1
|
Fließer E, Jandl K, Lins T, Birnhuber A, Valzano F, Kolb D, Foris V, Heinemann A, Olschewski H, Evermann M, Hoetzenecker K, Kreuter M, Voelkel NF, Marsh LM, Wygrecka M, Kwapiszewska G. Lung Fibrosis Is Linked to Increased Endothelial Cell Activation and Dysfunctional Vascular Barrier Integrity. Am J Respir Cell Mol Biol 2024; 71:318-331. [PMID: 38843440 DOI: 10.1165/rcmb.2024-0046oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/06/2024] [Indexed: 08/31/2024] Open
Abstract
Pulmonary fibrosis (PF) can be a fatal disease characterized by progressive lung scarring. It is still poorly understood how the pulmonary endothelium is involved in the disease pathogenesis. Differences of the pulmonary vasculature between patients and donors were analyzed using transmission electron microscopy, immunohistochemistry, and single-cell RNA sequencing. Vascular barrier resistance, endothelial-immune cell adhesion, and sensitivity to an inflammatory milieu were studied in vitro. Integrity and activation markers were measured by ELISA in human plasma. Transmission electron microscopy demonstrated abnormally swollen endothelial cells (ECs) in fibrotic lungs compared with donors. A more intense CD31 and von Willebrand Factor (vWF) and patchy vascular endothelial (VE)-Cadherin staining in fibrotic lungs supported the presence of a dysregulated endothelium. Integrity markers CD31, VE-Cadherin, Thrombomodulin, and VEGFR-2 (vascular endothelial growth factor receptor-2) and activation marker vWF gene expression was increased in different endothelial subpopulations (e.g., arterial, venous, general capillary, aerocytes) in PF. This was associated with a heightened sensitivity of fibrotic ECs to TNF-α or IFN-γ and elevated immune cell adhesion. The barrier strength was overall reduced in ECs from fibrotic lungs. vWF and IL-8 were increased in the plasma of patients, whereas VE-Cadherin, Thrombomodulin, and VEGFR-2 were decreased. VE-Cadherin staining was also patchy in biopsy tissue and was decreased in plasma samples of patients with PF 6 months after the initial diagnosis. Our data demonstrate highly abnormal ECs in PF. The vascular compartment is characterized by hyperactivation and increased immune cell adhesion, as well as dysfunctional endothelial barrier function. Reestablishing EC homeostasis and function might represent a new therapeutic option for fibrotic lung diseases.
Collapse
Affiliation(s)
- Elisabeth Fließer
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pharmacology and
| | - Thomas Lins
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Lung Group, Otto Loewi Research Center
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructural Analysis
- Gottfried Schatz Research Center, Cell Biology, Histology, and Embryology, and
| | - Vasile Foris
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Matthias Evermann
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Kreuter
- Mainz Center for Pulmonary Medicine, Department of Pneumology, Mainz University Medical Center, Mainz, Germany
- Department of Pulmonary, Critical Care, and Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
| | - Norbert F Voelkel
- Pulmonary Medicine Department, University of Amsterdam Medical Centers, Amsterdam, the Netherlands
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Lung Group, Otto Loewi Research Center
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung, Universities of Giessen and Marburg Lung Center, Giessen, Germany; and
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Lung Group, Otto Loewi Research Center
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
2
|
Holton SE, Mitchem M, Chalian H, Pipavath S, Morrell ED, Bhatraju PK, Hamerman JA, Speake C, Malhotra U, Wurfel MM, Ziegler SE, Mikacenic C. Mediators of monocyte chemotaxis and matrix remodeling are associated with mortality and pulmonary fibroproliferation in patients with severe COVID-19. PLoS One 2024; 19:e0285638. [PMID: 39106254 PMCID: PMC11302896 DOI: 10.1371/journal.pone.0285638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/16/2024] [Indexed: 08/09/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) has a fibroproliferative phase that may be followed by pulmonary fibrosis. Pulmonary fibrosis following COVID-19 pneumonia has been described at autopsy and following lung transplantation. We hypothesized that protein mediators of tissue remodeling and monocyte chemotaxis are elevated in the plasma and endotracheal aspirates of critically ill patients with COVID-19 who subsequently develop features of pulmonary fibroproliferation. We enrolled COVID-19 patients admitted to the ICU with hypoxemic respiratory failure. (n = 195). Plasma was collected within 24h of ICU admission and at 7d. In mechanically ventilated patients, endotracheal aspirates (ETA) were collected. Protein concentrations were measured by immunoassay. We tested for associations between protein concentrations and respiratory outcomes using logistic regression adjusting for age, sex, treatment