1
|
Hamada Y, Gibson PG, Clark VL, Lewthwaite H, Fricker M, Thomas D, McDonald VM. Dysfunctional Breathing and Depression Are Core Extrapulmonary and Behavior/Risk Factor Traits in Type 2-High Severe Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2025:S2213-2198(25)00267-3. [PMID: 40120804 DOI: 10.1016/j.jaip.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Obesity and smoking are core treatable traits (TTs) in type 2 (T2)-low asthma, contributing to its pathophysiology. In contrast, core extrapulmonary and behavior/risk factor traits remain unclear in T2-high asthma. OBJECTIVE This study aimed to identify core extrapulmonary and behavior/risk factor traits for T2-high asthma. METHODS A cross-sectional study was conducted on 187 people (aged ≥18 years) with severe asthma who completed a multidimensional assessment. T2-high asthma was defined as blood eosinophils ≥150 cells/μL and/or fractional exhaled nitric oxide ≥20 ppb. Core TTs in T2-high asthma were identified among 9 extrapulmonary traits and 4 behavior/risk factor traits, using network analysis and dominance analysis for the Asthma Control Questionnaire scores, the Asthma Quality of Life Questionnaire scores, exacerbation frequency, and lung function. Associations between the identified core TTs and biomarkers were examined in participants with T2-high asthma. RESULTS Of 187 participants, 151 (80.7%) had T2-high severe asthma. Dysfunctional breathing and depression had higher values of node strength than other TTs, contributing most to worse asthma symptoms, poorer quality of life, and frequent exacerbations in T2-high asthma. These conditions in T2-high asthma were associated with elevated systemic inflammation, including blood neutrophils, neutrophil-lymphocyte ratio, and serum high-sensitivity C-reactive protein, independent of obesity, oral corticosteroid dose, and anxiety. CONCLUSIONS Core extrapulmonary and behavior/risk factor traits in T2-high severe asthma were dysfunctional breathing and depression, contributing to worse asthma outcomes, suggesting that core TTs may differ between asthma inflammatory phenotypes. Elevated systemic inflammation may help in recognizing the presence of dysfunctional breathing and depression in T2-high severe asthma.
Collapse
Affiliation(s)
- Yuto Hamada
- Center of Excellence in Treatable Traits, College of Health, Medicine and Wellbeing, the University of Newcastle, New Lambton Heights, NSW, Australia; Asthma and Breathing Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Clinical Research Center for Allergy and Rheumatology, NHO Sagamihara National Hospital, Sagamihara, Japan.
| | - Peter G Gibson
- Center of Excellence in Treatable Traits, College of Health, Medicine and Wellbeing, the University of Newcastle, New Lambton Heights, NSW, Australia; Asthma and Breathing Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Vanessa L Clark
- Center of Excellence in Treatable Traits, College of Health, Medicine and Wellbeing, the University of Newcastle, New Lambton Heights, NSW, Australia; Asthma and Breathing Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; School of Nursing and Midwifery, College of Health, Medicine and Wellbeing, the University of Newcastle, Newcastle, NSW, Australia
| | - Hayley Lewthwaite
- Center of Excellence in Treatable Traits, College of Health, Medicine and Wellbeing, the University of Newcastle, New Lambton Heights, NSW, Australia; Asthma and Breathing Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Michael Fricker
- Asthma and Breathing Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Dennis Thomas
- Center of Excellence in Treatable Traits, College of Health, Medicine and Wellbeing, the University of Newcastle, New Lambton Heights, NSW, Australia; Asthma and Breathing Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Vanessa M McDonald
- Center of Excellence in Treatable Traits, College of Health, Medicine and Wellbeing, the University of Newcastle, New Lambton Heights, NSW, Australia; Asthma and Breathing Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia; School of Nursing and Midwifery, College of Health, Medicine and Wellbeing, the University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
2
|
Couillard S, Jackson DJ, Pavord ID, Wechsler ME. Choosing the Right Biologic for the Right Patient With Severe Asthma. Chest 2025; 167:330-342. [PMID: 39245321 PMCID: PMC11867899 DOI: 10.1016/j.chest.2024.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
In this installment of the How I Do It series on severe asthma, we tackle the clinical conundrum of choosing the right biologic for the right patient with severe asthma. With six biologics now approved for use in this area comprising four different targeting strategies (anti-Ig E: omalizumab; anti-IL-5 and anti-IL-5-receptor: mepolizumab, reslizumab, and benralizumab; anti-IL-4-receptor: dupilumab; anti-thymic stromal lymphopoietin: tezepelumab), this question is increasingly complex. Recognizing that no head-to-head trial has compared biologics, we based our review on the expected effects of inhibiting different aspects of type 2 airway inflammation, supported whenever possible by clinical trial and real-world data. We use four variations of a case of severe uncontrolled asthma to develop concepts and considerations introduced in the previous installment ("Workup of Severe Asthma") and discuss pregnancy-related, biomarker-related, comorbidity-related, and corticosteroid dependency-related considerations when choosing a biologic. The related questions of deciding when, why, and how to switch from one biologic to another also are discussed. Overall, we consider that the choice of biologics should be based on the available clinical trial data for the desired efficacy outcomes, the biomarker profile of the patient, safety profiles (eg, when pregnancy is considered), and opportunities to target two comorbidities with one biologic. Using systemic and airway biomarkers (blood eosinophils and exhaled nitric oxide [Feno]) and other phenotypic characteristics, we suggest a framework to facilitate therapeutic decision-making. Post hoc studies and new comparative studies are needed urgently to test this framework and to determine whether it allows us to make other clinically useful predictions.
Collapse
Affiliation(s)
- Simon Couillard
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - David J Jackson
- Guy's Severe Asthma Centre, Guy's and St Thomas' Hospitals, London, England; School of Immunology and Microbial Sciences, King's College, London, England
| | - Ian D Pavord
- Respiratory Medicine Unit and Oxford Respiratory NIHR BRC, Nuffield Department of Medicine, University of Oxford, Oxford, England
| | | |
Collapse
|
3
|
Mailhot-Larouche S, Celis-Preciado C, Heaney LG, Couillard S. Identifying super-responders: A review of the road to asthma remission. Ann Allergy Asthma Immunol 2025; 134:31-45. [PMID: 39383944 DOI: 10.1016/j.anai.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
Asthma is a chronic respiratory disease marked by heterogeneity and variable clinical outcomes. Recent therapeutic advances have highlighted patients achieving optimal outcomes, termed "remission" or "super-response." This review evaluates the various definitions of these terms and explores how disease burden impedes the attainment of remission. We assessed multiple studies, including a recent systematic review and meta-analysis, on biologic treatments for asthma remission. Our review highlights that type 2 inflammation may be the strongest predictor of biologic response. Key comorbidities (eg, obesity and mood disorders) and behavioral factors (eg, poor adherence, improper inhalation technique, and smoking) were identified as dominant traits limiting remission. In addition, asthma burden and longer disease duration significantly restrict the potential for remission in patients with severe asthma under the current treatment paradigm. We review the potential for a "predict-and-prevent" approach, which focuses on early identification of high-risk patients with type 2 inflammation and aggressive treatment to improve long-term asthma outcomes. In conclusion, this scoping review highlights the following unmet needs in asthma remission: (1) a harmonized global definition, with better defined lung function parameters; (2) integration of nonbiologic therapies into remission strategies; and (3) a clinical trial of early biologic intervention in patients with remission-prone, very type 2-high, moderately severe asthma with clinical remission as a predefined primary end point.
Collapse
Affiliation(s)
- Samuel Mailhot-Larouche
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Carlos Celis-Preciado
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Liam G Heaney
- Centre for Experimental Medicine, Queen's University Belfast School of Medicine, Dentistry and Biomedical Sciences, Belfast, United Kingdom
| | - Simon Couillard
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
4
|
Jabeen MF, Sanderson ND, Tinè M, Donachie G, Barber C, Azim A, Lau LCK, Brown T, Pavord ID, Chauhan A, Klenerman P, Street TL, Marchi E, Howarth PH, Hinks TSC. Species-level, metagenomic and proteomic analysis of microbe-immune interactions in severe asthma. Allergy 2024; 79:2966-2980. [PMID: 39127908 DOI: 10.1111/all.16269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND The airway microbiome in severe asthma has not been characterised at species-level by metagenomic sequencing, nor have the relationships between specific species and mucosal immune responses in 'type-2 low', neutrophilic asthma been defined. We performed an integrated species-level metagenomic data with inflammatory mediators to characterise prevalence of dominant potentially pathogenic organisms and host immune responses. METHODS Sputum and nasal lavage samples were analysed using long-read metagenomic sequencing with Nanopore and qPCR in two cross-sectional adult severe asthma cohorts, Wessex (n = 66) and Oxford (n = 30). We integrated species-level data with clinical parameters and 39 selected airway proteins measured by immunoassay and O-link. RESULTS The sputum microbiome in health and mild asthma displayed comparable microbial diversity. By contrast, 23% (19/81) of severe asthma microbiomes were dominated by a single respiratory pathogen, namely H. influenzae (n = 10), M. catarrhalis (n = 4), S. pneumoniae (n = 4) and P. aeruginosa (n = 1). Neutrophilic asthma was associated with H. influenzae, M. catarrhalis, S. pneumoniae and T. whipplei with elevated type-1 cytokines and proteases; eosinophilic asthma with higher M. catarrhalis, but lower H. influenzae, and S. pneumoniae abundance. H. influenzae load correlated with Eosinophil Cationic Protein, elastase and IL-10. R. mucilaginosa associated positively with IL-6 and negatively with FGF. Bayesian network analysis also revealed close and distinct relationships of H. influenzae and M. catarrhalis with type-1 airway inflammation. The microbiomes and cytokine milieu were distinct between upper and lower airways. CONCLUSIONS This species-level integrated analysis reveals central, but distinct associations between potentially pathogenic bacteria and airways inflammation in severe asthma.
