1
|
Wu J, Huang Q, Zhang Y, De Z, Fu H, Zhan Y, Gu Y, Xie J. Impact of BMPR2 mutation on the severity of pulmonary arterial hypertension: a systematic review and meta-analysis. Respir Res 2025; 26:74. [PMID: 40022182 PMCID: PMC11871596 DOI: 10.1186/s12931-025-03145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/09/2025] [Indexed: 03/03/2025] Open
Abstract
OBJECTIVE To evaluate the association between PAH severity in patients with and without BMPR2 mutation. Additionally, subgroup analyses were also performed to investigate whether differences existed among different ethnicities. METHODS A literature search of the PubMed-MEDLINE, EMBASE, Web of Science, Scopus, and Cochrane Central Register of Controlled Trials databases was conducted from inception through June, 2024, to identify eligible studies. Analyses were performed using Stata. RESULTS Seventeen nonrandomized studies comprising a total of 2,190 patients were included in the analysis. Among the hemodynamic variables, the mPAP (WMD = 6.41, 95% CI: 5.07 ~ 7.76, P = 0.000), PVR (WMD = 3.66, 95% CI: 2.79 ~ 4.53, P = 0.000), CI (WMD=-0.38, 95% CI: -0.45 ~ -0.32, P = 0.000), and CO (WMD=-0.60, 95% CI: -0.99 ~ -0.21, P = 0.003) were significantly different at diagnosis between patients with and without BMPR2 mutations. No significant differences were found in RAP and PAWP. Furthermore, subgroup analysis was conducted on data showing significant differences, revealing no significant differences in mPAP and PVR between Asian and Caucasian patients with BMPR2 mutations. However, significant differences in CI and CO were observed between these two ethnic groups, with CI and CO in Caucasians being more affected by BMPR2 mutations and decreasing more than in Asians. CONCLUSION There is a statistically significant difference in the hemodynamic variables of PAH between BMPR2 mutation carriers and non-carriers, highlighting the mutation's impact on PAH severity. This influence is not associated with ethnicity in mPAP and PVR; however, it is associated with ethnicity in CI and CO, with Caucasians being more affected by BMPR2 mutations than Asians. This suggests that Caucasians may be more sensitive to BMPR2 mutations. These findings underscore the necessity of genetic testing for PAH patients, particularly among the Caucasian population. Given the poorer clinical phenotype and prognosis of BMPR2 mutation carriers, closer follow-up may be required.
Collapse
Affiliation(s)
- Jixing Wu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yating Zhang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhesong De
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hao Fu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
2
|
Ahmed S, Ahmed A, Rådegran G. Circulating biomarkers in pulmonary arterial hypertension: State-of-the-art review and future directions. JHLT OPEN 2024; 6:100152. [PMID: 40145036 PMCID: PMC11935499 DOI: 10.1016/j.jhlto.2024.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Pulmonary arterial hypertension is a complex and heterogeneous condition, associated with a considerable diagnostic delay, diminished exercise capacity, and poor outcomes. In pulmonary arterial hypertension, biomarker research has become a subject of intense inquiry, and novel circulating biomarkers acknowledged in a multitude of mechanistic pathways are emerging. Beyond the widely used natriuretic peptides, novel biomarkers may provide deeper pathophysiological understanding, support clinical decision-making, and prompt the incorporation of precision medicine by enabling a more precise individual phenotyping. In this state-of-the-art review, the recent advances in circulating biomarkers in pulmonary arterial hypertension from a clinical perspective are discussed, with particular emphasis on the current state of knowledge, gaps in evidence, and future perspectives.
Collapse
Affiliation(s)
- Salaheldin Ahmed
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
- Department of Education and Research, Helsingborg Hospital, Helsingborg, Sweden
| | - Abdulla Ahmed
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
- Department of Education and Research, Helsingborg Hospital, Helsingborg, Sweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
3
|
Hojda SE, Chis IC, Clichici S. Magnesium Sulfate, Rosuvastatin, Sildenafil and Their Combination in Chronic Hypoxia-Induced Pulmonary Hypertension in Male Rats. Life (Basel) 2024; 14:1193. [PMID: 39337975 PMCID: PMC11433049 DOI: 10.3390/life14091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Previous experimental findings have led to considerable interest in the beneficial effects on pulmonary hypertension (PH) produced by sildenafil and in the pleiotropic effects of rosuvastatin and their positive role in the process of pulmonary angiogenesis. However, magnesium sulfate, the most abundant intracellular cation, is essential in vascular endothelial functionality due to its anti-inflammatory and vasodilatory effects. Therefore, the present study aims to assess these treatment regimens and how they could potentially provide some additional benefits in PH therapy. Fourteen days after chronic-hypoxia PH was induced, rosuvastatin, sildenafil and magnesium sulfate were administered for an additional fourteen days to male Wistar rats. The Fulton Index, right ventricle (RV) anterior wall thickness, RV internal diameter and pulmonary arterial (PA) acceleration time/ejection time were evaluated, and another four biochemical parameters were calculated: brain natriuretic peptide, vascular endothelial growth factor, nitric oxide metabolites and endothelin 1. The present study demonstrates that sildenafil and rosuvastatin have modest effects in reducing RV hypertrophy and RV systolic pressure. The drug combination of sildenafil + rosuvastatin + magnesium sulfate recorded statistically very highly significant results on all parameters; through their positive synergistic effects on vascular endothelial function, oxidative stress and pathological RV remodeling, they attenuated PH in the chronic hypoxia pulmonary hypertension (CHPH) rat model.