with steroids, and APACHE III score. In a subset of patients who had CT scans during hospitalization (n = 75), we tested for associations between protein concentrations and radiographic features of fibroproliferation. Among the entire cohort, plasma IL-6, TNF-α, CCL2, and Amphiregulin levels were significantly associated with in-hospital mortality. In addition, higher plasma concentrations of CCL2, IL-6, TNF-α, Amphiregulin, and CXCL12 were associated with fewer ventilator-free days. We identified 20/75 patients (26%) with features of fibroproliferation. Within 24h of ICU admission, no measured plasma proteins were associated with a fibroproliferative response. However, when measured 96h-128h after admission, Amphiregulin was elevated in those that developed fibroproliferation. ETAs were not correlated with plasma measurements and did not show any association with mortality, ventilator-free days (VFDs), or fibroproliferative response. This cohort study identifies proteins of tissue remodeling and monocyte recruitment are associated with in-hospital mortality, fewer VFDs, and radiographic fibroproliferative response. Measuring changes in these proteins over time may allow for early identification of patients with severe COVID-19 at risk for fibroproliferation.
Collapse
Affiliation(s)
- Sarah E. Holton
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Benaroya Research Institute, Seattle, WA, United States of America
| | - Mallorie Mitchem
- Benaroya Research Institute, Seattle, WA, United States of America
| | - Hamid Chalian
- Department of Radiology, University of Washington, Seattle, WA, United States of America
| | - Sudhakar Pipavath
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Radiology, University of Washington, Seattle, WA, United States of America
| | - Eric D. Morrell
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Pavan K. Bhatraju
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | | | - Cate Speake
- Benaroya Research Institute, Seattle, WA, United States of America
| | - Uma Malhotra
- Department of Radiology, University of Washington, Seattle, WA, United States of America
- Division of Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Virginia Mason Franciscan Health, Seattle, WA, United States of America
| | - Mark M. Wurfel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | | | - Carmen Mikacenic
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Benaroya Research Institute, Seattle, WA, United States of America
- Virginia Mason Franciscan Health, Seattle, WA, United States of America
| |
Collapse
|
3
|
Choi B, Liu GY, Sheng Q, Amancherla K, Perry A, Huang X, San José Estépar R, Ash SY, Guan W, Jacobs DR, Martinez FJ, Rosas IO, Bowler RP, Kropski JA, Banovich NE, Khan SS, San José Estépar R, Shah R, Thyagarajan B, Kalhan R, Washko GR. Proteomic Biomarkers of Quantitative Interstitial Abnormalities in COPDGene and CARDIA Lung Study. Am J Respir Crit Care Med 2024; 209:1091-1100. [PMID: 38285918 PMCID: PMC11092953 DOI: 10.1164/rccm.202307-1129oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/29/2024] [Indexed: 01/31/2024] Open
Abstract
Rationale: Quantitative interstitial abnormalities (QIAs) are early measures of lung injury automatically detected on chest computed tomography scans. QIAs are associated with impaired respiratory health and share features with advanced lung diseases, but their biological underpinnings are not well understood. Objectives: To identify novel protein biomarkers of QIAs using high-throughput plasma proteomic panels within two multicenter cohorts. Methods: We measured the plasma proteomics of 4,383 participants in an older, ever-smoker cohort (COPDGene [Genetic Epidemiology of Chronic Obstructive Pulmonary Disease]) and 2,925 participants in a younger population cohort (CARDIA [Coronary Artery Disease Risk in Young Adults]) using the SomaLogic SomaScan assays. We measured QIAs using a local density histogram method. We assessed the associations between proteomic biomarker concentrations and QIAs using multivariable linear regression models adjusted for age, sex, body mass index, smoking status, and study center (Benjamini-Hochberg false discovery rate-corrected P ⩽ 0.05). Measurements and Main Results: In total, 852 proteins were significantly associated with QIAs in COPDGene and 185 in CARDIA. Of the 144 proteins that overlapped between COPDGene and CARDIA, all but one shared directionalities and magnitudes. These proteins were enriched for 49 Gene Ontology pathways, including biological processes in inflammatory response, cell adhesion, immune response, ERK1/2 regulation, and signaling; cellular components in extracellular regions; and molecular functions including calcium ion and heparin binding. Conclusions: We identified the proteomic biomarkers of QIAs in an older, smoking population with a higher prevalence of pulmonary disease and in a younger, healthier community cohort. These proteomics features may be markers of early precursors of advanced lung diseases.
