1
|
Simmalee K, Kawamatawong T, Vitte J, Demoly P, Lumjiaktase P. Exploring the pathogenesis and clinical implications of asthma, chronic obstructive pulmonary disease (COPD), and asthma-COPD overlap (ACO): a narrative review. Front Med (Lausanne) 2025; 12:1514846. [PMID: 40313547 PMCID: PMC12044671 DOI: 10.3389/fmed.2025.1514846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/26/2025] [Indexed: 05/03/2025] Open
Abstract
The complexity and diversity of the immune response in patients with asthma, chronic obstructive pulmonary disease (COPD), and asthma-COPD overlap present significant challenges for disease management. Relying on a limited number of biomarkers and clinical data is insufficient to fully reveal the immunopathogenesis of these diseases. However, in vitro technologies such as cell analysis, cytokine investigation, and nucleic acid sequencing have provided new insights into the underlying mechanisms of these diseases, leading to the discovery of several biomarkers-including cell degranulation, cell function, secreted cytokines, and single nucleotide polymorphisms-that have potential clinical implications. This paper reviews the immunopathogenesis in asthma, chronic obstructive pulmonary disease, and asthma-COPD overlap and examines the applications of recent in vitro models to detect candidate biomarkers that could enhance diagnostic precision, predict severity, monitor treatments, and develop new treatment strategies. A deeper understanding of the immune response in these diseases, along with the integration of in vitro models into clinical practice, could greatly improve the management of these respiratory diseases, making approaches more personalized and efficient.
Collapse
Affiliation(s)
- Kantapat Simmalee
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Theerasuk Kawamatawong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Joana Vitte
- Immunology Laboratory, University Hospital of Reims and INSERM UMR-S 1250 P3CELL, University of Reims Champagne-Ardenne, Reims, France
| | - Pascal Demoly
- Division of Allergy, University Hospital of Montpellier and IDESP, University of Montpellier - Inserm, Inria, Montpellier, France
| | - Putthapoom Lumjiaktase
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Liu X, Luo A, Yang M, Luo J, Li H, Chen X, Mao B, Jiang H, Liu W. Baicalin restores innate lymphoid immune imbalance during exacerbation of COPD. Immunol Res 2025; 73:71. [PMID: 40234295 PMCID: PMC12000166 DOI: 10.1007/s12026-025-09629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by immune dysregulation, including altered innate lymphoid cell (ILC) immune responses, particularly during exacerbations (ECOPD). Baicalin, a natural compound prevalent in various herbal medicines, has shown promise as a therapeutic candidate in ECOPD. However, its potential and molecular mechanism for addressing ILC immune imbalance during ECOPD remain poorly understood. First, this study conducted a cross-sectional analysis of ILC immune responses in stable COPD patients and those experiencing exacerbations. Then, clinical findings of skewed ILC immunity were validated in cigarette smoke and lipopolysaccharide-induced ECOPD mouse models. Lastly, the therapeutic effect of baicalin on restoring ILC immune homeostasis was investigated in experimental ECOPD mouse models. Significant downregulation of ILC2 immunity was observed during COPD exacerbations, accompanied by increased ILC1 and ILC3 responses, particularly in cases associated with bacterial infections. Notably, elevated IL-22 levels were observed in this group. Administration of recombinant IL-22 in ECOPD mouse models disrupted lung ILC homeostasis, specifically inhibiting the accumulation of ILC2. Proteomics and transcriptomics analyses suggested IL-22 as a mediator of type 2 immune suppression by creating a molecular environment that favors type 1 and type 3 immunity. Treatment with baicalin effectively restored ILC2 immunity by enhancing the recruitment and activation of lung ILC2 while suppressing ILC1 and ILC3 responses. Importantly, baicalin attenuated IL-22 production from lung ILC3, highlighting its potential as an IL-22 inhibitor. Baicalin demonstrates potential as a therapeutic strategy for addressing ILC immune imbalance in COPD exacerbations, particularly by restoring ILC2 immunity and partially inhibiting IL-22 production. Clinical registration The cross-sectional study was registered with the Chinese Clinical Trial Registry (ChiCTR2100050683).
Collapse
Affiliation(s)
- Xuemei Liu
- Department of Internal Medicine, Division of Pulmonary Medicine, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ai Luo
- Department of Internal Medicine, Division of Pulmonary Medicine, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Mei Yang
- Department of Internal Medicine, Division of Pulmonary Medicine, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Pulmonary Medicine, Dazhou Second People's Hospital, Dazhou, China
| | - Jian Luo
- Respiratory Medicine Unit and National Institute for Health Research (NIHR), Nuffield Department of Medicine Experimental Medicine, Oxford Biomedical Research Centre (BRC), University of Oxford, Oxfordshire, United Kingdom
| | - Huifang Li
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, 1 Keyuansi Road, Chengdu, Sichuan, China
| | - Bing Mao
- Department of Internal Medicine, Division of Pulmonary Medicine, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hongli Jiang
- Department of Internal Medicine, Division of Pulmonary Medicine, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Wei Liu
- Department of Internal Medicine, Division of Pulmonary Medicine, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Liu G, Hsu AC, Geirnaert S, Cong C, Nair PM, Shen S, Marshall JE, Haw TJ, Fricker M, Philp AM, Hansbro NG, Pavlidis S, Guo Y, Burgess JK, Castellano L, Ieni A, Caramori G, Oliver BGG, Chung KF, Adcock IM, Knight DA, Polverino F, Bracke K, Wark PA, Hansbro PM. Vitronectin regulates lung tissue remodeling and emphysema in chronic obstructive pulmonary disease. Mol Ther 2025; 33:917-932. [PMID: 39838644 PMCID: PMC11897773 DOI: 10.1016/j.ymthe.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/21/2024] [Accepted: 01/17/2025] [Indexed: 01/23/2025] Open
Abstract
Vitronectin (VTN) is an important extracellular matrix protein in tissue remodeling, but its role in chronic obstructive pulmonary disease (COPD) is unknown. We show that VTN regulates tissue remodeling through urokinase plasminogen activator (uPA) signaling pathway in COPD. In human COPD airways and bronchoepithelial cells and the airways of mice with cigarette smoke (CS)-induced experimental COPD, VTN protein was not changed, but downstream uPA signaling was altered (increased plasminogen activator inhibitor-1) that induced collagen and airway remodeling. In the parenchyma, VTN levels were decreased, uPA signaling pathway differentially altered and collagen reduced in lung fibroblasts from human and lung parenchyma in experimental COPD. Vtn inhibition with siRNA in mouse fibroblasts altered uPA signaling increased matrix metalloproteinase-12, and reduced collagen, whereas over-expression restored collagen production after CS extract challenge. Vtn-/- and Vtn small interfering RNA-treated mice had exaggerated inflammation, emphysema, and impaired lung function compared with controls with CS-induced COPD. Restoration of VTN in the parenchyma may be a therapeutic option for emphysema and COPD.
Collapse
Affiliation(s)
- Gang Liu
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.
| | - Alan C Hsu
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Silke Geirnaert
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Christine Cong
- Pulmonary and Critical Care Division, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Prema M Nair
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Sj Shen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia
| | - Jacqueline E Marshall
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia
| | - Tatt Jhong Haw
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Michael Fricker
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia; St Vincent's Medical School, University of New South Wale Medicine, University of New South Wale, Sydney, NSW, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia
| | - Stelios Pavlidis
- The Airway Disease Section, Data Science Institute, National Heart & Lung Institute, Imperial College London, London, UK
| | - Yike Guo
- Data Science Institute, National Heart & Lung Institute, Imperial College London, London, UK
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute of Asthma and COPD, Groningen, the Netherlands
| | | | - Antonio Ieni
- Department of Pathology, University of Messina, Messina, Italy
| | - Gaetano Caramori
- Pulmonology, Department of Medicine and Surgery, University of Parma, Parma PR, Italy
| | - Brain G G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - K Fan Chung
- The Airway Disease Section, Data Science Institute, National Heart & Lung Institute, Imperial College London, London, UK
| | - Ian M Adcock
- Data Science Institute, National Heart & Lung Institute, Imperial College London, London, UK
| | - Darryl A Knight
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia; Research and Academic Affairs, Providence Health Care Research Institute, Vancouver, BC, Canada; Departemnt of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Faculty of Medicine, Vancouver, BC, Canada
| | - Francesca Polverino
- Pulmonary and Critical Care Division, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ken Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Peter A Wark
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Philip M Hansbro
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia; Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Liu SZ, Xie JH, Yan BJ, Wang J. Knowledge mapping and research trends of IL-22 from 2014 to 2023: A bibliometric analysis. Hum Vaccin Immunother 2024; 20:2426321. [PMID: 39540219 PMCID: PMC11572295 DOI: 10.1080/21645515.2024.2426321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/19/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Although IL-22 has been extensively studied, a comprehensive and systematic bibliometric analysis has not yet been conducted on it. This article reviews the research progress of IL-22 using bibliometric methods. On May 20, 2024, publications related to IL-22 were identified and selected from the Web of Science Core Collection (WoSCC) database. CiteSpace and VOSviewer are beneficial for IL-22 bibliometric and knowledge graph analysis. From January 1, 2014 to December 31, 2023, 25134 authors from 4206 institutions in 106 countries published 3943 articles on IL-22 research in 940 academic journals. During this period, the number of articles steadily increased. The United States and China are the main contributors to this research field, with the most active institutions being the Medical Research Institute (INSERM) led by De la Sante et al. and the University of California system. The most prolific journal is Frontiers of Immunology, and it is also the journal with the most citations. Guttman Yassky, E. has published the most articles, and Guttman Yassky, E. is also the most frequently cited. The main areas of these publications are immunology and cell biology. After analysis, the high-frequency keywords of IL-22 research involve molecular biology (IL-17) and immune response (T cells) Th17 cells and diseases (autoimmune diseases, cancer). Among them, the involvement of interleukin-22 in microbial populations and cancer cell spread has strong research potential and is currently a hot research topic. Since 2014, IL-22 has received significant attention in scientific research as a key immune regulatory factor. China is at the forefront of research in this field, followed closely by the United States. At present, breakthrough progress is being made in the research of immunotherapy, and in-depth study of IL-22 and its signal transduction mechanisms is crucial for understanding its biological functions. Meanwhile, exploring new possibilities for IL-22 as a therapeutic target will help develop more effective treatment strategies. This study can provide scholars with research directions related to IL-22.
Collapse
Affiliation(s)
- Shu-Zhen Liu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jie-Hong Xie
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Bing-Ju Yan
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jun Wang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
5
|
Vanders RL, Gomez HM, Daly K, Wark PA, Horvat JC, Hansbro PM. Immune checkpoints are suppressed during pregnancy following influenza A virus infection. Am J Physiol Lung Cell Mol Physiol 2024; 327:L890-L904. [PMID: 39254092 DOI: 10.1152/ajplung.00391.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Influenza A virus (IAV) infection is a major health risk during pregnancy. Although vaccination and antiviral agents are widely used and reduce IAV-induced symptoms, they are not sufficient to control IAV infections in pregnancy, especially during pandemics. Respiratory viruses like IAV exploit immune alterations that occur during pregnancy, including the upregulation of immune checkpoint proteins (ICPs) like programmed death ligand-1 (PDL1), programmed cell death receptor 1 (PD1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA4). We hypothesize that blocking expression of PDL1 on innate immune cells will improve maternal immunity following IAV infection. We used murine models of IAV infection during pregnancy with and without treatment with the immune checkpoint inhibitor (ICI), a-PDL1. Pregnant and nonpregnant mice were infected with mouse-adapted IAV (A/PR/8) and assessed at 3 days post infection (3 dpi). Lung cells were analyzed using flow cytometry. Lung mRNA expression of inflammatory and antiviral markers and histology was measured. Protein concentrations of inflammatory and antiviral markers, as well as viral titers were measured from lung bronchiolar lavage fluid (BALF). Lung function was also assessed. Following IAV infection, immune cells from pregnant mice had significant increases in the ICPs, PDL1, PD1, and CTLA4. a-PDL1 treatment effectively suppressed these ICPs and increased the activation marker, CD86. a-PDL1 treatment also reduced lung inflammatory cell infiltration and viral titers, increased antiviral responses, and improved lung function. Overall, IAV infection in pregnancy activates key inhibitory ICPs, leading to worsened disease outcomes. a-PDL1 treatment during IAV infection in pregnancy is an effective method to reduce ICP expression and improve overall immune cell responses.NEW & NOTEWORTHY Influenza infection worsens disease outcomes during pregnancy; however, treatment with anti-PDL1 can restore immune function during pregnancy.
Collapse
Affiliation(s)
- Rebecca L Vanders
- Immune Health, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Henry M Gomez
- Immune Health, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Katie Daly
- Immune Health, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter A Wark
- Immune Health, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Immune Health, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Dean LS, Threatt AN, Jones K, Oyewole EO, Pauly M, Wahl M, Barahona M, Reiter RW, Nordgren TM. I don't know about you, but I'm feeling IL-22. Cytokine Growth Factor Rev 2024; 80:1-11. [PMID: 39537498 DOI: 10.1016/j.cytogfr.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Defense of the human body against damaging and pathogenic insults is a heavily regulated affair. A primary mechanism of defense at sites of insult are soluble mediators whose defensive maneuvers increase barrier integrity and promote pro-reparative and resolution processes. IL-22 is a cytokine in the IL-10 cytokine family that has garnered increased attention in recent years due to its intimate link in promoting resolution of inflammatory insults, while simultaneously being over expressed in certain fibrotic and chronic inflammatory-skewed diseases. The spatial action of IL-22 centers around the barrier sites of the body, including the skin, lungs, and gut mucosa. As such, a detailed understanding of the role of this cytokine, the producers and responders, and the diseases resulting from over- or under-expression have prominent impacts on a variety of disease outcomes. Herein we present a comprehensive review of IL-22; from historical perspectives and initial discovery, as well as more recent data that dramatically expands on the cellular sources and impact of this cytokine. We aim to showcase the duality of IL-22 and highlight addressable gaps in the field of IL-22 crosstalk and impacts at the ever-important mucosal and tissue barrier sites.