Collapse
Affiliation(s)
- Maisha F Jabeen
- Nuffield Department of Medicine, Experimental Medicine Division, Respiratory Medicine Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Nicholas D Sanderson
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Mariaenrica Tinè
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Gillian Donachie
- Nuffield Department of Medicine, Experimental Medicine Division, Respiratory Medicine Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Clair Barber
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories and NIHR Southampton Respiratory Biomedical Research Unit, Southampton University, Southampton, UK
| | - Adnan Azim
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories and NIHR Southampton Respiratory Biomedical Research Unit, Southampton University, Southampton, UK
| | - Laurie C K Lau
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories and NIHR Southampton Respiratory Biomedical Research Unit, Southampton University, Southampton, UK
| | | | - Ian D Pavord
- Nuffield Department of Medicine, Experimental Medicine Division, Respiratory Medicine Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | | | - Paul Klenerman
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research and Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Teresa L Street
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Emanuele Marchi
- Nuffield Department of Medicine, Experimental Medicine Division, Respiratory Medicine Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research and Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Peter H Howarth
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories and NIHR Southampton Respiratory Biomedical Research Unit, Southampton University, Southampton, UK
| | - Timothy S C Hinks
- Nuffield Department of Medicine, Experimental Medicine Division, Respiratory Medicine Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
5
|
Zahraei HN, Schleich F, Louis G, Gerday S, Sabbe M, Bougard N, Guissard F, Paulus V, Henket M, Petre B, Donneau AF, Louis R. Evidence for 2 clusters among patients with noneosinophilic asthma. Ann Allergy Asthma Immunol 2024; 133:57-63.e4. [PMID: 38499060 DOI: 10.1016/j.anai.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Although asthma is often seen as an eosinophilic disease associated with atopy, patients with noneosinophilic asthma represent a substantial part of the population with asthma. OBJECTIVE To apply an unsupervised clustering method in a cohort of 588 patients with noneosinophilic asthma (sputum eosinophils < 3%) recruited from an asthma clinic of a secondary care center. METHODS Our cluster analysis of the whole cohort identified 2 subgroups as cluster 1 (n = 417) and cluster 2 (n = 171). RESULTS Cluster 1 comprised a predominantly female group with late disease onset, a low proportion of atopy (24%), and a substantial smoking history (53%). In this cluster, treatment burden was low (<50% of inhaled corticosteroid users); asthma control and quality of life were poor, with median Asthma Control Test, Asthma Control Questionnaire, and Asthma Quality of Life scores of 16, 1.7, and 4.5, respectively, whereas lung function was preserved with a median postbronchodilation forced expiratory volume in 1 second of 93% predicted. Cluster 2 was a predominantly male group, almost exclusively comprising patients with atopy (99%) with early disease onset and a moderate treatment burden (median inhaled corticosteroids dose 800 µg/d equivalent beclomethasone). In cluster 2, asthma was partially controlled, with median Asthma Control Test and Asthma Control Questionnaire scores reaching 18 and 1.3, respectively, and lung function well preserved with a median postbronchodilation of 95% predicted. Although systemic and airway neutrophilic inflammation was the dominant pattern in cluster 1, cluster 2 essentially comprised paucigranulocytic asthma with moderately elevated fraction exhaled nitric oxide. CONCLUSION Noneosinophilic asthma splits into 2 clusters distinguishing by disease onset, atopic status, smoking history, systemic and airway inflammation, and disease control and quality of life.
Collapse
Affiliation(s)
- Halehsadat Nekoee Zahraei
- Biostatistics Unit, Department of Public Health, University of Liège, Liège, Belgium; Department of Pneumology, GIGA, University of Liège, Liège, Belgium
| | | | - Gilles Louis
- Department of Public Health, University of Liège, Liège, Belgium
| | - Sara Gerday
- Department of Pneumology, GIGA, University of Liège, Liège, Belgium
| | - Mare Sabbe
- Department of Pneumology, GIGA, University of Liège, Liège, Belgium
| | - Nicolas Bougard
- Department of Pneumology, GIGA, University of Liège, Liège, Belgium
| | | | - Virginie Paulus
- Department of Pneumology, GIGA, University of Liège, Liège, Belgium
| | - Monique Henket
- Department of Pneumology, GIGA, University of Liège, Liège, Belgium
| | - Benoit Petre
- Department of Pneumology, GIGA, University of Liège, Liège, Belgium
| | | | - Renaud Louis
- Department of Pneumology, GIGA, University of Liège, Liège, Belgium.
| |
Collapse
|
6
|
Ohnishi H, Otani T, Kanemitsu Y, Nagano T, Hara J, Eitoku M. A systematic review and meta-analysis of macrolides in the management of adult patients with asthma. Allergol Int 2024; 73:382-389. [PMID: 38296770 DOI: 10.1016/j.alit.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND The efficacy of macrolides in the management of asthma has been studied but remains controversial. We conducted a systematic review and meta-analysis of macrolides in the management of adult patients with asthma. METHODS Randomized controlled trials of macrolides used in adult patients with asthma were searched for in MEDLINE, EMBASE, PsycINFO, Cochrane Library, CINAHL, and Igaku Chuo Zasshi databases to evaluate the efficacy and safety of macrolides. RESULTS Seventeen reports with macrolide treatment durations ranging from 6 to 48 weeks were included. Macrolides did not reduce exacerbations requiring hospitalization, severe exacerbations, or rescue use of short-acting beta-2 agonist inhalers; improve lung function; decrease peripheral blood or sputum neutrophil counts; or decrease fractional exhaled nitric oxide compared to placebo. Macrolides statistically improved asthma control and quality of life but by less than the minimal clinically important difference. Peripheral blood eosinophil counts as well as serum and sputum eosinophilic cationic protein concentrations were significantly decreased with macrolides compared to placebo. The improvement of asthma symptoms and airway hyperresponsiveness varied by study. The safety profile of macrolides was comparable to that of placebo. CONCLUSIONS Although macrolides have some useful clinical aspects, there is not sufficient evidence to recommend their use in the management of adult patients with asthma.
Collapse
Affiliation(s)
- Hiroshi Ohnishi
- Department of Respiratory Medicine and Allergology, Kochi Medical School, Kochi University, Kochi, Japan.
| | - Toshihito Otani
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshihiro Kanemitsu
- Department of Respiratory Medicine, Allergy, and Clinical Immunology, Nagoya City University of Medical Sciences, Nagoya, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Johsuke Hara
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
7
|
Mushunje PK, Dube FS, Olwagen C, Madhi S, Odland JØ, Ferrand RA, Nicol MP, Abotsi RE. Characterization of bacterial and viral pathogens in the respiratory tract of children with HIV-associated chronic lung disease: a case-control study. BMC Infect Dis 2024; 24:637. [PMID: 38926682 PMCID: PMC11201860 DOI: 10.1186/s12879-024-09540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Chronic lung disease is a major cause of morbidity in African children with HIV infection; however, the microbial determinants of HIV-associated chronic lung disease (HCLD) remain poorly understood. We conducted a case-control study to investigate the prevalence and densities of respiratory microbes among pneumococcal conjugate vaccine (PCV)-naive children with (HCLD +) and without HCLD (HCLD-) established on antiretroviral treatment (ART). METHODS Nasopharyngeal swabs collected from HCLD + (defined as forced-expiratory-volume/second < -1.0 without reversibility postbronchodilation) and age-, site-, and duration-of-ART-matched HCLD- participants aged between 6-19 years enrolled in Zimbabwe and Malawi (BREATHE trial-NCT02426112) were tested for 94 pneumococcal serotypes together with twelve bacteria, including Streptococcus pneumoniae (SP), Staphylococcus aureus (SA), Haemophilus influenzae (HI), Moraxella catarrhalis (MC), and eight viruses, including human rhinovirus (HRV), respiratory syncytial virus A or B, and human metapneumovirus, using nanofluidic qPCR (Standard BioTools formerly known as Fluidigm). Fisher's exact test and logistic regression analysis were used for between-group comparisons and risk factors associated with common respiratory microbes, respectively. RESULTS A total of 345 participants (287 HCLD + , 58 HCLD-; median age, 15.5 years [IQR = 12.8-18], females, 52%) were included in the final analysis. The prevalence of SP (40%[116/287] vs. 21%[12/58], p = 0.005) and HRV (7%[21/287] vs. 0%[0/58], p = 0.032) were higher in HCLD + participants compared to HCLD- participants. Of the participants positive for SP (116 HCLD + & 12 HCLD-), 66% [85/128] had non-PCV-13 serotypes detected. Overall, PCV-13 serotypes (4, 19A, 19F: 16% [7/43] each) and NVT 13 and 21 (9% [8/85] each) predominated. The densities of HI (2 × 104 genomic equivalents [GE/ml] vs. 3 × 102 GE/ml, p = 0.006) and MC (1 × 104 GE/ml vs. 1 × 103 GE/ml, p = 0.031) were higher in HCLD + compared to HCLD-. Bacterial codetection (≥ any 2 bacteria) was higher in the HCLD + group (36% [114/287] vs. (19% [11/58]), (p = 0.014), with SP and HI codetection (HCLD + : 30% [86/287] vs. HCLD-: 12% [7/58], p = 0.005) predominating. Viruses (predominantly HRV) were detected only in HCLD + participants. Lastly, participants with a history of previous tuberculosis treatment were more likely to carry SP (adjusted odds ratio (aOR): 1.9 [1.1 -3.2], p = 0.021) or HI (aOR: 2.0 [1.2 - 3.3], p = 0.011), while those who used ART for ≥ 2 years were less likely to carry HI (aOR: 0.3 [0.1 - 0.8], p = 0.005) and MC (aOR: 0.4 [0.1 - 0.9], p = 0.039). CONCLUSION Children with HCLD + were more likely to be colonized by SP and HRV and had higher HI and MC bacterial loads in their nasopharynx. The role of SP, HI, and HRV in the pathogenesis of CLD, including how they influence the risk of acute exacerbations, should be studied further. TRIAL REGISTRATION The BREATHE trial (ClinicalTrials.gov Identifier: NCT02426112 , registered date: 24 April 2015).