Collapse
Affiliation(s)
- Bina Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Applied Chest Imaging Laboratory, and
| | - Gabrielle Y. Liu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California Davis, Sacramento, California
| | | | | | | | - Xiaoning Huang
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ruben San José Estépar
- Applied Chest Imaging Laboratory, and
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Samuel Y. Ash
- Department of Critical Care, South Shore Hospital, South Weymouth, Massachusetts
| | | | - David R. Jacobs
- Division of Epidemiology and Community Health, School of Public Health, and
| | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Ivan O. Rosas
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Russell P. Bowler
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Sadiya S. Khan
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Raúl San José Estépar
- Applied Chest Imaging Laboratory, and
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Ravi Kalhan
- Division of Pulmonary and Critical Care Medicine and
| | - George R. Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Applied Chest Imaging Laboratory, and
| |
Collapse
|
4
|
Kim JS, Montesi SB, Adegunsoye A, Humphries SM, Salisbury ML, Hariri LP, Kropski JA, Richeldi L, Wells AU, Walsh S, Jenkins RG, Rosas I, Noth I, Hunninghake GM, Martinez FJ, Podolanczuk AJ. Approach to Clinical Trials for the Prevention of Pulmonary Fibrosis. Ann Am Thorac Soc 2023; 20:1683-1693. [PMID: 37703509 PMCID: PMC10704236 DOI: 10.1513/annalsats.202303-188ps] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Affiliation(s)
- John S. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | | - Ayodeji Adegunsoye
- Department of Medicine, The University of Chicago Medicine, Chicago, Illinois
| | | | - Margaret L. Salisbury
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lida P. Hariri
- Division of Pulmonary and Critical Care Medicine, and
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Luca Richeldi
- Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Athol U. Wells
- Department of Radiology, and
- Interstitial Lung Disease Service, Royal Brompton Hospital, London, United Kingdom
| | - Simon Walsh
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - R. Gisli Jenkins
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ivan Rosas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Gary M. Hunninghake
- Pulmonary and Critical Care Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Anna J. Podolanczuk
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
5
|
Pulito-Cueto V, Remuzgo-Martínez S, Genre F, Atienza-Mateo B, Mora-Cuesta VM, Iturbe-Fernández D, Lera-Gómez L, Mora-Gil MS, Portilla V, Corrales A, Blanco R, Cifrián JM, González-Gay MA, López-Mejías R. E-Selectin, ICAM-1, and ET-1 Biomarkers Address the Concern of the Challenging Diagnosis of Interstitial Lung Disease in Patients with Autoimmune Diseases. Int J Mol Sci 2023; 24:12518. [PMID: 37569893 PMCID: PMC10420063 DOI: 10.3390/ijms241512518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Interstitial lung disease (ILD) constitutes the most critical comorbidity in autoimmune diseases (ADs) and its early diagnosis remains a challenge for clinicians. Accordingly, we evaluated whether E-selectin, ICAM-1, and ET-1, key molecules in endothelial damage, could be useful biomarkers for the detection of AD-ILD+. We recruited patients with rheumatoid arthritis (RA)-ILD+ (n = 21) and systemic sclerosis (SSc)-ILD+ (n = 21). We included comparison groups of patients: RA-ILD- (n = 25), SSc-ILD- (n = 20), and idiopathic pulmonary fibrosis (IPF) (n = 21). Serum levels of these proteins were determined by ELISA. E-selectin, ICAM-1, and ET-1 serum levels were increased in RA-ILD+ and IPF patients in comparison to RA-ILD- patients. Additionally, SSc-ILD+ and IPF patients exhibited higher ICAM-1 levels than those with SSc-ILD-. The ability of E-selectin, ICAM-1, and ET-1 to discriminate RA-ILD+ from RA-ILD- patients, and ICAM-1 to distinguish SSc-ILD+ from SSc-ILD- patients was confirmed using ROC curve analysis. Furthermore, elevated levels of ET-1 and E-selectin correlated with lung function decline in RA-ILD+ and SSc-ILD+ patients, respectively. In conclusion, our findings support the relevant role of E-selectin, ICAM-1, and ET-1 in RA-ILD+ patients as well as of ICAM-1 in SSc-ILD+ patients, constituting potential screening blood biomarkers of ILD in AD. Moreover, this study suggests ET-1 and E-selectin as possible indicators of worsening lung function in RA-ILD+ and SSc-ILD+ patients, respectively.