Collapse
Affiliation(s)
- Silvana-Elena Hojda
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Number 1-3, Clinicilor Street, RO-400023 Cluj-Napoca, Romania
| | - Irina Camelia Chis
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Number 1-3, Clinicilor Street, RO-400023 Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Number 1-3, Clinicilor Street, RO-400023 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Favoino E, Prete M, Liakouli V, Leone P, Sisto A, Navarini L, Vomero M, Ciccia F, Ruscitti P, Racanelli V, Giacomelli R, Perosa F. Idiopathic and connective tissue disease-associated pulmonary arterial hypertension (PAH): Similarities, differences and the role of autoimmunity. Autoimmun Rev 2024; 23:103514. [PMID: 38181859 DOI: 10.1016/j.autrev.2024.103514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Pre-capillary pulmonary arterial hypertension (PAH) is hemodynamically characterized by a mean pulmonary arterial pressure (mPAP) ≥ 20 mmHg, pulmonary capillary wedge pressure (PAWP) ≤15 mmHg and pulmonary vascular resistance (PVR) > 2. PAH is classified in six clinical subgroups, including idiopathic PAH (IPAH) and PAH associated to connective tissue diseases (CTD-PAH), that will be the main object of this review. The aim is to compare these two PAH subgroups in terms of epidemiology, histological and pathogenic findings in an attempt to define disease-specific features, including autoimmunity, that may explain the heterogeneity of response to therapy between IPAH and CTD-PAH.
Collapse
Affiliation(s)
- Elvira Favoino
- Laboratory of Cellular and Molecular Immunology, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy.
| | - Marcella Prete
- Internal Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy
| | - Vasiliki Liakouli
- Rheumatology Section, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Patrizia Leone
- Internal Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy
| | - Adriana Sisto
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy
| | - Luca Navarini
- Clinical and research section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy; Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Marta Vomero
- Clinical and research section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy; Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Francesco Ciccia
- Rheumatology Section, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vito Racanelli
- Centre for Medical Sciences, University of Trento and Internal Medicine Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| | - Roberto Giacomelli
- Clinical and research section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy; Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Federico Perosa
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
5
|
Sumi MP, Tupta B, Roychowdhury S, Comhair S, Asosingh K, Stuehr DJ, Erzurum SC, Ghosh A. Hemoglobin resident in the lung epithelium is protective for smooth muscle soluble guanylate cyclase function. Redox Biol 2023; 63:102717. [PMID: 37120930 PMCID: PMC10172757 DOI: 10.1016/j.redox.2023.102717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
Hemoglobin (Hb) present in the lung epithelium is of unknown significance. However Hb being an nitric oxide (NO) scavenger can bind to NO and reduce its deleterious effects. Hence we postulated an NO scavenging role for this lung Hb. Doing transwell co-culture with bronchial epithelial cells, A549/16-HBE (apical) and human airway smooth muscle cells (HASMCs as basal), we found that Hb can protect the smooth muscle soluble guanylyl cyclase (sGC) from excess NO. Inducing the apical A549/16-HBE cells with cytokines to trigger iNOS expression and NO generation caused a time dependent increase in SNO-sGC and this was accompanied with a concomitant drop in sGC-α1β1 heterodimerization. Silencing Hbαβ in the apical cells further increased the SNO on sGC with a faster drop in the sGC heterodimer and these effects were additive along with further silencing of thioredoxin 1 (Trx1). Since heme of Hb is critical for NO scavenging we determined the Hb heme in a mouse model of allergic asthma (OVA) and found that Hb in the inflammed OVA lungs was low in heme or heme-free relative to those of naïve lungs. Further we established a direct correlation between the status of the sGC heterodimer and the Hb heme from lung samples of human asthma, iPAH, COPD and cystic fibrosis. These findings present a new mechanism of protection of lung sGC by the epithelial Hb, and suggests that this protection maybe lost in asthma or COPD where lung Hb is unable to scavenge the NO due to it being heme-deprived.
Collapse
Affiliation(s)
- Mamta P Sumi
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Blair Tupta
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Sanjoy Roychowdhury
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Suzy Comhair
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
6
|
Eglin CM, Wright J, Shepherd AI, Massey H, Hollis S, Towse J, Young JS, Maley MJ, Bailey SJ, Wilkinson C, Montgomery H, Tipton MJ. Plasma biomarkers of endothelial function, inflammation and oxidative stress in individuals with non-freezing cold injury. Exp Physiol 2023; 108:448-464. [PMID: 36808666 PMCID: PMC10988512 DOI: 10.1113/ep090722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/03/2023] [Indexed: 02/22/2023]
Abstract
NEW FINDINGS What is the central question of this study? Are biomarkers of endothelial function, oxidative stress and inflammation altered by non-freezing cold injury (NFCI)? What is the main finding and its importance? Baseline plasma [interleukin-10] and [syndecan-1] were elevated in individuals with NFCI and cold-exposed control participants. Increased [endothelin-1] following thermal challenges might explain, in part, the increased pain/discomfort experienced with NFCI. Mild to moderate chronic NFCI does not appear to be associated with either oxidative stress or a pro-inflammatory state. Baseline [interleukin-10] and [syndecan-1] and post-heating [endothelin-1] are the most promising candidates for diagnosis of NFCI. ABSTRACT Plasma biomarkers of inflammation, oxidative stress, endothelial function and damage were examined in 16 individuals with chronic NFCI (NFCI) and matched control participants with (COLD, n = 17) or without (CON, n = 14) previous cold exposure. Venous blood samples were collected at baseline to assess plasma biomarkers of endothelial function (nitrate, nitrite and endothelin-1), inflammation [interleukin-6 (IL-6), interleukin-10 (IL-10), tumour necrosis factor alpha and E-selectin], oxidative stress [protein carbonyl, 4-hydroxy-2-nonenal (4-HNE), superoxide dismutase and nitrotyrosine) and endothelial damage [von Willebrand factor, syndecan-1 and tissue type plasminogen activator (TTPA)]. Immediately after whole-body heating and separately, foot cooling, blood samples were taken for measurement of plasma [nitrate], [nitrite], [endothelin-1], [IL-6], [4-HNE] and [TTPA]. At baseline, [IL-10] and [syndecan-1] were increased in NFCI (P < 0.001 and P = 0.015, respectively) and COLD (P = 0.033 and P = 0.030, respectively) compared with CON participants. The [4-HNE] was elevated in CON compared with both NFCI (P = 0.002) and COLD (P < 0.001). [Endothelin-1] was elevated in NFCI compared with COLD (P < 0.001) post-heating. The [4-HNE] was lower in NFCI compared with CON post-heating (P = 0.032) and lower than both COLD (P = 0.02) and CON (P = 0.015) post-cooling. No between-group differences were seen for the other biomarkers. Mild to moderate chronic NFCI does not appear to be associated with a pro-inflammatory state or oxidative stress. Baseline [IL-10] and [syndecan-1] and post-heating [endothelin-1] are the most promising candidates for diagnosing NFCI, but it is likely that a combination of tests will be required.