Collapse
Affiliation(s)
- Logan S Dean
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Alissa N Threatt
- Toxicology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Kaylee Jones
- Toxicology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Emmanuel O Oyewole
- Toxicology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Morgan Pauly
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Maëlis Wahl
- Department of Biochemistry and Molecular Biology, Colorado State University, CO 80521, United States
| | - Melea Barahona
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Rose W Reiter
- Department of Molecular, Cellular, and Integrative Neuroscience, Colorado State University, CO 80521, United States
| | - Tara M Nordgren
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Toxicology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States.
| |
Collapse
|
7
|
Hazrati A, Mirarefin SMJ, Malekpour K, Rahimi A, Khosrojerdi A, Rasouli A, Akrami S, Soudi S. Mesenchymal stem cell application in pulmonary disease treatment with emphasis on their interaction with lung-resident immune cells. Front Immunol 2024; 15:1469696. [PMID: 39582867 PMCID: PMC11581898 DOI: 10.3389/fimmu.2024.1469696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024] Open
Abstract
Due to the vital importance of the lungs, lung-related diseases and their control are very important. Severe inflammatory responses mediated by immune cells were among the leading causes of lung tissue pathology and damage during the COVID-19 pandemic. In addition, uncontrolled immune cell responses can lead to lung tissue damage in other infectious and non-infectious diseases. It is essential to control immune responses in a way that leads to homeostasis. Immunosuppressive drugs only suppress inflammatory responses and do not affect the homeostasis of reactions. The therapeutic application of mesenchymal stem cells (MSCs), in addition to restoring immune homeostasis, can promote the regeneration of lung tissue through the production of growth factors and differentiation into lung-related cells. However, the communication between MSCs and immune cells after treatment of pulmonary diseases is essential, and investigating this can help develop a clinical perspective. Different studies in the clinical phase showed that MSCs can reverse fibrosis, increase regeneration, promote airway remodeling, and reduce damage to lung tissue. The proliferation and differentiation potential of MSCs is one of the mechanisms of their therapeutic effects. Furthermore, they can secrete exosomes that affect the function of lung cells and immune cells and change their function. Another important mechanism is that MSCs reduce harmful inflammatory responses through communication with innate and adaptive immune cells, which leads to a shift of the immune system toward regulatory and hemostatic responses.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezou Rahimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ashkan Rasouli
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Susan Akrami
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Wang Z, Riqing D, Ma L, Jiang M, Zhuoma C, Li X, Liu Y. In Situ Expression of Yak IL-22 in Mammary Glands as a Treatment for Bovine Staphylococcus aureus-Induced Mastitis in Mice. Vet Sci 2024; 11:515. [PMID: 39453107 PMCID: PMC11512370 DOI: 10.3390/vetsci11100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Since the development of dairy farming, bovine mastitis has been a problem plaguing the whole industry, which has led to a decrease in milk production, a reduction in dairy product quality, and an increase in costs. The use of antibiotics to treat mastitis can cause a series of problems, which can bring a series of harm to the animal itself, such as the development of bacterial resistance and dramatic changes in the gut flora. However, the in vivo and in vitro antibacterial activity of yak Interleukin-22 (IL-22) and its application in mastitis caused by Staphylococcus aureus have not been reported. In this study, the mammary gland-specific expression plasmid pLF-IL22 of the yak IL-22 gene was constructed and expressed in MAC-T cells and mammary tissue of postpartum female mice. The coding region of the IL-22 gene in yaks is 573 bp, which can encode 190 amino acids, and the homology difference in the IL-22 gene in yaks is less than 30%, which indicates certain conservation. IL-22 is a hydrophilic protein with a total positive charge of four, the presence of a signal peptide, and the absence of a transmembrane domain. Sufficient expression of IL-22 effectively inhibited the high expression of inflammatory factors caused by Staphylococcus aureus, reduced the symptoms of mammary gland histopathology, and alleviated mastitis. Under the action of IL-22, the intestinal flora of mastitis mice also changed, the abundance of intestinal Bacilli, Prevotellaceae, and Alloprevotella in mice increased after treatment, and the pathogenic bacteria decreased. These findings provide new insights into the potential application of the yak IL-22 gene in the treatment of bovine mastitis in the future.
Collapse
Affiliation(s)
- Zening Wang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.W.); (D.R.); (M.J.)
| | - Daojie Riqing
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.W.); (D.R.); (M.J.)
| | - Liangliang Ma
- College of Grassland Resources, Southwest Minzu University, Chengdu 610041, China;
| | - Mingfeng Jiang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.W.); (D.R.); (M.J.)
| | - Ciren Zhuoma
- Jiali County Agriculture and Animal Husbandry Science and Technology Service Station, Naqu 852413, China;
| | - Xiaowei Li
- Sichuan Longri Livestock Breeding Farm, Hongyuan 624400, China;
| | - Yili Liu
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.W.); (D.R.); (M.J.)
| |
Collapse
|
9
|
Xu L, Cao P, Wang J, Zhang P, Hu S, Cheng C, Wang H. IL-22: A key inflammatory mediator as a biomarker and potential therapeutic target for lung cancer. Heliyon 2024; 10:e35901. [PMID: 39263114 PMCID: PMC11387261 DOI: 10.1016/j.heliyon.2024.e35901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Lung cancer, one of the most prevalent cancers worldwide, stands as the primary cause of cancer-related deaths. As is well-known, the utmost crucial risk factor contributing to lung cancer is smoking. In recent years, remarkable progress has been made in treating lung cancer, particularly non-small cell lung cancer (NSCLC). Nevertheless, the absence of effective and accurate biomarkers for diagnosing and treating lung cancer remains a pressing issue. Interleukin 22 (IL-22) is a member of the IL-10 cytokine family. It exerts biological functions (including induction of proliferation and anti-apoptotic signaling pathways, enhancement of tissue regeneration and immunity defense) by binding to heterodimeric receptors containing type 1 receptor chain (R1) and type 2 receptor chain (R2). IL-22 has been identified as a pro-cancer factor since dysregulation of the IL-22-IL-22R system has been implicated in the development of different cancers, including lung, breast, gastric, pancreatic, and colon cancers. In this review, we discuss the differential expression, regulatory role, and potential clinical significance of IL-22 in lung cancer, while shedding light on innovative approaches for the future.
Collapse
Affiliation(s)
- Ling Xu
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Peng Cao
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Jianpeng Wang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Peng Zhang
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Shuhui Hu
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Chao Cheng
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Lovelace TC, Ryu MH, Jia M, Castaldi P, Sciurba FC, Hersh CP, Benos PV. Development and validation of a mortality risk prediction model for chronic obstructive pulmonary disease: a cross-sectional study using probabilistic graphical modelling. EClinicalMedicine 2024; 75:102786. [PMID: 39263674 PMCID: PMC11388367 DOI: 10.1016/j.eclinm.2024.102786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/13/2024] Open
Abstract
Background Chronic Obstructive Pulmonary Disease (COPD) is a leading cause of mortality. Predicting mortality risk in patients with COPD can be important for disease management strategies. Although all-cause mortality predictors have been developed previously, limited research exists on factors directly affecting COPD-specific mortality. Methods In a retrospective study, we used probabilistic graphs to analyse clinical cross-sectional data (COPDGene cohort), including demographics, spirometry, quantitative chest imaging, and symptom features, as well as gene expression data. COPDGene recruited current and former smokers, aged 45-80 years with >10 pack-years smoking history, from across the USA (Phase 1, 11/2007-4/2011) and invited them for a follow-up visit (Phase 2, 7/2013-7/2017). ECLIPSE cohort recruited current and former smokers (COPD patients and controls from USA and Europe), aged 45-80 with smoking history >10 pack-years (12/2005-11/2007). We applied graphical models on multi-modal data COPDGene Phase 1 participants to identify factors directly affecting all-cause and COPD-specific mortality (primary outcomes); and on Phase 2 follow-up cohort to identify additional molecular and social factors affecting mortality. We used penalized Cox regression with features selected by the causal graph to build VAPORED, a mortality risk prediction model. VAPORED was compared to existing scores (BODE: BMI, airflow obstruction, dyspnoea, exercise capacity; ADO: age, dyspnoea, airflow obstruction) on the ability to rank individuals by mortality risk, using four evaluation metrics (concordance, concordance probability estimate (CPE), cumulative/dynamic (C/D) area under the receiver operating characteristic curve (AUC), and integrated C/D AUC). The results were validated in ECLIPSE. Findings Graphical models, applied on the COPDGene Phase 1 samples (n = 8610), identified 11 and 7 variables directly linked to all-cause and COPD-specific mortality, respectively. Although many appear in both models, non-lung comorbidities appear only in the all-cause model, while forced vital capacity (FVC %predicted) appears in COPD-specific mortality model only. Additionally, the graph model of Phase 2 data (n = 3182) identified internet access, CD4 T cells and platelets to be linked to lower mortality risk. Furthermore, using the 7 variables linked to COPD-specific mortality (forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC) ration, FVC %predicted, age, history of pneumonia, oxygen saturation, 6-min walk distance, dyspnoea) we developed VAPORED mortality risk score, which we validated on the ECLIPSE cohort (3-yr all-cause mortality data, n = 2312). VAPORED performed significantly better than ADO, BODE, and updated BODE indices in predicting all-cause mortality in ECLIPSE in terms of concordance (VAPORED [0.719] vs ADO [0.693; FDR p-value 0.014], BODE [0.695; FDR p-value 0.020], and updated BODE [0.694; FDR p-value 0.021]); CPE (VAPORED [0.714] vs ADO [0.673; FDR p-value <0.0001], BODE [0.662; FDR p-value <0.0001], and updated BODE [0.646; FDR p-value <0.0001]); 3-year C/D AUC (VAPORED [0.728] vs ADO [0.702; FDR p-value 0.017], BODE [0.704; FDR p-value 0.021], and updated BODE [0.703; FDR p-value 0.024]); integrated C/D AUC (VAPORED [0.723] vs ADO [0.698; FDR p-value 0.047], BODE [0.695; FDR p-value 0.024], and updated BODE [0.690; FDR p-value 0.021]). Finally, we developed a web tool to help clinicians calculate VAPORED mortality risk and compare it to ADO and BODE predictions. Interpretation Our work is an important step towards improving our identification of high-risk patients and generating hypotheses of potential biological mechanisms and social factors driving mortality in patients with COPD at the population level. The main limitation of our study is the fact that the analysed datasets consist of older people with extensive smoking history and limited racial diversity. Thus, the results are relevant to high-risk individuals or those diagnosed with COPD and the VAPORED score is validated for them. Funding This research was supported by NIH [NHLBI, NLM]. The COPDGene study is supported by the COPD Foundation, through grants from AstraZeneca, Bayer Pharmaceuticals, Boehringer Ingelheim, Genentech, GlaxoSmithKline, Novartis, Pfizer and Sunovion.
Collapse
Affiliation(s)
- Tyler C. Lovelace
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA
| | - Min Hyung Ryu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Minxue Jia
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA
| | - Peter Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Frank C. Sciurba
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Craig P. Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Panayiotis V. Benos
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Farrell LA, O’Rourke MB, Padula MP, Souza-Fonseca-Guimaraes F, Caramori G, Wark PAB, Dharmage SC, Hansbro PM. The Current Molecular and Cellular Landscape of Chronic Obstructive Pulmonary Disease (COPD): A Review of Therapies and Efforts towards Personalized Treatment. Proteomes 2024; 12:23. [PMID: 39189263 PMCID: PMC11348234 DOI: 10.3390/proteomes12030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks as the third leading cause of global illness and mortality. It is commonly triggered by exposure to respiratory irritants like cigarette smoke or biofuel pollutants. This multifaceted condition manifests through an array of symptoms and lung irregularities, characterized by chronic inflammation and reduced lung function. Present therapies primarily rely on maintenance medications to alleviate symptoms, but fall short in impeding disease advancement. COPD's diverse nature, influenced by various phenotypes, complicates diagnosis, necessitating precise molecular characterization. Omics-driven methodologies, including biomarker identification and therapeutic target exploration, offer a promising avenue for addressing COPD's complexity. This analysis underscores the critical necessity of improving molecular profiling to deepen our comprehension of COPD and identify potential therapeutic targets. Moreover, it advocates for tailoring treatment strategies to individual phenotypes. Through comprehensive exploration-based molecular characterization and the adoption of personalized methodologies, innovative treatments may emerge that are capable of altering the trajectory of COPD, instilling optimism for efficacious disease-modifying interventions.
Collapse
Affiliation(s)
- Luke A. Farrell
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| | - Matthew B. O’Rourke
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| | - Matthew P. Padula
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | | | - Gaetano Caramori
- Pulmonology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Peter A. B. Wark
- School of Translational Medicine, Monash University, Melbourne, VIC 3000, Australia;
| | - Shymali C. Dharmage
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Phillip M. Hansbro
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| |
Collapse
|
12
|
Duan R, Huang K, Yu T, Chang C, Chu X, Huang Y, Zheng Z, Ma L, Li B, Yang T. Interleukin-2/anti-interleukin-2 complex attenuates inflammation in a mouse COPD model by expanding CD4 + CD25 + Foxp3 + regulatory T cells. Int Immunopharmacol 2024; 131:111849. [PMID: 38503017 DOI: 10.1016/j.intimp.2024.111849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/02/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND AND PURPOSE Chronic, nonspecific inflammation of the alveoli and airways is an important pathological feature of chronic obstructive pulmonary disease (COPD), while sustained inflammatory reactions can cause alveolar damage. Regulatory T cells (Tregs) inhibit inflammation, whereas the interleukin-2/anti-interleukin-2 complex (IL-2C) increases the number of Tregs; however, whether the IL-2C has a therapeutic role in COPD remains unknown. Therefore, this study investigated whether IL-2C alleviates lung inflammation in COPD by increasing the number of Tregs. EXPERIMENTAL APPROACH A mouse COPD model was created by exposing mice to lipopolysaccharides (LPS) and cigarette smoke (CS), and the effects of IL-2C treatment on COPD were evaluated. The number of Tregs in the spleen and lung, pulmonary pathological changes, and inflammatory damage were examined through flow cytometry, histopathology, and immunofluorescence, respectively. KEY RESULTS IL-2C increased the number of Treg cells in the spleen and lungs after exposure to CS and LPS, reduced the number of T helper 17 (Th17) cells in lung tissue, and improved the Th17/Treg balance. IL-2C decreased the number of inflammatory cells and reduced the levels of pro-inflammatory cytokines IL-6, TNF-α, IL-1β, CCL5, KC, and MCP-1 in bronchoalveolar lavage fluid and serum. IL-2C significantly reduced the pathological scores for lung inflammation, as well as decreased airway mucus secretion and infiltration of neutrophils and macrophages in the lungs. The depletion of Tregs using anti-CD25 antibodies eliminated the beneficial effects of IL-2C. CONCLUSIONS AND IMPLICATIONS IL-2C is a potential therapeutic agent for alleviating excessive inflammation in the lungs of patients with COPD.