Collapse
Affiliation(s)
- Verónica Pulito-Cueto
- Immunopathology Group, Marqués de Valdecilla University Hospital-Marqués de Valdecilla Research Institute (IDIVAL), 39011 Santander, Spain; (B.A.-M.); (V.M.M.-C.); (D.I.-F.); (M.S.M.-G.); (V.P.); (A.C.); (R.B.); (J.M.C.); (R.L.-M.)
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Sara Remuzgo-Martínez
- Marqués de Valdecilla Research Institute (IDIVAL), 39011 Santander, Spain; (S.R.-M.); (F.G.); (M.A.G.-G.)
| | - Fernanda Genre
- Marqués de Valdecilla Research Institute (IDIVAL), 39011 Santander, Spain; (S.R.-M.); (F.G.); (M.A.G.-G.)
| | - Belén Atienza-Mateo
- Immunopathology Group, Marqués de Valdecilla University Hospital-Marqués de Valdecilla Research Institute (IDIVAL), 39011 Santander, Spain; (B.A.-M.); (V.M.M.-C.); (D.I.-F.); (M.S.M.-G.); (V.P.); (A.C.); (R.B.); (J.M.C.); (R.L.-M.)
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Víctor M. Mora-Cuesta
- Immunopathology Group, Marqués de Valdecilla University Hospital-Marqués de Valdecilla Research Institute (IDIVAL), 39011 Santander, Spain; (B.A.-M.); (V.M.M.-C.); (D.I.-F.); (M.S.M.-G.); (V.P.); (A.C.); (R.B.); (J.M.C.); (R.L.-M.)
- Department of Pneumology, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - David Iturbe-Fernández
- Immunopathology Group, Marqués de Valdecilla University Hospital-Marqués de Valdecilla Research Institute (IDIVAL), 39011 Santander, Spain; (B.A.-M.); (V.M.M.-C.); (D.I.-F.); (M.S.M.-G.); (V.P.); (A.C.); (R.B.); (J.M.C.); (R.L.-M.)
- Department of Pneumology, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Leticia Lera-Gómez
- Department of Microbiology, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain;
| | - María Sebastián Mora-Gil
- Immunopathology Group, Marqués de Valdecilla University Hospital-Marqués de Valdecilla Research Institute (IDIVAL), 39011 Santander, Spain; (B.A.-M.); (V.M.M.-C.); (D.I.-F.); (M.S.M.-G.); (V.P.); (A.C.); (R.B.); (J.M.C.); (R.L.-M.)
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Virginia Portilla
- Immunopathology Group, Marqués de Valdecilla University Hospital-Marqués de Valdecilla Research Institute (IDIVAL), 39011 Santander, Spain; (B.A.-M.); (V.M.M.-C.); (D.I.-F.); (M.S.M.-G.); (V.P.); (A.C.); (R.B.); (J.M.C.); (R.L.-M.)
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Alfonso Corrales
- Immunopathology Group, Marqués de Valdecilla University Hospital-Marqués de Valdecilla Research Institute (IDIVAL), 39011 Santander, Spain; (B.A.-M.); (V.M.M.-C.); (D.I.-F.); (M.S.M.-G.); (V.P.); (A.C.); (R.B.); (J.M.C.); (R.L.-M.)
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Ricardo Blanco
- Immunopathology Group, Marqués de Valdecilla University Hospital-Marqués de Valdecilla Research Institute (IDIVAL), 39011 Santander, Spain; (B.A.-M.); (V.M.M.-C.); (D.I.-F.); (M.S.M.-G.); (V.P.); (A.C.); (R.B.); (J.M.C.); (R.L.-M.)