Collapse
Affiliation(s)
- Clare M. Eglin
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Jennifer Wright
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Anthony I. Shepherd
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Heather Massey
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Sarah Hollis
- Regional Occupational Health Team (ROHT) CatterickCatterick GarrisonUK
| | - Jonathan Towse
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - John S. Young
- National Horizons CentreTeesside UniversityMiddlesbroughUK
| | - Matthew J. Maley
- Environmental Ergonomics Research CentreLoughborough School of Design and Creative ArtsLoughborough UniversityLoughboroughUK
| | - Stephen J. Bailey
- National Centre for Sport and Exercise MedicineSchool of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Chris Wilkinson
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | | | - Michael J. Tipton
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
7
|
Petraina A, Nogales C, Krahn T, Mucke H, Lüscher TF, Fischmeister R, Kass DA, Burnett JC, Hobbs AJ, Schmidt HHHW. Cyclic GMP modulating drugs in cardiovascular diseases: mechanism-based network pharmacology. Cardiovasc Res 2022; 118:2085-2102. [PMID: 34270705 PMCID: PMC9302891 DOI: 10.1093/cvr/cvab240] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Mechanism-based therapy centred on the molecular understanding of disease-causing pathways in a given patient is still the exception rather than the rule in medicine, even in cardiology. However, recent successful drug developments centred around the second messenger cyclic guanosine-3'-5'-monophosphate (cGMP), which is regulating a number of cardiovascular disease modulating pathways, are about to provide novel targets for such a personalized cardiovascular therapy. Whether cGMP breakdown is inhibited or cGMP synthesis is stimulated via guanylyl cyclases or their upstream regulators in different cardiovascular disease phenotypes, the outcomes seem to be so far uniformly protective. Thus, a network of cGMP-modulating drugs has evolved that act in a mechanism-based, possibly causal manner in a number of cardiac conditions. What remains a challenge is the detection of cGMPopathy endotypes amongst cardiovascular disease phenotypes. Here, we review the growing clinical relevance of cGMP and provide a glimpse into the future on how drugs interfering with this pathway may change how we treat and diagnose cardiovascular diseases altogether.
Collapse
Affiliation(s)
- Alexandra Petraina
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Cristian Nogales
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Thomas Krahn
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Hermann Mucke
- H.M. Pharma Consultancy, Enenkelstrasse 28/32, A-1160, Vienna, Austria
| | - Thomas F Lüscher
- Royal Brompton & Harefield Hospitals, Heart Division and National Heart and Lung Institute, Guy Scadding Building, Imperial College, Dovehouse Street London SW3 6LY, United Kingdom
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistreet 12, CH-8952 Schlieren, Switzerland
| | - Rodolphe Fischmeister
- INSERM UMR-S 1180, Faculty of Pharmacy, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - David A Kass
- Division of Cardiology, Department of Medicine, Ross Research Building, Rm 858, Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - John C Burnett
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, London, UK
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
8
|
Remes A, Körbelin J, Arnold C, Rohwedder C, Heckmann MB, Mairbauerl H, Frank D, Korff T, Frey N, Trepel M, Müller OJ. AAV-mediated gene transfer of inducible nitric oxide synthase (iNOS) to an animal model of pulmonary hypertension. Hum Gene Ther 2022; 33:959-967. [PMID: 35850528 DOI: 10.1089/hum.2021.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pulmonary hypertension (PH) is characterized by progressive obstruction of pulmonary arteries due to inflammatory processes, cellular proliferation, and extracellular matrix deposition and vasoconstriction. As treatment options are limited, we studied gene transfer of an inducible nitric oxide synthase (iNOS) using adeno-associated virus (AAV) vectors specifically targeted to endothelial cells of pulmonary vessels in a murine model of PH. Adult mice were intravenously injected with AAV vectors expressing iNOS. Mice were subjected to hypoxia for three weeks and sacrificed afterwards. We found elevated levels of iNOS both in lung tissue and pulmonary endothelial cells in hypoxic controls which could be further increased by AAV-mediated iNOS gene transfer. This additional increase in iNOS was associated with decreased wall thickness of pulmonary vessels, less macrophage infiltration, and reduced molecular markers of fibrosis. Taken together, using a tissue-targeted approach, we show that AAV-mediated iNOS overexpression in endothelial cells of the pulmonary vasculature significantly decreases vascular remodeling in a murine model of PH, suggesting upregulation of iNOS as promising target for treatment of PH.
Collapse
Affiliation(s)
- Anca Remes
- Department of Internal Medicine III, University of Kiel, and German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany, Kiel, Germany;
| | - Jakob Körbelin
- University Medical Center Hamburg-Eppendorf, Department of Oncology, Hematology and Bone Marrow Transplantation, Martinistr. 52, Division of Pneumology, Hamburg, Germany, 20246;
| | - Caroline Arnold
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany, Heidelberg, Germany;
| | - Carolin Rohwedder
- Internal Medicine III, University Hospital Heidelberg, Germany, and German Centre for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Heidelberg, Germany;
| | - Markus Benjamin Heckmann
- Internal Medicine III, University Hospital Heidelberg, Germany, and German Centre for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Heidelberg, Germany;
| | - Heimo Mairbauerl
- Medical Clinic VII, Heidelberg University, Germany and Translational Lung Research Center, part of the German Center for Lung Research (DZL), University of Heidelberg, Germany, Heidelberg, Germany;
| | - Derk Frank
- Department of Internal Medicine III, University of Kiel, and German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany, Kiel, Germany;
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany, Heidelberg, Germany;
| | - Norbert Frey
- Internal Medicine III, University Hospital Heidelberg, Germany, and German Centre for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Heidelberg, Germany;
| | - Martin Trepel
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf Germany, Hamburg, Germany.,Department of Hematology and Oncology, University Medical Center Augsburg, Germany, Ausburg, Germany;
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, and German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany, Kiel, Germany;
| |
Collapse
|
9
|
Tettey A, Jiang Y, Li X, Li Y. Therapy for Pulmonary Arterial Hypertension: Glance on Nitric Oxide Pathway. Front Pharmacol 2021; 12:767002. [PMID: 34867394 PMCID: PMC8633825 DOI: 10.3389/fphar.2021.767002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 01/11/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease with a resultant increase of the mean pulmonary arterial pressure, right ventricular hypertrophy and eventual death. Research in recent years has produced various therapeutic options for its clinical management but the high mortality even under treatment remains a big challenge attributed to the complex pathophysiology. Studies from clinical and non-clinical experiments have revealed that the nitric oxide (NO) pathway is one of the key pathways underlying the pathophysiology of PAH. Many of the essential drugs used in the management of PAH act on this pathway highlighting its significant role in PAH. Meanwhile, several novel compounds targeting on NO pathway exhibits great potential to become future therapy medications. Furthermore, the NO pathway is found to interact with other crucial pathways. Understanding such interactions could be helpful in the discovery of new drug that provide better clinical outcomes.
