcomes in patients with chronic lung conditions. The insights provided aim to inform clinical strategies that can improve patient management and reduce the burden of chronic lung diseases exacerbated by viral infections.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India; (B.P.); (T.S.)
| | | | - Tarun Sahu
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India; (B.P.); (T.S.)
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
4
|
Blanco I, Torres-Castro R, Barberà JA. Pulmonary vascular disease in chronic lung diseases: cause or comorbidity? Curr Opin Pulm Med 2024; 30:437-443. [PMID: 38958570 DOI: 10.1097/mcp.0000000000001091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW To provide timely and relevant insights into the complex relationship between pulmonary vascular disease (PVD) and chronic lung disease (CLD), focusing on the causative and consequential dynamics between these conditions. RECENT FINDINGS There are shared pathogenic mechanisms between pulmonary arterial hypertension (PAH) and group 3 pulmonary hypertension, including altered expression of mediators and growth factors implicated in both conditions. Factors such as hypoxia, hypoxemia, and hypercapnia also contribute to pulmonary vascular remodelling and endothelial dysfunction. However, the role of hypoxia as the sole driver of pulmonary hypertension in CLD is being reconsidered, particularly in chronic obstructive pulmonary disease (COPD), with evidence suggesting a potential role for cigarette smoke products in initiating pulmonary vascular impairment. On the other hand, interstitial lung disease (ILD) encompasses a group of heterogeneous lung disorders characterized by inflammation and fibrosis of the interstitium, leading to impaired gas exchange and progressive respiratory decline, which could also play a role as a cause of pulmonary hypertension. SUMMARY Understanding the intricate interplay between the pulmonary vascular compartment and the parenchymal and airway compartments in respiratory disease is crucial for developing effective diagnostic and therapeutic strategies for patients with PVD and CLD, with implications for both clinical practice and research.
Collapse
Affiliation(s)
- Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic, University of Barcelona
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES); Madrid, Spain
| | - Rodrigo Torres-Castro
- Department of Pulmonary Medicine, Hospital Clínic, University of Barcelona
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona
- Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic, University of Barcelona
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES); Madrid, Spain
| |
Collapse
|
5
|
Xinliang Z, Achkasov EE, Gavrikov LK, Yuchen L, Zhang C, Dudnik EN, Rumyantseva O, Beeraka NM, Glazachev OS. Assessing the importance and safety of hypoxia conditioning for patients with occupational pulmonary diseases: A recent clinical perspective. Biomed Pharmacother 2024; 178:117275. [PMID: 39126774 DOI: 10.1016/j.biopha.2024.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Occupational pulmonary diseases (OPDs) pose a significant global health challenge, contributing to high mortality rates. This review delves into the pathophysiology of hypoxia and the safety of intermittent hypoxic conditioning (IHC) in OPD patients. By examining sources such as PubMed, Relemed, NLM, Scopus, and Google Scholar, the review evaluates the efficacy of IHC in clinical outcomes for OPD patients. It highlights the complexities of cardiovascular and respiratory regulation dysfunctions in OPDs, focusing on respiratory control abnormalities and the impact of intermittent hypoxic exposures. Key areas include the physiological effects of hypoxia, the role of hypoxia-inducible factor-1 alpha (HIF-1α) in occupational lung diseases, and the links between brain ischemia, stroke, and OPDs. The review also explores the interaction between intermittent hypoxic exposures, mitochondrial energetics, and lung physiology. The potential of IHE to improve clinical manifestations and underlying pathophysiology in OPD patients is thoroughly examined. This comprehensive analysis aims to benefit molecular pathologists, pulmonologists, clinicians, and physicians by enhancing understanding of IHE's clinical benefits, from research to patient care, and improving clinical outcomes for OPD patients.
Collapse
Affiliation(s)
- Zhang Xinliang
- Chair of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Eugeny E Achkasov
- Chair of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Leonid K Gavrikov
- Volgograd State Medical University, 1, Pavshikh Bortsov Sq., Volgograd 400131, Russia.
| | - Li Yuchen
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Chen Zhang
- Chair of Epidemiology and Modern Technologies of Vaccination, Institute of Professional Education, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia
| | - Elena N Dudnik
- Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Olga Rumyantseva
- Izmerov Research Institute of Occupational Health, 31 Budeynniy Avenye, Moscow 105275, Russia.
| | - Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA; Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu, Andhra Pradesh 515721, India.
| | - Oleg S Glazachev
- Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| |
Collapse
|
6
|
Stoleriu MG, Pienn M, Joerres RA, Alter P, Fero T, Urschler M, Kovacs G, Olschewski H, Kauczor HU, Wielpütz M, Jobst B, Welte T, Behr J, Trudzinski FC, Bals R, Watz H, Vogelmeier CF, Biederer J, Kahnert K. Expiratory Venous Volume and Arterial Tortuosity are Associated with Disease Severity and Mortality Risk in Patients with COPD: Results from COSYCONET. Int J Chron Obstruct Pulmon Dis 2024; 19:1515-1529. [PMID: 38974817 PMCID: PMC11227296 DOI: 10.2147/copd.s458905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose The aim of this study was to evaluate the association between computed tomography (CT) quantitative pulmonary vessel morphology and lung function, disease severity, and mortality risk in patients with chronic obstructive pulmonary disease (COPD). Patients and Methods Participants of the prospective nationwide COSYCONET cohort study with paired inspiratory-expiratory CT were included. Fully automatic software, developed in-house, segmented arterial and venous pulmonary vessels and quantified volume and tortuosity on inspiratory and expiratory scans. The association between vessel volume normalised to lung volume and tortuosity versus lung function (forced expiratory volume in 1 sec [FEV1]), air trapping (residual volume to total lung capacity ratio [RV/TLC]), transfer factor for carbon monoxide (TLCO), disease severity in terms of Global Initiative for Chronic Obstructive Lung Disease (GOLD) group D, and mortality were analysed by linear, logistic or Cox proportional hazard regression. Results Complete data were available from 138 patients (39% female, mean age 65 years). FEV1, RV/TLC and TLCO, all as % predicted, were significantly (p < 0.05 each) associated with expiratory vessel characteristics, predominantly venous volume and arterial tortuosity. Associations with inspiratory vessel characteristics were absent or negligible. The patterns were similar for relationships between GOLD D and mortality with vessel characteristics. Expiratory venous volume was an independent predictor of mortality, in addition to FEV1. Conclusion By using automated software in patients with COPD, clinically relevant information on pulmonary vasculature can be extracted from expiratory CT scans (although not inspiratory scans); in particular, expiratory pulmonary venous volume predicted mortality. Trial Registration NCT01245933.
Collapse
Affiliation(s)
- Mircea Gabriel Stoleriu
- Division for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Medical Center; Munich-Gauting, Gauting, 82131, Germany
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive; Helmholtz Center Munich; Member of the German Lung Research Center (DZL), Munich, 81377, Germany
| | - Michael Pienn
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Rudolf A Joerres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Hospital of Ludwig-Maximilians-University Munich (LMU), Munich, 80336, Germany
| | - Peter Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, 35033, Germany
| | - Tamas Fero
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Urschler
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- University Clinic for Internal Medicine, Medical University of Graz, Division of Pulmonology, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- University Clinic for Internal Medicine, Medical University of Graz, Division of Pulmonology, Graz, Austria
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research DZL, Heidelberg, Germany
| | - Mark Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research DZL, Heidelberg, Germany
| | - Bertram Jobst
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research DZL, Heidelberg, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Disease, Member of the German Center of Lung Research, Hannover School of Medicine, Hannover, Germany
| | - Jürgen Behr
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive; Helmholtz Center Munich; Member of the German Lung Research Center (DZL), Munich, 81377, Germany
- Department of Medicine V, LMU University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Franziska C Trudzinski
- Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research DZL, Heidelberg, Germany
- Department of Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, 66421, Germany
- Helmholtz Institute for Pharmaceutical Research, Saarbrücken, 66123, Germany
| | - Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Centre North, German Centre for Lung Research, Großhansdorf, Germany
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, 35033, Germany
| | - Jürgen Biederer
- Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research DZL, Heidelberg, Germany
- Faculty of Medicine, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany
- University of Latvia, Faculty of Medicine, Riga, LV-1586, Latvia
| | - Kathrin Kahnert
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive; Helmholtz Center Munich; Member of the German Lung Research Center (DZL), Munich, 81377, Germany
- Department of Medicine V, LMU University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- MediCenterGermering, Germering, Germany
| |
Collapse
|
7
|
Henry JP, Carlier F, Higny J, Benoit M, Xhaët O, Blommaert D, Telbis AM, Robaye B, Gabriel L, Guedes A, Michaux I, Demeure F, Luchian ML. Impact of Pre-Transplant Left Ventricular Diastolic Pressure on Primary Graft Dysfunction after Lung Transplantation: A Narrative Review. Diagnostics (Basel) 2024; 14:1340. [PMID: 39001230 PMCID: PMC11240543 DOI: 10.3390/diagnostics14131340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Lung transplantation (LT) constitutes the last therapeutic option for selected patients with end-stage respiratory disease. Primary graft dysfunction (PGD) is a form of severe lung injury, occurring in the first 72 h following LT and constitutes the most common cause of early death after LT. The presence of pulmonary hypertension (PH) has been reported to favor PGD development, with a negative impact on patients' outcomes while complicating medical management. Although several studies have suggested a potential association between pre-LT left ventricular diastolic dysfunction (LVDD) and PGD occurrence, the underlying mechanisms of such an association remain elusive. Importantly, the heterogeneity of the study protocols and the various inclusion criteria used to define the diastolic dysfunction in those patients prevents solid conclusions from being drawn. In this review, we aim at summarizing PGD mechanisms, risk factors, and diagnostic criteria, with a further focus on the interplay between LVDD and PGD development. Finally, we explore the predictive value of several diastolic dysfunction diagnostic parameters to predict PGD occurrence and severity.
Collapse
Affiliation(s)
- Jean Philippe Henry
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| | - François Carlier
- Department of Pneumology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium;
| | - Julien Higny
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| | - Martin Benoit
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| | - Olivier Xhaët
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| | - Dominique Blommaert
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| | - Alin-Mihail Telbis
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| | - Benoit Robaye
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| | - Laurence Gabriel
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| | - Antoine Guedes
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| | - Isabelle Michaux
- Department of Intensive Care, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium;
| | - Fabian Demeure
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| | - Maria-Luiza Luchian
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| |
Collapse
|
8
|
Hu T, Mu C, Li Y, Hao W, Yu X, Wang Y, Han W, Li Q. GPS2 ameliorates cigarette smoking-induced pulmonary vascular remodeling by modulating the ras-Raf-ERK axis. Respir Res 2024; 25:210. [PMID: 38755610 PMCID: PMC11100185 DOI: 10.1186/s12931-024-02831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Mitogen-activated protein kinase (MAPK)signaling-mediated smoking-associated pulmonary vascular remodeling (PVR) plays an important role in the pathogenesis of group 3 pulmonary hypertension (PH). And G protein pathway suppressor 2 (GPS2) could suppress G-protein signaling such as Ras and MAPK, but its role in cigarette smoking -induced PVR (CS-PVR) is unclear. METHODS An in vivo model of smoke-exposed rats was constructed to assess the role of GPS2 in smoking-induced PH and PVR. In vitro, the effects of GPS2 overexpression and silencing on the function of human pulmonary arterial smooth cells (HPASMCs) and the underlying mechanisms were explored. RESULTS GPS2 expression was downregulated in rat pulmonary arteries (PAs) and HPASMCs after CS exposure. More importantly, CS-exposed rats with GPS2 overexpression had lower right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), and wall thickness (WT%) than those without. And enhanced proliferation and migration of HPASMCs induced by cigarette smoking extract (CSE) can be evidently inhibited by overexpressed GPS2. Besides, GPS2siRNA significantly enhanced the proliferation, and migration of HPASMCs as well as activated Ras and Raf/ERK signaling, while these effects were inhibited by zoledronic acid (ZOL). In addition, GPS2 promoter methylation level in rat PAs and HPASMCs was increased after CS exposure, and 5-aza-2-deoxycytidine (5-aza) inhibited CSE-induced GPS2 hypermethylation and downregulation in vitro. CONCLUSIONS GPS2 overexpression could improve the CS-PVR, suggesting that GPS2 might serve as a novel therapeutic target for PH-COPD in the future.