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - José M. Cifrián
- Immunopathology Group, Marqués de Valdecilla University Hospital-Marqués de Valdecilla Research Institute (IDIVAL), 39011 Santander, Spain; (B.A.-M.); (V.M.M.-C.); (D.I.-F.); (M.S.M.-G.); (V.P.); (A.C.); (R.B.); (J.M.C.); (R.L.-M.)
- Department of Pneumology, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
- School of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| | - Miguel A. González-Gay
- Marqués de Valdecilla Research Institute (IDIVAL), 39011 Santander, Spain; (S.R.-M.); (F.G.); (M.A.G.-G.)
- School of Medicine, Universidad de Cantabria, 39011 Santander, Spain
- Department of Rheumatology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Raquel López-Mejías
- Immunopathology Group, Marqués de Valdecilla University Hospital-Marqués de Valdecilla Research Institute (IDIVAL), 39011 Santander, Spain; (B.A.-M.); (V.M.M.-C.); (D.I.-F.); (M.S.M.-G.); (V.P.); (A.C.); (R.B.); (J.M.C.); (R.L.-M.)
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| |
Collapse
|
6
|
Fließer E, Lins T, Berg JL, Kolb M, Kwapiszewska G. The endothelium in lung fibrosis: a core signaling hub in disease pathogenesis? Am J Physiol Cell Physiol 2023; 325:C2-C16. [PMID: 37184232 DOI: 10.1152/ajpcell.00097.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Pulmonary fibrosis (PF) is a progressive chronic lung disease characterized by excessive deposition of extracellular matrix (ECM) and structural destruction, associated with a severe 5-year mortality rate. The onset of the disease is thought to be triggered by chronic damage to the alveolar epithelium. Since the pulmonary endothelium is an important component of the alveolar-capillary niche, it is also affected by the initial injury. In addition to ensuring proper gas exchange, the endothelium has critical functional properties, including regulation of vascular tone, inflammatory responses, coagulation, and maintenance of vascular homeostasis and integrity. Recent single-cell analyses have shown that shifts in endothelial cell (EC) subtypes occur in PF. Furthermore, the increased vascular remodeling associated with PF leads to deteriorated outcomes for patients, underscoring the importance of the vascular bed in PF. To date, the causes and consequences of endothelial and vascular involvement in lung fibrosis are poorly understood. Therefore, it is of great importance to investigate the involvement of EC and the vascular system in the pathogenesis of the disease. In this review, we will outline the current knowledge on the role of the pulmonary vasculature in PF, in terms of abnormal cellular interactions, hyperinflammation, vascular barrier disorders, and an altered basement membrane composition. Finally, we will summarize recent advances in extensive therapeutic research and discuss the significant value of novel therapies targeting the endothelium.
Collapse
Affiliation(s)
- Elisabeth Fließer
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Thomas Lins
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Johannes Lorenz Berg
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center (DZL), Cardiopulmonary Institute (CPI), Giessen, Germany
| |
Collapse
|
7
|
Brillet PY, Tran Ba S, Nunes H. How does the MESA Lung Study sharpen blurry edges in interstitial lung abnormalities? Eur Respir J 2023; 61:2300397. [PMID: 37290811 DOI: 10.1183/13993003.00397-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023]
Affiliation(s)
- Pierre-Yves Brillet
- Inserm UMR 1272 "Hypoxie et Poumon", UFR SMBH, Université Sorbonne Paris-Nord, 93000 Bobigny, France
- Service de Radiologie, Hôpital Avicenne, Assistance Publique des Hôpitaux de Paris, 93009 Bobigny cedex, France
| | - Stéphane Tran Ba
- Service de Radiologie, Hôpital Avicenne, Assistance Publique des Hôpitaux de Paris, 93009 Bobigny cedex, France
| | - Hilario Nunes
- Inserm UMR 1272 "Hypoxie et Poumon", UFR SMBH, Université Sorbonne Paris-Nord, 93000 Bobigny, France
- Service de Pneumologie, Hôpital Avicenne, Assistance Publique des Hôpitaux de Paris, 93009 Bobigny cedex, France
| |
Collapse
|
8
|