Collapse
Affiliation(s)
- Abraham Tettey
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, China
| | - Yujie Jiang
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, China
| | - Xiaohui Li
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| | - Ying Li
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| |
Collapse
|
10
|
Zimmer A, Teixeira RB, Constantin RL, Fernandes-Piedras TRG, Campos-Carraro C, Türck P, Visioli F, Baldo G, Schenkel PC, Araujo AS, Belló-Klein A. Thioredoxin system activation is associated with the progression of experimental pulmonary arterial hypertension. Life Sci 2021; 284:119917. [PMID: 34478759 DOI: 10.1016/j.lfs.2021.119917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/21/2022]
Abstract
In addition to being an antioxidant, thioredoxin (Trx) is known to stimulate signaling pathways involved in cell proliferation and to inhibit apoptosis. The aim of this study was to explore the role of Trx in some of these pathways along the progression of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH). Male rats were first divided into two groups: monocrotaline (MCT - 60 mg/kg i.p.) and control (received saline), that were further divided into three groups: 1, 2, and 3 weeks. Animals were submitted to echocardiographic analysis. Right and left ventricles were used for the measurement of hypertrophy, through morphometric and histological analysis. The lung was prepared for biochemical and molecular analysis. One week after MCT injection, there was an increase in thioredoxin reductase (TrxR) activity, a reduction in glutathione reductase (GR) activity, and an increase in Trx-1 and vitamin D3 up-regulated protein-1 (VDUP-1) expression. Two weeks after MCT injection, there was an increase in VDUP-1, Akt and cleaved caspase-3 activation, and a decrease in Trx-1 and Nrf2 expression. PAH-induced by MCT promoted a reduction in Nrf2 and Trx-1 expression as well as an increase in Akt and VDUP-1 expression after three weeks. The increase in pulmonary vascular resistance was accompanied by increased TrxR activity, suggesting an association between the Trx system and functional changes in the progression of PAH. It seems that Trx-1 activation was an adaptive response to MCT administration to cope with pulmonary remodeling and disease progression, suggesting a potential new target for PAH therapeutics.
Collapse
Affiliation(s)
- Alexsandra Zimmer
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Rayane Brinck Teixeira
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Rosalia Lempk Constantin
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Tânia Regina Gatelli Fernandes-Piedras
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristina Campos-Carraro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrick Türck
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Visioli
- Laboratory of Oral Pathology, Post-Graduation Program in Dentistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Guilherme Baldo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Paulo Cavalheiro Schenkel
- Laboratory of Cardiovascular Physiology, Department of Physiology and Pharmacology, Biology Institute, Universidade Federal de Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil.
| | - Alex Sander Araujo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Adriane Belló-Klein
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
11
|
Alsulayyim AS, Alasmari AM, Alghamdi SM, Polkey MI, Hopkinson NS. Impact of dietary nitrate supplementation on exercise capacity and cardiovascular parameters in chronic respiratory disease: a systematic review and meta-analysis. BMJ Open Respir Res 2021; 8:8/1/e000948. [PMID: 34489239 PMCID: PMC8422488 DOI: 10.1136/bmjresp-2021-000948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
Background Dietary nitrate supplementation, usually in the form of beetroot juice, may improve exercise performance and endothelial function. We undertook a systematic review and meta-analysis to establish whether this approach has beneficial effects in people with respiratory disease. Methods A systematic search of records up to March 2021 was performed on PubMed, CINAHL, MEDLINE (Ovid), Cochrane and Embase to retrieve clinical trials that evaluated the efficacy of dietary nitrate supplementation on cardiovascular parameters and exercise capacity in chronic respiratory conditions. Two authors independently screened titles, abstracts and full texts of potential studies and performed the data extraction. Results After full-text review of 67 papers, eleven (two randomised controlled trials and nine crossover trials) involving 282 participants met the inclusion criteria. Three were single dose; seven short term; and one, the largest (n=122), done in the context of pulmonary rehabilitation. Pooled analysis showed that dietary nitrate supplementation reduced systolic blood pressure (BP), diastolic BP and mean arterial pressure (mean difference (95% CI), −3.39 mm Hg (−6.79 to 0.01); p=0.05 and –2.20 mm Hg (−4.36 to −0.03); p=0.05 and −4.40 mm Hg (−7.49 to −1.30); p=0.005, respectively). It was associated with increased walk distance in the context of pulmonary rehabilitation (standardised mean difference (95% CI), 0.47 (0.11 to 0.83), p=0.01), but no effect was identified in short-term studies (0.08 (−0.32 to 0.49). Conclusion Dietary nitrate supplementation may have a beneficial effect on BP and augment the effect of pulmonary rehabilitation on exercise capacity. Short-term studies do not suggest a consistent benefit on exercise capacity. PROSPERO registration number CRD42019130123.