Collapse
Affiliation(s)
- Prince K Mushunje
- Department of Molecular and Cell Biology & Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | - Felix S Dube
- Department of Molecular and Cell Biology & Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- School of Medicine, University of Lusaka, Lusaka, Zambia
| | - Courtney Olwagen
- South Africa Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir Madhi
- South Africa Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jon Ø Odland
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- International Research Laboratory for Reproductive Ecotoxicology (IL RET), The National Research University Higher School of Economics, Moscow, Russia
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Rashida A Ferrand
- Biomedical Research and Training Institute, Harare, Zimbabwe
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Mark P Nicol
- Marshall Centre, Division of Infection and Immunity, School of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Regina E Abotsi
- Department of Molecular and Cell Biology & Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pharmaceutical Microbiology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
8
|
Lee SH, Lee JH, Lee SW. Application of Microbiome-Based Therapies in Chronic Respiratory Diseases. J Microbiol 2024; 62:201-216. [PMID: 38635003 DOI: 10.1007/s12275-024-00124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 04/19/2024]
Abstract
The application of microbiome-based therapies in various areas of human disease has recently increased. In chronic respiratory disease, microbiome-based clinical applications are considered compelling options due to the limitations of current treatments. The lung microbiome is ecologically dynamic and affected by various conditions, and dysbiosis is associated with disease severity, exacerbation, and phenotype as well as with chronic respiratory disease endotype. However, it is not easy to directly modulate the lung microbiome. Additionally, studies have shown that chronic respiratory diseases can be improved by modulating gut microbiome and administrating metabolites. Although the composition, diversity, and abundance of the microbiome between the gut and lung are considerably different, modulation of the gut microbiome could improve lung dysbiosis. The gut microbiome influences that of the lung via bacterial-derived components and metabolic degradation products, including short-chain fatty acids. This phenomenon might be associated with the cross-talk between the gut microbiome and lung, called gut-lung axis. There are multiple alternatives to modulate the gut microbiome, such as prebiotics, probiotics, and postbiotics ingestion and fecal material transplantation. Several studies have shown that high-fiber diets, for example, present beneficial effects through the production of short-chain fatty acids. Additionally, genetically modified probiotics to secrete some beneficial molecules might also be utilized to treat chronic respiratory diseases. Further studies on microbial modulation to regulate immunity and potentiate conventional pharmacotherapy will improve microbiome modulation techniques, which will develop as a new therapeutic area in chronic respiratory diseases.
Collapse
Affiliation(s)
- Se Hee Lee
- Department of Pulmonology, Allergy and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam, 13496, Republic of Korea
| | - Jang Ho Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
9
|
Celis-Preciado CA, Leclerc S, Duval M, Cliche DO, Larivée P, Lemaire-Paquette S, Lévesque S, Côté A, Lachapelle P, Couillard S. Phenotyping the Responses to Systemic Corticosteroids in the Management of Asthma Attacks (PRISMA): protocol for an observational and translational pilot study. BMJ Open Respir Res 2023; 10:e001932. [PMID: 37940357 PMCID: PMC10632890 DOI: 10.1136/bmjresp-2023-001932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023] Open
Abstract
INTRODUCTION Asthma and its associated exacerbation are heterogeneous. Although severe asthma attacks are systematically prescribed corticosteroids and often antibiotics, little is known about the variability of response to these therapies. Blood eosinophils and fractional exhaled nitric oxide (FeNO) are type 2 inflammation biomarkers that have established mechanistic, prognostic and theragnostic values in chronic asthma, but their utility in acute asthma is unclear. We speculate that the clinical and biological response to those treatments varies according to inflammometry and microbiological test results. METHODS AND ANALYSIS An observational longitudinal pilot study with multimodal clinical and translational assessments will be performed on 50 physician-diagnosed ≥12-year-old asthmatics presenting with an asthma attack and 12 healthy controls, including blood eosinophil count (venous and point-of-care (POC) capillary blood), FeNO and testing for airway infection (sputum cultures and POC nasopharyngeal swabs). People with asthma will be assessed on day 0 and after a 7-day corticosteroid course, with home monitoring performed in between. The primary analysis will be the change in the forced expiratory volume in 1 s according to type 2 inflammatory status (blood eosinophils ≥0.15×109/L and/or FeNO ≥25 ppb) after treatment. Key secondary analyses will compare changes in symptom scores and the proportion of patients achieving a minimal clinically important difference. Exploratory analyses will assess the relationship between clinical, lung function, inflammatory and microbiome parameters; satisfaction plus reliability indices of POC tests; and sex-gender variability in treatment response. Ultimately, this pilot study will serve to plan a larger trial comparing the clinical and biological response to systemic corticosteroids according to inflammatory biomarkers, offering valuable guidance for more personalised therapeutic strategies in asthma attacks. ETHICS AND DISSEMINATION The protocol has been approved by the Research Ethics Committee of the CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada (#2023-4687). Results will be communicated in an international meeting and submitted to a peer-reviewed journal. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (NCT05870215).
Collapse
Affiliation(s)
- Carlos Andrés Celis-Preciado
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Internal Medicine-Pulmonary Unit, Faculty of Medicine, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Simon Leclerc
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Martine Duval
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dominic O Cliche
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Pierre Larivée
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Samuel Lemaire-Paquette
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Simon Lévesque
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Laboratoire de Microbiologie, CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - Andréanne Côté
- Department of Medicine, Faculty of Medicine, Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Philippe Lachapelle
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Simon Couillard
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
10
|
Sardon-Prado O, Diaz-Garcia C, Corcuera-Elosegui P, Korta-Murua J, Valverde-Molina J, Sanchez-Solis M. Severe Asthma and Biological Therapies: Now and the Future. J Clin Med 2023; 12:5846. [PMID: 37762787 PMCID: PMC10532431 DOI: 10.3390/jcm12185846] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Recognition of phenotypic variability in pediatric asthma allows for a more personalized therapeutic approach. Knowledge of the underlying pathophysiological and molecular mechanisms (endotypes) of corresponding biomarkers and new treatments enables this strategy to progress. Biologic therapies for children with severe asthma are becoming more relevant in this sense. The T2 phenotype is the most prevalent in childhood and adolescence, and non-T2 phenotypes are usually rare. This document aims to review the mechanism of action, efficacy, and potential predictive and monitoring biomarkers of biological drugs, focusing on the pediatric population. The drugs currently available are omalizumab, mepolizumab, benralizumab, dupilumab, and 1ezepelumab, with some differences in administrative approval prescription criteria between the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA). Previously, we described the characteristics of severe asthma in children and its diagnostic and therapeutic management.