Liu GY, Colangelo LA, Ash SY, San Jose Estepar R, Jacobs DR, Thyagarajan B, Wells JM, Putman RK, Choi B, Stevenson CS, Carnethon M, Washko GR, Kalhan R. Computed tomography measure of lung injury and future interstitial features: the CARDIA Lung Study. ERJ Open Res 2023; 9:00004-2023. [PMID: 37313396 PMCID: PMC10259823 DOI: 10.1183/23120541.00004-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/09/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction Visually normal areas of the lung with high attenuation on computed tomography (CT) imaging, termed CT lung injury, may represent injured but not yet remodelled lung parenchyma. This prospective cohort study examined if CT lung injury is associated with future interstitial features on CT and restrictive spirometry abnormality among participants from the Coronary Artery Risk Development in Young Adults (CARDIA) study. Methods CARDIA is a population-based cohort study. CT scans obtained at two time points were assessed objectively for amount of lung tissue characterised as CT lung injury and interstitial features. Restrictive spirometry was defined as having a forced vital capacity (FVC) <80% predicted with forced expiratory volume in 1 s/FVC ratio >70%. Results Among 2213 participants, the median percentage of lung tissue characterised as CT lung injury at a mean age of 40 years was 3.4% (interquartile range 0.8-18.0%). After adjustment for covariates, a 10% higher amount of CT lung injury at mean age 40 years was associated with a 4.37% (95% CI 3.99-4.74%) higher amount of lung tissue characterised as interstitial features at mean age 50 years. Compared to those with the lowest quartile of CT lung injury at mean age 40 years, there were higher odds of incident restrictive spirometry at mean age 55 years in quartile 2 (OR 2.05, 95% CI 1.20-3.48), quartile 3 (OR 2.80, 95% CI 1.66-4.72) and quartile 4 (OR 3.77, 95% CI 2.24-6.33). Conclusions CT lung injury is an early objective measure that indicates risk of future lung impairment.
Collapse
Affiliation(s)
- Gabrielle Y. Liu
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Laura A. Colangelo
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Samuel Y. Ash
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Raul San Jose Estepar
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - David R. Jacobs
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - J. Michael Wells
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rachel K. Putman
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Bina Choi
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Mercedes Carnethon
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - George R. Washko
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ravi Kalhan
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
9
|
Holton SE, Mitchem M, Pipavath S, Morrell ED, Bhatraju PK, Hamerman JA, Speake C, Malhotra U, Wurfel MM, Ziegler S, Mikacenic C. Mediators of monocyte chemotaxis and matrix remodeling are associated with the development of fibrosis in patients with COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.28.23289261. [PMID: 37205332 PMCID: PMC10187320 DOI: 10.1101/2023.04.28.23289261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Acute respiratory distress syndrome (ARDS) has a fibroproliferative phase that may be followed by pulmonary fibrosis. This has been described in patients with COVID-19 pneumonia, but the underlying mechanisms have not been completely defined. We hypothesized that protein mediators of tissue remodeling and monocyte chemotaxis are elevated in the plasma and endotracheal aspirates of critically ill patients with COVID-19 who subsequently develop radiographic fibrosis. We enrolled COVID-19 patients admitted to the ICU who had hypoxemic respiratory failure, were hospitalized and alive for at least 10 days, and had chest imaging done during hospitalization ( n = 119). Plasma was collected within 24h of ICU admission and at 7d. In mechanically ventilated patients, endotracheal aspirates (ETA) were collected at 24h and 48-96h. Protein concentrations were measured by immunoassay. We tested for associations between protein concentrations and radiographic evidence of fibrosis using logistic regression adjusting for age, sex, and APACHE score. We identified 39 patients (33%) with features of fibrosis. Within 24h of ICU admission, plasma proteins related to tissue remodeling (MMP-9, Amphiregulin) and monocyte chemotaxis (CCL-2/MCP-1, CCL-13/MCP-4) were associated with the subsequent development of fibrosis whereas markers of inflammation (IL-6, TNF-α) were not. After 1 week, plasma MMP-9 increased in patients without fibrosis. In ETAs, only CCL-2/MCP-1 was associated with fibrosis at the later timepoint. This cohort study identifies proteins of tissue remodeling and monocyte recruitment that may identify early fibrotic remodeling following COVID-19. Measuring changes in these proteins over time may allow for early detection of fibrosis in patients with COVID-19.