Collapse
Affiliation(s)
- Abdullah S Alsulayyim
- National Heart and Lung Institute, Imperial College London, London, UK.,Faculty of Applied Medical Sciences, Respiratory Therapy Department, Jazan University, Jazan, Saudi Arabia
| | - Ali M Alasmari
- National Heart and Lung Institute, Imperial College London, London, UK.,Faculty of Medical Rehabilitation Sciences, Taibah University, Madinah, Saudi Arabia
| | - Saeed M Alghamdi
- National Heart and Lung Institute, Imperial College London, London, UK.,Clinical Technology Department, Umm Al-Qura University, College of Applied Medical Science, Makkah, Saudi Arabia
| | - Michael I Polkey
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
12
|
Luo F, Wu L, Xie G, Gao F, Zhang Z, Chen G, Liu Z, Zha L, Zhang G, Sun Y, Zhang Z, Wang Y. Dual-Functional MN-08 Attenuated Pulmonary Arterial Hypertension Through Vasodilation and Inhibition of Pulmonary Arterial Remodeling. Hypertension 2021; 77:1787-1798. [PMID: 33775126 DOI: 10.1161/hypertensionaha.120.15994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Fangcheng Luo
- From the Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University and Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (F.L., L.W.)
| | - Liangmiao Wu
- From the Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University and Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (F.L., L.W.)
| | - Guoqing Xie
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (G.X., F.G., Zhixiang Zhang, G.C., L.Z., G.Z., Y.S., Zaijun Zhang, Y.W.)
| | - FangFang Gao
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (G.X., F.G., Zhixiang Zhang, G.C., L.Z., G.Z., Y.S., Zaijun Zhang, Y.W.)
| | - Zhixiang Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (G.X., F.G., Zhixiang Zhang, G.C., L.Z., G.Z., Y.S., Zaijun Zhang, Y.W.)
| | - Guangying Chen
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (G.X., F.G., Zhixiang Zhang, G.C., L.Z., G.Z., Y.S., Zaijun Zhang, Y.W.)
| | - Zheng Liu
- School of Stomatology and Medicine, Foshan University, P. R. China (Z.L.)
| | - Ling Zha
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (G.X., F.G., Zhixiang Zhang, G.C., L.Z., G.Z., Y.S., Zaijun Zhang, Y.W.)
| | - Gaoxiao Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (G.X., F.G., Zhixiang Zhang, G.C., L.Z., G.Z., Y.S., Zaijun Zhang, Y.W.)
| | - Yewei Sun
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (G.X., F.G., Zhixiang Zhang, G.C., L.Z., G.Z., Y.S., Zaijun Zhang, Y.W.)
| | - Zaijun Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (G.X., F.G., Zhixiang Zhang, G.C., L.Z., G.Z., Y.S., Zaijun Zhang, Y.W.)
| | - Yuqiang Wang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (G.X., F.G., Zhixiang Zhang, G.C., L.Z., G.Z., Y.S., Zaijun Zhang, Y.W.)
| |
Collapse
|
13
|
Charkiewicz AE, Garley M, Ratajczak-Wrona W, Nowak K, Jabłońska E, Maślach D, Omeljaniuk WJ. Profile of new vascular damage biomarkers in middle-aged men with arterial hypertension. Adv Med Sci 2021; 66:185-191. [PMID: 33684644 DOI: 10.1016/j.advms.2021.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/19/2021] [Accepted: 02/21/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE Normal endothelial function is important for the homeostasis of the cardiovascular (CV) system. The aim of the present study was to determine the profile of key parameters of endothelial dysfunction in middle-aged men that play a significant role in the functioning of endothelial vessels, which seems to be crucial for the early diagnosis of cardiovascular disorders. MATERIALS AND METHODS The study included 53 men, 20 with hypertension (HTN), 18 with HTN and related diseases, 15 healthy controls Apart from general testing (BMI, biochemical analysis, SBP, DBP), we used the Griess reaction to assess the total amount of nitric oxide (NO), and used ELISA to verify the concentrations of malondialdehyde (MDA), nitrotyrosine (NT), asymmetric dimethylarginine (ADMA), tumor necrosis factor-alpha (TNF-α), monocyte chemotactic protein 1 (MCP-1), and myeloperoxidase (MPO). Furthermore, we assessed the concentration of circulating free DNA (cfDNA) using the fluorescence method. RESULTS The values of MDA, ADMA, cfDNA, and MPO observed in samples from men with HTN were determined to be higher compared to those from men without HTN. In the group of men with HTN and other concomitant cardiovascular disorders, we observed low concentrations of NO, MDA, and ADMA with high concentrations of cfDNA. CONCLUSIONS The results obtained for parameters selected for the study, should be considered by cardiologists as a prompt to include in the diagnostic profile the assessment of NO and cfDNA concentrations for risk evaluation and/or diagnosis of endothelial dysfunction in patients suffering from HTN or related complications.
Collapse
Affiliation(s)
- Angelika Edyta Charkiewicz
- Department of Public Health, Faculty of Health Sciences, Medical University of Bialystok, Bialystok, Poland.
| | - Marzena Garley
- Department of Immunology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Wioletta Ratajczak-Wrona
- Department of Immunology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Nowak
- Department of Immunology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Jabłońska
- Department of Immunology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Dominik Maślach
- Department of Public Health, Faculty of Health Sciences, Medical University of Bialystok, Bialystok, Poland
| | - Wioleta Justyna Omeljaniuk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
14
|
Lázár Z, Mészáros M, Bikov A. The Nitric Oxide Pathway in Pulmonary Arterial Hypertension: Pathomechanism, Biomarkers and Drug Targets. Curr Med Chem 2021; 27:7168-7188. [PMID: 32442078 DOI: 10.2174/0929867327666200522215047] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/03/2020] [Accepted: 02/20/2020] [Indexed: 11/22/2022]
Abstract
The altered Nitric Oxide (NO) pathway in the pulmonary endothelium leads to increased vascular smooth muscle tone and vascular remodelling, and thus contributes to the development and progression of pulmonary arterial hypertension (PAH). The pulmonary NO signalling is abrogated by the decreased expression and dysfunction of the endothelial NO synthase (eNOS) and the accumulation of factors blocking eNOS functionality. The NO deficiency of the pulmonary vasculature can be assessed by detecting nitric oxide in the exhaled breath or measuring the degradation products of NO (nitrite, nitrate, S-nitrosothiol) in blood or urine. These non-invasive biomarkers might show the potential to correlate with changes in pulmonary haemodynamics and predict response to therapies. Current pharmacological therapies aim to stimulate pulmonary NO signalling by suppressing the degradation of NO (phosphodiesterase- 5 inhibitors) or increasing the formation of the endothelial cyclic guanosine monophosphate, which mediates the downstream effects of the pathway (soluble guanylate cyclase sensitizers). Recent data support that nitrite compounds and dietary supplements rich in nitrate might increase pulmonary NO availability and lessen vascular resistance. This review summarizes current knowledge on the involvement of the NO pathway in the pathomechanism of PAH, explores novel and easy-to-detect biomarkers of the pulmonary NO.