Collapse
Affiliation(s)
- Olaia Sardon-Prado
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
- Department of Pediatrics, University of the Basque Country (UPV/EHU), 20014 Leioa, Spain
| | - Carolina Diaz-Garcia
- Paediatric Pulmonology and Allergy Unit, Santa Lucia General University Hospital, 30202 Cartagena, Spain;
| | - Paula Corcuera-Elosegui
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
| | - Javier Korta-Murua
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
| | - Jose Valverde-Molina
- Department of Paediatrics, Santa Lucía General University Hospital, 30202 Cartagena, Spain
- IMIB Biomedical Research Institute, 20120 Murcia, Spain;
| | - Manuel Sanchez-Solis
- IMIB Biomedical Research Institute, 20120 Murcia, Spain;
- Department of Pediatrics, University of Murcia, 20120 Murcia, Spain
- Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children’s Hospital, 20120 Murcia, Spain
| |
Collapse
|
11
|
Brown MA, Morgan SB, Donachie GE, Horton KL, Pavord ID, Arancibia-Cárcamo CV, Hinks TSC. Epithelial immune activation and intracellular invasion by non-typeable Haemophilus influenzae. Front Cell Infect Microbiol 2023; 13:1141798. [PMID: 37180449 PMCID: PMC10167379 DOI: 10.3389/fcimb.2023.1141798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Type-2 low asthma affects 30-50% of people with severe asthma and includes a phenotype characterized by sputum neutrophilia and resistance to corticosteroids. Airways inflammation in type-2 low asthma or COPD is potentially driven by persistent bacterial colonization of the lower airways by bacteria such as non-encapsulated Haemophilus influenzae (NTHi). Although pathogenic in the lower airways, NTHi is a commensal of the upper airways. It is not known to what extent these strains can invade airway epithelial cells, persist intracellularly and activate epithelial cell production of proinflammatory cytokines, and how this differs between the upper and lower airways. We studied NTHi infection of primary human bronchial epithelial cells (PBECs), primary nasal epithelial cells (NECs) and epithelial cell lines from upper and lower airways. NTHi strains differed in propensity for intracellular and paracellular invasion. We found NTHi was internalized within PBECs at 6 h, but live intracellular infection did not persist at 24 h. Confocal microscopy and flow cytometry showed NTHi infected secretory, ciliated and basal PBECs. Infection of PBECs led to induction of CXCL8, interleukin (IL)-1β, IL-6 and TNF. The magnitude of cytokine induction was independent of the degree of intracellular invasion, either by differing strains or by cytochalasin D inhibition of endocytosis, with the exception of the inflammasome-induced mediator IL-1β. NTHi-induced activation of TLR2/4, NOD1/2 and NLR inflammasome pathways was significantly stronger in NECs than in PBECs. These data suggest that NTHi is internalized transiently by airway epithelial cells and has capacity to drive inflammation in airway epithelial cells.
Collapse
Affiliation(s)
- Mary A. Brown
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Sophie B. Morgan
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Gillian E. Donachie
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Katie L. Horton
- School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Ian D. Pavord
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Carolina V. Arancibia-Cárcamo
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Timothy S. C. Hinks
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Abstract
Asthma is one of the most common chronic non-communicable diseases worldwide and is characterised by variable airflow obstruction, causing dyspnoea and wheezing. Highly effective therapies are available; asthma morbidity and mortality have vastly improved in the past 15 years, and most patients can attain good asthma control. However, undertreatment is still common, and improving patient and health-care provider understanding of when and how to adjust treatment is crucial. Asthma management consists of a cycle of assessment of asthma control and risk factors and adjustment of medications accordingly. With the introduction of biological therapies, management of severe asthma has entered the precision medicine era-a shift that is driving clinical ambitions towards disease remission. Patients with severe asthma often have co-existing conditions contributing to their symptoms, mandating a multidimensional management approach. In this Seminar, we provide a clinically focused overview of asthma; epidemiology, pathophysiology, diagnosis, and management in children and adults.
Collapse
Affiliation(s)
- Celeste Porsbjerg
- Department of Respiratory and Infectious Diseases, Bispebjerg Hospital, Copenhagen, Denmark; Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Erik Melén
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet and Sachs' Children and Youth Hospital, Stockholm, Sweden
| | - Lauri Lehtimäki
- Allergy Centre, Tampere University Hospital, Tampere, Finland; Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Dominick Shaw
- National Institute for Health and Care Research Nottingham Biomedical Research Centre, Division of Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
13
|
Vicendese D, Yerkovich S, Grimwood K, Valery PC, Byrnes CA, Morris PS, Dharmage SC, Chang AB. Long-term Azithromycin in Children With Bronchiectasis Unrelated to Cystic Fibrosis: Treatment Effects Over Time. Chest 2023; 163:52-63. [PMID: 36030839 DOI: 10.1016/j.chest.2022.08.2216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/11/2022] [Accepted: 08/12/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Following evidence from randomized controlled trials, patients with bronchiectasis unrelated to cystic fibrosis receive long-term azithromycin to reduce acute respiratory exacerbations. However, the period when azithromycin is effective and which patients are likely to most benefit remain unknown. RESEARCH QUESTIONS (i) What is the period after its commencement when azithromycin is most effective? and (ii) Which factors may modify azithromycin effects? STUDY DESIGN AND METHODS A secondary analysis was conducted of our previous randomized controlled trial involving 89 indigenous children with bronchiectasis unrelated to cystic fibrosis. Semi-parametric Poisson regression identified the azithromycin efficacy period. Multivariable Poisson regression identified factors that modify azithromycin effect. RESULTS Azithromycin was associated with fewer exacerbations per child-week during weeks 4 through 96, with the most effective period observed between weeks 17 and 62. Eleven factors were associated with different azithromycin effects; four were significant at the P < .05 level. Compared with their counterparts, higher reduction in exacerbations was observed in children with nasopharyngeal carriage of bacterial pathogens (incidence rate ratio [IRR] = 0.81 [95% CI, 0.57-1.14] vs 0.29 [0.20-0.44]; P < .001); New Zealand children (IRR = 0.73 [0.51-1.03] vs 0.39 [0.28-0.55]; P = .012); and those with higher weight-for-height z scores (interaction IRR = 0.82 [0.67-0.99]; P = .044). Compared with their counterparts, lower reduction was observed in those born preterm (IRR = 0.41 [0.30-0.55] vs 0.74 [0.49-1.10]; P = .012). INTERPRETATION Regular azithromycin is best used for at least 17 weeks and up to 62 weeks, as these periods provide maximum benefit for indigenous children with bronchiectasis unrelated to cystic fibrosis. Several factors modified azithromycin benefits; however, these traits need confirmation in larger studies before being adopted into clinical practice. CLINICAL TRIALS REGISTRATION Australian New Zealand Clinical Trials Registry; ACTRN12610000383066.
Collapse
Affiliation(s)
- Don Vicendese
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; School of Engineering and Mathematical Sciences, La Trobe University, Bundoora, VIC, Australia.
| | - Stephanie Yerkovich
- Australian Centre for Health Services Innovation, Queensland University of Technology, Brisbane, QLD, Australia; Child Health Division, Menzies School of Health Research, Darwin, NT, Australia; NHMRC Centre for Research Excellence in Paediatric Bronchiectasis (AusBREATHE), and Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Keith Grimwood
- NHMRC Centre for Research Excellence in Paediatric Bronchiectasis (AusBREATHE), and Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; School of Medicine and Dentistry, and Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Departments of Infectious Diseases, and Paediatrics, Gold Coast Health, Gold Coast, QLD, Australia
| | - Patricia C Valery
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Catherine A Byrnes
- Department of Paediatrics, University of Auckland, Auckland, New Zealand; Paediatric Respiratory Medicine, Starship Children's Health & Kidz First Hospital, Auckland, New Zealand
| | - Peter S Morris
- NHMRC Centre for Research Excellence in Paediatric Bronchiectasis (AusBREATHE), and Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Paediatrics, Royal Darwin Hospital, Darwin, NT, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Anne B Chang
- Australian Centre for Health Services Innovation, Queensland University of Technology, Brisbane, QLD, Australia; Child Health Division, Menzies School of Health Research, Darwin, NT, Australia; NHMRC Centre for Research Excellence in Paediatric Bronchiectasis (AusBREATHE), and Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Diver S, Haldar K, McDowell PJ, Busby J, Mistry V, Micieli C, Brown V, Cox C, Yang F, Borg C, Shrimanker R, Ramsheh MY, Hardman T, Arron J, Bradding P, Cowan D, Mansur AH, Fowler SJ, Lordan J, Menzies-Gow A, Robinson D, Matthews J, Pavord ID, Chaudhuri R, Heaney LG, Barer MR, Brightling C. Relationship between inflammatory status and microbial composition in severe asthma and during exacerbation. Allergy 2022; 77:3362-3376. [PMID: 35778780 DOI: 10.1111/all.15425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND In T2-mediated severe asthma, biologic therapies, such as mepolizumab, are increasingly used to control disease. Current biomarkers can indicate adequate suppression of T2 inflammation, but it is unclear whether they provide information about airway microbial composition. We investigated the relationships between current T2 biomarkers and microbial profiles, characteristics associated with a ProteobacteriaHIGH microbial profile and the effects of mepolizumab on airway ecology. METHODS Microbiota sequencing was performed on sputum samples obtained at stable and exacerbation state from 140 subjects with severe asthma participating in two clinical trials. Inflammatory subgroups were compared on the basis of biomarkers, including FeNO and sputum and blood eosinophils. ProteobacteriaHIGH subjects were identified by Proteobacteria to Firmicutes ratio ≥0.485. Where paired sputum from stable visits was available, we compared microbial composition at baseline and following ≥12 weeks of mepolizumab. RESULTS Microbial composition was not related to inflammatory subgroup based on sputum or blood eosinophils. FeNO ≥50 ppb when stable and at exacerbation indicated a group with less dispersed microbial profiles characterised by high alpha-diversity and low Proteobacteria. ProteobacteriaHIGH subjects were neutrophilic and had a longer time from asthma diagnosis than ProteobacteriaLOW subjects. In those studied, mepolizumab did not alter airway bacterial load or lead to increased Proteobacteria. CONCLUSION High FeNO could indicate a subgroup of severe asthma less likely to benefit from antimicrobial strategies at exacerbation or in the context of poor control. Where FeNO is <50 ppb, biomarkers of microbial composition are required to identify those likely to respond to microbiome-directed strategies. We found no evidence that mepolizumab alters airway microbial composition.