Collapse
Affiliation(s)
- Ruirui Duan
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, China
| | - Ke Huang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, China
| | - Tao Yu
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenli Chang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Chu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, China
| | - Yuhang Huang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhoude Zheng
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Linxi Ma
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Baicun Li
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, China.
| | - Ting Yang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, China.
| |
Collapse
|
13
|
Budden KF, Shukla SD, Bowerman KL, Vaughan A, Gellatly SL, Wood DLA, Lachner N, Idrees S, Rehman SF, Faiz A, Patel VK, Donovan C, Alemao CA, Shen S, Amorim N, Majumder R, Vanka KS, Mason J, Haw TJ, Tillet B, Fricker M, Keely S, Hansbro N, Belz GT, Horvat J, Ashhurst T, van Vreden C, McGuire H, Fazekas de St Groth B, King NJC, Crossett B, Cordwell SJ, Bonaguro L, Schultze JL, Hamilton-Williams EE, Mann E, Forster SC, Cooper MA, Segal LN, Chotirmall SH, Collins P, Bowman R, Fong KM, Yang IA, Wark PAB, Dennis PG, Hugenholtz P, Hansbro PM. Faecal microbial transfer and complex carbohydrates mediate protection against COPD. Gut 2024; 73:751-769. [PMID: 38331563 DOI: 10.1136/gutjnl-2023-330521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE Chronic obstructive pulmonary disease (COPD) is a major cause of global illness and death, most commonly caused by cigarette smoke. The mechanisms of pathogenesis remain poorly understood, limiting the development of effective therapies. The gastrointestinal microbiome has been implicated in chronic lung diseases via the gut-lung axis, but its role is unclear. DESIGN Using an in vivo mouse model of cigarette smoke (CS)-induced COPD and faecal microbial transfer (FMT), we characterised the faecal microbiota using metagenomics, proteomics and metabolomics. Findings were correlated with airway and systemic inflammation, lung and gut histopathology and lung function. Complex carbohydrates were assessed in mice using a high resistant starch diet, and in 16 patients with COPD using a randomised, double-blind, placebo-controlled pilot study of inulin supplementation. RESULTS FMT alleviated hallmark features of COPD (inflammation, alveolar destruction, impaired lung function), gastrointestinal pathology and systemic immune changes. Protective effects were additive to smoking cessation, and transfer of CS-associated microbiota after antibiotic-induced microbiome depletion was sufficient to increase lung inflammation while suppressing colonic immunity in the absence of CS exposure. Disease features correlated with the relative abundance of Muribaculaceae, Desulfovibrionaceae and Lachnospiraceae family members. Proteomics and metabolomics identified downregulation of glucose and starch metabolism in CS-associated microbiota, and supplementation of mice or human patients with complex carbohydrates improved disease outcomes. CONCLUSION The gut microbiome contributes to COPD pathogenesis and can be targeted therapeutically.
Collapse
Affiliation(s)
- Kurtis F Budden
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kate L Bowerman
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Annalicia Vaughan
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Shaan L Gellatly
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - David L A Wood
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Nancy Lachner
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Sobia Idrees
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Saima Firdous Rehman
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Alen Faiz
- Respiratory Bioinformatics and Molecular Biology, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Vyoma K Patel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Charlotte A Alemao
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Sj Shen
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Nadia Amorim
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Rajib Majumder
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Kanth S Vanka
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Jazz Mason
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Bree Tillet
- Frazer Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Simon Keely
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Nicole Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Gabrielle T Belz
- Frazer Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Jay Horvat
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Thomas Ashhurst
- Sydney Cytometry, Charles Perkins Centre, Centenary Institute and The University of Sydney, Sydney, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
| | - Caryn van Vreden
- Sydney Cytometry, Charles Perkins Centre, Centenary Institute and The University of Sydney, Sydney, NSW, Australia
- Ramaciotti Facility for Human Systems Biology, Charles Perkins Centre and The University of Sydney, Sydney, NSW, Australia
| | - Helen McGuire
- Ramaciotti Facility for Human Systems Biology, Charles Perkins Centre and The University of Sydney, Sydney, NSW, Australia
| | - Barbara Fazekas de St Groth
- Ramaciotti Facility for Human Systems Biology, Charles Perkins Centre and The University of Sydney, Sydney, NSW, Australia
| | - Nicholas J C King
- Sydney Cytometry, Charles Perkins Centre, Centenary Institute and The University of Sydney, Sydney, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
- Ramaciotti Facility for Human Systems Biology, Charles Perkins Centre and The University of Sydney, Sydney, NSW, Australia
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Ben Crossett
- Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW, Australia
| | - Stuart J Cordwell
- Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, Charles Perkins Centre and The University of Sydney, Sydney, NSW, Australia
| | - Lorenzo Bonaguro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and the University of Bonn, Bonn, Germany
| | | | - Elizabeth Mann
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Samuel C Forster
- Centre for Innate Immunity and Infectious Diseases and Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Melbourne, VIC, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Leopoldo N Segal
- Division of Pulmonary and Critical Care Medicine, Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Translational Respiratory Research Laboratory, Singapore
| | - Peter Collins
- Mater Research Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Department of Dietetics & Food Services, Mater Hospital, Brisbane, QLD, Australia
| | - Rayleen Bowman
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Kwun M Fong
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Ian A Yang
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Philip Hugenholtz
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Klein F, Dinesh S, Fiedler D, Grün K, Schrepper A, Bogoviku J, Bäz L, Pfeil A, Kretzschmar D, Schulze PC, Möbius-Winkler S, Franz M. Identification of Serum Interleukin-22 as Novel Biomarker in Pulmonary Hypertension: A Translational Study. Int J Mol Sci 2024; 25:3985. [PMID: 38612795 PMCID: PMC11012889 DOI: 10.3390/ijms25073985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/30/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Growing evidence suggests the crucial involvement of inflammation in the pathogenesis of pulmonary hypertension (PH). The current study analyzed the expression of interleukin (IL)-17a and IL-22 as potential biomarkers for PH in a preclinical rat model of PH as well as the serum levels in a PH patient collective. PH was induced by monocrotalin (60 mg/kg body weight s.c.) in 10 Sprague Dawley rats (PH) and compared to 6 sham-treated controls (CON) as well as 10 monocrotalin-induced, macitentan-treated rats (PH_MAC). Lung and cardiac tissues were subjected to histological and immunohistochemical analysis for the ILs, and their serum levels were quantified using ELISA. Serum IL levels were also measured in a PH patient cohort. IL-22 expression was significantly increased in the lungs of the PH and PH_MAC groups (p = 0.002), whereas increased IL17a expression was demonstrated only in the lungs and RV of the PH (p < 0.05) but not the PH_MAC group (p = n.s.). The PH group showed elevated serum concentrations for IL-22 (p = 0.04) and IL-17a (p = 0.008). Compared to the PH group, the PH_MAC group demonstrated a decrease in IL-22 (p = 0.021) but not IL17a (p = n.s.). In the PH patient collective (n = 92), increased serum levels of IL-22 but not IL-17a could be shown (p < 0.0001). This elevation remained significant across the different etiological groups (p < 0.05). Correlation analysis revealed multiple significant relations between IL-22 and various clinical, laboratory, functional and hemodynamic parameters. IL-22 could serve as a promising inflammatory biomarker of PH with potential value for initial diagnosis, functional classification or even prognosis estimation. Its validation in larger patients' cohorts regarding outcome and survival data, as well as the probability of promising therapeutic target structures, remains the object of further studies.
Collapse
Affiliation(s)
- Friederike Klein
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (F.K.)
| | - Sandesh Dinesh
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (F.K.)
| | - Desiree Fiedler
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (F.K.)
| | - Katja Grün
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (F.K.)
| | - Andrea Schrepper
- Department of Cardiothoracic Surgery, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Jürgen Bogoviku
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (F.K.)
| | - Laura Bäz
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (F.K.)
| | - Alexander Pfeil
- Department of Internal Medicine III, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Daniel Kretzschmar
- Herz-und Gefäßmedizin Goslar (HUGG), Goslar, Fleischscharren 4, 38640 Goslar, Germany
| | - P. Christian Schulze
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (F.K.)
| | - Sven Möbius-Winkler
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (F.K.)
| | - Marcus Franz
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (F.K.)
- Department of Cardiology, Angiology and Intensive Care Medicine, Cardiovascular Center Rotenburg Klinikum Hersfeld-Rotenburg, Heinz-Meise-Straße 100, 36199 Rotenburg an der Fulda, Germany
| |
Collapse
|
15
|
Pillar A, Ali MK. IL-22 Binding Protein/IL-22 Axis in Regulating Acute Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:335-337. [PMID: 38199431 DOI: 10.1016/j.ajpath.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Affiliation(s)
- Amber Pillar
- School of Biomedical Sciences and Pharmacy, University of Newcastle and The Immune Health Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Md Khadem Ali
- Pre-Professional Health Academic Program, California State University East Bay, Hayward, California.
| |
Collapse
|
16
|
Zhang Z, Chakawa MB, Galeas-Pena M, Frydman JA, Allen MJ, Jones M, Pociask D. IL-22 Binding Protein Controls IL-22-Driven Bleomycin-Induced Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:338-352. [PMID: 38101567 PMCID: PMC10913761 DOI: 10.1016/j.ajpath.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/02/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
The high mortality rates of acute lung injury and acute respiratory distress syndrome challenge the field to identify biomarkers and factors that can be exploited for therapeutic approaches. IL-22 is a cytokine that has antibacterial and reparative properties in the lung. However, it also can exacerbate inflammation and requires tight control by the extracellular inhibitory protein known as IL-22 binding protein (IL-22BP) (Il22ra2). This study showed the necessity of IL-22BP in controlling and preventing acute lung injury using IL-22BP knockout mice (Il22ra2-/-) in the bleomycin model of acute lung injury/acute respiratory distress syndrome. Il22ra2-/- mice had greater sensitivity (weight loss and death) and pulmonary inflammation in the acute phase (first 7 days) of the injury compared with wild-type C57Bl/6 controls. The inflammation was driven by excess IL-22 production, inducing the influx of pathogenic IL-17A+ γδ T cells to the lung. Interestingly, this inflammation was initiated in part by the noncanonical IL-22 signaling to macrophages, which express the IL-22 receptor (Il22ra1) in vivo after bleomycin challenge. This study further showed that IL-22 receptor alpha-1+ macrophages can be stimulated by IL-22 to produce a number of IL-17-inducing cytokines such as IL-1β, IL-6, and transforming growth factor-β1. Together, the results suggest that IL-22BP prevents IL-22 signaling to macrophages and reduces bleomycin-mediated lung injury.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Medicine, Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Mazvita B Chakawa
- Department of Medicine, Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Michelle Galeas-Pena
- Department of Medicine, Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Joshua A Frydman
- Department of Medicine, Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Michaela J Allen
- Department of Medicine, Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - MaryJane Jones
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Derek Pociask
- Department of Medicine, Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
17
|
Zhang Q, Yan L, Lu Y, Liu X, Yin Y, Wang Q, Gu X, Zhou X. HDAC6-selective inhibitor CAY10603 ameliorates cigarette smoke-induced small airway remodeling by regulating epithelial barrier dysfunction and reversing. Respir Res 2024; 25:66. [PMID: 38317159 PMCID: PMC10840206 DOI: 10.1186/s12931-024-02688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Small airway remodelling is a vital characteristic of chronic obstructive pulmonary disease (COPD), which is mainly caused by epithelial barrier dysfunction and epithelial-mesenchymal transition (EMT). Recent studies have indicated that histone deacetylase 6 (HDAC6) plays an important role in the dysregulation of epithelial function. In this study, we investigated the therapeutic effects and underlying mechanisms of an inhibitor with high selectivity for HDAC6 in COPD. METHODS Cigarette smoke (CS) exposure was used to establish a CS-induced COPD mouse model. CAY10603 at doses of 2.5 and 10 mg/kg was injected intraperitoneally on alternate days. The protective effects of CAY10603 against CS-induced emphysema, epithelial barrier function and small airway remodeling were evaluated using hematoxylin and eosin (H&E) staining, Masson's trichrome staining, immunohistochemical staining, and western blot. The human lung bronchial epithelial cell line (HBE) was used to elucidate the underlying molecular mechanism of action of CAY10603. RESULTS HDAC6 levels in the lung homogenates of CS-exposed mice were higher than that those in control mice. Compared to the CS group, the mean linear intercept (MLI) of the CAY10603 treatment group decreased and the mean alveolar number (MAN)increased. Collagen deposition was reduced in groups treated with CAY10603. The expression of α-SMA was markedly upregulated in the CS group, which was reversed by CAY10603 treatment. Conversely, E-cadherin expression in the CS group was further downregulated, which was reversed by CAY10603 treatment. CAY10603 affects the tight junction protein expression of ZO-1 and occludin. ZO-1 and occludin expression were markedly downregulated in the CS group. After CAY10603treatment, the protein expression level of ZO-1 and occludin increased significantly. In HBE cells, Cigarette smoke extract (CSE) increased HDAC6 levels. CAY10603 significantly attenuated the release of TGF-β1 induced by CSE. CAY10603 significantly increased the E-cadherin levels in TGF-β1 treated HBE cells, while concurrently attenuated α-SMA expression. This effect was achieved through the suppression of Smad2 and Smad3 phosphorylation. CAY10603 also inhibited TGF-β1 induced cell migration. CONCLUSIONS These findings suggested that CAY10603 inhibited CS induced small airway remodelling by regulating epithelial barrier dysfunction and reversing EMT via the TGF-β1/Smad2/3 signalling pathway.
Collapse
Affiliation(s)
- Qin Zhang
- National Center for Respiratory Medicine, Shenyang, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Shenyang, China
- National Clinical Research Center for Respiratory Diseases, Shenyang, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Shenyang, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Liming Yan
- Department of Pulmonary and Critical Care Medicine, Fourth Hospital of China Medical University, Shenyang, China
| | - Ye Lu
- Department of Respiratory and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodong Liu
- Department of Respiratory and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yan Yin
- Department of Respiratory and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Qiuyue Wang
- Department of Respiratory and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Xiu Gu
- Department of Pulmonary and Critical Care Medicine, Fourth Hospital of China Medical University, Shenyang, China
| | - Xiaoming Zhou
- Respiratory Department, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
van Zelst CM, in ’t Veen JC, Krabbendam L, de Boer GM, de Bruijn MJ, van Nimwegen M, van der Ploeg EK, van Uden D, Stadhouders R, Tramper-Stranders GA, Hendriks RW, Braunstahl GJ. Aberrant characteristics of peripheral blood innate lymphoid cells in COPD, independent of smoking history. ERJ Open Res 2024; 10:00652-2023. [PMID: 38375427 PMCID: PMC10875467 DOI: 10.1183/23120541.00652-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024] Open
Abstract
Background Distinguishing asthma and COPD can pose challenges in clinical practice. Increased group 1 innate lymphoid cells (ILC1s) have been found in the lungs and peripheral blood of COPD patients, while asthma is associated with elevated levels of ILC2s. However, it is unclear whether the inflammatory characteristics of ILC1s and ILC2s differ between COPD and asthma. This study aims to compare peripheral blood ILC subsets and their expression of inflammatory markers in COPD patients, asthma patients and controls. Methods The study utilised multi-colour flow cytometry to analyse peripheral blood ILC populations in clinically stable COPD patients (n=38), asthma patients (n=37), and smoking (n=19) and non-smoking (n=16) controls. Results Proportions of peripheral blood inflammatory CD4+ ILC1s were significantly higher in COPD patients than in asthma. Proportions of CD4- ILC1s were increased in COPD patients compared to asthma patients and smoking controls. Frequencies of CD117- ILC2s were significantly reduced in COPD patients compared with asthma patients. In contrast, the fraction of inflammatory CD45RO+ cells within the CD117- ILC2 population was significantly increased. Principal component analyses showed that combined features of the circulating ILC compartment separated COPD patients from asthma patients and both control groups. Conclusion Our in-depth characterisation of ILC1 and ILC2 populations in peripheral blood revealed significant differences in their phenotypes between COPD and asthma patients and smoking or non-smoking controls. These findings suggest a role for both ILC subsets in COPD disease pathology, independent of smoking history, and may have implications for patient stratification and therapy development.