Collapse
Affiliation(s)
- Ting Hu
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China
| | - Chaohui Mu
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China
| | - Yanmiao Li
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China
| | - Wanming Hao
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China
| | - Xinjuan Yu
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China
| | - Yixuan Wang
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China
| | - Wei Han
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China.
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China.
| | - Qinghai Li
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China.
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 5 Donghai Middle Road, Qingdao, 266071, China.
| |
Collapse
|
9
|
Aguirre-Franco C, Torres-Duque CA, Salazar G, Casas A, Jaramillo C, Gonzalez-Garcia M. Prevalence of pulmonary hypertension in COPD patients living at high altitude. Pulmonology 2024; 30:247-253. [PMID: 35151623 DOI: 10.1016/j.pulmoe.2021.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is associated with poor prognosis for patients with chronic obstructive pulmonary disease (COPD). Most of the knowledge about PH in COPD has been generated at sea level, with limited information associated with high altitude (HA). OBJECTIVES To assess the prevalence and severity of PH in COPD patients living in a HA city (2,640 m). METHODS Cross-sectional study in COPD patients with forced expiratory volume in the first second / forced vital capacity ratio (FEV1/FVC) post-bronchodilator <0,7. Transthoracic echocardiography (TTE), spirometry, carbon monoxide diffusing capacity, and arterial blood gasses tests were performed. Patients were classified according to the severity of airflow limitation. PH was defined by TTE as an estimated systolic pulmonary artery pressure (sPAP) > 36 mmHg or indirect PH signs; severe PH as sPAP > 60 mmHg; and disproportionate PH as an sPAP > 60 mmHg with non-severe airflow limitation (FEV1 > 50% predicted). RESULTS We included 176 COPD patients. The overall estimated prevalence of PH was 56.3% and the likelihood of having PH increased according to airflow-limitation severity: mild (31.6%), moderate (54.9%), severe (59.6%) and very severe (77.8%) (p = 0.038). The PH was severe in 7.3% and disproportionate in 3.4% of patients. CONCLUSIONS The estimated prevalence of PH in patients with COPD at HA is high, particularly in patients with mild to moderate airflow limitation, and greater than that described for COPD patients at low altitude. These results suggest a higher risk of developing PH for COPD patients living at HA compared to COPD patients with similar airflow limitation living at low altitude.
Collapse
Affiliation(s)
- C Aguirre-Franco
- Fundación Neumológica Colombiana. Bogotá, Colombia; Universidad de La Sabana. Chía, Colombia.
| | - C A Torres-Duque
- Fundación Neumológica Colombiana. Bogotá, Colombia; Universidad de La Sabana. Chía, Colombia
| | - G Salazar
- Fundación Cardioinfantil - Instituto de Cardiología. Bogotá, Colombia
| | - A Casas
- Fundación Neumológica Colombiana. Bogotá, Colombia; Universidad de La Sabana. Chía, Colombia
| | - C Jaramillo
- Universidad de La Sabana. Chía, Colombia; Fundación Clínica Shaio. Bogotá, Colombia
| | - M Gonzalez-Garcia
- Fundación Neumológica Colombiana. Bogotá, Colombia; Universidad de La Sabana. Chía, Colombia
| |
Collapse
|
10
|
Delrue C, Speeckaert R, Delanghe JR, Speeckaert MM. Breath of fresh air: Investigating the link between AGEs, sRAGE, and lung diseases. VITAMINS AND HORMONES 2024; 125:311-365. [PMID: 38997169 DOI: 10.1016/bs.vh.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are compounds formed via non-enzymatic reactions between reducing sugars and amino acids or proteins. AGEs can accumulate in various tissues and organs and have been implicated in the development and progression of various diseases, including lung diseases. The receptor of advanced glycation end products (RAGE) is a receptor that can bind to advanced AGEs and induce several cellular processes such as inflammation and oxidative stress. Several studies have shown that both AGEs and RAGE play a role in the pathogenesis of lung diseases, such as chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, cystic fibrosis, and acute lung injury. Moreover, the soluble form of the receptor for advanced glycation end products (sRAGE) has demonstrated its ability to function as a decoy receptor, possessing beneficial characteristics such as anti-inflammatory, antioxidant, and anti-fibrotic properties. These qualities make it an encouraging focus for therapeutic intervention in managing pulmonary disorders. This review highlights the current understanding of the roles of AGEs and (s)RAGE in pulmonary diseases and their potential as biomarkers and therapeutic targets for preventing and treating these pathologies.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | | | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium.
| |
Collapse
|
11
|
Blanco I, Hernández-González F, García A, Torres-Castro R, Barberà JA. Management of Pulmonary Hypertension Associated with Chronic Lung Disease. Semin Respir Crit Care Med 2023; 44:826-839. [PMID: 37487524 DOI: 10.1055/s-0043-1770121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Pulmonary hypertension (PH) is a common complication of chronic lung diseases, particularly in chronic obstructive pulmonary disease (COPD) and interstitial lung diseases (ILD) and especially in advanced disease. It is associated with greater mortality and worse clinical course. Given the high prevalence of some respiratory disorders and because lung parenchymal abnormalities might be present in other PH groups, the appropriate diagnosis of PH associated with respiratory disease represents a clinical challenge. Patients with chronic lung disease presenting symptoms that exceed those expected by the pulmonary disease should be further evaluated by echocardiography. Confirmatory right heart catheterization is indicated in candidates to surgical treatments, suspected severe PH potentially amenable with targeted therapy, and, in general, in those conditions where the result of the hemodynamic assessment will determine treatment options. The treatment of choice for these patients who are hypoxemic is long-term oxygen therapy and pulmonary rehabilitation to improve symptoms. Lung transplant is the only curative therapy and can be considered in appropriate cases. Conventional vasodilators or drugs approved for pulmonary arterial hypertension (PAH) are not recommended in patients with mild-to-moderate PH because they may impair gas exchange and their lack of efficacy shown in randomized controlled trials. Patients with severe PH (as defined by pulmonary vascular resistance >5 Wood units) should be referred to a center with expertise in PH and lung diseases and ideally included in randomized controlled trials. Targeted PAH therapy might be considered in this subset of patients, with careful monitoring of gas exchange. In patients with ILD, inhaled treprostinil has been shown to improve functional ability and to delay clinical worsening.
Collapse
Affiliation(s)
- Isabel Blanco
- Department of Pulmonary Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic-University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Spain
| | - Fernanda Hernández-González
- Department of Pulmonary Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic-University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Spain
| | - Agustín García
- Department of Pulmonary Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic-University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Spain
| | - Rodrigo Torres-Castro
- Department of Pulmonary Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic-University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Spain
| | - Joan A Barberà
- Department of Pulmonary Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic-University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- European Reference Network on Rare Pulmonary Diseases (ERN-LUNG), Spain
| |
Collapse
|
12
|
Weiss T, Near AM, Zhao X, Ramey DR, Banerji T, Xie H, Nathan SD. Healthcare resource utilization in patients with pulmonary hypertension associated with chronic obstructive pulmonary disease (PH-COPD): a real-world data analysis. BMC Pulm Med 2023; 23:455. [PMID: 37990203 PMCID: PMC10664271 DOI: 10.1186/s12890-023-02698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/06/2023] [Indexed: 11/23/2023] Open
Abstract
RATIONALE There is a lack of real-world characterization of healthcare costs and associated cost drivers in patients with pulmonary hypertension secondary to chronic obstructive pulmonary disease (PH-COPD). OBJECTIVES To examine (1) excess healthcare resource utilization (HCRU) and associated costs in patients with PH-COPD compared to COPD patients without PH; and (2) patient characteristics that are associated with higher healthcare costs in patients with PH-COPD. METHODS This study analyzed data from the IQVIA PharMetrics® Plus database (OCT2014-MAY2020). Patients with PH-COPD were identified by a claims-based algorithm based on PH diagnosis (ICD-10-CM: I27.0, I27.2, I27.20, I27.21, I27.23) after COPD diagnosis. Patients aged ≥40 years and with data available ≥12 months before (baseline) and ≥6 months after (follow-up) the first observed PH diagnosis were included. Patients with other non-asthma chronic pulmonary diseases, PH associated with other causes, cancer, left-sided heart failure (HF), PH before the first observed COPD diagnosis, or right-sided/unspecified HF during baseline were excluded. Patients in the PH-COPD cohort were matched 1:1 to COPD patients without PH based on propensity scores derived from baseline patient characteristics. Annualized all-cause and COPD/PH-related (indicated by a primary diagnosis of COPD or PH) HCRU and costs during follow-up were compared between the matched cohorts. Baseline patient characteristics associated with higher total costs were examined in a generalized linear model in the PH-COPD cohort. RESULTS A total of 2,224 patients with PH-COPD were identified and matched to COPD patients without PH. Patients with PH-COPD had higher all-cause HCRU and annual healthcare costs ($51,435 vs. $18,412, p<0.001) than matched COPD patients without PH. Among patients with PH-COPD, costs were primarily driven by hospitalizations (57%), while COPD/PH-related costs accounted for 13% of all-cause costs. Having a higher comorbidity burden and a prior history of COPD exacerbation were major risk factors for higher total all-cause costs among patients with PH-COPD. CONCLUSIONS Treatment strategies focusing on preventing hospitalizations and managing comorbidities may help reduce the burden of PH-COPD.
Collapse
Affiliation(s)
- Tracey Weiss
- Center for Observational and Real-World Evidence, Merck & Co., Inc, 351 N Sumneytown Pike, PA, North Wales, 19454, USA.
| | | | | | - Dena Rosen Ramey
- Center for Observational and Real-World Evidence, Merck & Co., Inc, 351 N Sumneytown Pike, PA, North Wales, 19454, USA
| | | | | | - Steven D Nathan
- Advanced Lung Disease and Lung Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| |
Collapse
|
13
|
Alqarni AA, Aldhahir AM, Alghamdi SA, Alqahtani JS, Siraj RA, Alwafi H, AlGarni AA, Majrshi MS, Alshehri SM, Pang L. Role of prostanoids, nitric oxide and endothelin pathways in pulmonary hypertension due to COPD. Front Med (Lausanne) 2023; 10:1275684. [PMID: 37881627 PMCID: PMC10597708 DOI: 10.3389/fmed.2023.1275684] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
Pulmonary hypertension (PH) due to chronic obstructive pulmonary disease (COPD) is classified as Group 3 PH, with no current proven targeted therapies. Studies suggest that cigarette smoke, the most risk factor for COPD can cause vascular remodelling and eventually PH as a result of dysfunction and proliferation of pulmonary artery smooth muscle cells (PASMCs) and pulmonary artery endothelial cells (PAECs). In addition, hypoxia is a known driver of pulmonary vascular remodelling in COPD, and it is also thought that the presence of hypoxia in patients with COPD may further exaggerate cigarette smoke-induced vascular remodelling; however, the underlying cause is not fully understood. Three main pathways (prostanoids, nitric oxide and endothelin) are currently used as a therapeutic target for the treatment of patients with different groups of PH. However, drugs targeting these three pathways are not approved for patients with COPD-associated PH due to lack of evidence. Thus, this review aims to shed light on the role of impaired prostanoids, nitric oxide and endothelin pathways in cigarette smoke- and hypoxia-induced pulmonary vascular remodelling and also discusses the potential of using these pathways as therapeutic target for patients with PH secondary to COPD.