Collapse
Affiliation(s)
- Sarah Diver
- Department of Respiratory Sciences, Leicester NIHR BRC, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Koirobi Haldar
- Department of Respiratory Sciences, Leicester NIHR BRC, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Pamela Jane McDowell
- Wellcome-Wolfson Centre for Experimental Medicine, School of Medicine, Dentistry, and Biological Sciences, Belfast, UK
- Queen's University Belfast, Belfast, UK
| | - John Busby
- Wellcome-Wolfson Centre for Experimental Medicine, School of Medicine, Dentistry, and Biological Sciences, Belfast, UK
- Queen's University Belfast, Belfast, UK
| | - Vijay Mistry
- Department of Respiratory Sciences, Leicester NIHR BRC, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Claudia Micieli
- Department of Respiratory Sciences, Leicester NIHR BRC, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Vanessa Brown
- Wellcome-Wolfson Centre for Experimental Medicine, School of Medicine, Dentistry, and Biological Sciences, Belfast, UK
- Queen's University Belfast, Belfast, UK
| | - Ciara Cox
- Regional Virus Laboratory, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK
| | - Freda Yang
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow, UK
| | - Catherine Borg
- Oxford Respiratory NIHR BRC, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rahul Shrimanker
- Oxford Respiratory NIHR BRC, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mohammadali Yavari Ramsheh
- Department of Respiratory Sciences, Leicester NIHR BRC, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Tim Hardman
- Niche Science & Technology Ltd., Unit 26, Falstaff House, Richmond, UK
| | - Joseph Arron
- Genentech Inc., South San Francisco, California, USA
| | - Peter Bradding
- Department of Respiratory Sciences, Leicester NIHR BRC, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Douglas Cowan
- NHS Greater Glasgow and Clyde, Stobhill Hospital, Glasgow, UK
| | - Adel Hasan Mansur
- University of Birmingham and Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre and NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Jim Lordan
- The Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | | | - John Matthews
- Department of Respiratory Sciences, Leicester NIHR BRC, Institute for Lung Health, University of Leicester, Leicester, UK
- 23andMe, Sunnyvale, California, USA
| | - Ian D Pavord
- Oxford Respiratory NIHR BRC, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rekha Chaudhuri
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow, UK
| | - Liam G Heaney
- Wellcome-Wolfson Centre for Experimental Medicine, School of Medicine, Dentistry, and Biological Sciences, Belfast, UK
- Queen's University Belfast, Belfast, UK
| | - Michael R Barer
- Department of Respiratory Sciences, Leicester NIHR BRC, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Christopher Brightling
- Department of Respiratory Sciences, Leicester NIHR BRC, Institute for Lung Health, University of Leicester, Leicester, UK
| | | |
Collapse
|
15
|
Brown MA, Jabeen M, Bharj G, Hinks TSC. Non-typeable Haemophilus influenzae airways infection: the next treatable trait in asthma? Eur Respir Rev 2022; 31:220008. [PMID: 36130784 PMCID: PMC9724834 DOI: 10.1183/16000617.0008-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/04/2022] [Indexed: 11/05/2022] Open
Abstract
Asthma is a complex, heterogeneous condition that affects over 350 million people globally. It is characterised by bronchial hyperreactivity and airways inflammation. A subset display marked airway neutrophilia, associated with worse lung function, higher morbidity and poor response to treatment. In these individuals, recent metagenomic studies have identified persistent bacterial infection, particularly with non-encapsulated strains of the Gram-negative bacterium Haemophilus influenzae. Here we review knowledge of non-typeable H. influenzae (NTHi) in the microbiology of asthma, the immune consequences of mucosal NTHi infection, various immune evasion mechanisms, and the clinical implications of NTHi infection for phenotyping and targeted therapies in neutrophilic asthma. Airway neutrophilia is associated with production of neutrophil chemokines and proinflammatory cytokines in the airways, including interleukin (IL)-1β, IL-6, IL-8, IL-12, IL-17A and tumour necrosis factor. NTHi adheres to and invades the lower respiratory tract epithelium, inducing the NLR family pyrin domain containing 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammasomes. NTHi reduces expression of tight-junction proteins, impairing epithelial integrity, and can persist intracellularly. NTHi interacts with rhinoviruses synergistically via upregulation of intracellular cell adhesion molecule 1 and promotion of a neutrophilic environment, to which NTHi is adapted. We highlight the clinical relevance of this emerging pathogen and its relevance for the efficacy of long-term macrolide therapy in airways diseases, we identify important unanswered questions and we propose future directions for research.
Collapse
Affiliation(s)
- Mary Ashley Brown
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Experimental Medicine Division, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Maisha Jabeen
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Experimental Medicine Division, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Gurpreet Bharj
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Experimental Medicine Division, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
- Mammalian Genetics Unit, MRC Harwell Institute, Oxford, UK
| | - Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Experimental Medicine Division, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Azithromycin through the Lens of the COVID-19 Treatment. Antibiotics (Basel) 2022; 11:antibiotics11081063. [PMID: 36009932 PMCID: PMC9404997 DOI: 10.3390/antibiotics11081063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Azithromycin has become famous in the last two years, not for its main antimicrobial effect, but for its potential use as a therapeutic agent for COVID-19 infection. Initially, there were some promising results that supported its use, but it has become clear that scientific results are insufficient to support such a positive assessment. In this review we will present all the literature data concerning the activity of azithromycin as an antimicrobial, an anti-inflammatory, or an antivirus agent. Our aim is to conclude whether its selection should remain as a valuable antivirus agent or if its use simply has an indirect therapeutic contribution due to its antimicrobial and/or immunomodulatory activity, and therefore, if its further use for COVID-19 treatment should be interrupted. This halt will prevent further antibiotic resistance expansion and will keep azithromycin as a valuable anti-infective therapeutic agent.
Collapse
|
17
|
Diver S, Brightling CE, Greening NJ. Novel Therapeutic Strategies in Asthma-Chronic Obstructive Pulmonary Disease Overlap. Immunol Allergy Clin North Am 2022; 42:671-690. [DOI: 10.1016/j.iac.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Neutrophils and Asthma. Diagnostics (Basel) 2022; 12:diagnostics12051175. [PMID: 35626330 PMCID: PMC9140072 DOI: 10.3390/diagnostics12051175] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Although eosinophilic inflammation is characteristic of asthma pathogenesis, neutrophilic inflammation is also marked, and eosinophils and neutrophils can coexist in some cases. Based on the proportion of sputum cell differentiation, asthma is classified into eosinophilic asthma, neutrophilic asthma, neutrophilic and eosinophilic asthma, and paucigranulocytic asthma. Classification by bronchoalveolar lavage is also performed. Eosinophilic asthma accounts for most severe asthma cases, but neutrophilic asthma or a mixture of the two types can also present a severe phenotype. Biomarkers for the diagnosis of neutrophilic asthma include sputum neutrophils, blood neutrophils, chitinase-3-like protein, and hydrogen sulfide in sputum and serum. Thymic stromal lymphoprotein (TSLP)/T-helper 17 pathways, bacterial colonization/microbiome, neutrophil extracellular traps, and activation of nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 pathways are involved in the pathophysiology of neutrophilic asthma and coexistence of obesity, gastroesophageal reflux disease, and habitual cigarette smoking have been associated with its pathogenesis. Thus, targeting neutrophilic asthma is important. Smoking cessation, neutrophil-targeting treatments, and biologics have been tested as treatments for severe asthma, but most clinical studies have not focused on neutrophilic asthma. Phosphodiesterase inhibitors, anti-TSLP antibodies, azithromycin, and anti-cholinergic agents are promising drugs for neutrophilic asthma. However, clinical research targeting neutrophilic inflammation is required to elucidate the optimal treatment.