Collapse
Affiliation(s)
- Cathelijne M. van Zelst
- Department of Pulmonology, Franciscus Gasthuis and Vlietland, Rotterdam, the Netherlands
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Johannes C.C.M. in ’t Veen
- Department of Pulmonology, Franciscus Gasthuis and Vlietland, Rotterdam, the Netherlands
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Lisette Krabbendam
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Geertje M. de Boer
- Department of Pulmonology, Franciscus Gasthuis and Vlietland, Rotterdam, the Netherlands
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Marjolein J.W. de Bruijn
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Esmee K. van der Ploeg
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Denise van Uden
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Gerdien A. Tramper-Stranders
- Department of Pulmonology, Franciscus Gasthuis and Vlietland, Rotterdam, the Netherlands
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Shared senior authors
| | - Gert-Jan Braunstahl
- Department of Pulmonology, Franciscus Gasthuis and Vlietland, Rotterdam, the Netherlands
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Shared senior authors
| |
Collapse
|
19
|
Liu G, Haw TJ, Starkey MR, Philp AM, Pavlidis S, Nalkurthi C, Nair PM, Gomez HM, Hanish I, Hsu AC, Hortle E, Pickles S, Rojas-Quintero J, Estepar RSJ, Marshall JE, Kim RY, Collison AM, Mattes J, Idrees S, Faiz A, Hansbro NG, Fukui R, Murakami Y, Cheng HS, Tan NS, Chotirmall SH, Horvat JC, Foster PS, Oliver BG, Polverino F, Ieni A, Monaco F, Caramori G, Sohal SS, Bracke KR, Wark PA, Adcock IM, Miyake K, Sin DD, Hansbro PM. TLR7 promotes smoke-induced experimental lung damage through the activity of mast cell tryptase. Nat Commun 2023; 14:7349. [PMID: 37963864 PMCID: PMC10646046 DOI: 10.1038/s41467-023-42913-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Toll-like receptor 7 (TLR7) is known for eliciting immunity against single-stranded RNA viruses, and is increased in both human and cigarette smoke (CS)-induced, experimental chronic obstructive pulmonary disease (COPD). Here we show that the severity of CS-induced emphysema and COPD is reduced in TLR7-deficient mice, while inhalation of imiquimod, a TLR7-agonist, induces emphysema without CS exposure. This imiquimod-induced emphysema is reduced in mice deficient in mast cell protease-6, or when wild-type mice are treated with the mast cell stabilizer, cromolyn. Furthermore, therapeutic treatment with anti-TLR7 monoclonal antibody suppresses CS-induced emphysema, experimental COPD and accumulation of pulmonary mast cells in mice. Lastly, TLR7 mRNA is increased in pre-existing datasets from patients with COPD, while TLR7+ mast cells are increased in COPD lungs and associated with severity of COPD. Our results thus support roles for TLR7 in mediating emphysema and COPD through mast cell activity, and may implicate TLR7 as a potential therapeutic target.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Tatt Jhong Haw
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Malcolm R Starkey
- Depatrment of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Healthcare clinical campus, UNSW, Sydney, Australia
| | - Stelios Pavlidis
- The Airways Disease Section, National Heart & Lung Institute, Imperial College London, London, UK
| | - Christina Nalkurthi
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Prema M Nair
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Henry M Gomez
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Irwan Hanish
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Alan Cy Hsu
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Elinor Hortle
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Sophie Pickles
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | | | - Raul San Jose Estepar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Jacqueline E Marshall
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Richard Y Kim
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Adam M Collison
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Joerg Mattes
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Sobia Idrees
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Alen Faiz
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minatoku, Tokyo, Japan
| | - Yusuke Murakami
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Musashino University, Nishitokyo-shi, Tokyo, Japan
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Jay C Horvat
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Paul S Foster
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Brian Gg Oliver
- Woolcock Institute of Medical Research, University of Sydney & School of Life Sciences, University of Technology, Sydney, Australia
| | | | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology, Università di Messina, Messina, Italy
| | - Francesco Monaco
- Thoracic Surgery, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento BIOMORF and Dipartimento di Medicina e Chirurgia, Universities of Messina and Parma, Messina, Italy
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Peter A Wark
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Ian M Adcock
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Healthcare clinical campus, UNSW, Sydney, Australia
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minatoku, Tokyo, Japan
| | - Don D Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital & Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia.
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
20
|
Colarusso C, Terlizzi M, Falanga A, Stathopoulos G, De Lucia L, Hansbro PM, Pinto A, Sorrentino R. Absent in melanoma 2 (AIM2) positive profile identifies a poor prognosis of lung adenocarcinoma patients. Int Immunopharmacol 2023; 124:110990. [PMID: 37857119 DOI: 10.1016/j.intimp.2023.110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
The absent in melanoma 2 (AIM2) inflammasome has been demonstrated as involved in tumor growth. In this study we used human samples of lung adenocarcinoma (LUAD) patients, taking advantage of a mouse model of smoking cessation. Human samples were stratified according to the smoking status, high-risk factor for this type of tumor. Both public transcriptomic and human samples obtained by a clinical trial proved that AIM2 was upregulated either in terms of mRNA or protein, respectively, in the tumor mass according to the TNM stage, but it did not relate to the smoking status, age and sex. The upregulation of AIM2 was correlated to an immunosuppressive environment according to resting/non-active dendritic cells (DCs) and T regulatory cells, as demonstrated in both human samples and by means of an experimental model of smoking mice. Computational analysis showed that AIM2 upregulation was correlated to both an inflammasome profile, responsible for the poor prognosis of non-smoker and smoker LUAD patients, and to a non-inflammasome profile for former smoker. In conclusion, our study demonstrated that AIM2 is involved in lung carcinogenesis either in a canonical and non-canonical manner due to an immunosuppressive microenvironment associated to a dismal prognosis of LUAD patients.
Collapse
Affiliation(s)
| | | | - Anna Falanga
- Department of Pharmacy, University of Salerno, Italy
| | - Georgious Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | | | - Phillip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney (UTS), School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Aldo Pinto
- Department of Pharmacy, University of Salerno, Italy
| | | |
Collapse
|
21
|
Rizzetto G, Tagliati C, Fogante M, Marcucci M, Argalia G, Lanni G, Rebonato A, Giuseppetti GM, Esposito R, Molinelli E, De Simoni E, Offidani A, Simonetti O. CT Patterns of Interstitial Lung Disease in Patients with Plaque Psoriasis: A Retrospective Case Series Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1650. [PMID: 37763769 PMCID: PMC10534496 DOI: 10.3390/medicina59091650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: Recently published articles reported an association between psoriasis and interstitial lung diseases (ILDs). The aim of this study is to evaluate the differences in ILD computed tomography (CT) patterns between smoker and never smoker plaque psoriasis (PP) patients under topical treatment without psoriatic arthritis (PA), inflammatory bowel disease (IBD) or connective tissue diseases (CTDs). Matherials and Methods: Two radiologists evaluated chest CT examinations of 65 patients (33 smokers, 32 never smokers) with PP. Results: Usual interstitial pneumonia (UIP) pattern was diagnosed in 36 patients, nonspecific interstitial pneumonia pattern in 19, hypersensitivity pneumonitis in 7 and pleuropulmonary fibroelastosis (PPFE) in 3 patients. UIP pattern showed a statistically significant higher frequency in smoker patients (p = 0.0351). Respiratory symptoms were reported in 80% of patients. Conclusions: ILDs seems to represent a new comorbidity associated with psoriasis. Moreover, a statistically significant association between smokers and UIP pattern in PP patients is found. Respiratory symptoms should be evaluated in PP patients, in collaboration with a radiologist and a pneumologist. However, further studies are required to better understand the epidemiology of ILDs in PP patients.
Collapse
Affiliation(s)
- Giulio Rizzetto
- Department of Clinical and Molecular Sciences, Dermatology Clinic, Polytechnic Marche University, 60121 Ancona, Italy; (G.R.); (E.D.S.)
| | - Corrado Tagliati
- Radiologia AST Pesaro Urbino, 611121 Pesaro, Italy; (C.T.); (A.R.); (R.E.)
| | - Marco Fogante
- Department of Radiological Sciences, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica delle Marche, 60121 Ancona, Italy (G.A.); (G.M.G.)
| | - Matteo Marcucci
- Department of Radiological Sciences, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica delle Marche, 60121 Ancona, Italy (G.A.); (G.M.G.)
| | - Giulio Argalia
- Department of Radiological Sciences, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica delle Marche, 60121 Ancona, Italy (G.A.); (G.M.G.)
| | - Giuseppe Lanni
- U.O.S.D. Radiologia Ospedale “San Liberatore” Atri-Dipartimento dei Servizi-ASL Teramo, 64032 Teramo, Italy
| | - Alberto Rebonato
- Radiologia AST Pesaro Urbino, 611121 Pesaro, Italy; (C.T.); (A.R.); (R.E.)
| | - Gian Marco Giuseppetti
- Department of Radiological Sciences, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica delle Marche, 60121 Ancona, Italy (G.A.); (G.M.G.)
| | - Roberto Esposito
- Radiologia AST Pesaro Urbino, 611121 Pesaro, Italy; (C.T.); (A.R.); (R.E.)
| | - Elisa Molinelli
- Department of Clinical and Molecular Sciences, Dermatology Clinic, Polytechnic Marche University, 60121 Ancona, Italy; (G.R.); (E.D.S.)
| | - Edoardo De Simoni
- Department of Clinical and Molecular Sciences, Dermatology Clinic, Polytechnic Marche University, 60121 Ancona, Italy; (G.R.); (E.D.S.)
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences, Dermatology Clinic, Polytechnic Marche University, 60121 Ancona, Italy; (G.R.); (E.D.S.)
| | - Oriana Simonetti
- Department of Clinical and Molecular Sciences, Dermatology Clinic, Polytechnic Marche University, 60121 Ancona, Italy; (G.R.); (E.D.S.)
| |
Collapse
|
22
|
Shrestha J, Paudel KR, Nazari H, Dharwal V, Bazaz SR, Johansen MD, Dua K, Hansbro PM, Warkiani ME. Advanced models for respiratory disease and drug studies. Med Res Rev 2023; 43:1470-1503. [PMID: 37119028 PMCID: PMC10946967 DOI: 10.1002/med.21956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/02/2023] [Accepted: 03/17/2023] [Indexed: 04/30/2023]
Abstract
The global burden of respiratory diseases is enormous, with many millions of people suffering and dying prematurely every year. The global COVID-19 pandemic witnessed recently, along with increased air pollution and wildfire events, increases the urgency of identifying the most effective therapeutic measures to combat these diseases even further. Despite increasing expenditure and extensive collaborative efforts to identify and develop the most effective and safe treatments, the failure rates of drugs evaluated in human clinical trials are high. To reverse these trends and minimize the cost of drug development, ineffective drug candidates must be eliminated as early as possible by employing new, efficient, and accurate preclinical screening approaches. Animal models have been the mainstay of pulmonary research as they recapitulate the complex physiological processes, Multiorgan interplay, disease phenotypes of disease, and the pharmacokinetic behavior of drugs. Recently, the use of advanced culture technologies such as organoids and lung-on-a-chip models has gained increasing attention because of their potential to reproduce human diseased states and physiology, with clinically relevant responses to drugs and toxins. This review provides an overview of different animal models for studying respiratory diseases and evaluating drugs. We also highlight recent progress in cell culture technologies to advance integrated models and discuss current challenges and present future perspectives.
Collapse
Affiliation(s)
- Jesus Shrestha
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Keshav Raj Paudel
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Hojjatollah Nazari
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Vivek Dharwal
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Sajad Razavi Bazaz
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Matt D. Johansen
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of TechnologySydneyNew South WalesAustralia
- Faculty of Health, Australian Research Centre in Complementary & Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Philip M. Hansbro
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Majid Ebrahimi Warkiani
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
- Institute for Biomedical Materials and Devices, Faculty of ScienceUniversity of Technology SydneyUltimoNew South WalesAustralia
| |
Collapse
|
23
|
Vanders RL, Gomez HM, Hsu AC, Daly K, Wark PAB, Horvat JC, Hansbro PM. Inflammatory and antiviral responses to influenza A virus infection are dysregulated in pregnant mice with allergic airway disease. Am J Physiol Lung Cell Mol Physiol 2023; 325:L385-L398. [PMID: 37463835 DOI: 10.1152/ajplung.00232.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Influenza A virus (IAV) infections are increased during pregnancy especially with asthma as a comorbidity, leading to asthma exacerbations, secondary bacterial infections, intensive care unit admissions, and mortality. We aimed to define the processes involved in increased susceptibility and severity of IAV infections during pregnancy, especially with asthma. We sensitized mice to house dust mite (HDM), induced pregnancy, and challenged with HDM to induce allergic airway disease (AAD). At midpregnancy, we induced IAV infection. We assessed viral titers, airway inflammation, lung antiviral responses, mucus hypersecretion, and airway hyperresponsiveness (AHR). During early IAV infection, pregnant mice with AAD had increased mRNA expression of the inflammatory markers Il13 and IL17 and reduced mRNA expression of the neutrophil chemoattractant marker Kc. These mice had increased mucous hyperplasia and increased AHR. miR155, miR574, miR223, and miR1187 were also reduced during early infection, as was mRNA expression of the antiviral β-defensins, Bd1, Bd2, and Spd and IFNs, Ifnα, Ifnβ, and Ifnλ. During late infection, Il17 was still increased as was eosinophil infiltration in the lungs. mRNA expression of Kc was reduced, as was neutrophil infiltration and mRNA expression of the antiviral markers Ifnβ, Ifnλ, and Ifnγ and Ip10, Tlr3, Tlr9, Pkr, and Mx1. Mucous hyperplasia was still significantly increased as was AHR. Early phase IAV infection in pregnancy with asthma heightens underlying inflammatory asthmatic phenotype and reduces antiviral responses.NEW & NOTEWORTHY Influenza A virus (IAV) infection during pregnancy with asthma is a major health concern leading to increased morbidity for both mother and baby. Using murine models, we show that IAV infection in pregnancy with allergic airway disease is associated with impaired global antiviral and antimicrobial responses, increased lung inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR). Targeting specific β-defensins or microRNAs (miRNAs) may prove useful in future treatments for IAV infection during pregnancy.
Collapse
Affiliation(s)
- Rebecca L Vanders
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Henry M Gomez
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Katie Daly
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Tu J, Li W, Hansbro PM, Yan Q, Bai X, Donovan C, Kim RY, Galvao I, Das A, Yang C, Zou J, Diwan A. Smoking and tetramer tryptase accelerate intervertebral disc degeneration by inducing METTL14-mediated DIXDC1 m 6 modification. Mol Ther 2023; 31:2524-2542. [PMID: 37340635 PMCID: PMC10422004 DOI: 10.1016/j.ymthe.2023.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/24/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023] Open
Abstract
Although cigarette smoking (CS) and low back pain (LBP) are common worldwide, their correlations and the mechanisms of action remain unclear. We have shown that excessive activation of mast cells (MCs) and their proteases play key roles in CS-associated diseases, like asthma, chronic obstructive pulmonary disease (COPD), blood coagulation, and lung cancer. Previous studies have also shown that MCs and their proteases induce degenerative musculoskeletal disease. By using a custom-designed smoke-exposure mouse system, we demonstrated that CS results in intervertebral disc (IVD) degeneration and release of MC-restricted tetramer tryptases (TTs) in the IVDs. TTs were found to regulate the expression of methyltransferase 14 (METTL14) at the epigenetic level by inducing N6-methyladenosine (m6A) deposition in the 3' untranslated region (UTR) of the transcript that encodes dishevelled-axin (DIX) domain-containing 1 (DIXDC1). That reaction increases the mRNA stability and expression of Dixdc1. DIXDC1 functionally interacts with disrupted in schizophrenia 1 (DISC1) to accelerate the degeneration and senescence of nucleus pulposus (NP) cells by activating a canonical Wnt pathway. Our study demonstrates the association between CS, MC-derived TTs, and LBP. These findings raise the possibility that METTL14-medicated DIXDC1 m6A modification could serve as a potential therapeutic target to block the development of degeneration of the NP in LBP patients.