Collapse
Affiliation(s)
- Zsófia Lázár
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Martina Mészáros
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Andras Bikov
- Department of Pulmonology, Semmelweis University, Budapest, Hungary,Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
15
|
Zhang R, Wang L, Zhao QH, Jiang R, Gong SG, Jiang X, Xu XQ, He YY, Li Y, Jing ZC. Alteration of Extracellular Superoxide Dismutase in Idiopathic Pulmonary Arterial Hypertension. Front Med (Lausanne) 2020; 7:509. [PMID: 33282881 PMCID: PMC7705200 DOI: 10.3389/fmed.2020.00509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/23/2020] [Indexed: 01/07/2023] Open
Abstract
Background: Superoxide dismutases (SODs) are an important family of antioxidant enzymes that modulate reactive oxygen species levels. It is largely unknown which SOD isoform(s) change in vivo in idiopathic pulmonary arterial hypertension (IPAH) patients. Methods: A total of 133 consecutive adult IPAH patients who underwent bone morphogenetic protein receptor type 2 (BMPR2) genetic counseling were enrolled in this prospective study. The plasma activities of three subtypes of SOD [copper–zinc (Cu/Zn-SOD), manganese (Mn-SOD), and extracellular SOD (Ec-SOD)] were examined. Results: The activities of SODs were significantly lower in IPAH patients than in healthy subjects. However, only Ec-SOD activity in BMPR2 mutation patients was significantly decreased compared to those in patients without a mutation. The reduced Ec-SOD activity was markedly associated with mean pulmonary arterial pressure, pulmonary vascular resistance (PVR), and 6-min walking distance (6MWD). The reduction of Mn-SOD activity was only associated with 6MWD. There was no association between Cu/Zn-SOD and hemodynamics. Patients with a lower Ec-SOD level had a worse survival compared to those with a higher baseline. The reduced Ec-SOD activity and the raised PVR increased the mortality risk. Conclusions: Ec-SOD was correlated with BMPR2 mutation, hemodynamic dysfunction, and poor outcomes. Circulating Ec-SOD could be a potentially vital antioxidant enzyme in the pathogenesis of IPAH.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qin-Hua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Su-Gang Gong
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Jiang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xi-Qi Xu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yang-Yang He
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuan Li
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhi-Cheng Jing
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Chen B, Zhao Q, Xu T, Yu L, Zhuo L, Yang Y, Xu Y. BRG1 Activates PR65A Transcription to Regulate NO Bioavailability in Vascular Endothelial Cells. Front Cell Dev Biol 2020; 8:774. [PMID: 32903816 PMCID: PMC7443572 DOI: 10.3389/fcell.2020.00774] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Vascular endothelial cells contribute to the pathogenesis of cardiovascular diseases by producing and disseminating angiocrine factors. Nitric oxide (NO), catalyzed by endothelial NO synthase (eNOS), is one of the prototypical angiocrine factors. eNOS activity is modulated by site-specific phosphorylation. We have previously shown that endothelial-specific knockdown of BRG1 in Apoe–/– mice attenuates the development of atherosclerosis, in which eNOS-dependent NO catalysis plays an antagonizing role. Here we report that attenuation of atherogenesis in mice by BRG1 knockdown was accompanied by partial restoration of NO biosynthesis by 44% in the arteries and a simultaneous up-regulation of eNOS serine 1177 phosphorylation by 59%. Indeed, BRG1 depletion or inhibition ameliorated oxLDL-induced loss of NO bioavailability and eNOS phosphorylation in cultured endothelial cells. Further analysis revealed that BRG1 regulated eNOS phosphorylation and NO synthesis by activating the transcription of protein phosphatase 2A (PP2A) structural subunit a (encoded by PR65A). BRG1 interacted with ETS1, was recruited by ETS1 to the PR65A promoter, and cooperated with ETS1 to activate PR65A transcription. Finally, depletion of ETS1, similar to BRG1, repressed PR65A induction, normalized eNOS phosphorylation, and rescued NO biosynthesis in endothelial cells treated with oxLDL. In conclusion, our data characterize a novel transcriptional cascade that regulates NO bioavailability in vascular endothelial cells.
Collapse
Affiliation(s)
- Baoyu Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Qianwen Zhao
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tongchang Xu
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liming Yu
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Lili Zhuo
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
17
|
Olguntürk FR. An update on the diagnosis and treatment of pediatric pulmonary hypertension. Expert Opin Pharmacother 2020; 21:1253-1268. [PMID: 32401622 DOI: 10.1080/14656566.2020.1757071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Pulmonary hypertension (PH) is a heterogeneous disease that mainly affects the pulmonary arterioles, leading to significant morbidity and mortality. Pulmonary hypertension in children from birth to adolescence presents important differences from that of adults. The majority of pediatric pulmonary arterial hypertension (PAH) cases are idiopathic or associated with congenital heart disease. However, the management of pediatric PAH mainly depends on the results of evidence-based adult studies and the clinical experiences of pediatric experts. AREAS COVERED This article briefly reviews the recent updates on the definition, classification, and diagnostic evaluation of pediatric PAH and their impact on treatment strategies. The main purpose of this review is to discuss the current pediatric therapies, as well as the prospective therapies, in terms of therapeutic targets, actions, side effects, and dosages. EXPERT OPINION Although there is no cure for PAH, recent advances in the form of new treatment options have improved the quality of life and survival rates of PAH patients. PAH-targeted drugs and treatment strategies for adult PAH have not been sufficiently studied in children. However, the growing scientific activity in that field will surely change the treatment option recommendations in pediatric PH from experience-based to evidence-based in the near future.