Collapse
Affiliation(s)
- Abdullah A. Alqarni
- Department of Respiratory Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Respiratory Therapy Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Abdulelah M. Aldhahir
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sara A. Alghamdi
- Respiratory Care Department, Al Murjan Hospital, Jeddah, Saudi Arabia
| | - Jaber S. Alqahtani
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Rayan A. Siraj
- Department of Respiratory Care, College of Applied Medical Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Hassan Alwafi
- Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Abdulkareem A. AlGarni
- King Abdulaziz Hospital, The Ministry of National Guard Health Affairs, Al Ahsa, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, College of Applied Medical Sciences, Al Ahsa, Saudi Arabia
| | - Mansour S. Majrshi
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Saad M. Alshehri
- Department of Respiratory Therapy, King Fahad General Hospital, Jeddah, Saudi Arabia
| | - Linhua Pang
- Respiratory Medicine Research Group, Academic Unit for Translational Medical Sciences, University of Nottingham School of Medicine, Nottingham, United Kingdom
| |
Collapse
|
14
|
Shaver S, Bailey C, Jain A. Spontaneous Hemorrhage of the Distal Segment of the Left Pulmonary Artery After Cardiopulmonary Bypass. J Cardiothorac Vasc Anesth 2023; 37:457-460. [PMID: 36517334 DOI: 10.1053/j.jvca.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Shanthi Shaver
- Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia at Augusta University, Augusta, GA
| | - Caryl Bailey
- Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia at Augusta University, Augusta, GA
| | - Ankit Jain
- Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia at Augusta University, Augusta, GA.
| |
Collapse
|
15
|
Armentaro G, Pelaia C, Cassano V, Miceli S, Maio R, Perticone M, Pastori D, Pignatelli P, Andreozzi F, Violi F, Sesti G, Sciacqua A. Association between right ventricular dysfunction and adverse cardiac events in mild COPD patients. Eur J Clin Invest 2023; 53:e13887. [PMID: 36203411 PMCID: PMC10078135 DOI: 10.1111/eci.13887] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/05/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Lung hyperinflation and systemic inflammation are currently believed to be the most important causes of right heart alterations in chronic obstructive pulmonary disease (COPD) patients. A multicentre observational study was performed to assess the morphological and functional parameters of right ventricle (RV) in COPD subjects, as well as to evaluate the potential prognostic impact on the development of major cardiovascular adverse events (MACEs). METHODS For this retrospective study, from 1 January 2010 to 31 December 2021, we enrolled COPD patients on the basis of their airflow limitation. In particular, we selected subjects spanning across GOLD 1 and 2 functional stages. Clinical, laboratory and functional parameters were collected at baseline. Echocardiography was routinely performed in all COPD patients. RV dysfunction was defined on the basis of tricuspid annular plane systolic excursion (TAPSE) values. MACE occurrence (non-fatal ischemic stroke, non-fatal myocardial infarction, cardiac revascularization or coronary bypass surgery and cardiovascular death) was evaluated during a median follow-up of 55 (36-72) months. RESULTS Among the 749 enrolled patients, 408 subjects had a TAPSE value ≥20 mm, while the remaining 341 had a TAPSE value <20 mm. In patients with TAPSE ≥20 mm the observed MACEs were 1.9 events/100 patient-year, while in the group with a worse right heart function there were 4.2 events/100 patient-year (p < .0001). The multivariate analysis model confirmed the association between RV dysfunction and MACE. Indeed, a 1-mm increase in TAPSE value and the intake of long-acting β2 -receptor agonists (LABA)/long-acting muscarinic antagonist (LAMA) inhaled therapy were protective factors for the onset of MACE, while the presence of diabetes mellitus and high values of both uric acid (UA) and systolic pulmonary arterial pressure (S-PAP) enhanced the risk of MACE in study participants. CONCLUSIONS The results of this study showed that in patients with mild COPD there is an association between right heart dysfunction and the risk of MACE during follow-up.
Collapse
Affiliation(s)
- Giuseppe Armentaro
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Corrado Pelaia
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Velia Cassano
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Sofia Miceli
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Raffaele Maio
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Maria Perticone
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Daniele Pastori
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Francesco Violi
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| |
Collapse
|
16
|
Alqarni AA. Increased Thromboxane A 2 Levels in Pulmonary Artery Smooth Muscle Cells Isolated from Patients with Chronic Obstructive Pulmonary Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:165. [PMID: 36676790 PMCID: PMC9861639 DOI: 10.3390/medicina59010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Introduction: Pulmonary hypertension due to chronic obstructive pulmonary disease (COPD) is classified as Group 3 pulmonary hypertension, with no current proven targeted therapies. It has been shown that cigarette smoke, the main risk factor for COPD, can increase thromboxane A2 production in healthy human pulmonary artery smooth muscle cells and pulmonary artery endothelial cells, and that blocking the effect of increased thromboxane A2 using daltroban, a thromboxane A2 receptor antagonist, can inhibit cigarette smoke-induced pulmonary artery cell proliferation. However, it is largely unknown whether thromboxane A2 is increased in smokers with COPD. Therefore, the aim of this study was to assess the level of thromboxane A2 production in patients with COPD who smoke. Methods: Pulmonary artery smooth muscle cells from three smokers with COPD and three healthy donors were cultured in cell culture medium. The culture medium was collected and the thromboxane B2 (a stable metabolite of thromboxane A2) released in the culture medium was quantified using an ELISA kit. The data were normalised with the total protein concentration and then expressed in pg/mg protein. Demographic data were collected and baseline pulmonary function tests of patients with COPD were conducted. Results: The mean age of patients with COPD was 69 ± 7 years. All patients were smokers and had a mean smoking history of 39.66 ± 9.50 packs per year. The mean forced expiratory volume in one second, that is, FEV1%, and the ratio of forced vital capacity (FVC) to FEV1% of COPD patients were 63.33 ± 19.60% and 52.66 ± 14.64%, respectively. The results revealed that thromboxane A2 production was significantly increased in pulmonary artery smooth muscle cells from smokers with COPD (434.56 ± 82.88 pg/mg protein) compared with the thromboxane A2 levels in pulmonary artery smooth muscle cells from healthy donors (160 ± 59.3 pg/mg protein). Conclusions: This is the first report of increased thromboxane A2 production in pulmonary artery smooth muscle cells from smokers with COPD. This observation strongly suggests that thromboxane A2 can be used as a novel therapeutic target for the treatment of patients with COPD-associated pulmonary hypertension.
Collapse
Affiliation(s)
- Abdullah A Alqarni
- Department of Respiratory Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah 22230, Saudi Arabia
| |
Collapse
|
17
|
Wu J, Huang Q, Li Q, Gu Y, Zhan Y, Wang T, Chen J, Zeng Z, Lv Y, Zhao J, Xia J, Xie J. Increased Methyl-CpG-Binding Domain Protein 2 Promotes Cigarette Smoke-Induced Pulmonary Hypertension. Front Oncol 2022; 12:879793. [PMID: 35785161 PMCID: PMC9243313 DOI: 10.3389/fonc.2022.879793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary hypertension (PH) is a chronic vascular proliferative disorder. While cigarette smoke (CS) plays a vital part in PH related to chronic obstructive pulmonary disease (COPD). Methyl-CpG-Binding Domain Protein 2 (MBD2) has been linked to multiple proliferative diseases. However, the specific mechanisms of MBD2 in CS-induced PH remain to be elucidated. Herein, the differential expression of MBD2 was tested between the controls and the PH patients’ pulmonary arteries, CS-exposed rat models’ pulmonary arteries, and primary human pulmonary artery smooth muscle cells (HPASMCs) following cigarette smoke extract (CSE) stimulation. As a result, PH patients and CS-induced rats and HPASMCs showed an increase in MBD2 protein expression compared with the controls. Then, MBD2 silencing was used to investigate the function of MBD2 on CSE-induced HPASMCs’ proliferation, migration, and cell cycle progression. As a consequence, CSE could induce HPASMCs’ increased proliferation and migration, and cell cycle transition, which were suppressed by MBD2 interference. Furthermore, RNA-seq, ChIP-qPCR, and MassARRAY were conducted to find out the downstream mechanisms of MBD2 for CS-induced pulmonary vascular remodeling. Subsequently, RNA-seq revealed MBD2 might affect the transcription of BMP2 gene, which furtherly altered the expression of BMP2 protein. ChIP-qPCR demonstrated MBD2 could bind BMP2’s promotor. MassARRAY indicated that MBD2 itself could not directly affect DNA methylation. In sum, our results indicate that increased MBD2 expression promotes CS-induced pulmonary vascular remodeling. The fundamental mechanisms may be that MBD2 can bind BMP2’s promoter and downregulate its expression. Thus, MBD2 may promote the occurrence of the CS-induced PH.
Collapse
Affiliation(s)
- Jixing Wu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinghai Li
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinkun Chen
- Department of Science, Western University, London, ON, Canada
| | - Zhilin Zeng
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Xia
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jungang Xie, ; Jie Xia,
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jungang Xie, ; Jie Xia,
| |
Collapse
|
18
|
Luca E, Bodrug N. The frequency of pulmonary hypertension in chronic obstructive pulmonary disease of geriatric patients: a narrative literature review. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2022. [DOI: 10.1186/s43162-022-00135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Pulmonary hypertension (PH) is a serious complication with complex pathogenesis in the natural history of chronic obstructive pulmonary disease COPD, with a progressively increasing frequency with a meanwhile decreasing in functional capacity.
Purpose
Assessment of the incidence, pathogenesis, peculiarities, and complications of PH in COPD in geriatric population worldwide.
Methods
We performed an analysis of randomized, retrospective, and prospective clinical, case-control and observational studies, published at the international level, according to the subject studied and target population. Four hundred ninety-seven full articles were identified after the search through engine Google Search and databases PubMed, Hinari, SpringerLink, and Scopus (Elsevier) according to the keywords and subsequent filters.
Results
Depending on various factors, like the population examined, the definition used for mPAP (mPAP> 20 mm Hg or ≥25 mm Hg), the severity of the lung disease, and the method of measuring PAP, a varied incidence of COPD patients with PH complication was discovered, namely 10–91%. PH prevalence increases with the COPD severity. The presence of PH is associated with acute exacerbations of COPD, reduced survival, and increasing expenses for healthcare programs. Mild to moderate levels of PH (mPAP 25–34 mm Hg) are relatively common in COPD and usually are associated with severe airflow obstruction or parenchymal destruction. Only a minority of patients (1–5%) have severe PH (mPAP ≥35 mm Hg).
Conclusions
Diagnosis of PH in COPD is difficult, especially in a mild form, and requires a clinical approach associated with a comprehensive set of investigations for confirming the etiology, evaluation of the functional and hemodynamical impairment severity, and important factors in the appropriate treatment election.
Collapse
|
19
|
Qin X, Gao A, Hou X, Xu X, Chen L, Sun L, Hao Y, Shi Y. Connexins may play a critical role in cigarette smoke-induced pulmonary hypertension. Arch Toxicol 2022; 96:1609-1621. [PMID: 35344070 DOI: 10.1007/s00204-022-03274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 11/02/2022]
Abstract
Pulmonary hypertension (PH) is a chronic progressive disease characterized by pulmonary vasoconstriction and remodeling. It causes a gradual increase in pulmonary vascular resistance leading to right-sided heart failure, and may be fatal. Chronic exposure to cigarette smoke (CS) is an essential risk factor for PH group 3; however, smoking continues to be prevalent and smoking cessation is reported to be difficult. A majority of smokers exhibit PH, which leads to a concomitant increase in the risk of mortality. The current treatments for PH group 3 focus on vasodilation and long-term oxygen supplementation, and fail to stop or reverse PH-associated continuous vascular remodeling. Recent studies have suggested that pulmonary vascular endothelial dysfunction induced by CS exposure may be an initial event in the natural history of PH, which in turn may be associated with abnormal alterations in connexin (Cx) expression. The relationship between Cx and CS-induced PH development has not yet been directly investigated. Therefore, this review will describe the roles of CS and Cx in the development of PH and discuss the related downstream pathways. We also discuss the possible role of Cx in CS-induced PH. It is hoped that this review may provide new perspectives for early intervention.
Collapse
Affiliation(s)
- Xiaojiang Qin
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.