Collapse
Affiliation(s)
- Ji Tu
- Spine Labs, St. George & Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Wentian Li
- Spine Labs, St. George & Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Philip M Hansbro
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, NSW, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Qi Yan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xupeng Bai
- Center for Innovation and Translational Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chantal Donovan
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, NSW, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Richard Y Kim
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, NSW, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Izabela Galvao
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, NSW, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Abhirup Das
- Spine Labs, St. George & Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Cao Yang
- Department of Orthopedic Surgery, Wuhan Union Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun Zou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Ashish Diwan
- Spine Labs, St. George & Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Spine Service, Department of Orthopedic Surgery, St. George Hospital, Kogarah, NSW, Australia.
| |
Collapse
|
25
|
Liang W, Yang Y, Gong S, Wei M, Ma Y, Feng R, Gao J, Liu X, Tu F, Ma W, Yi X, Liang Z, Wang F, Wang L, Chen D, Shu W, Miller BE, Tal-Singer R, Donaldson GC, Wedzicha JA, Singh D, Wilkinson TMA, Brightling CE, Chen R, Zhong N, Wang Z. Airway dysbiosis accelerates lung function decline in chronic obstructive pulmonary disease. Cell Host Microbe 2023; 31:1054-1070.e9. [PMID: 37207649 DOI: 10.1016/j.chom.2023.04.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023]
Abstract
Progressive lung function decline is a hallmark of chronic obstructive pulmonary disease (COPD). Airway dysbiosis occurs in COPD, but whether it contributes to disease progression remains unknown. Here, we show, through a longitudinal analysis of two cohorts involving four UK centers, that baseline airway dysbiosis in COPD patients, characterized by the enrichment of opportunistic pathogenic taxa, associates with a rapid forced expiratory volume in 1 s (FEV1) decline over 2 years. Dysbiosis associates with exacerbation-related FEV1 fall and sudden FEV1 fall at stability, contributing to long-term FEV1 decline. A third cohort in China further validates the microbiota-FEV1-decline association. Human multi-omics and murine studies show that airway Staphylococcus aureus colonization promotes lung function decline through homocysteine, which elicits a neutrophil apoptosis-to-NETosis shift via the AKT1-S100A8/A9 axis. S. aureus depletion via bacteriophages restores lung function in emphysema mice, providing a fresh approach to slow COPD progression by targeting the airway microbiome.
Collapse
Affiliation(s)
- Weijie Liang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Yuqiong Yang
- First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong Province, China
| | - Shenhai Gong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Mingyuan Wei
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Yingfei Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Ruipei Feng
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Xiaomin Liu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Fuyi Tu
- Institute of Statistics and Big Data, Renmin University of China, Beijing, China
| | - Wei Ma
- Institute of Statistics and Big Data, Renmin University of China, Beijing, China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Zhenyu Liang
- First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong Province, China
| | - Fengyan Wang
- First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong Province, China
| | - Lingwei Wang
- Pulmonary and Critical Care Department, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China
| | - Dandan Chen
- Pulmonary and Critical Care Department, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China
| | - Wensheng Shu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | | | | | - Gavin C Donaldson
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Tom M A Wilkinson
- NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Christopher E Brightling
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Rongchang Chen
- First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong Province, China; Pulmonary and Critical Care Department, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China
| | - Nanshan Zhong
- First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong Province, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
26
|
Zhu Y, Chang D. Interactions between the lung microbiome and host immunity in chronic obstructive pulmonary disease. Chronic Dis Transl Med 2023; 9:104-121. [PMID: 37305112 PMCID: PMC10249200 DOI: 10.1002/cdt3.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease and the third leading cause of death worldwide. Developments in next-generation sequencing technology have improved microbiome analysis, which is increasingly recognized as an important component of disease management. Similar to the gut, the lung is a biosphere containing billions of microbial communities. The lung microbiome plays an important role in regulating and maintaining the host immune system. The microbiome composition, metabolites of microorganisms, and the interactions between the lung microbiome and the host immunity profoundly affect the occurrence, development, treatment, and prognosis of COPD. In this review, we drew comparisons between the lung microbiome of healthy individuals and that of patients with COPD. Furthermore, we summarize the intrinsic interactions between the host and the overall lung microbiome, focusing on the underlying mechanisms linking the microbiome to the host innate and adaptive immune response pathways. Finally, we discuss the possibility of using the microbiome as a biomarker to determine the stage and prognosis of COPD and the feasibility of developing a novel, safe, and effective therapeutic target.
Collapse
Affiliation(s)
- Yixing Zhu
- Graduate School of The PLA General HospitalBeijingChina
| | - De Chang
- Department of Respiratory and Critical Care Medicine, Eighth Medical Center, Department of Respiratory and Critical Care Seventh Medical CenterChinese PLA General HospitalBeijingChina
| |
Collapse
|
27
|
Tu X, Gomez HM, Kim RY, Brown AC, de Jong E, Galvao I, Faiz A, Bosco A, Horvat JC, Hansbro P, Donovan C. Airway and parenchyma transcriptomics in a house dust mite model of experimental asthma. Respir Res 2023; 24:32. [PMID: 36698141 PMCID: PMC9878882 DOI: 10.1186/s12931-022-02298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/15/2022] [Indexed: 01/26/2023] Open
Abstract
Lung transcriptomics studies in asthma have provided valuable information in the whole lung context, however, deciphering the individual contributions of the airway and parenchyma in disease pathogenesis may expedite the development of novel targeted treatment strategies. In this study, we performed transcriptomics on the airway and parenchyma using a house dust mite (HDM)-induced model of experimental asthma that replicates key features of the human disease. HDM exposure increased the expression of 3,255 genes, of which 212 were uniquely increased in the airways, 856 uniquely increased in the parenchyma, and 2187 commonly increased in both compartments. Further interrogation of these genes using a combination of network and transcription factor enrichment analyses identified several transcription factors that regulate airway and/or parenchymal gene expression, including transcription factor EC (TFEC), transcription factor PU.1 (SPI1), H2.0-like homeobox (HLX), metal response element binding transcription factor-1 (MTF1) and E74-like factor 4 (ets domain transcription factor, ELF4) involved in controlling innate immune responses. We next assessed the effects of inhibiting lung SPI1 responses using commercially available DB1976 and DB2313 on key disease outcomes. We found that both compounds had no protective effects on airway inflammation, however DB2313 (8 mg/kg) decreased mucus secreting cell number, and both DB2313 (1 mg/kg) and DB1976 (2.5 mg/kg and 1 mg/kg) reduced small airway collagen deposition. Significantly, both compounds decreased airway hyperresponsiveness. This study demonstrates that SPI1 is important in HDM-induced experimental asthma and that its pharmacological inhibition reduces HDM-induced airway collagen deposition and hyperresponsiveness.
Collapse
Affiliation(s)
- Xiaofan Tu
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia
| | - Henry M. Gomez
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia
| | - Richard Y. Kim
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia ,grid.117476.20000 0004 1936 7611Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW Australia
| | - Alexandra C. Brown
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia
| | - Emma de Jong
- Centre for Health Research, Telethon Kids Institute, The University of Western Australia, Nedlands, WA Australia
| | - Izabela Galvao
- grid.117476.20000 0004 1936 7611Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW Australia
| | - Alen Faiz
- grid.117476.20000 0004 1936 7611Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW Australia
| | - Anthony Bosco
- grid.134563.60000 0001 2168 186XAsthma and Airway Disease Research Center, University of Arizona, Arizona, USA
| | - Jay C. Horvat
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia
| | - Philip Hansbro
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia ,grid.117476.20000 0004 1936 7611Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW Australia
| | - Chantal Donovan
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia ,grid.117476.20000 0004 1936 7611Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW Australia
| |
Collapse
|
28
|
Budden KF, Gellatly SL, Vaughan A, Amorim N, Horvat JC, Hansbro NG, Wood DLA, Hugenholtz P, Dennis PG, Wark PAB, Hansbro PM. Probiotic Bifidobacterium longum subsp. longum Protects against Cigarette Smoke-Induced Inflammation in Mice. Int J Mol Sci 2022; 24:252. [PMID: 36613693 PMCID: PMC9820259 DOI: 10.3390/ijms24010252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Bifidobacterium are prominent gut commensals that produce the short-chain fatty acid (SCFA) acetate, and they are often used as probiotics. Connections between the gut and the lung, termed the gut-lung axis, are regulated by the microbiome. The gut-lung axis is increasingly implicated in cigarette smoke-induced diseases, and cigarette smoke exposure has been associated with depletion of Bifidobacterium species. In this study, we assessed the impact of acetate-producing Bifidobacterium longum subsp. longum (WT) and a mutant strain with an impaired acetate production capacity (MUT) on cigarette smoke-induced inflammation. The mice were treated with WT or MUT B. longum subsp. longum and exposed to cigarette smoke for 8 weeks before assessments of lung inflammation, lung tissue gene expression and cecal SCFAs were performed. Both strains of B. longum subsp. longum reduced lung inflammation, inflammatory cytokine expression and adhesion factor expression and alleviated cigarette smoke-induced depletion in caecum butyrate. Thus, the probiotic administration of B. longum subsp. longum, irrespective of its acetate-producing capacity, alleviated cigarette smoke-induced inflammation and the depletion of cecal butyrate levels.
Collapse
Affiliation(s)
- Kurtis F. Budden
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, Hunter Medical Research Institute and The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Shaan L. Gellatly
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, Hunter Medical Research Institute and The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Annalicia Vaughan
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Nadia Amorim
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jay C. Horvat
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, Hunter Medical Research Institute and The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Nicole G. Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - David L. A. Wood
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Paul G. Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter A. B. Wark
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, Hunter Medical Research Institute and The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, Hunter Medical Research Institute and The University of Newcastle, Callaghan, NSW 2308, Australia
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
29
|
Liu G, Jarnicki AG, Paudel KR, Lu W, Wadhwa R, Philp AM, Van Eeckhoutte H, Marshall JE, Malyla V, Katsifis A, Fricker M, Hansbro NG, Dua K, Kermani NZ, Eapen MS, Tiotiu A, Chung KF, Caramori G, Bracke K, Adcock IM, Sohal SS, Wark PA, Oliver BG, Hansbro PM. Adverse roles of mast cell chymase-1 in COPD. Eur Respir J 2022; 60:2101431. [PMID: 35777766 DOI: 10.1183/13993003.01431-2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/08/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND COPD is the third leading cause of death worldwide. Cigarette smoke (CS)-induced chronic inflammation inducing airway remodelling, emphysema and impaired lung function is the primary cause. Effective therapies are urgently needed. Human chymase (hCMA)1 and its orthologue mCMA1/mouse mast cell protease (mMCP)5 are exocytosed from activated mast cells and have adverse roles in numerous disorders, but their role in COPD is unknown. METHODS We evaluated hCMA1 levels in lung tissues of COPD patients. We used mmcp5-deficient (-/-) mice to evaluate this protease's role and potential for therapeutic targeting in CS-induced experimental COPD. In addition, we used ex vivo/in vitro studies to define mechanisms. RESULTS The levels of hCMA1 mRNA and CMA1+ mast cells were increased in lung tissues from severe compared to early/mild COPD patients, non-COPD smokers and healthy controls. Degranulated mast cell numbers and mMCP5 protein were increased in lung tissues of wild-type mice with experimental COPD. mmcp5 -/- mice were protected against CS-induced inflammation and macrophage accumulation, airway remodelling, emphysema and impaired lung function in experimental COPD. CS extract challenge of co-cultures of mast cells from wild-type, but not mmcp5 -/- mice with wild-type lung macrophages increased in tumour necrosis factor (TNF)-α release. It also caused the release of CMA1 from human mast cells, and recombinant hCMA-1 induced TNF-α release from human macrophages. Treatment with CMA1 inhibitor potently suppressed these hallmark features of experimental COPD. CONCLUSION CMA1/mMCP5 promotes the pathogenesis of COPD, in part, by inducing TNF-α expression and release from lung macrophages. Inhibiting hCMA1 may be a novel treatment for COPD.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Andrew G Jarnicki
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Keshav R Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
- St Vincent's Medical School, University of New South Wales Medicine, University of New South Wales, Sydney, Australia
| | - Hannelore Van Eeckhoutte
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jacqueline E Marshall
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Vamshikrishna Malyla
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Angelica Katsifis
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Nazanin Z Kermani
- Data Science Institute, Department of Computing, Imperial College London, London, UK
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Angelica Tiotiu
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Pulmonology, University Hospital of Nancy, Nancy, France
| | - K Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Gaetano Caramori
- UOC di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Ken Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - Brian G Oliver
- Woolcock Institute and School of Life Science, Faculty of Science Life Science, University of Technology Sydney, Sydney, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| |
Collapse
|
30
|
Role of IL-22 in intestinal microenvironment and potential targeted therapy through diet. Immunol Res 2022; 71:121-129. [PMID: 36173554 DOI: 10.1007/s12026-022-09325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
IL-22 is a type 2 receptor cytokine in IL-10 family. IL-22 is usually secreted by innate and adaptive immune cells and takes its effects on non-hematopoietic cells. Through activate STAT3 pathway, IL-22 plays an important role in infection clearance and tissue regeneration, which is critical for barrier integrate and homeostasis. Abnormal activation of IL-22 signal was observed in inflammation diseases, autoimmune diseases, and cancers. We review the recent discoveries about the mechanism and regulation of IL-22 signal pathway from the perspective of intestinal micro-environment. Diet-based IL-22 target therapeutic strategies and their potential clinical significance will also be discussed.