Collapse
|
19
|
Jabeen MF, Sanderson ND, Foster D, Crook DW, Cane JL, Borg C, Connolly C, Thulborn S, Pavord ID, Klenerman P, Street TL, Hinks TSC. Identifying Bacterial Airways Infection in Stable Severe Asthma Using Oxford Nanopore Sequencing Technologies. Microbiol Spectr 2022; 10:e0227921. [PMID: 35323032 PMCID: PMC9045196 DOI: 10.1128/spectrum.02279-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
Previous metagenomic studies in asthma have been limited by inadequate sequencing depth for species-level bacterial identification and by heterogeneity in clinical phenotyping. We hypothesize that chronic bacterial airways infection is a key "treatable trait" whose prevalence, clinical phenotype and reliable biomarkers need definition. In this study, we have applied a method for Oxford Nanopore sequencing for the unbiased metagenomic characterization of severe asthma. We optimized methods to compare performance of Illumina MiSeq, Nanopore sequencing, and RT-qPCR on total sputum DNA extracts against culture/MALDI-TOF for analysis of induced sputum samples from highly phenotyped severe asthma during clinical stability. In participants with severe asthma (n = 23) H. influenzae was commonly cultured (n = 8) and identified as the dominant bacterial species by metagenomic sequencing using an optimized method for Illumina MiSeq and Oxford Nanopore. Alongside superior operational characteristics, Oxford Nanopore achieved near complete genome coverage of H. influenzae and demonstrated a high level of agreement with Illumina MiSeq data. Clinically significant infection was confirmed with validated H. influenzae plasmid-based quantitative PCR assay. H. influenzae positive patients were found to have sputum neutrophilia and lower FeNO. In conclusion, using an optimized method of direct sequencing of induced sputum samples, H. influenzae was identified as a clinically relevant pathogen in severe asthma and was identified reliably using metagenomic sequencing. Application of these protocols in ongoing analysis of large patient cohorts will allow full characterization of this clinical phenotype. IMPORTANCE The human airways were once thought sterile in health. Now metagenomic techniques suggest bacteria may be present, but their role in asthma is not understood. Traditional culture lacks sensitivity and current sequencing techniques are limited by operational problems and limited ability to identify pathogens at species level. We optimized a new sequencing technique-Oxford Nanopore technologies (ONT)-for use on human sputum samples and compared it with existing methods. We found ONT was effective for rapidly analyzing samples and could identify bacteria at the species level. We used this to show Haemophilus influenzae was a dominant bacterium in the airways in people with severe asthma. The presence of Haemophilus was associated with a "neutrophilic" form of asthma - a subgroup for which we currently lack specific treatments. Therefore, this technique could be used to target chronic antibiotic therapy and in research to characterize the full breadth of bacteria in the airways.
Collapse
Affiliation(s)
- Maisha F. Jabeen
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Nicholas D. Sanderson
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Dona Foster
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Derrick W. Crook
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jennifer L. Cane
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Catherine Borg
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Clare Connolly
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Samantha Thulborn
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ian D. Pavord
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research and Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Teresa L. Street
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Timothy S. C. Hinks
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
20
|
Campbell CD, Barnett C, Sulaiman I. A clinicians’ review of the respiratory microbiome. Breathe (Sheff) 2022; 18:210161. [PMID: 36338247 PMCID: PMC9584600 DOI: 10.1183/20734735.0161-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/02/2022] [Indexed: 11/25/2022] Open
Abstract
The respiratory microbiome and its impact in health and disease is now well characterised. With the development of next-generation sequencing and the use of other techniques such as metabolomics, the functional impact of microorganisms in different host environments can be elucidated. It is now clear that the respiratory microbiome plays an important role in respiratory disease. In some diseases, such as bronchiectasis, examination of the microbiome can even be used to identify patients at higher risk of poor outcomes. Furthermore, the microbiome can aid in phenotyping. Finally, development of multi-omic analysis has revealed interactions between the host and microbiome in some conditions. This review, although not exhaustive, aims to outline how the microbiome is investigated, the healthy respiratory microbiome and its role in respiratory disease. The respiratory microbiome encompasses bacterial, fungal and viral communities. In health, it is a dynamic structure and dysbiotic in disease. Dysbiosis can be related to disease severity and may be utilised to predict patients at clinical risk.https://bit.ly/3pNSgnA
Collapse
|
21
|
Abotsi RE, Nicol MP, McHugh G, Simms V, Rehman AM, Barthus C, Ngwira LG, Kwambana-Adams B, Heyderman RS, Odland JØ, Ferrand RA, Dube FS. The impact of long-term azithromycin on antibiotic resistance in HIV-associated chronic lung disease. ERJ Open Res 2022; 8:00491-2021. [PMID: 35141318 PMCID: PMC8819245 DOI: 10.1183/23120541.00491-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/31/2021] [Indexed: 11/25/2022] Open
Abstract
Selection for resistance to azithromycin (AZM) and other antibiotics such as tetracyclines and lincosamides remains a concern with long-term AZM use for treatment of chronic lung diseases (CLD). We investigated the impact of 48 weeks of AZM on the carriage and antibiotic resistance of common respiratory bacteria among children with HIV-associated CLD. Nasopharyngeal (NP) swabs and sputa were collected at baseline, 48 and 72 weeks from participants with HIV-associated CLD randomised to receive weekly AZM or placebo for 48 weeks and followed post-intervention until 72 weeks. The primary outcomes were prevalence and antibiotic resistance of Streptococcus pneumoniae (SP), Staphylococcus aureus (SA), Haemophilus influenzae (HI) and Moraxella catarrhalis (MC) at these timepoints. Mixed-effects logistic regression and Fisher's exact test were used to compare carriage and resistance, respectively. Of 347 (174 AZM, 173 placebo) participants (median age 15 years (IQR 13-18), female 49%), NP carriage was significantly lower in the AZM (n=159) compared to placebo (n=153) arm for SP (18% versus 41%, p<0.001), HI (7% versus 16%, p=0.01) and MC (4% versus 11%, p=0.02); SP resistance to AZM (62% (18 out of 29) versus 13% (8 out of 63), p<0.0001) or tetracycline (60% (18 out of 29) versus 21% (13 out of 63), p<0.0001) was higher in the AZM arm. Carriage of SA resistant to AZM (91% (31 out of 34) versus 3% (1 out of 31), p<0.0001), tetracycline (35% (12 out of 34) versus 13% (4 out of 31), p=0.05) and clindamycin (79% (27 out of 34) versus 3% (1 out of 31), p<0.0001) was also significantly higher in the AZM arm and persisted at 72 weeks. Similar findings were observed for sputa. The persistence of antibiotic resistance and its clinical relevance for future infectious episodes requiring treatment needs further investigation.
Collapse
Affiliation(s)
- Regina E Abotsi
- Department of Molecular and Cell Biology & Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Pharmaceutical Microbiology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Mark P Nicol
- Division of Infection and Immunity, School of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Grace McHugh
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Victoria Simms
- Biomedical Research and Training Institute, Harare, Zimbabwe.,International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrea M Rehman
- International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Charmaine Barthus
- Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Lucky G Ngwira
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Brenda Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Robert S Heyderman
- NIHR Global Health Research Unit on Mucosal Pathogens, Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jon Ø Odland
- Department of Community Medicine, University of Tromsø, Tromsø, Norway.,International Research Laboratory for Reproductive Ecotoxicology (IL RET), The National Research University Higher School of Economics, Moscow, Russia.,Faculty of Health Sciences, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Rashida A Ferrand
- Biomedical Research and Training Institute, Harare, Zimbabwe.,Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Felix S Dube
- Department of Molecular and Cell Biology & Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
22
|
Pollock J, Chalmers JD. The immunomodulatory effects of macrolide antibiotics in respiratory disease. Pulm Pharmacol Ther 2021; 71:102095. [PMID: 34740749 PMCID: PMC8563091 DOI: 10.1016/j.pupt.2021.102095] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022]
Abstract
Macrolide antibiotics are well known for their antibacterial properties, but extensive research in the context of inflammatory lung disease has revealed that they also have powerful immunomodulatory properties. It has been demonstrated that these drugs are therapeutically beneficial in various lung diseases, with evidence they significantly reduce exacerbations in patients with COPD, asthma, bronchiectasis and cystic fibrosis. The efficacy demonstrated in patients infected with macrolide tolerant organisms such as Pseudomonas aeruginosa supports the concept that their efficacy is at least partly related to immunomodulatory rather than antibacterial effects. Inconsistent data and an incomplete understanding of their mechanisms of action hampers the use of macrolide antibiotics as immunomodulatory therapies. Macrolides recently demonstrated no clinically relevant immunomodulatory effects in the context of COVID-19 infection. This review provides an overview of macrolide antibiotics and discusses their immunomodulatory effects and mechanisms of action in the context of inflammatory lung disease.
Collapse
Affiliation(s)
- Jennifer Pollock
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
23
|
Rupani H, Fong WCG, Kyyaly A, Kurukulaaratchy RJ. Recent Insights into the Management of Inflammation in Asthma. J Inflamm Res 2021; 14:4371-4397. [PMID: 34511973 PMCID: PMC8421249 DOI: 10.2147/jir.s295038] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
The present prevailing inflammatory paradigm in asthma is of T2-high inflammation orchestrated by key inflammatory cells like Type 2 helper lymphocytes, innate lymphoid cells group 2 and associated cytokines. Eosinophils are key components of this T2 inflammatory pathway and have become key therapeutic targets. Real-world evidence on the predominant T2-high nature of severe asthma is emerging. Various inflammatory biomarkers have been adopted in clinical practice to aid asthma characterization including airway measures such as bronchoscopic biopsy and lavage, induced sputum analysis, and fractional exhaled nitric oxide. Blood measures like eosinophil counts have also gained widespread usage and multicomponent algorithms combining different parameters are now appearing. There is also growing interest in potential future biomarkers including exhaled volatile organic compounds, micro RNAs and urinary biomarkers. Additionally, there is a growing realisation that asthma is a heterogeneous state with numerous phenotypes and associated treatable traits. These may show particular inflammatory patterns and merit-specific management approaches that could improve asthma patient outcomes. Inhaled corticosteroids (ICS) remain the mainstay of asthma management but their use earlier in the course of disease is being advocated. Recent evidence suggests potential roles for ICS in combination with long-acting beta-agonists (LABA) for as needed use in mild asthma whilst maintenance and reliever therapy regimes have gained widespread acceptance. Other anti-inflammatory strategies including ultra-fine particle ICS, leukotriene receptor antagonists and macrolide antibiotics may show efficacy in particular phenotypes too. Monoclonal antibody biologic therapies have recently entered clinical practice with significant impacts on asthma outcomes. Understanding of the efficacy and use of those agents is becoming clearer with a growing body of real-world evidence as is their potential applicability to other treatable comorbid traits. In conclusion, the evolving understanding of T2 driven inflammation alongside a treatable traits disease model is enhancing therapeutic approaches to address inflammation in asthma.