- China Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.
| | - Anqi Gao
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
- China Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Xinrong Xu
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Liangjin Chen
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Lin Sun
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Yuxuan Hao
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Yiwei Shi
- Department of Respiratory and Critical Care Medicine, Shanxi Medical University Affiliated First Hospital, 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
20
|
Alqarni AA, Brand OJ, Pasini A, Alahmari M, Alghamdi A, Pang L. Imbalanced prostanoid release mediates cigarette smoke-induced human pulmonary artery cell proliferation. Respir Res 2022; 23:136. [PMID: 35643499 PMCID: PMC9145181 DOI: 10.1186/s12931-022-02056-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Pulmonary hypertension is a common and serious complication of chronic obstructive pulmonary disease (COPD). Studies suggest that cigarette smoke can initiate pulmonary vascular remodelling by stimulating cell proliferation; however, the underlying cause, particularly the role of vasoactive prostanoids, is unclear. We hypothesize that cigarette smoke extract (CSE) can induce imbalanced vasoactive prostanoid release by differentially modulating the expression of respective synthase genes in human pulmonary artery smooth muscle cells (PASMCs) and endothelial cells (PAECs), thereby contributing to cell proliferation. METHODS Aqueous CSE was prepared from 3R4F research-grade cigarettes. Human PASMCs and PAECs were treated with or without CSE. Quantitative real-time RT-PCR and Western blotting were used to analyse the mRNA and protein expression of vasoactive prostanoid syhthases. Prostanoid concentration in the medium was measured using ELISA kits. Cell proliferation was assessed using the cell proliferation reagent WST-1. RESULTS We demonstrated that CSE induced the expression of cyclooxygenase-2 (COX-2), the rate-limiting enzyme in prostanoid synthesis, in both cell types. In PASMCs, CSE reduced the downstream prostaglandin (PG) I synthase (PGIS) mRNA and protein expression and PGI2 production, whereas in PAECs, CSE downregulated PGIS mRNA expression, but PGIS protein was undetectable and CSE had no effect on PGI2 production. CSE increased thromboxane (TX) A synthase (TXAS) mRNA expression and TXA2 production, despite undetectable TXAS protein in both cell types. CSE also reduced microsomal PGE synthase-1 (mPGES-1) protein expression and PGE2 production in PASMCs, but increased PGE2 production despite unchanged mPGES-1 protein expression in PAECs. Furthermore, CSE stimulated proliferation of both cell types, which was significantly inhibited by the selective COX-2 inhibitor celecoxib, the PGI2 analogue beraprost and the TXA2 receptor antagonist daltroban. CONCLUSIONS These findings provide the first evidence that cigarette smoke can induce imbalanced prostanoid mediator release characterized by the reduced PGI2/TXA2 ratio and contribute to pulmonary vascular remodelling and suggest that TXA2 may represent a novel therapeutic target for pulmonary hypertension in COPD.
Collapse
Affiliation(s)
- Abdullah A Alqarni
- Respiratory Medicine Research Group, Academic Unit for Translational Medical Sciences, University of Nottingham School of Medicine, City Hospital Campus, Nottingham, NG5 1PB, UK
- Department of Respiratory Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Oliver J Brand
- Respiratory Medicine Research Group, Academic Unit for Translational Medical Sciences, University of Nottingham School of Medicine, City Hospital Campus, Nottingham, NG5 1PB, UK
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Alice Pasini
- Respiratory Medicine Research Group, Academic Unit for Translational Medical Sciences, University of Nottingham School of Medicine, City Hospital Campus, Nottingham, NG5 1PB, UK
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Via dell'Università 50, 47522, Cesena, FC, Italy
| | - Mushabbab Alahmari
- Respiratory Medicine Research Group, Academic Unit for Translational Medical Sciences, University of Nottingham School of Medicine, City Hospital Campus, Nottingham, NG5 1PB, UK
- Faculty of Applied Medical Sciences, Department of Respiratory Therapy, University of Bisha, 255, Al Nakhil, Bisha, 67714, Saudi Arabia
| | - Abdulrhman Alghamdi
- Respiratory Medicine Research Group, Academic Unit for Translational Medical Sciences, University of Nottingham School of Medicine, City Hospital Campus, Nottingham, NG5 1PB, UK
- Department of Rehabilitation Science, Respiratory Care Program, King Saud University, Riyadh, Saudi Arabia
| | - Linhua Pang
- Respiratory Medicine Research Group, Academic Unit for Translational Medical Sciences, University of Nottingham School of Medicine, City Hospital Campus, Nottingham, NG5 1PB, UK.
| |
Collapse
|
21
|
De la Cruz-Cano E, Jiménez-González CDC, Díaz-Gandarilla JA, López-Victorio CJ, Escobar-Ramírez A, Uribe-López SA, Huerta-García E, Ayala-Sumuano JT, Morales-García V, Gútierrez-López L, González-Garrido JA. Comorbidities and laboratory parameters associated with SARS-CoV-2 infection severity in patients from the southeast of Mexico: a cross-sectional study. F1000Res 2022; 11:10. [PMID: 35464048 PMCID: PMC9005987 DOI: 10.12688/f1000research.74023.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 01/08/2023] Open
Abstract
Background. Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is the etiological agent of the coronavirus disease 2019 (COVID-19) pandemic. Among the risk factors associated with the severity of this disease is the presence of several metabolic disorders.
For this reason, the aim of this research was
to identify the comorbidities and laboratory parameters among COVID-19 patients admitted to the intensive care unit (ICU), comparing the patients who required invasive mechanical ventilation (IMV) with those who did not require IMV, in order to determine the clinical characteristics associated with the COVID-19 severity. Methods. We carried out a cross-sectional study among 152 patients who were admitted to the ICU from April 1
st to July 31
st, 2021, in whom the comorbidities and laboratory parameters associated with the SARS-CoV-2 infection severity were identified. The data of these patients was grouped into two main groups: “patients who required IMV” and “patients who did not require IMV”. The nonparametric Mann–Whitney U test for continuous data and the
χ2 test for categorical data were used to compare the variables between both groups. Results. Of the
152 COVID-19 patients who were admitted to the ICU, 66 required IMV and 86 did not require IMV. Regarding the comorbidities found in these patients, a higher prevalence of type 2 diabetes mellitus (T2DM), hypertension and obesity was observed among patients who required IMV vs. those who did not require IMV (
p<0.05). Concerning laboratory parameters, only glucose, Interleukin 6 (IL-6), lactate dehydrogenase (LDH) and C-reactive protein (CRP) were significantly higher among patients who required IMV than in those who did not require IMV (
p<0.05). Conclusion. This study performed in a Mexican population indicates that comorbidities such as: T2DM, hypertension and obesity, as well as elevated levels of glucose, IL-6, LDH and CRP are associated with the COVID-19 severity.
Collapse
Affiliation(s)
- Eduardo De la Cruz-Cano
- División Académica de Ciencias Básicas. CICTAT. Laboratorio de Bioquímica y Biología Molecular., Universidad Juárez Autónoma de Tabasco, Cunduacán,, Tabasco., 86690, Mexico.,Laboratorio de Análisis Clínicos., Secretaría de Salud, Hospital General de Comalcalco., Comalcalco., Tabasco, 86300, Mexico
| | - Cristina Del C Jiménez-González
- División Académica Multidisciplinaria de Comalcalco. Laboratorio de Análisis Clínicos., Universidad Juárez Autónoma de Tabasco., Comalcalco., Tabasco., 86650, Mexico
| | - José A Díaz-Gandarilla
- División Académica Multidisciplinaria de Comalcalco. Laboratorio de Análisis Clínicos., Universidad Juárez Autónoma de Tabasco., Comalcalco., Tabasco., 86650, Mexico
| | - Carlos J López-Victorio
- División Académica de Ciencias Básicas. CICTAT. Laboratorio de Bioquímica y Biología Molecular., Universidad Juárez Autónoma de Tabasco, Cunduacán,, Tabasco., 86690, Mexico
| | - Adelma Escobar-Ramírez
- División Académica de Ciencias Básicas. CICTAT. Laboratorio de Bioquímica y Biología Molecular., Universidad Juárez Autónoma de Tabasco, Cunduacán,, Tabasco., 86690, Mexico
| | - Sheila A Uribe-López
- División Académica Multidisciplinaria de Jalpa de Méndez. Laboratorio de Inmunología y Microbiología Molecular., Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, 86205, Mexico
| | - Elizabeth Huerta-García
- División Académica Multidisciplinaria de Jalpa de Méndez. Laboratorio de Inmunología y Microbiología Molecular., Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, 86205, Mexico
| | | | - Vicente Morales-García
- División Académica Multidisciplinaria de Comalcalco. Laboratorio de Análisis Clínicos., Universidad Juárez Autónoma de Tabasco., Comalcalco., Tabasco., 86650, Mexico
| | - Liliana Gútierrez-López
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina., Instituto Politécnico Nacional., Ciudad de México, Ciudad de México, 11340, Mexico
| | - José A González-Garrido
- División Académica de Ciencias Básicas. CICTAT. Laboratorio de Bioquímica y Biología Molecular., Universidad Juárez Autónoma de Tabasco, Cunduacán,, Tabasco., 86690, Mexico
| |
Collapse
|
22
|
Abstract
Pulmonary hypertension (PH) because of chronic lung disease is categorized as Group 3 PH in the most recent classification system. Prevalence of these diseases is increasing over time, creating a growing need for effective therapeutic options. Recent approval of the first pulmonary arterial hypertension therapy for the treatment of Group 3 PH related to interstitial lung disease represents an encouraging advancement. This review focuses on molecular mechanisms contributing to pulmonary vasculopathy in chronic hypoxia, the pathology and epidemiology of Group 3 PH, the right ventricular dysfunction observed in this population and clinical trial data that inform the use of pulmonary vasodilators in Group 3 PH.
Collapse
Affiliation(s)
- Navneet Singh
- Division of Pulmonary, Critical Care and Sleep Medicine (N.S., C.E.V.), Brown University, Providence, RI
| | - Peter Dorfmüller
- Department of Pathology, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Germany (P.D.).,German Center for Lung Research (DZL), Giessen, Germany (P.D.)
| | - Oksana A Shlobin
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA (O.A.S.)
| | - Corey E Ventetuolo
- Division of Pulmonary, Critical Care and Sleep Medicine (N.S., C.E.V.), Brown University, Providence, RI.,Department of Health Services, Policy and Practice (C.E.V.), Brown University, Providence, RI
| |
Collapse
|
23
|
Parajuli N, Kosanovic D. Editorial: Oxidative Stress in Cardiovascular Diseases and Pulmonary Hypertension. Front Cardiovasc Med 2022; 9:868988. [PMID: 35402568 PMCID: PMC8983953 DOI: 10.3389/fcvm.2022.868988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nirmal Parajuli
- Immunology Research Program, Henry Ford Health System, Detroit, MI, United States
- *Correspondence: Nirmal Parajuli
| | - Djuro Kosanovic
- Department of Pulmonology, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Djuro Kosanovic
| |
Collapse
|
24
|
Guo FX, Zhu XC, Hu X, Chu DJ. The treatment of acute exacerbation of chronic obstructive pulmonary disease complicated by pulmonary arterial hypertension. Asian J Surg 2021; 45:590-591. [PMID: 34815152 DOI: 10.1016/j.asjsur.2021.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 11/02/2022] Open
Affiliation(s)
- Feng-Xia Guo
- Department of Respiratory Medicine, The Eighth People's Hospital of Shanghai, Shanghai, 200235, China
| | - Xiao-Chuan Zhu
- Department of Respiratory Medicine, The Eighth People's Hospital of Shanghai, Shanghai, 200235, China
| | - Xin Hu
- Department of Respiratory Medicine, The Eighth People's Hospital of Shanghai, Shanghai, 200235, China
| | - De-Jie Chu
- Department of Respiratory Medicine, The Eighth People's Hospital of Shanghai, Shanghai, 200235, China.
| |
Collapse
|
25
|
Janaszak-Jasiecka A, Siekierzycka A, Płoska A, Dobrucki IT, Kalinowski L. Endothelial Dysfunction Driven by Hypoxia-The Influence of Oxygen Deficiency on NO Bioavailability. Biomolecules 2021; 11:biom11070982. [PMID: 34356605 PMCID: PMC8301841 DOI: 10.3390/biom11070982] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. The initial stage of CVDs is characterized by endothelial dysfunction, defined as the limited bioavailability of nitric oxide (NO). Thus, any factors that interfere with the synthesis or metabolism of NO in endothelial cells are involved in CVD pathogenesis. It is well established that hypoxia is both the triggering factor as well as the accompanying factor in cardiovascular disease, and diminished tissue oxygen levels have been reported to influence endothelial NO bioavailability. In endothelial cells, NO is produced by endothelial nitric oxide synthase (eNOS) from L-Arg, with tetrahydrobiopterin (BH4) as an essential cofactor. Here, we discuss the mechanisms by which hypoxia affects NO bioavailability, including regulation of eNOS expression and activity. What is particularly important is the fact that hypoxia contributes to the depletion of cofactor BH4 and deficiency of substrate L-Arg, and thus elicits eNOS uncoupling-a state in which the enzyme produces superoxide instead of NO. eNOS uncoupling and the resulting oxidative stress is the major driver of endothelial dysfunction and atherogenesis. Moreover, hypoxia induces impairment in mitochondrial respiration and endothelial cell activation; thus, oxidative stress and inflammation, along with the hypoxic response, contribute to the development of endothelial dysfunction.