Collapse
|
31
|
Multi-omics analyses of airway host-microbe interactions in chronic obstructive pulmonary disease identify potential therapeutic interventions. Nat Microbiol 2022; 7:1361-1375. [PMID: 35995842 DOI: 10.1038/s41564-022-01196-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/05/2022] [Indexed: 11/08/2022]
Abstract
The mechanistic role of the airway microbiome in chronic obstructive pulmonary disease (COPD) remains largely unexplored. We present a landscape of airway microbe-host interactions in COPD through an in-depth profiling of the sputum metagenome, metabolome, host transcriptome and proteome from 99 patients with COPD and 36 healthy individuals in China. Multi-omics data were integrated using sequential mediation analysis, to assess in silico associations of the microbiome with two primary COPD inflammatory endotypes, neutrophilic or eosinophilic inflammation, mediated through microbial metabolic interaction with host gene expression. Hypotheses of microbiome-metabolite-host interaction were identified by leveraging microbial genetic information and established metabolite-human gene pairs. A prominent hypothesis for neutrophil-predominant COPD was altered tryptophan metabolism in airway lactobacilli associated with reduced indole-3-acetic acid (IAA), which was in turn linked to perturbed host interleukin-22 signalling and epithelial cell apoptosis pathways. In vivo and in vitro studies showed that airway microbiome-derived IAA mitigates neutrophilic inflammation, apoptosis, emphysema and lung function decline, via macrophage-epithelial cell cross-talk mediated by interleukin-22. Intranasal inoculation of two airway lactobacilli restored IAA and recapitulated its protective effects in mice. These findings provide the rationale for therapeutically targeting microbe-host interaction in COPD.
Collapse
|
32
|
Zhang S, Yang G. IL22RA1/JAK/STAT Signaling Acts As a Cancer Target Through Pan-Cancer Analysis. Front Immunol 2022; 13:915246. [PMID: 35874683 PMCID: PMC9304570 DOI: 10.3389/fimmu.2022.915246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Cytokines and cytokine receptors are important mediators in immunity and cancer development. Interleukin 22 (IL22) is one of the most important cytokines which has protumor effect. Given that common and specific roles of cytokines/receptors in multiple cancers, we conducted a pan-cancer study to investigate the role of IL22RA1 in cancer using The Cancer Genome Atlas (TCGA) database. Notably, we found IL22RA1 transcript was upregulated in 11 cancer types compared with their corresponding control. The mRNA expression level of IL22RA1 was highest in the pancreas among tumor tissues. The higher expression of IL22RA1 was associated with worse overall survival rate in patients. A total of 30 IL22RA1-correlated genes (e.g. IL17D, IL22RA2, IL20RB, IL10RA, IL10RB, TSLP and TYK2) are involved in the JAK/STAT pathway which promotes tumor progression. The upregulation of IL22RA1 in tumors was correlated with immune cell infiltration level. Higher expression of IL22RA2, IL20RB, IL10RA, IL10RB, TSLP, TYK2, STAT1 and STAT3 was associated with decreased overall survival rate in patients. IL22RA1 mutation was observed more in uterine cancer and melanoma compared with the other cancer types. Deactivation of IL22RA1 induced a lot of changes in gene expression. IL22RA1 mutants had upregulated DNA damage/repair genes in uterine cancer, whereas downregulated genes in the FoxO signaling pathway. In melanoma, mutation of IL22RA1 can upregulate the HIF signaling pathway but downregulate metabolic pathways. Our study suggests that IL22RA1/JAK/STAT signaling can be an important target for cancer treatment.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pathology and Laboratory Medicine, Davis Health, University of California, Sacramento, CA, United States
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guiyan Yang
- Department of Pathology and Laboratory Medicine, Davis Health, University of California, Sacramento, CA, United States
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Guiyan Yang,
| |
Collapse
|
33
|
Ham J, Kim J, Sohn KH, Park IW, Choi BW, Chung DH, Cho SH, Kang HR, Jung JW, Kim HY. Cigarette smoke aggravates asthma by inducing memory-like type 3 innate lymphoid cells. Nat Commun 2022; 13:3852. [PMID: 35789151 PMCID: PMC9253141 DOI: 10.1038/s41467-022-31491-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/18/2022] [Indexed: 11/25/2022] Open
Abstract
Although cigarette smoking is known to exacerbate asthma, only a few clinical asthma studies have been conducted involving smokers. Here we show, by comparing paired sputum and blood samples from smoking and non-smoking patients with asthma, that smoking associates with significantly higher frequencies of pro-inflammatory, natural-cytotoxicity-receptor-non-expressing type 3 innate lymphoid cells (ILC3) in the sputum and memory-like, CD45RO-expressing ILC3s in the blood. These ILC3 frequencies positively correlate with circulating neutrophil counts and M1 alveolar macrophage frequencies, which are known to increase in uncontrolled severe asthma, yet do not correlate with circulating eosinophil frequencies that characterize allergic asthma. In vitro exposure of ILCs to cigarette smoke extract induces expression of the memory marker CD45RO in ILC3s. Cigarette smoke extract also impairs the barrier function of airway epithelial cells and increases their production of IL-1β, which is a known activating factor for ILC3s. Thus, our study suggests that cigarette smoking increases local and circulating frequencies of activated ILC3 cells, plays a role in their activation, thereby aggravating non-allergic inflammation and the severity of asthma. Cigarette smoking may exacerbate asthma, but the underlying mechanisms have not been studied extensively in human patients. Here authors show that type 3 innate lymphoid cells with activated phenotypes are found in the sputum and blood of smokers in higher frequencies, which might result in the aggravation of asthma.
Collapse
Affiliation(s)
- Jongho Ham
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jihyun Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
| | - Kyoung-Hee Sohn
- Department of Internal Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - In-Won Park
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Byoung-Whui Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Chung-Ang University H.C.S. Hyundae l Hospital, Namyangju, South Korea
| | - Doo Hyun Chung
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea.,Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang-Heon Cho
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Hye Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jae-Woo Jung
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea.
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea.
| |
Collapse
|
34
|
The role of Th17 cells: explanation of relationship between periodontitis and COPD? Inflamm Res 2022; 71:1011-1024. [PMID: 35781342 DOI: 10.1007/s00011-022-01602-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/13/2022] [Indexed: 11/05/2022] Open
Abstract
Periodontitis and chronic obstructive pulmonary disease (COPD) are chronic inflammatory diseases with common risk factors, such as long-term smoking, age, and social deprivation. Many observational studies have shown that periodontitis and COPD are correlated. Moreover, they share a common pathophysiological process involving local accumulation of inflammatory cells and cytokines and damage of soft tissues. The T helper 17 (Th17) cells and the related cytokines, interleukin (IL)-17, IL-22, IL-1β, IL-6, IL-23, and transforming growth factor (TGF)-β, play a crucial regulatory role during the pathophysiological process. This paper reviewed the essential roles of Th17 lineage in the occurrence of periodontitis and COPD. The gaps in the study of their common pathological mechanism were also evaluated to explore future research directions. Therefore, this review can provide study direction for the association between periodontitis and COPD and new ideas for the clinical diagnosis and treatment of the two diseases.
Collapse
|
35
|
Ulu A, Sveiven S, Bilg A, Velazquez JV, Diaz M, Mukherjee M, Yuil-Valdes AG, Kota S, Burr A, Najera A, Nordgren TM. IL-22 regulates inflammatory responses to agricultural dust-induced airway inflammation. Toxicol Appl Pharmacol 2022; 446:116044. [PMID: 35525330 PMCID: PMC9133182 DOI: 10.1016/j.taap.2022.116044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022]
Abstract
IL-22 is a unique cytokine that is upregulated in many chronic inflammatory diseases, including asthma, and modulates tissue responses during inflammation. However, the role of IL-22 in the resolution of inflammation and how this contributes to lung repair processes are largely unknown. Here, we tested the hypothesis that IL-22 signaling is critical in inflammation resolution after repetitive exposure to agricultural dust. Using an established mouse model of organic dust extract-induced lung inflammation, we found that IL-22 knockout mice have an enhanced response to agricultural dust as evidenced by an exacerbated increase in infiltrating immune cells and lung pathology as compared to wild-type controls. We further identified that, in response to dust, IL-22 is expressed in airway epithelium and in Ym1+ macrophages found within the parenchyma in response to dust. The increase in IL-22 expression was accompanied by increases in IL-22 receptor IL-22R1 within the lung epithelium. In addition, we found that alveolar macrophages in vivo as well as THP-1 cells in vitro express IL-22, and this expression is modulated by dust exposure. Furthermore, subcellular localization of IL-22 appears to be in the Golgi of resting THP1 human monocytes, and treatment with dust extracts is associated with IL-22 release into the cytosolic compartment from the Golgi reservoirs during dust extract exposure. Taken together, we have identified a significant role for macrophage-mediated IL-22 signaling that is activated in dust-induced lung inflammation in mice.
Collapse
Affiliation(s)
- Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Stefanie Sveiven
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Amanpreet Bilg
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Jalene V Velazquez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Marissa Diaz
- Riverside Community College, Riverside, CA 92521, USA
| | - Maheswari Mukherjee
- Department of Medical Sciences, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ana G Yuil-Valdes
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Santosh Kota
- Department of Preprofessional Biology, University of Florida, Gainesville, FL 32603, USA
| | - Abigail Burr
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Aileen Najera
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80521, USA.
| |
Collapse
|
36
|
Franklin M, Connolly E, Hussell T. Recruited and Tissue-Resident Natural Killer Cells in the Lung During Infection and Cancer. Front Immunol 2022; 13:887503. [PMID: 35844626 PMCID: PMC9284027 DOI: 10.3389/fimmu.2022.887503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are an important component of the innate immune system, and have a key role in host defense against infection and in tumor surveillance. Tumors and viruses employ remarkably similar strategies to avoid recognition and killing by NK cells and so much can be learnt by comparing NK cells in these disparate diseases. The lung is a unique tissue environment and immune cells in this organ, including NK cells, exist in a hypofunctional state to prevent activation against innocuous stimuli. Upon infection, rapid NK cell infiltration into the lung occurs, the amplitude of which is determined by the extent of inflammation and damage. Activated NK cells kill infected cells and produce pro-inflammatory cytokines and chemokines to recruit cells of the adaptive immune system. More recent evidence has shown that NK cells also play an additional role in resolution of inflammation. In lung cancer however, NK cell recruitment is impaired and those that are present have reduced functionality. The majority of lung NK cells are circulatory, however recently a small population of tissue-resident lung NK cells has been described. The specific role of this subset is yet to be determined, but they show similarity to resident memory T cell subsets. Whether resident or recruited, NK cells are important in the control of pulmonary infections, but equally, can drive excessive inflammation if not regulated. In this review we discuss how NK cells are recruited, controlled and retained in the specific environment of the lung in health and disease. Understanding these mechanisms in the context of infection may provide opportunities to promote NK cell recruitment and function in the lung tumor setting.
Collapse
|
37
|
Tu X, Kim RY, Brown AC, de Jong E, Jones-Freeman B, Ali MK, Gomez HM, Budden KF, Starkey MR, Cameron GJM, Loering S, Nguyen DH, Nair PM, Haw TJ, Alemao CA, Faiz A, Tay HL, Wark PAB, Knight DA, Foster PS, Bosco A, Horvat JC, Hansbro PM, Donovan C. Airway and parenchymal transcriptomics in a novel model of asthma and COPD overlap. J Allergy Clin Immunol 2022; 150:817-829.e6. [PMID: 35643377 DOI: 10.1016/j.jaci.2022.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Asthma and chronic obstructive pulmonary disease (COPD) are common chronic respiratory diseases, and some patients have overlapping disease features, termed asthma-COPD overlap (ACO). Patients characterized with ACO have increased disease severity; however, the mechanisms driving this have not been widely studied. OBJECTIVES This study sought to characterize the phenotypic and transcriptomic features of experimental ACO in mice induced by chronic house dust mite antigen and cigarette smoke exposure. METHODS Female BALB/c mice were chronically exposed to house dust mite antigen for 11 weeks to induce experimental asthma, cigarette smoke for 8 weeks to induce experimental COPD, or both concurrently to induce experimental ACO. Lung inflammation, structural changes, and lung function were assessed. RNA-sequencing was performed on separated airway and parenchyma lung tissues to assess transcriptional changes. Validation of a novel upstream driver SPI1 in experimental ACO was assessed using the pharmacological SPI1 inhibitor, DB2313. RESULTS Experimental ACO recapitulated features of both asthma and COPD, with mixed pulmonary eosinophilic/neutrophilic inflammation, small airway collagen deposition, and increased airway hyperresponsiveness. Transcriptomic analysis identified common and distinct dysregulated gene clusters in airway and parenchyma samples in experimental asthma, COPD, and ACO. Upstream driver analysis revealed increased expression of the transcription factor Spi1. Pharmacological inhibition of SPI1 using DB2313, reduced airway remodeling and airway hyperresponsiveness in experimental ACO. CONCLUSIONS A new experimental model of ACO featuring chronic dual exposures to house dust mite and cigarette smoke mimics key disease features observed in patients with ACO and revealed novel disease mechanisms, including upregulation of SPI1, that are amenable to therapy.
Collapse
Affiliation(s)
- Xiaofan Tu
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Richard Y Kim
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Alexandra C Brown
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Emma de Jong
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Australia
| | - Bernadette Jones-Freeman
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Md Khadem Ali
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Henry M Gomez
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Kurtis F Budden
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Malcolm R Starkey
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Guy J M Cameron
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Svenja Loering
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Duc H Nguyen
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Prema Mono Nair
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Tatt Jhong Haw
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Charlotte A Alemao
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Alen Faiz
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Hock L Tay
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Peter A B Wark
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Darryl A Knight
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Providence Health Care Research Institute, Vancouver, British Columbia, Canada
| | - Paul S Foster
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Anthony Bosco
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Australia
| | - Jay C Horvat
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, Australia.
| | - Chantal Donovan
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
38
|
Dobric A, De Luca SN, Seow HJ, Wang H, Brassington K, Chan SMH, Mou K, Erlich J, Liong S, Selemidis S, Spencer SJ, Bozinovski S, Vlahos R. Cigarette Smoke Exposure Induces Neurocognitive Impairments and Neuropathological Changes in the Hippocampus. Front Mol Neurosci 2022; 15:893083. [PMID: 35656006 PMCID: PMC9152421 DOI: 10.3389/fnmol.2022.893083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
Background and Objective Neurocognitive dysfunction is present in up to ∼61% of people with chronic obstructive pulmonary disease (COPD), with symptoms including learning and memory deficiencies, negatively impacting the quality of life of these individuals. As the mechanisms responsible for neurocognitive deficits in COPD remain unknown, we explored whether chronic cigarette smoke (CS) exposure causes neurocognitive dysfunction in mice and whether this is associated with neuroinflammation and an altered neuropathology. Methods Male BALB/c mice were exposed to room air (sham) or CS (9 cigarettes/day, 5 days/week) for 24 weeks. After 23 weeks, mice underwent neurocognitive tests to assess working and spatial memory retention. At 24 weeks, mice were culled and lungs were collected and assessed for hallmark features of COPD. Serum was assessed for systemic inflammation and the hippocampus was collected for neuroinflammatory and structural analysis. Results Chronic CS exposure impaired lung function as well as driving pulmonary inflammation, emphysema, and systemic inflammation. CS exposure impaired working memory retention, which was associated with a suppression in hippocampal microglial number, however, these microglia displayed a more activated morphology. CS-exposed mice showed changes in astrocyte density as well as a reduction in synaptophysin and dendritic spines in the hippocampus. Conclusion We have developed an experimental model of COPD in mice that recapitulates the hallmark features of the human disease. The altered microglial/astrocytic profiles and alterations in the neuropathology within the hippocampus may explain the neurocognitive dysfunction observed during COPD.