Collapse
Affiliation(s)
- Hitasha Rupani
- Department of Respiratory Medicine, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Wei Chern Gavin Fong
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight NHS Trust, Isle of Wight, UK
| | - Aref Kyyaly
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight NHS Trust, Isle of Wight, UK
| | - Ramesh J Kurukulaaratchy
- Department of Respiratory Medicine, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight NHS Trust, Isle of Wight, UK
- NIHR Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
24
|
Bush A, Pavord ID. Challenging the paradigm: moving from umbrella labels to treatable traits in airway disease. Breathe (Sheff) 2021; 17:210053. [PMID: 35035544 PMCID: PMC8753662 DOI: 10.1183/20734735.0053-2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Airway diseases were initially described by nonspecific patterns of symptoms, for example "dry and wheezy" and "wet and crackly". The model airway disease is cystic fibrosis, which has progressed from nonspecific reactive treatments such as antibiotics for airway infection to molecular sub-endotype, proactive therapies with an unequivocal evidence base, early diagnosis, and biomarkers of treatment efficacy. Unfortunately, other airway diseases lag behind, not least because nonspecific umbrella labels such as "asthma" are considered to be diagnoses not mere descriptions. Pending the delineation of molecular sub-endotypes in other airway disease the concept of treatable traits, and consideration of airway disease in a wider context is preferable. A treatable trait is a characteristic amenable to therapy, with measurable benefits of treatment. This approach determines what pathology is actually present and treatable, rather than using umbrella labels. We determine if airway inflammation is present, and whether there is airway eosinophilia which will likely respond to inhaled corticosteroids; whether there is variable airflow obstruction due to bronchoconstriction which will respond to β2-agonists; and whether there is unsuspected underlying airway infection which should be treated with antibiotics unless there is an underlying endotype which can be addressed, as for example an immunodeficiency. The context of airway disease should also be extrapulmonary comorbidities, social and environmental factors, and a developmental perspective, particularly this last aspect if preventive strategies are being contemplated. This approach allows targeted treatment for maximal patient benefit, as well as preventing the discarding of therapies which are useful for appropriate subgroups of patients. Failure to appreciate this almost led to the discarding of valuable treatments such as prednisolone. EDUCATIONAL AIMS To use cystic fibrosis as a paradigm to show the benefits of the journey from nonspecific umbrella terms to specific endotypes and sub-endotypes, as a road map for other airway diseases to follow.Demonstrate that nonspecific labels to describe airway disease can and should be abandoned in favour of treatable traits to ensure diagnostic and therapeutic precision.Begin to learn to see airway disease in the context of extrapulmonary comorbidities, and social and environmental factors, as well as with a developmental perspective.
Collapse
Affiliation(s)
- Andrew Bush
- Paediatrics and Paediatric Respirology, Imperial Centre for Paediatrics and Child Health, Imperial College London, London, UK
- Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Ian D. Pavord
- Respiratory Medicine, Respiratory Medicine Unit and Oxford Respiratory NIHR BRC, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Murphy RC, Pavord ID, Alam R, Altman MC. Management Strategies to Reduce Exacerbations in non-T2 Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:2588-2597. [PMID: 34246435 DOI: 10.1016/j.jaip.2021.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
There have been considerable advances in our understanding of asthmatic airway inflammation, resulting in a paradigm shift of classifying individuals on the basis of either the presence or the absence of type 2 (T2) inflammatory markers. Several novel monoclonal antibody therapies targeting T2 cytokines have demonstrated significant clinical effects including reductions in acute exacerbations and improvements in asthma-related quality of life and lung function for individuals with T2-high asthma. However, there have been fewer advancements in developing therapies for those without evidence of T2 airway inflammation (so-called non-T2 asthma). Here, we review the heterogeneity of molecular mechanisms responsible for initiation and regulation of non-T2 inflammation and discuss both current and potential future therapeutic options for individuals with non-T2 asthma.
Collapse
Affiliation(s)
- Ryan C Murphy
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Wash; Center for Lung Biology, Department of Medicine, University of Washington, Seattle, Wash.
| | - Ian D Pavord
- Respiratory Medicine Unit and Oxford Respiratory NIHR Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rafeul Alam
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health and University of Colorado, Denver, Colo
| | - Matthew C Altman
- Center for Lung Biology, Department of Medicine, University of Washington, Seattle, Wash; Division of Allergy and Immunology, University of Washington, Seattle, Wash
| |
Collapse
|
26
|
How I do it. Work-up of severe asthma. Chest 2021; 160:2019-2029. [PMID: 34265308 DOI: 10.1016/j.chest.2021.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
CASE EXAMPLE A 56-year-old gentleman has difficult to control asthma and a history of four exacerbations in the prior 12 months despite high-dose inhaled corticosteroids (ICS) and additional controller therapies. Is he suitable for more advanced therapeutic options? SCOPE OF REVIEW We herein review the clinical assessment of a patient with suspected severe asthma, discuss factors contributing to poor asthma control and how biomarkers assist in disease investigation and stratification. HOW I DO IT The key components of our multidisciplinary approach are to confirm an asthma diagnosis and adherence to treatment, to assess any contributing comorbidities or confounding factors, and to stratify what type of asthma our patient has. The combination of spirometry and repeated measures of key biomarkers of type-2 airway inflammation - the blood eosinophil count and fractional exhaled nitric oxide - identifies whether poor disease control is driven by uncontrolled, ICS-resistant type-2 airway inflammation or ongoing airflow obstruction. A failure to elicit evidence of either suggests an alternative driver for the patient's symptoms including chronic airway infection and non-asthma causes. Each phenotype represents a treatable trait that requires a specific targeted approach. Critically, steroids can cause harm and their use should be guided by objective evidence of inflammation rather than symptoms alone. CASE CONCLUSION After assessment of treatment adherence and exclusion of relevant comorbidities, the patient was found to have severe asthma with ICS-resistant type-2 airway inflammation. We will consider additional treatment options at our next appointment (Part 2/2 of this How I Do It series).
Collapse
|
27
|
Azim A, Green B, Lau L, Rupani H, Jayasekera N, Bruce K, Howarth P. Peripheral airways type 2 inflammation, neutrophilia and microbial dysbiosis in severe asthma. Allergy 2021; 76:2070-2078. [PMID: 33411348 PMCID: PMC8629111 DOI: 10.1111/all.14732] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/11/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023]
Abstract
Background IL‐13 is considered an archetypal T2 cytokine central to the clinical disease expression of asthma. The IL‐13 response genes, which are upregulated in central airway bronchial epithelial of asthma patients, can be normalized by high‐dose inhaled steroid therapy in severe asthma. However, this is not the case within the peripheral airways. We have sought to further understand IL‐13 in the peripheral airways in severe asthma through bronchoalveolar analysis. Methods Bronchoalveolar lavage samples were collected from 203 asthmatic and healthy volunteers, including 78 with severe asthma. Inflammatory mediators were measured using a multiple cytokine immunoassay platform. This analysis was replicated in a further 59 volunteers, in whom 16S rRNA analysis of BAL samples was undertaken by terminal restriction fragment length polymorphism. Results Severe asthma patients with high BAL IL‐13, despite treatment with high‐dose inhaled corticosteroids, had more severe lung function and significantly higher BAL neutrophil percentages, but not BAL eosinophils than those with normal BAL‐13 concentrations. This finding was replicated in the second cohort, which further associated BAL IL‐13 and neutrophilia with a greater abundance of potentially pathogenic bacteria in the peripheral airways. Conclusion Our findings demonstrate a steroid unresponsive source of IL‐13 that is associated with BAL neutrophilia and bacterial dysbiosis in severe asthma. Our findings highlight the biological complexity of severe asthma and the importance of a greater understanding of the innate and adaptive immune responses in the peripheral airways in this disease.