Collapse
Affiliation(s)
- Anna Janaszak-Jasiecka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Laboratory of Trace Elements Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
| | - Iwona T. Dobrucki
- University of Illinois at Urbana-Champaign Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, MC-251, Urbana, IL 61801, USA;
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-233 Gdansk, Poland
- Correspondence:
| |
Collapse
|
26
|
Truong L, Zheng YM, Kandhi S, Wang YX. Overview on Interactive Role of Inflammation, Reactive Oxygen Species, and Calcium Signaling in Asthma, COPD, and Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:147-164. [PMID: 34019268 DOI: 10.1007/978-3-030-68748-9_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Inflammatory signaling is a major component in the development and progression of many lung diseases, including asthma, chronic obstructive pulmonary disorder (COPD), and pulmonary hypertension (PH). This chapter will provide a brief overview of asthma, COPD, and PH and how inflammation plays a vital role in these diseases. Specifically, we will discuss the role of reactive oxygen species (ROS) and Ca2+ signaling in inflammatory cellular responses and how these interactive signaling pathways mediate the development of asthma, COPD, and PH. We will also deliberate the key cellular responses of pulmonary arterial (PA) smooth muscle cells (SMCs) and airway SMCs (ASMCs) in these devastating lung diseases. The analysis of the importance of inflammation will shed light on the key questions remaining in this field and highlight molecular targets that are worth exploring. The crucial findings will not only demonstrate the novel roles of essential signaling molecules such as Rieske iron-sulfur protein and ryanodine receptor in the development and progress of asthma, COPD, and PH but also offer advanced insight for creating more effective and new therapeutic targets for these devastating inflammatory lung diseases.
Collapse
Affiliation(s)
- Lillian Truong
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Sharath Kandhi
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
27
|
Karnati S, Seimetz M, Kleefeldt F, Sonawane A, Madhusudhan T, Bachhuka A, Kosanovic D, Weissmann N, Krüger K, Ergün S. Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target. Front Cardiovasc Med 2021; 8:649512. [PMID: 33912600 PMCID: PMC8072123 DOI: 10.3389/fcvm.2021.649512] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide and encompasses chronic bronchitis and emphysema. It has been shown that vascular wall remodeling and pulmonary hypertension (PH) can occur not only in patients with COPD but also in smokers with normal lung function, suggesting a causal role for vascular alterations in the development of emphysema. Mechanistically, abnormalities in the vasculature, such as inflammation, endothelial dysfunction, imbalances in cellular apoptosis/proliferation, and increased oxidative/nitrosative stress promote development of PH, cor pulmonale, and most probably pulmonary emphysema. Hypoxemia in the pulmonary chamber modulates the activation of key transcription factors and signaling cascades, which propagates inflammation and infiltration of neutrophils, resulting in vascular remodeling. Endothelial progenitor cells have angiogenesis capabilities, resulting in transdifferentiation of the smooth muscle cells via aberrant activation of several cytokines, growth factors, and chemokines. The vascular endothelium influences the balance between vaso-constriction and -dilation in the heart. Targeting key players affecting the vasculature might help in the development of new treatment strategies for both PH and COPD. The present review aims to summarize current knowledge about vascular alterations and production of reactive oxygen species in COPD. The present review emphasizes on the importance of the vasculature for the usually parenchyma-focused view of the pathobiology of COPD.
Collapse
Affiliation(s)
- Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Akash Bachhuka
- UniSA Science, Technology, Engineering and Mathematics, University of South Australia, Mawson Lakes Campus, Adelaide, SA, Australia
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, Giessen, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Cherneva Z, Valev D, Youroukova V, Cherneva R. Left ventricular diastolic dysfunction in non-severe chronic obstructive pulmonary disease - a step forward in cardiovascular comorbidome. PLoS One 2021; 16:e0247940. [PMID: 33684166 PMCID: PMC7939359 DOI: 10.1371/journal.pone.0247940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/16/2021] [Indexed: 01/09/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) augments the likelihood of having left ventricular diastolic dysfunction (LVDD)–precursor of heart failure with preserved ejection fraction (HFpEF). LVDD shares overlapping symptomatology (cough and dyspnea) with COPD. Stress induced LVDD is indicative of masked HFpEF. Our aim was to evaluate the predictive value of inflammatory, oxidative stress, cardio-pulmonary and echocardiographic parameters at rest for the diagnosis of stress LVDD in non-severe COPD patients, who complain of exertional dyspnea and are free of overt cardiovascular diseases. A total of 104 COPD patients (26 patients with mild and 78 with moderate COPD) underwent echocardiography before cardio-pulmonary exercise testing (CPET) and 1–2 minutes after peak exercise. Patients were divided into two groups based on peak average E/e’: patients with stress induced left ventricular diastolic dysfunction (LVDD)—E/e’ > 15 masked HFpEF and patients without LVDD—without masked HFpEF. CPET and echocardiographic parameters at rest were measured and their predictive value for stress E/e’ was analysed. Markers for inflammation (resistin, prostaglandine E2) and oxidative stress (8-isoprostanes) were also determined. Stress induced LVDD occurred in 67/104 patients (64%). Those patients showed higher VE/VCO2 slope. None of the CPET parameters was an independent predictor for stress LVDD.Except for prostglandine E2, none of the inflammatory or oxidative stress markers correlated to stress E/e’. The best independent predictors for stress LVDD (masked HFpEF) were RAVI, right ventricular parasternal diameter and RV E/A >0.75. Their combination predicted stress LVDD with the accuracy of 91.2%. There is a high prevalence of masked HFpEF in non-severe COPD with exertional dyspnea, free of overt cardiovascular disease. RAVI, right ventricular parasternal diameter and RV E/A >0.75 were the only independent clinical predictors of masked HFpEF. 288.
Collapse
Affiliation(s)
- Zheina Cherneva
- Medical Institute of the Ministry of Internal Affairs, Sofia, Bulgaria
- * E-mail:
| | - Dinko Valev
- University First Multiple Clinic for Active Treatment, Sofia, Bulgaria
| | - Vania Youroukova
- University Hospital for Respiratory Diseases“St. Sophia”, Sofia, Bulgaria
| | - Radostina Cherneva
- University Hospital for Respiratory Diseases“St. Sophia”, Sofia, Bulgaria
| |
Collapse
|
29
|
Karamchand S, Williams M, Naidoo P, Decloedt E, Allwood B. Post-tuberculous lung disease: should we be using Theophylline? J Thorac Dis 2021; 13:1230-1238. [PMID: 33717595 PMCID: PMC7947523 DOI: 10.21037/jtd-20-1298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Tuberculosis affects 10 million people and over 320,000 South Africans every year. A significant proportion of patients treated for tuberculosis develop post-tuberculous lung disease (PTBLD), a disease of chronic respiratory impairment for which there is a lack of affordable treatment options. PTBLD a heterogenous disorder that shares phenotypical features with chronic obstructive lung disease, bronchiectasis, lung fibrosis and destruction as well as pulmonary hypertension. There remains a paucity of proven pharmacotherapy for the management of PTBLD. Theophylline, a widely available and affordable medicine that has largely fell out of favour in high-income settings due to its toxicity and narrow therapeutic index, may be repositioned for the treatment of PTBLD. In this review, we unpack the potential role of theophylline in the management of PTBLD by reviewing the evidence for its bronchodilatory, anti-inflammatory and potential pleotrophic effects.
Collapse
Affiliation(s)
- Sumanth Karamchand
- Division of Pulmonology, Western Cape Department of Health, Tygerberg Hospital, Bellville, South Africa
| | - Morne Williams
- Division of Pulmonology, Western Cape Department of Health, Tygerberg Hospital, Bellville, South Africa
| | - Poobalan Naidoo
- Department of Informatics, School of Health Professions, Rutgers University, New Jersey, USA
| | - Eric Decloedt
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Hospital, Bellville, South Africa
| | - Brian Allwood
- Division of Pulmonology, Western Cape Department of Health, Tygerberg Hospital, Bellville, South Africa
| |
Collapse
|
30
|
Xue M, Peng N, Zhu X, Zhang H. Hsa_circ_0006872 promotes cigarette smoke-induced apoptosis, inflammation and oxidative stress in HPMECs and BEAS-2B cells through the miR-145-5p/NF-κB axis. Biochem Biophys Res Commun 2021; 534:553-560. [PMID: 33248690 DOI: 10.1016/j.bbrc.2020.11.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022]
Abstract
Cigarette smoke is a major cause of chronic obstructive pulmonary disease (COPD). Circular RNAs (circRNAs) are involved in regulating various biological processes. This study aimed to explore the role and molecular basis of hsa_circ_0006872 in cigarette smoke extract (CSE)-induced cell injury. HPMECs and BEAS-2B cells were treated with CSE to mimic COPD in vitro. The levels of hsa_circ_0006872 and miR-145-5p were measured by quantitative real-time polymerase chain reaction. Cell proliferation was assessed via Cell Counting Kit-8 (CCK-8) and colony formation assays. Flow cytometry was used to evaluate apoptosis and cell cycle. The levels of inflammatory factors were assayed via enzyme-linked immunosorbent assay (ELISA). The levels of oxidative stress markers were determined via commercial kits. The interaction between hsa_circ_0006872 and miR-145-5p was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation assay. Protein expression was measured using Western blot assay. Hsa_circ_0006872 level was elevated in COPD patients and was negatively correlated with miR-145-5p level. CSE exposure promoted apoptosis, inflammation and oxidative stress of HPMECs and BEAS-2B cells, while hsa_circ_0006872 down-regulation undermined the effects. In addition, hsa_circ_0006872 silencing inhibited CSE-induced cell injury via regulating miR-145-5p. Moreover, CSE contributed to the activation of NF-κB pathway through hsa_circ_0006872/miR-145-5p axis. Hsa_circ_0006872 facilitated CSE-triggered apoptosis, inflammation and oxidative stress in HPMECs and BEAS-2B cells by regulating miR-145-5p/NF-κB pathway.
Collapse
Affiliation(s)
- Mei Xue
- Department of Respiratory Medicine, People's Hospital of Mengyin County, Linyi City, Shandong Province, China
| | - Nana Peng
- Department of Emergency, Binzhou People's Hospital, Binzhou City, Shandong Province, China
| | - Xiue Zhu
- Department of Respiratory Medicine Second Ward, Binzhou People's Hospital, Binzhou City, Shandong Province, China
| | - Hongjie Zhang
- Department of Respiratory Medicine, Dongchangfu People's Hospital, Liaocheng City, Shandong Province, China.
| |
Collapse
|
31
|
Ceriotti S, Bullone M, Leclere M, Ferrucci F, Lavoie JP. Severe asthma is associated with a remodeling of the pulmonary arteries in horses. PLoS One 2020; 15:e0239561. [PMID: 33091038 PMCID: PMC7580920 DOI: 10.1371/journal.pone.0239561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/08/2020] [Indexed: 11/18/2022] Open
Abstract
Pulmonary hypertension and cor pulmonale are complications of severe equine asthma, as a consequence of pulmonary hypoxic vasoconstriction. However, as pulmonary hypertension is only partially reversible by oxygen administration, other etiological factors are likely involved. In human chronic obstructive pulmonary disease, pulmonary artery remodeling contributes to the development of pulmonary hypertension. In rodent models, pulmonary vascular remodeling is present as a consequence of allergic airway inflammation. The present study investigated the presence of remodeling of the pulmonary arteries in severe equine asthma, its distribution throughout the lungs, and its reversibility following long-term antigen avoidance strategies and inhaled corticosteroid administration. Using histomorphometry, the total wall area of pulmonary arteries from different regions of the lungs of asthmatic horses and controls was measured. The smooth muscle mass of pulmonary arteries was also estimated on lung sections stained for α-smooth muscle actin. Reversibility of vascular changes in asthmatic horses was assessed after 1 year of antigen avoidance alone or treatment with inhaled fluticasone. Pulmonary arteries showed increased wall area in apical and caudodorsal lung regions of asthmatic horses in both exacerbation and remission. The pulmonary arteries smooth muscle mass was similarly increased. Both treatments reversed the increase in wall area. However, a trend for normalization of the vascular smooth muscle mass was observed only after treatment with antigen avoidance, but not with fluticasone. In conclusion, severe equine asthma is associated with remodeling of the pulmonary arteries consisting in an increased smooth muscle mass. The resulting narrowing of the artery lumen could enhance hypoxic vasoconstriction, contributing to pulmonary hypertension. In our study population, the antigen avoidance strategy appeared more promising than inhaled corticosteroids in controlling vascular remodeling. However, further studies are needed to support the reversibility of vascular smooth muscle mass remodeling after asthma treatment.