Collapse
|
39
|
Gershater M, Romero R, Arenas-Hernandez M, Galaz J, Motomura K, Tao L, Xu Y, Miller D, Pique-Regi R, Martinez G, Liu Y, Jung E, Para R, Gomez-Lopez N. IL-22 Plays a Dual Role in the Amniotic Cavity: Tissue Injury and Host Defense against Microbes in Preterm Labor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1595-1615. [PMID: 35304419 PMCID: PMC8976826 DOI: 10.4049/jimmunol.2100439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
IL-22 is a multifaceted cytokine with both pro- and anti-inflammatory functions that is implicated in multiple pathologies. However, the role of IL-22 in maternal-fetal immunity in late gestation is poorly understood. In this study, we first showed that IL-22+ T cells coexpressing retinoic acid-related orphan receptor γt (ROR-γt) are enriched at the human maternal-fetal interface of women with preterm labor and birth, which was confirmed by in silico analysis of single-cell RNA sequencing data. T cell activation leading to preterm birth in mice was preceded by a surge in IL-22 in the maternal circulation and amniotic cavity; however, systemic administration of IL-22 in mice did not induce adverse perinatal outcomes. Next, using an ex vivo human system, we showed that IL-22 can cross from the choriodecidua to the intra-amniotic space, where its receptors (Il22ra1, Il10rb, and Il22ra2) are highly expressed by murine gestational and fetal tissues in late pregnancy. Importantly, amniotic fluid concentrations of IL-22 were elevated in women with sterile or microbial intra-amniotic inflammation, suggesting a dual role for this cytokine. The intra-amniotic administration of IL-22 alone shortened gestation and caused neonatal death in mice, with the latter outcome involving lung maturation and inflammation. IL-22 plays a role in host response by participating in the intra-amniotic inflammatory milieu preceding Ureaplasma parvum-induced preterm birth in mice, which was rescued by the deficiency of IL-22. Collectively, these data show that IL-22 alone is capable of causing fetal injury leading to neonatal death and can participate in host defense against microbial invasion of the amniotic cavity leading to preterm labor and birth.
Collapse
Affiliation(s)
- Meyer Gershater
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
- Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI
- Detroit Medical Center, Detroit, MI; and
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Jose Galaz
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Kenichiro Motomura
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Li Tao
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Derek Miller
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roger Pique-Regi
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI
| | - Gregorio Martinez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Yesong Liu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Eunjung Jung
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Robert Para
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI;
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
40
|
Donovan C, Kim RY, Galvao I, Jarnicki AG, Brown AC, Jones-Freeman B, Gomez HM, Wadhwa R, Hortle E, Jayaraman R, Khan H, Pickles S, Sahu P, Chimankar V, Tu X, Ali MK, Mayall JR, Nguyen DH, Budden KF, Kumar V, Schroder K, Robertson AA, Cooper MA, Wark PA, Oliver BG, Horvat JC, Hansbro PM. Aim2 suppresses cigarette smoke-induced neutrophil recruitment, neutrophil caspase-1 activation and anti-Ly6G-mediated neutrophil depletion. Immunol Cell Biol 2022; 100:235-249. [PMID: 35175629 PMCID: PMC9545917 DOI: 10.1111/imcb.12537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
Increased inflammasome responses are strongly implicated in inflammatory diseases; however, their specific roles are incompletely understood. Therefore, we sought to examine the roles of nucleotide‐binding oligomerization domain–like receptor (NLR) family, pyrin domain–containing 3 (NLRP3) and absent in melanoma‐2 (AIM2) inflammasomes in cigarette smoke–induced inflammation in a model of experimental chronic obstructive pulmonary disease (COPD). We targeted NLRP3 with the inhibitor MCC950 given prophylactically or therapeutically and examined Aim2−/− mice in cigarette smoke–induced experimental COPD. MCC950 treatment had minimal effects on disease development and/or progression. Aim2−/− mice had increased airway neutrophils with decreased caspase‐1 levels, independent of changes in lung neutrophil chemokines. Suppressing neutrophils with anti‐Ly6G in experimental COPD in wild‐type mice reduced neutrophils in bone marrow, blood and lung. By contrast, anti‐Ly6G treatment in Aim2−/− mice with experimental COPD had no effect on neutrophils in bone marrow, partially reduced neutrophils in the blood and had no effect on neutrophils or neutrophil caspase‐1 levels in the lungs. These findings identify that following cigarette smoke exposure, Aim2 is important for anti‐Ly6G–mediated depletion of neutrophils, suppression of neutrophil recruitment and mediates activation of caspase‐1 in neutrophils.
Collapse
Affiliation(s)
- Chantal Donovan
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Woolcock Institute of Medical Research, University of Sydney and School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Richard Y Kim
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Izabela Galvao
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Andrew G Jarnicki
- Department of Biochemistry and Pharmacology, Lung Health Research Centre, University of Melbourne, Parkville, VIC, Australia
| | - Alexandra C Brown
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Bernadette Jones-Freeman
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Henry M Gomez
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Elinor Hortle
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Ranjith Jayaraman
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Haroon Khan
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Sophie Pickles
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Priyanka Sahu
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Vrushali Chimankar
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Xiaofan Tu
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Md Khadem Ali
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Jemma R Mayall
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Duc H Nguyen
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Kurtis F Budden
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Vinod Kumar
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Avril Ab Robertson
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Peter Ab Wark
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney and School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Jay C Horvat
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
41
|
Uwagboe I, Adcock IM, Lo Bello F, Caramori G, Mumby S. New drugs under development for COPD. Minerva Med 2022; 113:471-496. [PMID: 35142480 DOI: 10.23736/s0026-4806.22.08024-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The characteristic features of chronic obstructive pulmonary disease (COPD) include inflammation and remodelling of the lower airways and lung parenchyma together with activation of inflammatory and immune processes. Due to the increasing habit of cigarette smoking worldwide COPD prevalence is increasing globally. Current therapies are unable to prevent COPD progression in many patients or target many of its hallmark characteristics which may reflect the lack of adequate biomarkers to detect the heterogeneous clinical and molecular nature of COPD. In this chapter we review recent molecular data that may indicate novel pathways that underpin COPD subphenotypes and indicate potential improvements in the classes of drugs currently used to treat COPD. We also highlight the evidence for new drugs or approaches to treat COPD identified using molecular and other approaches including kinase inhibitors, cytokine- and chemokine-directed biologicals and small molecules, antioxidants and redox signalling pathway inhibitors, inhaled anti-infectious agents and senolytics. It is important to consider the phenotypes/molecular endotypes of COPD patients together with specific outcome measures to target new therapies to particular COPD subtypes. This will require greater understanding of COPD molecular pathologies and a focus on biomarkers of predicting disease subsets and responder/non-responder populations.
Collapse
Affiliation(s)
- Isabel Uwagboe
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK -
| | - Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
42
|
Chronic Inflammation as the Underlying Mechanism of the Development of Lung Diseases in Psoriasis: A Systematic Review. Int J Mol Sci 2022; 23:ijms23031767. [PMID: 35163689 PMCID: PMC8836589 DOI: 10.3390/ijms23031767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 01/04/2023] Open
Abstract
Psoriasis is a systemic inflammatory disease caused by dysfunctional interactions between the innate and adaptive immune responses. The systemic inflammation in psoriasis may be associated with the development of comorbidities, including lung diseases. In this review, we aimed to provide a summary of the evidence regarding the prevalence of lung diseases in patients with psoriasis and the potential underlying mechanisms. Twenty-three articles published between March 2010 and June 2021 were selected from 195 initially identified records. The findings are discussed in terms of the prevalence of asthma, chronic obstructive pulmonary disease, interstitial lung disease, obstructive sleep apnea, pulmonary hypertension, and sarcoidosis in psoriasis. A higher prevalence of lung diseases in psoriasis has been confirmed in asthma, chronic obstructive pulmonary disease, obstructive sleep apnea, and pulmonary hypertension. These conditions are important as they are previously unrecognized causes of morbidity and mortality in psoriasis. The development of lung diseases in patients with psoriasis can be explained by several mechanisms, including common risk factors, shared immune and molecular characteristics associated with chronic inflammation, as well as other mechanisms. Understanding the prevalence of lung diseases in psoriasis and their underlying mechanisms can help implement appropriate preventative and therapeutic strategies to address respiratory diseases in patients with psoriasis.
Collapse
|
43
|
Margelidon-Cozzolino V, Tsicopoulos A, Chenivesse C, de Nadai P. Role of Th17 Cytokines in Airway Remodeling in Asthma and Therapy Perspectives. FRONTIERS IN ALLERGY 2022; 3:806391. [PMID: 35386663 PMCID: PMC8974749 DOI: 10.3389/falgy.2022.806391] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/07/2022] Open
Abstract
Airway remodeling is a frequent pathological feature of severe asthma leading to permanent airway obstruction in up to 50% of cases and to respiratory disability. Although structural changes related to airway remodeling are well-characterized, immunological processes triggering and maintaining this phenomenon are still poorly understood. As a consequence, no biotherapy targeting cytokines are currently efficient to treat airway remodeling and only bronchial thermoplasty may have an effect on bronchial nerves and smooth muscles with uncertain clinical relevance. Th17 cytokines, including interleukin (IL)-17 and IL-22, play a role in neutrophilic inflammation in severe asthma and may be involved in airway remodeling. Indeed, IL-17 is increased in sputum from severe asthmatic patients, induces the expression of "profibrotic" cytokines by epithelial, endothelial cells and fibroblasts, and provokes human airway smooth muscle cell migration in in vitro studies. IL-22 is also increased in asthmatic samples, promotes myofibroblast differentiation, epithelial-mesenchymal transition and proliferation and migration of smooth muscle cells in vitro. Accordingly, we also found high levels of IL-17 and IL-22 in a mouse model of dog-allergen induced asthma characterized by a strong airway remodeling. Clinical trials found no effect of therapy targeting IL-17 in an unselected population of asthmatic patients but showed a potential benefit in a sub-population of patients exhibiting a high level of airway reversibility, suggesting a potential role on airway remodeling. Anti-IL-22 therapies have not been evaluated in asthma yet but were demonstrated efficient in severe atopic dermatitis including an effect on skin remodeling. In this review, we will address the role of Th17 cytokines in airway remodeling through data from in vitro, in vivo and translational studies, and examine the potential place of Th17-targeting therapies in the treatment of asthma with airway remodeling.
Collapse
Affiliation(s)
- Victor Margelidon-Cozzolino
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Cécile Chenivesse
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
- CRISALIS (Clinical Research Initiative in Severe Asthma: a Lever for Innovation & Science), F-CRIN Network, INSERM US015, Toulouse, France
| | - Patricia de Nadai
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
44
|
Araújo NPDS, de Matos NA, Oliveira M, de Souza ABF, Castro TDF, Machado-Júnior PA, de Souza DMS, Talvani A, Cangussú SD, de Menezes RCA, Bezerra FS. Quercetin Improves Pulmonary Function and Prevents Emphysema Caused by Exposure to Cigarette Smoke in Male Mice. Antioxidants (Basel) 2022; 11:antiox11020181. [PMID: 35204064 PMCID: PMC8868486 DOI: 10.3390/antiox11020181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the major cause of morbidity and mortality worldwide, and cigarette smoke is a key factor in the development of COPD. Thus, the development of effective therapies to prevent the advancement of COPD has become increasingly essential. We hypothesized that quercetin protects lungs in mice exposed to long-term cigarette smoke. Thirty-five C57BL/6 mice were exposed to cigarette smoke (12 cigarettes per day) for 60 days and pretreated with 10 mg/kg/day of quercetin via orogastric gavage. After the experimental protocol, the animals were euthanized and samples were collected for histopathological, antioxidant defense, oxidative stress and inflammatory analysis. The animals exposed to cigarette smoke showed an increase in respiratory rate and hematological parameters, cell influx into the airways, oxidative damage and inflammatory mediators, besides presenting with alterations in the pulmonary histoarchitecture. The animals receiving 10 mg/kg/day of quercetin that were exposed to cigarette smoke presented a reduction in cellular influx, less oxidative damage, reduction in cytokine levels, improvement in the histological pattern and improvement in pulmonary emphysema compared to the group that was only exposed to cigarette smoke. These results suggest that quercetin may be an agent in preventing pulmonary emphysema induced by cigarette smoke.
Collapse
Affiliation(s)
- Natália Pereira da Silva Araújo
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Michel Oliveira
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Pedro Alves Machado-Júnior
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (D.M.S.d.S.); (A.T.)
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (D.M.S.d.S.); (A.T.)
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Rodrigo Cunha Alvim de Menezes
- Laboratory of Cardiovascular Physiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil;
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
- Correspondence:
| |
Collapse
|
45
|
Hsu AT, Gottschalk TA, Tsantikos E, Hibbs ML. The Role of Innate Lymphoid Cells in Chronic Respiratory Diseases. Front Immunol 2021; 12:733324. [PMID: 34630416 PMCID: PMC8492945 DOI: 10.3389/fimmu.2021.733324] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/02/2021] [Indexed: 01/08/2023] Open
Abstract
The lung is a vital mucosal organ that is constantly exposed to the external environment, and as such, its defenses are continuously under threat. The pulmonary immune system has evolved to sense and respond to these danger signals while remaining silent to innocuous aeroantigens. The origin of the defense system is the respiratory epithelium, which responds rapidly to insults by the production of an array of mediators that initiate protection by directly killing microbes, activating tissue-resident immune cells and recruiting leukocytes from the blood. At the steady-state, the lung comprises a large collection of leukocytes, amongst which are specialized cells of lymphoid origin known as innate lymphoid cells (ILCs). ILCs are divided into three major helper-like subsets, ILC1, ILC2 and ILC3, which are considered the innate counterparts of type 1, 2 and 17 T helper cells, respectively, in addition to natural killer cells and lymphoid tissue inducer cells. Although ILCs represent a small fraction of the pulmonary immune system, they play an important role in early responses to pathogens and facilitate the acquisition of adaptive immunity. However, it is now also emerging that these cells are active participants in the development of chronic lung diseases. In this mini-review, we provide an update on our current understanding of the role of ILCs and their regulation in the lung. We summarise how these cells and their mediators initiate, sustain and potentially control pulmonary inflammation, and their contribution to the respiratory diseases chronic obstructive pulmonary disease (COPD) and asthma.