Collapse
Affiliation(s)
- F Rana Olguntürk
- Professor of Pediatrics and Pediatric Cardiology, PhD in medical physiology, Former Head of Pediatrics and Pediatric Cardiology in Gazi University Faculty of Medicine. Founder of Pediatric Cardiology and PAH center in Gazi University. Former President of Turkish Association of Pediatric Cardiology and Surgery, Gazi University , Ankara, Turkiye
| |
Collapse
|
18
|
Ogoshi T, Tsutsui M, Kido T, Sakanashi M, Naito K, Oda K, Ishimoto H, Yamada S, Wang KY, Toyohira Y, Izumi H, Masuzaki H, Shimokawa H, Yanagihara N, Yatera K, Mukae H. Protective Role of Myelocytic Nitric Oxide Synthases against Hypoxic Pulmonary Hypertension in Mice. Am J Respir Crit Care Med 2019; 198:232-244. [PMID: 29480750 DOI: 10.1164/rccm.201709-1783oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RATIONALE Nitric oxide (NO), synthesized by NOSs (NO synthases), plays a role in the development of pulmonary hypertension (PH). However, the role of NO/NOSs in bone marrow (BM) cells in PH remains elusive. OBJECTIVES To determine the role of NOSs in BM cells in PH. METHODS Experiments were performed on 36 patients with idiopathic pulmonary fibrosis and on wild-type (WT), nNOS (neuronal NOS)-/-, iNOS (inducible NOS)-/-, eNOS (endothelial NOS)-/-, and n/i/eNOSs-/- mice. MEASUREMENTS AND MAIN RESULTS In the patients, there was a significant correlation between higher pulmonary artery systolic pressure and lower nitrite plus nitrate levels in the BAL fluid. In the mice, hypoxia-induced PH deteriorated significantly in the n/i/eNOSs-/- genotype and, to a lesser extent, in the eNOS-/- genotype as compared with the WT genotype. In the n/i/eNOSs-/- genotype exposed to hypoxia, the number of circulating BM-derived vascular smooth muscle progenitor cells was significantly larger, and transplantation of green fluorescent protein-transgenic BM cells revealed the contribution of BM cells to pulmonary vascular remodeling. Importantly, n/i/eNOSs-/--BM transplantation significantly aggravated hypoxia-induced PH in the WT genotype, and WT-BM transplantation significantly ameliorated hypoxia-induced PH in the n/i/eNOSs-/- genotype. A total of 69 and 49 mRNAs related to immunity and inflammation, respectively, were significantly upregulated in the lungs of WT genotype mice transplanted with n/i/eNOSs-/--BM compared with those with WT-BM, suggesting the involvement of immune and inflammatory mechanisms in the exacerbation of hypoxia-induced PH caused by n/i/eNOSs-/--BM transplantation. CONCLUSIONS These results demonstrate that myelocytic n/i/eNOSs play an important protective role in the pathogenesis of PH.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hiroshi Ishimoto
- 1 Department of Respiratory Medicine.,3 Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; and
| | | | | | | | - Hiroto Izumi
- 7 Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroaki Masuzaki
- 8 Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroaki Shimokawa
- 9 Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | - Hiroshi Mukae
- 1 Department of Respiratory Medicine.,3 Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; and
| |
Collapse
|
19
|
Semen KO, Bast A. Towards improved pharmacotherapy in pulmonary arterial hypertension. Can diet play a role? Clin Nutr ESPEN 2019; 30:159-169. [DOI: 10.1016/j.clnesp.2018.12.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/29/2018] [Indexed: 01/06/2023]
|
20
|
Henrohn D, Björkstrand K, Lundberg JO, Granstam SO, Baron T, Ingimarsdóttir IJ, Hedenström H, Malinovschi A, Wernroth ML, Jansson M, Hedeland M, Wikström G. Effects of Oral Supplementation With Nitrate-Rich Beetroot Juice in Patients With Pulmonary Arterial Hypertension-Results From BEET-PAH, an Exploratory Randomized, Double-Blind, Placebo-Controlled, Crossover Study. J Card Fail 2018; 24:640-653. [PMID: 30244181 DOI: 10.1016/j.cardfail.2018.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND The nitrate-nitrite-nitric oxide (NO) pathway may represent a potential therapeutic target in patients with pulmonary arterial hypertension (PAH). We explored the effects of dietary nitrate supplementation, with the use of nitrate-rich beetroot juice (BRJ), in patients with PAH. METHODS AND RESULTS We prospectively studied 15 patients with PAH in an exploratory randomized, double-blind, placebo-controlled, crossover trial. The patients received nitrate-rich beetroot juice (∼16 mmol nitrate per day) and placebo in 2 treatment periods of 7 days each. The assessments included; exhaled NO and NO flow-independent parameters (alveolar NO and bronchial NO flux), plasma and salivary nitrate and nitrite, biomarkers and metabolites of the NO-system, N-terminal pro-B-type natriuretic peptide, echocardiography, ergospirometry, diffusing capacity of the lung for carbon monoxide, and the 6-minute walk test. Compared with placebo ingestion of BRJ resulted in increases in; fractional exhaled NO at all flow-rates, alveolar NO concentrations and bronchial NO flux, and plasma and salivary levels of nitrate and nitrite. Plasma ornithine levels decreased and indices of relative arginine availability increased after BRJ compared to placebo. A decrease in breathing frequency was observed during ergospirometry after BRJ. A tendency for an improvement in right ventricular function was observed after ingestion of BRJ. In addition a tendency for an increase in the peak power output to peak oxygen consumption ratio (W peak/VO2 peak) was observed, which became significant in patients reaching an increase of plasma nitrite >30% (responders). CONCLUSIONS BRJ administered for 1 week increases pulmonary NO production and the relative arginine bioavailability in patients with PAH, compared with placebo. An increase in the W peak/VO2 peak ratio was observed after BRJ ingestion in plasma nitrite responders. These findings indicate that supplementation with inorganic nitrate increase NO synthase-independent NO production from the nitrate-nitrite-NO pathway.