Collapse
Affiliation(s)
- Serena Ceriotti
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milano, Italy
| | - Michela Bullone
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Mathilde Leclere
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Francesco Ferrucci
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milano, Italy
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
32
|
Kemdem A, Lemaitre F, Lovat R, Siraux V, Dillien P, Dive F. Acute hypoxic pulmonary hypertension associated with right heart failure. Acta Cardiol 2020; 75:544-548. [PMID: 31251113 DOI: 10.1080/00015385.2019.1634333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
COPD is a cause of chronic pulmonary hypertension, with increased pressure during exacerbations. But acute right ventricular failure is very rare in this condition. We reported two cases in which exacerbation and hypoxaemia have induced an acute severe pulmonary hypertension complicated by right ventricular failure and cardiogenic shock. The supportive treatment and the correction of hypoxaemia have rapidly solved the clinical situation.
Collapse
Affiliation(s)
| | | | - Robin Lovat
- Intensive Care Unit, CHR NAMUR, Namur, Belgium
| | | | | | | |
Collapse
|
33
|
Balasubramanian A, Kolb TM, Damico RL, Hassoun PM, McCormack MC, Mathai SC. Diffusing Capacity Is an Independent Predictor of Outcomes in Pulmonary Hypertension Associated With COPD. Chest 2020; 158:722-734. [PMID: 32184109 PMCID: PMC8173778 DOI: 10.1016/j.chest.2020.02.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/02/2020] [Accepted: 02/09/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Patients with COPD who experience pulmonary hypertension (PH) have worse mortality than those with COPD alone. Predictors of poor outcomes in COPD-PH are not well-described. Diffusing capacity of the lung (Dlco) assesses the integrity of the alveolar-capillary interface and thus may be a useful prognostic tool among those with COPD-PH. RESEARCH QUESTION Using a single center registry, we sought to evaluate Dlco as a predictor of mortality in a cohort of patients with COPD-PH. STUDY DESIGN AND METHODS This retrospective cohort study analyzed 71 COPD-PH patients from the Johns Hopkins Pulmonary Hypertension Registry with right-sided heart catheterization (RHC)-proven PH and pulmonary function testing data within one year of diagnostic RHC. Transplant-free survival was calculated from index RHC. Adjusted transplant-free survival was modelled using Cox proportional hazard methods; age, pulmonary vascular resistance, FEV1, oxygen use, and N-terminal pro-brain natriuretic peptide were included as covariates. RESULTS Overall unadjusted transplant-free 1-, 3-, and 5-year survivals were 87%, 60%, and 51%, respectively. Survival was associated with reduced Dlco across the observed range of pulmonary artery pressures and pulmonary vascular resistance. Severe Dlco impairment was associated with poorer survival (log-rank χ2 13.07) (P < .001); adjusting for covariates, for every percent predicted decrease in Dlco, mortality rates increased by 4% (hazard ratio, 1.04; 95% CI, 1.01-1.07). INTERPRETATION Among patients with COPD-PH, severe gas transfer impairment is associated with higher mortality, even with adjustment for airflow obstruction and hemodynamics, which suggests that Dlco may be a useful prognostic marker in this population. Future studies are needed to further investigate the association between Dlco and morbidity and to determine the utility of Dlco as a biomarker for disease risk and severity in COPD-PH.
Collapse
Affiliation(s)
| | - Todd M Kolb
- Johns Hopkins University Division of Pulmonary and Critical Care, Baltimore, MD
| | - Rachel L Damico
- Johns Hopkins University Division of Pulmonary and Critical Care, Baltimore, MD
| | - Paul M Hassoun
- Johns Hopkins University Division of Pulmonary and Critical Care, Baltimore, MD
| | | | - Stephen C Mathai
- Johns Hopkins University Division of Pulmonary and Critical Care, Baltimore, MD.
| |
Collapse
|
34
|
Lung Transplantation for Bronchopulmonary Dysplasia in Adults: A Clinical and Pathologic Study of 3 Cases. Am J Surg Pathol 2020; 44:509-515. [PMID: 31934918 DOI: 10.1097/pas.0000000000001438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is usually seen in premature infants who require mechanical ventilation and oxygen therapy for acute respiratory distress. Although most patients wean from oxygen therapy by the ages of 2 to 3, rehospitalization for respiratory problems is common in these patients in adulthood. There have been few studies that document the long-term outcomes of BPD survivors and information about the pulmonary function and radiographic findings of adult BPD are limited. Data on pathologic features of adult BPD are scarce. Three adult patients who underwent recent lung transplantation for BPD from 2 institutions were identified. Clinical data including clinical presentation, chest radiographic images, pulmonary function tests, cardiac catheterization, and echocardiography were retrieved from the electronic medical records. Hematoxylin and eosin and selective elastic stained sections of the explant lungs were examined. CD31 immunohistochemical stain is performed on representative sections. All 3 cases had similar clinical and radiologic features including the history of prematurity and long-term mechanical ventilation after birth, hyperexpanded lungs with air trapping and mosaic attenuation on chest computed tomographic scan, severe obstructive changes on pulmonary function test, and pulmonary hypertension. Pathologic examination showed common features including enlarged and simplified alveoli, peribronchial, subpleural, and interlobular septal fibrosis, narrowing/obliteration of the small airways by elastosis and muscular hypertrophy, thickening of venous walls by fibromuscular hyperplasia, and bronchitis/bronchiolitis. Cholesterol granulomas were seen in 2 cases. The common pathologic findings in the lungs explain the clinical and radiologic findings. Future studies are warranted to further characterize the clinical and pathologic features of adult BPD to develop optimal management strategies for these patients.
Collapse
|
35
|
Diagnostic Validity of Cardiopulmonary Exercise Testing for Screening Pulmonary Hypertension in Patients With Chronic Obstructive Pulmonary Disease. J Cardiopulm Rehabil Prev 2020; 40:189-194. [PMID: 31714394 DOI: 10.1097/hcr.0000000000000456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To determine diagnostic validity of cardiopulmonary exercise testing (CPX) parameters for detecting pulmonary hypertension (PH) in patients with chronic obstructive pulmonary disease (COPD) and to investigate association between CPX parameters and indices of PH. METHODS This cross-sectional study enrolled 48 moderate to very severe COPD patients in whom PH was confirmed by echocardiography. Symptom-limited CPX was performed using an incremental exercise protocol. Relevant CPX parameters were derived and were tested for their diagnostic ability for diagnosing PH. Logistic regression was applied to examine the effect of various clinical covariates on the diagnostic ability of exercise test variables for detecting PH. RESULTS Of the 48 patients, 29 were diagnosed with PH and 19 were negative for PH based on echocardiographic testing. CPX measures including peak oxygen uptake (% predicted (Equation is included in full-text article.)O2peak, (Equation is included in full-text article.)O2peak [mL/min], (Equation is included in full-text article.)O2/kg), oxygen pulse ((Equation is included in full-text article.)O2/HR % predicted, (Equation is included in full-text article.)O2/HR mL/beat), and peak minute ventilation ((Equation is included in full-text article.)Epeak [L/m]) were inversely correlated with mean pulmonary arterial pressure (mPAP). Peak (Equation is included in full-text article.)O2/HR and (Equation is included in full-text article.)O2peak were found to be significant predictors of PH in univariate analysis. (Equation is included in full-text article.)O2peak (%), (Equation is included in full-text article.)O2/HR (mL/beat), and desaturation (%) were identified as independent predictors of PH adjusted for age, forced expiratory volume in 1 sec (%), and forced vital capacity (L). CONCLUSION The present study validates the use of CPX parameters such as (Equation is included in full-text article.)O2peak and (Equation is included in full-text article.)O2/HR as a diagnostic tool for correctly identifying PH in COPD patients. Therefore, CPX may be used as an adjunct to echocardiographic measurement of PH where there is unavailability of equipment and expertise.
Collapse
|
36
|
Walther CP, Nambi V, Hanania NA, Navaneethan SD. Diagnosis and Management of Pulmonary Hypertension in Patients With CKD. Am J Kidney Dis 2020; 75:935-945. [PMID: 32199709 DOI: 10.1053/j.ajkd.2019.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022]
Abstract
Pulmonary hypertension (PH) is a highly prevalent and important condition in adults with chronic kidney disease (CKD). In this review, we summarize the definition of PH, discuss its pathophysiology and classifications, and describe diagnostic and management strategies in patients with CKD, including those with kidney failure treated by kidney replacement therapy. In the general population, PH is classified into 5 groups based on clinical presentation, pathology, hemodynamics, and management strategies. In this classification system, PH in CKD is placed in a diverse group with unclear or multifactorial mechanisms, although underlying cardiovascular disease may account for most cases. CKD may itself directly incite pulmonary circulatory dysfunction and remodeling through uremic toxins, inflammation, endothelial dysfunction, and altered vasoregulation. Despite several studies describing the higher prevalence of PH in CKD and kidney failure, along with an association with poor outcomes, high-quality evidence is not available for its diagnostic and management strategies in those with CKD. In CKD not requiring kidney replacement therapy, volume management along with treatment of underlying risk factors for PH are critical. In those receiving hemodialysis, options are limited and transition to peritoneal dialysis may be considered if recurrent hypotension precludes optimal volume control.
Collapse
Affiliation(s)
- Carl P Walther
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX.
| | - Vijay Nambi
- Micheal E DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, TX; Sections of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Nicola A Hanania
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Sankar D Navaneethan
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX; Section of Nephrology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX.
| |
Collapse
|
37
|
Kopf KW, Harral JW, Staker EA, Summers ME, Petrache I, Kheyfets V, Irwin DC, Majka SM. Optimization of combined measures of airway physiology and cardiovascular hemodynamics in mice. Pulm Circ 2020; 10:2045894020912937. [PMID: 32206308 PMCID: PMC7074541 DOI: 10.1177/2045894020912937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary hypertension may arise as a complication of chronic lung disease typically associated with tissue hypoxia, as well as infectious agents or injury eliciting a type 2 immune response. The onset of pulmonary hypertension in this setting (classified as Group 3) often complicates treatment and worsens prognosis of chronic lung disease. Chronic lung diseases such as chronic obstructive lung disease (COPD), emphysema, and interstitial lung fibrosis impair airflow and alter lung elastance in addition to affecting pulmonary vascular hemodynamics that may culminate in right ventricle dysfunction. To date, functional endpoints in murine models of chronic lung disease have typically been limited to separately measuring airway and lung parenchyma physiology. These approaches may be lengthy and require a large number of animals per experiment. Here, we provide a detailed protocol for combined assessment of airway physiology with cardiovascular hemodynamics in mice. Ultimately, a comprehensive overview of pulmonary function in murine models of injury and disease will facilitate the integration of studies of the airway and vascular biology necessary to understand underlying pathophysiology of Group 3 pulmonary hypertension.