Collapse
Affiliation(s)
- Adnan Azim
- Faculty of Medicine Academic Unit of Clinical and Experimental Sciences University of Southampton Southampton UK
- NIHR Respiratory Biomedical Research Unit University Hospital Southampton Southampton UK
| | - Ben Green
- Portsmouth Hospitals NHS TrustQueen Alexandra Hospital London UK
| | - Laurie Lau
- Faculty of Medicine Academic Unit of Clinical and Experimental Sciences University of Southampton Southampton UK
- NIHR Respiratory Biomedical Research Unit University Hospital Southampton Southampton UK
| | - Hitasha Rupani
- Faculty of Medicine Academic Unit of Clinical and Experimental Sciences University of Southampton Southampton UK
- NIHR Respiratory Biomedical Research Unit University Hospital Southampton Southampton UK
| | | | - Kenneth Bruce
- Molecular Microbiology Research Laboratory Pharmaceutical Science Division King's College London London UK
| | - Peter Howarth
- Faculty of Medicine Academic Unit of Clinical and Experimental Sciences University of Southampton Southampton UK
- NIHR Respiratory Biomedical Research Unit University Hospital Southampton Southampton UK
| |
Collapse
|
28
|
Oliver ME, Hinks TSC. Azithromycin in viral infections. Rev Med Virol 2021; 31:e2163. [PMID: 32969125 PMCID: PMC7536932 DOI: 10.1002/rmv.2163] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022]
Abstract
Azithromycin (AZM) is a synthetic macrolide antibiotic effective against a broad range of bacterial and mycobacterial infections. Due to an additional range of anti-viral and anti-inflammatory properties, it has been given to patients with the coronaviruses SARS-CoV or MERS-CoV. It is now being investigated as a potential candidate treatment for SARS-CoV-2 having been identified as a candidate therapeutic for this virus by both in vitro and in silico drug screens. To date there are no randomised trial data on its use in any novel coronavirus infection, although a large number of trials are currently in progress. In this review, we summarise data from in vitro, murine and human clinical studies on the anti-viral and anti-inflammatory properties of macrolides, particularly AZM. AZM reduces in vitro replication of several classes of viruses including rhinovirus, influenza A, Zika virus, Ebola, enteroviruses and coronaviruses, via several mechanisms. AZM enhances expression of anti-viral pattern recognition receptors and induction of anti-viral type I and III interferon responses. Of relevance to severe coronavirus-19 disease (COVID-19), which is characterised by an over-exuberant innate inflammatory response, AZM also has anti-inflammatory properties including suppression of IL-1beta, IL-2, TNF and GM-CSF. AZM inhibits T cells by inhibiting calcineurin signalling, mammalian target of rapamycin activity and NFκB activation. AZM particularly targets granulocytes where it concentrates markedly in lysosomes, particularly affecting accumulation, adhesion, degranulation and apoptosis of neutrophils. Given its proven safety, affordability and global availability, tempered by significant concerns about antimicrobial stewardship, there is an urgent mandate to perform well-designed and conducted randomised clinical trials.
Collapse
Affiliation(s)
| | - Timothy S. C. Hinks
- Nuffield Department of Medicine Experimental Medicine, Respiratory Medicine Unit and National Institute for Health Research (NIHR), Oxford Biomedical Research Centre (BRC)University of OxfordOxfordUK
| |
Collapse
|
29
|
Crisford H, Sapey E, Rogers GB, Taylor S, Nagakumar P, Lokwani R, Simpson JL. Neutrophils in asthma: the good, the bad and the bacteria. Thorax 2021; 76:thoraxjnl-2020-215986. [PMID: 33632765 PMCID: PMC8311087 DOI: 10.1136/thoraxjnl-2020-215986] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/30/2022]
Abstract
Airway inflammation plays a key role in asthma pathogenesis but is heterogeneous in nature. There has been significant scientific discovery with regard to type 2-driven, eosinophil-dominated asthma, with effective therapies ranging from inhaled corticosteroids to novel biologics. However, studies suggest that approximately 1 in 5 adults with asthma have an increased proportion of neutrophils in their airways. These patients tend to be older, have potentially pathogenic airway bacteria and do not respond well to classical therapies. Currently, there are no specific therapeutic options for these patients, such as neutrophil-targeting biologics.Neutrophils comprise 70% of the total circulatory white cells and play a critical defence role during inflammatory and infective challenges. This makes them a problematic target for therapeutics. Furthermore, neutrophil functions change with age, with reduced microbial killing, increased reactive oxygen species release and reduced production of extracellular traps with advancing age. Therefore, different therapeutic strategies may be required for different age groups of patients.The pathogenesis of neutrophil-dominated airway inflammation in adults with asthma may reflect a counterproductive response to the defective neutrophil microbial killing seen with age, resulting in bystander damage to host airway cells and subsequent mucus hypersecretion and airway remodelling. However, in children with asthma, neutrophils are less associated with adverse features of disease, and it is possible that in children, neutrophils are less pathogenic.In this review, we explore the mechanisms of neutrophil recruitment, changes in cellular function across the life course and the implications this may have for asthma management now and in the future. We also describe the prevalence of neutrophilic asthma globally, with a focus on First Nations people of Australia, New Zealand and North America.
Collapse
Affiliation(s)
- Helena Crisford
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Geraint B Rogers
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Adelaide, South Australia, Australia
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Steven Taylor
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Adelaide, South Australia, Australia
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Prasad Nagakumar
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Respiratory Medicine, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Ravi Lokwani
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Jodie L Simpson
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
30
|
Nair P, Surette MG, Virchow JC. Neutrophilic asthma: misconception or misnomer? THE LANCET RESPIRATORY MEDICINE 2021; 9:441-443. [PMID: 33577751 DOI: 10.1016/s2213-2600(21)00023-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 01/04/2023]
Affiliation(s)
- Parameswaran Nair
- Department of Medicine, McMaster University, Hamilton, ON, Canada; Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, ON, L8N 4A6, Canada.
| | | | - J Christian Virchow
- Department of Pneumology and Department of Intensive Care Medicine, University of Rostock Medical Clinic, Rostock, Germany
| |
Collapse
|
31
|
Hinks TSC, Levine SJ, Brusselle GG. Treatment options in type-2 low asthma. Eur Respir J 2021; 57:13993003.00528-2020. [PMID: 32586877 DOI: 10.1183/13993003.00528-2020] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Monoclonal antibodies targeting IgE or the type-2 cytokines interleukin (IL)-4, IL-5 and IL-13 are proving highly effective in reducing exacerbations and symptoms in people with severe allergic and eosinophilic asthma, respectively. However, these therapies are not appropriate for 30-50% of patients in severe asthma clinics who present with non-allergic, non-eosinophilic, "type-2 low" asthma. These patients constitute an important and common clinical asthma phenotype, driven by distinct, yet poorly understood pathobiological mechanisms. In this review we describe the heterogeneity and clinical characteristics of type-2 low asthma and summarise current knowledge on the underlying pathobiological mechanisms, which includes neutrophilic airway inflammation often associated with smoking, obesity and occupational exposures and may be driven by persistent bacterial infections and by activation of a recently described IL-6 pathway. We review the evidence base underlying existing treatment options for specific treatable traits that can be identified and addressed. We focus particularly on severe asthma as opposed to difficult-to-treat asthma, on emerging data on the identification of airway bacterial infection, on the increasing evidence base for the use of long-term low-dose macrolides, a critical appraisal of bronchial thermoplasty, and evidence for the use of biologics in type-2 low disease. Finally, we review ongoing research into other pathways including tumour necrosis factor, IL-17, resolvins, apolipoproteins, type I interferons, IL-6 and mast cells. We suggest that type-2 low disease frequently presents opportunities for identification and treatment of tractable clinical problems; it is currently a rapidly evolving field with potential for the development of novel targeted therapeutics.
Collapse
Affiliation(s)
- Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Dept of Medicine, Experimental Medicine, University of Oxford, Oxford, UK
| | - Stewart J Levine
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guy G Brusselle
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.,Depts of Epidemiology and Respiratory Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
32
|
Shukla SD, Taylor SL, Gibson PG, Barker D, Upham JW, Yang IA, Reynolds PN, Hodge S, James AL, Rogers GB, Simpson JL. Add-on azithromycin reduces sputum cytokines in non-eosinophilic asthma: an AMAZES substudy. Thorax 2021; 76:733-736. [PMID: 33414242 DOI: 10.1136/thoraxjnl-2020-216331] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Add-on azithromycin (AZM) significantly reduces exacerbations in poorly controlled asthma irrespective of disease phenotype. In a predefined substudy of the original AMAZES protocol (500 mg, three times a week for 48 weeks), we report that AZM treatment reduces key sputum inflammatory proteins (interleukin (IL)-6, IL-1β and extracellular DNA), which is more evident in non-eosinophilic asthma (NEA). Moreover, AZM reduced Haemophilus influenzae load only in NEA. Our data support the anti-inflammatory effects of AZM in poorly controlled asthma. Prospective studies are required to identify patients that derive greatest benefit from AZM add-on therapy.
Collapse
Affiliation(s)
- Shakti D Shukla
- Faculty of Health and Medicine, The University of Newcastle Priority Research Centre for Asthma and Respiratory Disease, Newcastle, New South Wales, Australia
| | - Steven L Taylor
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,SAHMRI Microbiome Research Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Peter G Gibson
- Faculty of Health and Medicine, The University of Newcastle Priority Research Centre for Asthma and Respiratory Disease, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Daniel Barker
- Faculty of Health and Medicine, The University of Newcastle Priority Research Centre for Asthma and Respiratory Disease, Newcastle, New South Wales, Australia
| | - John W Upham
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Translational Research Institute, Brisbane, QLD, Australia
| | - Ian A Yang
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Paul N Reynolds
- Department of Respiratory Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Sandra Hodge
- Department of Respiratory Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medicine School, University of Western Australia, Crawley, WA, Australia
| | - Geraint B Rogers
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,SAHMRI Microbiome Research Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Jodie L Simpson
- Faculty of Health and Medicine, The University of Newcastle Priority Research Centre for Asthma and Respiratory Disease, Newcastle, New South Wales, Australia .,Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|