Collapse
Affiliation(s)
- Dan Henrohn
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden.
| | - Kristoffer Björkstrand
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Olof Granstam
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Tomasz Baron
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden; Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden; Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Inga J Ingimarsdóttir
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Hans Hedenström
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Andrei Malinovschi
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Mona-Lisa Wernroth
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden; Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Martin Jansson
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Mikael Hedeland
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute, (SVA), Uppsala, Sweden; Division of Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Gerhard Wikström
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
21
|
Klinger JR. Plasma nitrite/nitrate levels: a new biomarker for pulmonary arterial hypertension? Eur Respir J 2018; 48:1265-1267. [PMID: 27799378 DOI: 10.1183/13993003.01542-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/22/2016] [Indexed: 11/05/2022]
Affiliation(s)
- James R Klinger
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital, and Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
22
|
de Wijs-Meijler DPM, Danser AHJ, Reiss IKM, Duncker DJ, Merkus D. Sex differences in pulmonary vascular control: focus on the nitric oxide pathway. Physiol Rep 2018; 5:5/11/e13200. [PMID: 28596298 PMCID: PMC5471427 DOI: 10.14814/phy2.13200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 01/23/2023] Open
Abstract
Although the incidence of pulmonary hypertension is higher in females, the severity and prognosis of pulmonary vascular disease in both neonates and adults have been shown to be worse in male subjects. Studies of sex differences in pulmonary hypertension have mainly focused on the role of sex hormones. However, the contribution of sex differences in terms of vascular signaling pathways regulating pulmonary vascular function remains incompletely understood. Consequently, we investigated pulmonary vascular function of male and female swine in vivo, both at rest and during exercise, and in isolated small pulmonary arteries in vitro, with a particular focus on the NO‐cGMP‐PDE5 pathway. Pulmonary hemodynamics at rest and during exercise were virtually identical in male and female swine. Moreover, NO synthase inhibition resulted in a similar degree of pulmonary vasoconstriction in male and female swine. However, NO synthase inhibition blunted bradykinin‐induced vasodilation in pulmonary small arteries to a greater extent in male than in female swine. PDE5 inhibition resulted in a similar degree of vasodilation in male and female swine at rest, while during exercise there was a trend towards a larger effect in male swine. In small pulmonary arteries, PDE5 inhibition failed to augment bradykinin‐induced vasodilation in either sex. Finally, in the presence of NO synthase inhibition, the pulmonary vasodilator effect of PDE5 inhibition was significantly larger in female swine both in vivo and in vitro. In conclusion, the present study demonstrated significant sex differences in the regulation of pulmonary vascular tone, which may contribute to understanding sex differences in incidence, treatment response, and prognosis of pulmonary vascular disease.
Collapse
Affiliation(s)
- Daphne P M de Wijs-Meijler
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands .,Division of Neonatology, Department of Pediatrics, Sophia Children's Hospital Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children's Hospital Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Jiang J, Xia Y, Liang Y, Yang M, Zeng W, Zeng X. miR-190a-5p participates in the regulation of hypoxia-induced pulmonary hypertension by targeting KLF15 and can serve as a biomarker of diagnosis and prognosis in chronic obstructive pulmonary disease complicated with pulmonary hypertension. Int J Chron Obstruct Pulmon Dis 2018; 13:3777-3790. [PMID: 30538440 PMCID: PMC6251363 DOI: 10.2147/copd.s182504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE miR-190a-5p expression alters dynamically in response to hypoxia. However, the role of miR-190a-5p expression in hypoxia-induced pulmonary hypertension (PH) remains unclear. We sought to correlate the miR-190a-5p expression levels with the severity, diagnosis, and prognosis of PH in relation to chronic obstructive pulmonary disease (COPD-PH). Additionally, we evaluated the effect of miR-190a-5p through in vitro experiments on human pulmonary endothelial cells (HPECs) that were exposed to hypoxia and in vivo experiments using an animal model of hypoxia-induced PH. METHODS Circulating miR-190a-5p levels were measured from 73 patients with PH and 32 healthy controls through quantitative real-time PCR. The levels of miR-190a-5p and the expression of Krüppel-like factor 15 (KLF15) were analyzed in HPECs that were exposed to hypoxia, and the effects of antagomir-190a-5p in mice with chronic hypoxia-induced PH were tested. Target gene analysis was performed by Western blot and luciferase assay. RESULTS The miR-190a-5p level was significantly higher in patients with COPD-PH than in the healthy controls. Higher miR-190a-5p levels were associated with a greater severity of COPD-PH. In vitro experiments on HPECs showed that exposure to hypoxia increased the miR-190a-5p levels significantly. KLF15 was validated as a target of miR-190a-5p. Transfection with miR-190a-5p mimicked inhibition of KLF15 expression in HPECs. In the mouse model of PH, antagomir-190a-5p reduced right ventricular systolic pressure and enhanced the KLF15 expression levels in lung tissue. CONCLUSION miR-190a-5p regulates hypoxia-induced PH by targeting KLF15. The circulating levels of miR-190a-5p correlate with the severity of COPD-PH, thereby confirming the diagnostic and prognostic value of this parameter in COPD-PH.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Biomarkers/metabolism
- Case-Control Studies
- Cell Hypoxia
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/metabolism
- Female
- Gene Expression Regulation
- Humans
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Lung/blood supply
- Male
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Predictive Value of Tests
- Prognosis
- Prospective Studies
- Pulmonary Disease, Chronic Obstructive/complications
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Severity of Illness Index
- Signal Transduction
Collapse
Affiliation(s)
- Jing Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Yimeng Xia
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Yi Liang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Meiling Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Wen Zeng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Xiaocong Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| |
Collapse
|