Collapse
Affiliation(s)
- Katrina W Kopf
- Biological Resource Center, National Jewish Health, Denver, USA
| | - Julie W Harral
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, Denver, USA
| | - Emily A Staker
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, Denver, USA
| | - Megan E Summers
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, Denver, USA
| | - Irina Petrache
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, Denver, USA
| | - Vitaly Kheyfets
- Department of Bioengineering, Anschutz Medical Campus University of Colorado, Aurora, USA
| | - David C Irwin
- Department of Medicine, Division of Cardiology, Anschutz Medical Campus University of Colorado, Aurora, USA
| | - Susan M Majka
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, Denver, USA.,Department of Biomedical Research, National Jewish Health, Denver, USA.,Gates Center for Regenerative Medicine and Stem Cell Biology and Cardiology University of Colorado Medical Center, Aurora, USA
| |
Collapse
|
38
|
Ubags ND, Baker J, Boots A, Costa R, El-Merhie N, Fabre A, Faiz A, Heijink IH, Hiemstra PS, Lehmann M, Meiners S, Rolandsson Enes S, Bartel S. ERS International Congress, Madrid, 2019: highlights from the Basic and Translational Science Assembly. ERJ Open Res 2020; 6:00350-2019. [PMID: 32154289 PMCID: PMC7049707 DOI: 10.1183/23120541.00350-2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/26/2020] [Indexed: 11/15/2022] Open
Abstract
In this review, the Basic and Translational Sciences Assembly of the European Respiratory Society (ERS) provides an overview of the 2019 ERS International Congress highlights. In particular, we discuss how the novel and very promising technology of single cell sequencing has led to the development of a comprehensive map of the human lung, the lung cell atlas, including the discovery of novel cell types and new insights into cellular trajectories in lung health and disease. Further, we summarise recent insights in the field of respiratory infections, which can aid in a better understanding of the molecular mechanisms underlying these infections in order to develop novel vaccines and improved treatment options. Novel concepts delineating the early origins of lung disease are focused on the effects of pre- and post-natal exposures on neonatal lung development and long-term lung health. Moreover, we discuss how these early life exposures can affect the lung microbiome and respiratory infections. In addition, the importance of metabolomics and mitochondrial function analysis to subphenotype chronic lung disease patients according to their metabolic program is described. Finally, basic and translational respiratory science is rapidly moving forward and this will be beneficial for an advanced molecular understanding of the mechanisms underlying a variety of lung diseases. In the long-term this will aid in the development of novel therapeutic targeting strategies in the field of respiratory medicine. Highlights of basic and translational science presented at #ERSCongress 2019 summarising latest research on the lung cell atlas, lung infections, early origins of lung disease and the importance of metabolic alterations in the lunghttp://bit.ly/2UbdBs4
Collapse
Affiliation(s)
- Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Lausanne, Switzerland
| | - Jonathan Baker
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Agnes Boots
- Dept of Pharmacology and Toxicology, Maastricht University, Maastricht, the Netherlands
| | - Rita Costa
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Natalia El-Merhie
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Member of the DZL and the Airway Research Center North (ARCN), Borstel, Germany
| | - Aurélie Fabre
- St Vincent's University Hospital, Dublin, Ireland.,University College Dublin School of Medicine, Dublin, Ireland
| | - Alen Faiz
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life Sciences, Sydney, Australia
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Depts of Pathology & Medical Biology and Pulmonology, Groningen, The Netherlands
| | - Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Mareike Lehmann
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the DZL, Munich, Germany
| | - Sara Rolandsson Enes
- University of Vermont, Dept of Medicine, Larner College of Medicine, Burlington, VT, USA.,Lund University, Dept of Experimental Medical Science, Lund, Sweden
| | - Sabine Bartel
- University of Groningen, University Medical Center Groningen, Depts of Pathology & Medical Biology and Pulmonology, Groningen, The Netherlands
| |
Collapse
|
39
|
Steiger D, Han D, Yip R, Li K, Chen X, Liu L, Liu J, Ma T, Siddiqi F, Yankelevitz DF, Henschke CI. Increased main pulmonary artery diameter and main pulmonary artery to ascending aortic diameter ratio in smokers undergoing lung cancer screening. Clin Imaging 2020; 63:16-23. [PMID: 32120308 DOI: 10.1016/j.clinimag.2019.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Pulmonary hypertension (PH) is a progressive, potentially fatal disease, difficult to diagnose early due to non-specific nature of symptoms. PH is associated with increased morbidity and death in many respiratory and cardiac disorders, and with all-cause mortality, independent of age and cardiopulmonary disease. The main pulmonary artery diameter (MPA), and ratio of MPA to adjacent ascending aorta (AA), MPA:AA, on Chest CT are strong indicators of suspected PH. Our goal was to determine the prevalence of abnormally high values of these indicators of PH in asymptomatic low-dose CT (LDCT) screening participants at risk of lung cancer, and determine the associated risk factors. METHODS We reviewed consecutive baseline LDCT scans of 1949 smokers in an IRB-approved study. We measured the MPA and AA diameter and calculated MPA:AA ratio. We defined abnormally high values as being more than two standard deviations above the average (MPA ≥ 34 mm and MPA:AA ≥ 1.0). Regression analyses were used to identify risk factors and CT findings of participants associated with high values. RESULTS The prevalence of MPA ≥ 34 mm and MPA:AA ≥ 1.0 was 4.2% and 6.9%, respectively. Multivariable regression demonstrated that BMI was a significant risk factor, both for MPA ≥ 34 mm (OR = 1.07, p < 0.0001) and MPA:AA ≥ 1.0 (OR = 1.04, p = 0.003). Emphysema was significant in the univariate but not in the multivariate analysis. CONCLUSIONS We determined that the possible prevalence of PH as defined by abnormally high values of MPA and of MPA:AA was greater than previously described in the general population and that pulmonary consultation be recommended for these participants, in view of the significance of PH.
Collapse
Affiliation(s)
- David Steiger
- Division of Pulmonary Medicine, Icahn School of Medicine, New York, NY, United States of America
| | - Dan Han
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| | - Rowena Yip
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Kunwei Li
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Department of Radiology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xiangmeng Chen
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Department of Radiology, Jiangmen Central Hospital, Jiangmen, China
| | - Li Liu
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Department of Diagnostic Radiology, Cancer Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Chaoyang District, Beijing, China
| | - Jiayi Liu
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Chaoyang District, Beijing, China
| | - Teng Ma
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America; Department of Radiology, Tong Ren Hospital, Capital Medical University, Dongcheng District, Beijing, China
| | - Faisal Siddiqi
- Division of Pulmonary Medicine, Icahn School of Medicine, New York, NY, United States of America
| | - David F Yankelevitz
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Claudia I Henschke
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.
| |
Collapse
|
40
|
Abstract
Recently, respiratory systems are increasingly threatened by high levels of environmental pollution. Organ-on-a-chip technology has the advantage of enabling more accurate preclinical experiments by reproducing in vivo organ physiology. To investigate disease mechanisms and treatment options, respiratory-physiology-on-a-chip systems have been studied for the last decade. Here, we delineate the strategic approaches to develop respiratory-physiology-on-a-chip that can recapitulate respiratory system in vitro. The state-of-the-art biofabrication methods and biomaterials are considered as key contributions to constructing the chips. We also explore the vascularization strategies to investigate complicated pathophysiological phenomena including inflammation and immune responses, which are the critical aggravating factors causing the complications in the respiratory diseases. In addition, challenges and future research directions are delineated to improve the mimicry of respiratory systems in terms of both structural and biological behaviors.
Collapse
|
41
|
Sindaghatta Krishnarao C, Maheshwarappa M, Thippeswamy T, Siddaiah JB, Lokesh KS, Mahesh PA. Risk Factors Associated with Development of Pulmonary Arterial Hypertension and Corpulmonale in Patients with Chronic Obstructive Pulmonary Disease. CURRENT RESPIRATORY MEDICINE REVIEWS 2020. [DOI: 10.2174/1573398x15666191018151526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Chronic Obstructive Pulmonary Disease is an important cause of morbidity
and mortality globally. The onset of pulmonary hypertension and corpulmonale is associated with
decreased survival in patients with COPD.
Objective:
To assess risk factors associated with the development of pulmonary hypertension and
corpulmonale and to identify high-risk phenotypes who may need early evaluation and intervention.
Methods:
Consecutive adult patients with COPD were evaluated for factors influencing the
development of pulmonary hypertension and corpulmonale which included symptomatology,
hospitalization in the previous year, MMRC dyspnea grade, SGRQ score, 6 minute walk test, ABG,
CRP, spirometry and echocardiography.
Results:
We found Pulmonary Hypertension in 36(30%) patients and 27(22.5%) had corpulmonale.
On multivariate analysis, we found PaO2 ≤75 mm Hg and six minute walk test <80% predicted to be
significantly associated with the development of Pulmonary hypertension and we found
hospitalization in the previous year to be significantly and independently associated with the
development of corpulmonale.
Conclusion:
We observed hospitalization in the previous year was an independent risk factor for the
development of corpulmonale and six-minute walk test <80% predicted, PaO2 <75 mm Hg were
independent risk factors for the development of pulmonary hypertension.
Collapse
|
42
|
Coste F, Benlala I, Dournes G, Girodet PO, Laurent F, Berger P. Assessing pulmonary hypertension in COPD. Is there a role for computed tomography? Int J Chron Obstruct Pulmon Dis 2019; 14:2065-2079. [PMID: 31564854 PMCID: PMC6732516 DOI: 10.2147/copd.s207363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/10/2019] [Indexed: 12/22/2022] Open
Abstract
Pulmonary hypertension (PH) is a common complication of chronic obstructive pulmonary disease (COPD) and is associated with increased morbidity and mortality. Reference standard method to diagnose PH is right heart catheterization. Several non-invasive imaging techniques have been employed in the detection of PH. Among them, computed tomography (CT) is the most commonly used for phenotyping and detecting complications of COPD. Several CT findings have also been described in patients with severe PH. Nevertheless, CT analysis is currently based on visual findings which can lead to reproducibility failure. Therefore, there is a need for quantification in order to assess objective criteria. In this review, progresses in automated analyses of CT parameters and their values in predicting PH and COPD outcomes are presented.
Collapse
Affiliation(s)
- Florence Coste
- University Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, F-33000 France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC1401, Bordeaux, F-33000 France
| | - Ilyes Benlala
- University Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, F-33000 France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC1401, Bordeaux, F-33000 France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, CIC1401, Service d'Explorations Fonctionnelles Respiratoires, Pessac, F-33600 France
| | - Gaël Dournes
- University Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, F-33000 France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC1401, Bordeaux, F-33000 France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, CIC1401, Service d'Explorations Fonctionnelles Respiratoires, Pessac, F-33600 France
| | - Pierre-Olivier Girodet
- University Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, F-33000 France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC1401, Bordeaux, F-33000 France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, CIC1401, Service d'Explorations Fonctionnelles Respiratoires, Pessac, F-33600 France
| | - François Laurent
- University Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, F-33000 France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC1401, Bordeaux, F-33000 France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, CIC1401, Service d'Explorations Fonctionnelles Respiratoires, Pessac, F-33600 France
| | - Patrick Berger
- University Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, F-33000 France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC1401, Bordeaux, F-33000 France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, CIC1401, Service d'Explorations Fonctionnelles Respiratoires, Pessac, F-33600 France
| |
Collapse
|
43
|
Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities. Drugs 2019; 78:1717-1740. [PMID: 30392114 DOI: 10.1007/s40265-018-1001-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship.
Collapse
|
44
|
Abstract
The pulmonary circulation carries deoxygenated blood from the systemic veins through the pulmonary arteries to be oxygenated in the capillaries that line the walls of the pulmonary alveoli. The pulmonary circulation carries the cardiac output with a relatively low driving pressure, and so differs considerably in structure and function from the systemic circulation to maintain a low-resistance vascular system. The pulmonary circulation is often considered to be a quasi-static system in both experimental and computational studies of pulmonary perfusion and its matching to ventilation (air flow) for exchange. However, the system is highly dynamic, with cardiac output and regional perfusion changing with posture, exercise, and over time. Here we review this dynamic system, with a focus on understanding the physiology of pulmonary vascular dynamics across spatial and temporal scales, and the changes to these dynamics that are reflective of disease. © 2019 American Physiological Society. Compr Physiol 9:1081-1100, 2019.