Collapse
Affiliation(s)
- Amy T Hsu
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Timothy A Gottschalk
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Evelyn Tsantikos
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
46
|
Taghavi S, Jackson-Weaver O, Abdullah S, Wanek A, Drury R, Packer J, Cotton-Betteridge A, Duchesne J, Pociask D, Kolls J. Interleukin-22 mitigates acute respiratory distress syndrome (ARDS). PLoS One 2021; 16:e0254985. [PMID: 34597299 PMCID: PMC8486146 DOI: 10.1371/journal.pone.0254985] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The goal of this study was to determine if IL-22:Fc would Acute Respiratory Distress Syndrome (ARDS). SUMMARY BACKGROUND DATA No therapies exist for ARDS and treatment is purely supportive. Interleukin-22 (IL-22) plays an integral component in recovery of the lung from infection. IL-22:Fc is a recombinant protein with a human FC immunoglobulin that increases the half-life of IL-22. STUDY DESIGN ARDS was induced in C57BL/6 mice with intra-tracheal lipopolysaccharide (LPS) at a dose of 33.3 or 100 ug. In the low-dose LPS group (LDG), IL-22:FC was administered via tail vein injection at 30 minutes (n = 9) and compared to sham (n = 9). In the high-dose LPS group (HDG), IL-22:FC was administered (n = 11) then compared to sham (n = 8). Euthanasia occurred after bronchioalveolar lavage (BAL) on post-injury day 4. RESULTS In the LDG, IL-22:FC resulted in decreased protein leak (0.15 vs. 0.25 ug/uL, p = 0.02). BAL protein in animals receiving IL-22:Fc in the HDG was not different. For the HDG, animals receiving IL-22:Fc had lower BAL cell counts (539,636 vs 3,147,556 cells/uL, p = 0.02). For the HDG, IL-6 (110.6 vs. 527.1 pg/mL, p = 0.04), TNF-α (5.87 vs. 25.41 pg/mL, p = 0.04), and G-CSF (95.14 vs. 659.6, p = 0.01) levels were lower in the BAL fluid of IL-22:Fc treated animals compared to sham. CONCLUSIONS IL-22:Fc decreases lung inflammation and lung capillary leak in ARDS. IL-22:Fc may be a novel therapy for ARDS.
Collapse
Affiliation(s)
- Sharven Taghavi
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Olan Jackson-Weaver
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Sarah Abdullah
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Alanna Wanek
- Tulane University School of Medicine, Center for Translational Research in Infection and Inflammation, New Orleans, LA, United States of America
| | - Robert Drury
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Jacob Packer
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Aaron Cotton-Betteridge
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Juan Duchesne
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Derek Pociask
- Tulane University School of Medicine, Center for Translational Research in Infection and Inflammation, New Orleans, LA, United States of America
| | - Jay Kolls
- Tulane University School of Medicine, Center for Translational Research in Infection and Inflammation, New Orleans, LA, United States of America
| |
Collapse
|
47
|
Gu P, Wang D, Zhang J, Wang X, Chen Z, Gu L, Liu M, Meng F, Yang J, Cai H, Xiao Y, Chen Y, Cao M. Protective function of interleukin-22 in pulmonary fibrosis. Clin Transl Med 2021; 11:e509. [PMID: 34459137 PMCID: PMC8387792 DOI: 10.1002/ctm2.509] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive scarring disease with unknown etiology. The evidence of a pathogenic role for transforming growth factor-beta (TGF-β) in the development and progression of IPF is overwhelming. In the present study, we investigated the role of interleukin-22 (IL-22) in the pathogenesis of IPF by regulating the TGF-β pathway. We measured parameters and tissue samples from a clinical cohort of IPF. IL-22R knock out (IL-22RA1-/- ) and IL-22 supplementation mouse models were used to determine if IL-22 is protective in vivo. For the mechanistic study, we tested A549, primary mouse type II alveolar epithelial cell, human embryonic lung fibroblast, and primary fibroblast for their responses to IL-22 and/or TGF-β1. In a clinical cohort, the expression level of IL-22 in the peripheral blood and lung tissues of IPF patients was lower than healthy controls, and the lower IL-22 expression was associated with poorer pulmonary function. IL-22R-/- mice demonstrated exacerbated inflammation and fibrosis. Reciprocally, IL-22 augmentation by intranasal instillation of recombinant IL-22 repressed inflammation and fibrotic phenotype. In vitro, IL-22 treatment repressed TGF-β1 induced gene markers representing epithelial-mesenchymal-transition and fibroblast-myofibroblast-transition, likely via the inhibition of TGF-β receptor expression and subsequent Smad2/3 activation. IL-22 appears to be protective against pulmonary fibrosis by inhibiting TGF-β1 signaling, and IL-22 augmentation may be a promising approach to treat IPF.
Collapse
Affiliation(s)
- Peiyu Gu
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsuChina
| | - Dandan Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Ji Zhang
- Wuxi Transplant CenterWuxi People's Hospital Affiliated to Nanjing Medical UniversityWuxiJiangsuChina
| | - Xin Wang
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsuChina
| | - Zhiyong Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Lina Gu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Mengying Liu
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsuChina
| | - Fanqing Meng
- Department of Pathology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Jun Yang
- Department of Pathology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Hourong Cai
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Yonglong Xiao
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Yin Chen
- Department of Pharmacology and ToxicologySchool of Pharmacy; University of ArizonaTucsonAZ
- Asthma & Airway Disease Research CenterUniversity of ArizonaTucsonAZ
| | - Mengshu Cao
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsuChina
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
48
|
Skerrett-Byrne DA, Bromfield EG, Murray HC, Jamaluddin MFB, Jarnicki AG, Fricker M, Essilfie AT, Jones B, Haw TJ, Hampsey D, Anderson AL, Nixon B, Scott RJ, Wark PAB, Dun MD, Hansbro PM. Time-resolved proteomic profiling of cigarette smoke-induced experimental chronic obstructive pulmonary disease. Respirology 2021; 26:960-973. [PMID: 34224176 DOI: 10.1111/resp.14111] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/01/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Chronic obstructive pulmonary disease (COPD) is the third leading cause of illness and death worldwide. Current treatments aim to control symptoms with none able to reverse disease or stop its progression. We explored the major molecular changes in COPD pathogenesis. METHODS We employed quantitative label-based proteomics to map the changes in the lung tissue proteome of cigarette smoke-induced experimental COPD that is induced over 8 weeks and progresses over 12 weeks. RESULTS Quantification of 7324 proteins enabled the tracking of changes to the proteome. Alterations in protein expression profiles occurred in the induction phase, with 18 and 16 protein changes at 4- and 6-week time points, compared to age-matched controls, respectively. Strikingly, 269 proteins had altered expression after 8 weeks when the hallmark pathological features of human COPD emerge, but this dropped to 27 changes at 12 weeks with disease progression. Differentially expressed proteins were validated using other mouse and human COPD bronchial biopsy samples. Major changes in RNA biosynthesis (heterogeneous nuclear ribonucleoproteins C1/C2 [HNRNPC] and RNA-binding protein Musashi homologue 2 [MSI2]) and modulators of inflammatory responses (S100A1) were notable. Mitochondrial dysfunction and changes in oxidative stress proteins also occurred. CONCLUSION We provide a detailed proteomic profile, identifying proteins associated with the pathogenesis and disease progression of COPD establishing a platform to develop effective new treatment strategies.
Collapse
Affiliation(s)
- David A Skerrett-Byrne
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Elizabeth G Bromfield
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia.,Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Heather C Murray
- University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - M Fairuz B Jamaluddin
- University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Andrew G Jarnicki
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Ama T Essilfie
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Bernadette Jones
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Tatt J Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Daniel Hampsey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Amanda L Anderson
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Brett Nixon
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Rodney J Scott
- University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Matthew D Dun
- University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
49
|
Lu Z, Van Eeckhoutte HP, Liu G, Nair PM, Jones B, Gillis CM, Nalkurthi BC, Verhamme F, Buyle-Huybrecht T, Vandenabeele P, Berghe TV, Brusselle GG, Horvat JC, Murphy JM, Wark PA, Bracke KR, Fricker M, Hansbro PM. Necroptosis Signalling Promotes Inflammation, Airway Remodelling and Emphysema in COPD. Am J Respir Crit Care Med 2021; 204:667-681. [PMID: 34133911 DOI: 10.1164/rccm.202009-3442oc] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Necroptosis, mediated by RIPK3 and MLKL, is a form of regulated necrosis that can drive tissue inflammation and destruction, however its contribution to COPD pathogenesis is poorly understood. OBJECTIVES To determine the role of necroptosis in COPD. METHODS Levels of RIPK3, MLKL and activated phospho-MLKL were measured in lung tissues of COPD patients and non-COPD controls. Necroptosis-related mRNA and proteins and cell death were examined in the lungs and pulmonary macrophages of mice with cigarette smoke (CS)-induced experimental COPD. The responses of Ripk3- and Mlkl-deficient (-/-) mice to CS exposure were compared to wild-type mice. Combined inhibition of apoptosis (pan-caspase inhibitor qVD-OPh) and necroptosis (Mlkl-/- mice) was assessed. MEASUREMENTS AND MAIN RESULTS Protein levels of MLKL and pMLKL but not RIPK3 were increased in lung tissues of COPD patients compared to never smokers or smoker non-COPD controls. Necroptosis-related mRNA and protein levels were increased in lung tissue and macrophages in CS-exposed mice/experimental COPD. Ripk3 or Mlkl deletion prevented airway inflammation in response to acute CS-exposure. Ripk3 deficiency reduced airway inflammation and remodelling and development of emphysematous pathology following chronic CS-exposure. Mlkl deletion and qVD-OPh treatment reduced chronic CS-induced airway inflammation, but only Mlkl deletion prevented airway remodelling and emphysema. Ripk3 or Mlkl deletion and qVD-OPh treatment reduced CS-induced lung cell death. CONCLUSIONS Necroptosis is induced by CS exposure and increased in COPD patient lungs and experimental COPD. Inhibiting necroptosis attenuates CS-induced airway inflammation, airway remodelling and emphysema. Targeted inhibition of necroptosis is a potential therapeutic strategy in COPD.
Collapse
Affiliation(s)
- Zhe Lu
- The University of Newcastle Hunter Medical Research Institute, 454568, Priority Research Centre for Healthy Lungs, New Lambton, New South Wales, Australia
| | | | - Gang Liu
- The University of Newcastle Hunter Medical Research Institute, 454568, Priority Research Centre for Healthy Lungs, New Lambton, New South Wales, Australia.,University of Technology Sydney Faculty of Science, 170529, Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia
| | - Prema M Nair
- University of Newcastle Hunter Medical Research Institute, 454568, Priority Research Centres for Healthy Lungs and GrowUpWell, New Lambton, New South Wales, Australia.,The University of Newcastle Faculty of Health and Medicine, 64834, School of Biomedical Sciences and Pharmacy, Callaghan, New South Wales, Australia
| | - Bernadette Jones
- The University of Newcastle, 5982, Centre for Asthma & Respiratory Disease, Callaghan, New South Wales, Australia
| | - Caitlin M Gillis
- University of Technology Sydney Faculty of Science, 170529, Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Ghent University, 26656, VIB Center for Inflammation Research, Department for Biomedical Molecular Biology, Gent, Belgium.,Ghent University, 26656, Methusalem program CEDAR-IC, Gent, Belgium
| | - B Christina Nalkurthi
- University of Technology Sydney Faculty of Science, 170529, Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia
| | | | - Tamariche Buyle-Huybrecht
- University Hospital Ghent, 60200, Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Gent, Belgium
| | - Peter Vandenabeele
- University Hospital Ghent, 60200, Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Gent, Belgium
| | - Tom Vanden Berghe
- Ghent University, 26656, VIB Center for Inflammation Research, Department for Biomedical Molecular Biology, Gent, Belgium.,University of Antwerp, 26660, Department Biomedical Sciences, Antwerpen, Belgium
| | - Guy G Brusselle
- University Hospital Ghent, 60200, Respiratory Medicine, Gent, Belgium
| | - Jay C Horvat
- Hunter Medical Research Institute, Vaccines, Immunity, Viruses and Asthma Group, Newcastle, New South Wales, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 5388, Department of Medical Biology University of Melbourne , Melbourne, Victoria, Australia
| | - Peter A Wark
- The University of Newcastle, 5982, Centre for Asthma & Respiratory Disease, Callaghan, New South Wales, Australia.,The University of Newcastle Hunter Medical Research Institute, 454568, Vaccines, Infection, Viruses & Asthma, New Lambton, New South Wales, Australia
| | - Ken R Bracke
- University Hospital Ghent, 60200, Respiratory Medicine, Gent, Belgium
| | - Michael Fricker
- The University of Newcastle Hunter Medical Research Institute, 454568, Priority Research Centres for Healthy Lungs & Grow Up Well, New Lambton, New South Wales, Australia
| | - Philip M Hansbro
- University of Technology Sydney, 1994, Sydney, New South Wales, Australia;
| |
Collapse
|
50
|
Blomme EE, Provoost S, De Smet EG, De Grove KC, Van Eeckhoutte HP, De Volder J, Hansbro PM, Bonato M, Saetta M, Wijnant SR, Verhamme F, Joos GF, Bracke KR, Brusselle GG, Maes T. Quantification and role of innate lymphoid cell subsets in Chronic Obstructive Pulmonary Disease. Clin Transl Immunology 2021; 10:e1287. [PMID: 34136217 PMCID: PMC8178740 DOI: 10.1002/cti2.1287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023] Open
Abstract
Objectives Innate lymphoid cells (ILCs) secrete cytokines, such as IFN‐γ, IL‐13 and IL‐17, which are linked to chronic obstructive pulmonary disease (COPD). Here, we investigated the role of pulmonary ILCs in COPD pathogenesis. Methods Lung ILC subsets in COPD and control subjects were quantified using flow cytometry and associated with clinical parameters. Tissue localisation of ILC and T‐cell subsets was determined by immunohistochemistry. Mice were exposed to air or cigarette smoke (CS) for 1, 4 or 24 weeks to investigate whether pulmonary ILC numbers and activation are altered and whether they contribute to CS‐induced innate inflammatory responses. Results Quantification of lung ILC subsets demonstrated that ILC1 frequency in the total ILC population was elevated in COPD and was associated with smoking and severity of respiratory symptoms (COPD Assessment Test [CAT] score). All three ILC subsets localised near lymphoid aggregates in COPD. In the COPD mouse model, CS exposure in C57BL/6J mice increased ILC numbers at all time points, with relative increases in ILC1 in bronchoalveolar lavage (BAL) fluid. Importantly, CS exposure induced increases in neutrophils, monocytes and dendritic cells that remained elevated in Rag2/Il2rg‐deficient mice that lack adaptive immune cells and ILCs. However, CS‐induced CXCL1, IL‐6, TNF‐α and IFN‐γ levels were reduced by ILC deficiency. Conclusion The ILC1 subset is increased in COPD patients and correlates with smoking and severity of respiratory symptoms. ILCs also increase upon CS exposure in C57BL/6J mice. In the absence of adaptive immunity, ILCs contribute to CS‐induced pro‐inflammatory mediator release, but are redundant in CS‐induced innate inflammation.
Collapse
Affiliation(s)
- Evy E Blomme
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| | - Sharen Provoost
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| | - Elise G De Smet
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| | - Katrien C De Grove
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| | - Hannelore P Van Eeckhoutte
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| | - Joyceline De Volder
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| | - Philip M Hansbro
- Centre for Inflammation Centenary Institute Sydney NSW Australia.,Faculty of Science University of Technology Sydney Ultimo NSW Australia
| | - Matteo Bonato
- Faculty of Science University of Technology Sydney Ultimo NSW Australia
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health University of Padova Padova Italy
| | - Sara Ra Wijnant
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium.,Department of Epidemiology Erasmus Medical Center Rotterdam The Netherlands.,Department of Bioanalysis Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| | - Fien Verhamme
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| | - Guy F Joos
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| | - Ken R Bracke
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| | - Guy G Brusselle
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| | - Tania Maes
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| |
Collapse
|