Collapse
Affiliation(s)
- Alys Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Merryn Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
45
|
The Role of Intrapleural Lymphotropic Blockades in the Incidence of Respiratory Complications after Surgical Treatment of Lung Cancer. ACTA BIOMEDICA SCIENTIFICA 2019. [DOI: 10.29413/abs.2019-4.2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The development of respiratory complications in patients after surgical treatment of lung cancer remains a serious problem, far from being resolved today. Pain remains the main factor that leads to a decrease in respiratory function in the postoperative period.The aim of this study is to evaluate the effect of intrapleural lymphotropic blockades on the incidence of respiratory complications in the postoperative period in patients undergoing surgical treatment of lung cancer.Materials and methods. 103 patients with operable forms of lung cancer, who underwent anatomical lung resection or pneumonectomy, were treated in the Oncology Department of the Tomsk Regional Oncology Center. The patients were divided in two groups. The first group included 52 patients, who were supplemented with intrapleural lymphotropic blockades. The second group consisted of 51 patients who received a standard multimodal scheme of analgesia in the postoperative period. In the postoperative period, we assessed severity of pain in patients, and the frequency and types of respiratory disorders.Results. The analysis of the results revealed a significant decrease in the intensity of pain syndrome the first 12 hours after surgery in the group of patients, who underwent lymphotropic blockade. The analysis of the frequency of respiratory disorders in the study groups also revealed significant reduction in the number of complications in patients in the group with lymphotropic blockade. Acute postoperative pain, that prevents full natural ventilation, plays one of the key roles in the pathogenesis of respiratory complications in patients after surgical treatment of lung cancer.Conclusion. The use of multimodal analgesia of intrapleural lymphotropic blockade in the complex allows to reduce the pain syndrome and provide psycho-emotional comfort of the patient in the early postoperative period, thereby reducing the risk of respiratory disorders.
Collapse
|
46
|
Bunel V, Guyard A, Dauriat G, Danel C, Montani D, Gauvain C, Thabut G, Humbert M, Castier Y, Dorfmüller P, Mal H. Pulmonary Arterial Histologic Lesions in Patients With COPD With Severe Pulmonary Hypertension. Chest 2019; 156:33-44. [PMID: 30872017 DOI: 10.1016/j.chest.2019.02.333] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/18/2019] [Accepted: 02/01/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The development of pulmonary hypertension (PH) during the course of COPD is a well-known phenomenon, with the prevalence depending on the severity of airway obstruction. When mean pulmonary pressure (mPAP) level at rest is ≥ 35 mm Hg or ≥ 25 mm Hg with low cardiac index, the term severe PH is used. For these patients, little is known on the underlying histologic lesions. Our objective was to describe these lesions. METHODS From the explants of patients undergoing lung transplantation, we compared retrospectively three groups of patients with COPD: severe PH-COPD (n = 10), moderate PH-COPD (mPAP between 25 and 34 mm Hg without low cardiac index) (n = 10), and no PH (mPAP < 25 mm Hg) (n = 10). Histologic analysis of the explanted lungs examined the wall of medium-size arteries, the remodeling of microvessels, and the pulmonary capillary density using morphometric measurements performed on three sections per patient. RESULTS Compared with the moderate PH group, the remodeling score of the microvessels was significantly higher (P = .0045) and the capillary density was lower (P = .0049) in the severe PH-COPD group. The alterations of the medium-size arteries, important in group 1 PH, seemed less discriminating. CONCLUSIONS Patients with severe PH-COPD appear to have a specific histologic pattern, different from that observed in patients with COPD with moderate PH or without PH.
Collapse
Affiliation(s)
- Vincent Bunel
- Service de Pneumologie B et Transplantation Pulmonaire, Université Paris 7 Denis Diderot, Hôpital Bichat, Paris, France; INSERM U1152, Département Hospitalo-Universitaire FIRE, Laboratoire d'Excellence INFLAMEX, Université Paris 7 Denis Diderot, Paris, France
| | - Alice Guyard
- Département de Pathologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gaëlle Dauriat
- Service de Pneumologie B et Transplantation Pulmonaire, Université Paris 7 Denis Diderot, Hôpital Bichat, Paris, France
| | - Claire Danel
- INSERM U1152, Département Hospitalo-Universitaire FIRE, Laboratoire d'Excellence INFLAMEX, Université Paris 7 Denis Diderot, Paris, France; Département de Pathologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - David Montani
- Université Paris-Sud, AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, INSERM UMR_S 999, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, France
| | - Clément Gauvain
- INSERM U1152, Département Hospitalo-Universitaire FIRE, Laboratoire d'Excellence INFLAMEX, Université Paris 7 Denis Diderot, Paris, France
| | - Gabriel Thabut
- Service de Pneumologie B et Transplantation Pulmonaire, Université Paris 7 Denis Diderot, Hôpital Bichat, Paris, France; INSERM U1152, Département Hospitalo-Universitaire FIRE, Laboratoire d'Excellence INFLAMEX, Université Paris 7 Denis Diderot, Paris, France
| | - Marc Humbert
- Université Paris-Sud, AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, INSERM UMR_S 999, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, France
| | - Yves Castier
- Service de Chirurgie Thoracique et Vasculaire, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Peter Dorfmüller
- Université Paris-Sud, AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, INSERM UMR_S 999, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, France; Service d'Anatomie Pathologique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Hervé Mal
- Service de Pneumologie B et Transplantation Pulmonaire, Université Paris 7 Denis Diderot, Hôpital Bichat, Paris, France; INSERM U1152, Département Hospitalo-Universitaire FIRE, Laboratoire d'Excellence INFLAMEX, Université Paris 7 Denis Diderot, Paris, France.
| |
Collapse
|
47
|
Verde Z, Santiago C, Chicharro LM, Bandrés F, Gómez-Gallego F, Rodríguez González-Moro JM, de Lucas P. Association of HTR2A-1438G/A Genetic Polymorphism With Smoking and Chronic Obstructive Pulmonary Disease. Arch Bronconeumol 2019; 55:128-133. [DOI: 10.1016/j.arbres.2018.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/17/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022]
|
48
|
Coste F, Benlala I, Dournes G, Dromer C, Blanchard E, Girodet PO, Montaudon M, Baldacci F, Picard F, Marthan R, Laurent F, Berger P. Quantitative CT assessment of bronchial and vascular alterations in severe precapillary pulmonary hypertension. Int J Chron Obstruct Pulmon Dis 2019; 14:381-389. [PMID: 30809092 PMCID: PMC6377046 DOI: 10.2147/copd.s177638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Little is known about in vivo alterations at bronchial and vascular levels in severe pulmonary hypertension (PH) of different etiologies. We aimed to compare quantitative computed tomography (CT) data from the following three groups of severe precapillary PH patients: COPD, idiopathic pulmonary arterial hypertension (iPAH), and chronic thromboembolic PH (CTEPH). Patients and methods This study was approved by the institutional review board. Severe PH patients (mean pulmonary arterial pressure [mPAP] ≥35 mmHg) with COPD, iPAH, or CTEPH (n=24, 16, or 16, respectively) were included retrospectively between January 2008 and January 2017. Univariate analysis of mPAP was performed in each severe PH group. Bronchial wall thickness (WT) and percentage of cross sectional area of pulmonary vessels less than 5 mm2 normalized by lung area (%CSA<5) were measured and compared using CT, and then combined to arterial partial pressure of oxygen (PaO2) to generate a “paw score” compared within the three groups using Kruskal–Wallis and its sensitivity using Fisher’s exact test. Results WT was higher and %CSA<5 was lower in the COPD group compared to iPAH and CTEPH groups. Mosaic pattern was higher in CTEPH group than in others. In severe PH patients secondary to COPD, mPAP was positively correlated to %CSA<5. By contrast, in severe iPAH, this correlation was negative, or not correlated in severe CTEPH groups. In the COPD group, “paw score” showed higher sensitivity than in the other two groups. Conclusion Unlike in severe iPAH and CTEPH, severe PH with COPD can be predicted by “paw score” reflecting bronchial and vascular morphological differential alterations.
Collapse
Affiliation(s)
- Florence Coste
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000 Bordeaux, France, .,Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, U1045, Université de Bordeaux, CIC1401, F-33000 Bordeaux, France,
| | - Ilyes Benlala
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000 Bordeaux, France, .,Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, U1045, Université de Bordeaux, CIC1401, F-33000 Bordeaux, France,
| | - Gaël Dournes
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000 Bordeaux, France, .,Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, U1045, Université de Bordeaux, CIC1401, F-33000 Bordeaux, France, .,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service de Cardiologie, CIC1401, Service d'Explorations Fonctionnelles Respiratoires, F-33600 Pessac, France
| | - Claire Dromer
- CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service de Cardiologie, CIC1401, Service d'Explorations Fonctionnelles Respiratoires, F-33600 Pessac, France
| | - Elodie Blanchard
- CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service de Cardiologie, CIC1401, Service d'Explorations Fonctionnelles Respiratoires, F-33600 Pessac, France
| | - Pierre-Olivier Girodet
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000 Bordeaux, France, .,Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, U1045, Université de Bordeaux, CIC1401, F-33000 Bordeaux, France, .,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service de Cardiologie, CIC1401, Service d'Explorations Fonctionnelles Respiratoires, F-33600 Pessac, France
| | - Michel Montaudon
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000 Bordeaux, France, .,Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, U1045, Université de Bordeaux, CIC1401, F-33000 Bordeaux, France, .,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service de Cardiologie, CIC1401, Service d'Explorations Fonctionnelles Respiratoires, F-33600 Pessac, France
| | - Fabien Baldacci
- Université de Bordeaux, LaBRI, F-33405 Talence Cedex, France
| | - François Picard
- CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service de Cardiologie, CIC1401, Service d'Explorations Fonctionnelles Respiratoires, F-33600 Pessac, France
| | - Roger Marthan
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000 Bordeaux, France, .,Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, U1045, Université de Bordeaux, CIC1401, F-33000 Bordeaux, France, .,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service de Cardiologie, CIC1401, Service d'Explorations Fonctionnelles Respiratoires, F-33600 Pessac, France
| | - François Laurent
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000 Bordeaux, France, .,Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, U1045, Université de Bordeaux, CIC1401, F-33000 Bordeaux, France, .,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service de Cardiologie, CIC1401, Service d'Explorations Fonctionnelles Respiratoires, F-33600 Pessac, France
| | - Patrick Berger
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33000 Bordeaux, France, .,Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM, U1045, Université de Bordeaux, CIC1401, F-33000 Bordeaux, France, .,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service de Cardiologie, CIC1401, Service d'Explorations Fonctionnelles Respiratoires, F-33600 Pessac, France
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Pulmonary hypertension is common (25-90%) in chronic obstructive pulmonary diseases (COPDs). Severe pulmonary hypertension, however, is quite rare (1-3%). The term 'out of proportion' pulmonary hypertension is still widely used. New guidelines instead propose to use the term 'Severe pulmonary hypertension' if mean pulmonary arterial pressure at least 35 mmHg or cardiac index (CI) is less than 2.0 l/min/m on right heart catheterization (RHC). Why only a minority of COPD patients develop severe pulmonary hypertension is unclear. RECENT FINDINGS When present, severe pulmonary hypertension in COPD is associated with increased dyspnea and decreased survival and often does not closely correlate with degree of obstructive abnormality on pulmonary function testing. COPD patients with severe pulmonary hypertension experience circulatory limitation at maximum exercise, and not ventilatory limitation, which is typical for moderate-to-severe COPD patients with no or moderate pulmonary hypertension. SUMMARY There is no conclusive evidence to support or completely reject the possibility of the use of specific pulmonary arterial hypertension (PAH) therapies in pulmonary hypertension associated with COPD. In mild-to-moderate COPD patients who have severe and progressive symptoms, and have evidence of severe pulmonary hypertension on RHC, specific PAH therapies may be used similar to WHO group-I PAH guidelines.
Collapse
|
50
|
Sutil-Vega M, Rizzo M, Martínez-Rubio A. Anemia and iron deficiency in heart failure: a review of echocardiographic features. Echocardiography 2019; 36:585-594. [DOI: 10.1111/echo.14271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/04/2018] [Accepted: 01/06/2019] [Indexed: 12/14/2022] Open
Affiliation(s)
- Mario Sutil-Vega
- Cardiac Imaging Unit; Department of Cardiology; Parc Taulí University Hospital (Universitat Autònoma de Barcelona); Barcelona Spain
| | - Marcelo Rizzo
- Heart Failure Unit; Department of Cardiology; Parc Taulí University Hospital (Universitat Autònoma de Barcelona); Barcelona Spain
| | - Antoni Martínez-Rubio
- Chief of the Department of Cardiology; Parc Taulí University Hospital (Universitat Autònoma de Barcelona); Barcelona Spain
| |
Collapse
|