Collapse
|
10
|
Pulito-Cueto V, Remuzgo-Martínez S, Genre F, Atienza-Mateo B, Mora-Cuesta VM, Iturbe-Fernández D, Lera-Gómez L, Sebastián Mora-Gil M, Prieto-Peña D, Portilla V, Blanco R, Corrales A, Ocejo-Vinyals JG, Gualillo O, Ferraz-Amaro I, Cifrián JM, López-Mejías R, González-Gay MA. Elevated VCAM-1, MCP-1 and ADMA serum levels related to pulmonary fibrosis of interstitial lung disease associated with rheumatoid arthritis. Front Mol Biosci 2022; 9:1056121. [PMID: 36601584 PMCID: PMC9806218 DOI: 10.3389/fmolb.2022.1056121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction: Early diagnosis of interstitial lung disease (ILD) associated with rheumatoid arthritis (RA) constitutes a challenge for the clinicians. Pulmonary vasculopathy is relevant in the development of interstitial lung disease. Accordingly, we aimed to explore the role of vascular cell adhesion molecule-1 (VCAM-1), monocyte chemoattractant protein-1 (MCP-1) and asymmetric dimethylarginine (ADMA), key molecules in the vasculopathy, as potential biomarkers of pulmonary fibrosis in RA-ILD+. Methods: We included 21 RA-ILD+ patients and two comparative groups: 25 RA-ILD- patients and 21 idiopathic pulmonary fibrosis (IPF) patients. Serum levels of the molecules were determined by ELISA, and mRNA expression was quantified by qPCR. Results: VCAM-1, MCP-1 and ADMA serum levels were increased in RA-ILD+ patients in relation to RA-ILD- and IPF patients. Additionally, RA-ILD+ patients exhibited increased CCL2 (gene encoding MCP-1) and decreased PRMT1 (gene related to ADMA synthesis) mRNA expression in relation to RA-ILD- patients. A lower expression of VCAM1, CCL2, and PRMT1 was observed in RA-ILD+ patients when compared with those with IPF. Furthermore, MCP-1 serum levels and PRMT1 mRNA expression were positively correlated with RA duration, and ADMA serum levels were positively associated with C-reactive protein in RA-ILD+ patients. Conclusion: Our study suggests that VCAM-1, MCP-1 and ADMA could be considered as useful biomarkers to identify ILD in RA patients, as well as to discriminate RA-ILD+ from IPF, contributing to the early diagnosis of RA-ILD+.
Collapse
Affiliation(s)
- Verónica Pulito-Cueto
- Research Group on Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Santander, Cantabria, Spain,*Correspondence: Verónica Pulito-Cueto,
| | - Sara Remuzgo-Martínez
- Research Group on Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Santander, Cantabria, Spain
| | - Fernanda Genre
- Research Group on Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Santander, Cantabria, Spain
| | - Belén Atienza-Mateo
- Research Group on Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Santander, Cantabria, Spain,Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Víctor M. Mora-Cuesta
- Research Group on Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Santander, Cantabria, Spain,Department of Pneumology, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - David Iturbe-Fernández
- Research Group on Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Santander, Cantabria, Spain,Department of Pneumology, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Leticia Lera-Gómez
- Research Group on Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Santander, Cantabria, Spain
| | - María Sebastián Mora-Gil
- Research Group on Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Santander, Cantabria, Spain
| | - Diana Prieto-Peña
- Research Group on Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Santander, Cantabria, Spain,Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Virginia Portilla
- Research Group on Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Santander, Cantabria, Spain,Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Ricardo Blanco
- Research Group on Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Santander, Cantabria, Spain,Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Alfonso Corrales
- Research Group on Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Santander, Cantabria, Spain,Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - J. Gonzalo Ocejo-Vinyals
- Department of Immunology, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab. (Neuroendocrine Interactions in rheumatology and inflammatory diseases), Research laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Iván Ferraz-Amaro
- Department of Rheumatology, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - José M. Cifrián
- Research Group on Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Santander, Cantabria, Spain,Department of Pneumology, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain,School of Medicine, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Raquel López-Mejías
- Research Group on Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Santander, Cantabria, Spain
| | - Miguel A. González-Gay
- Department of medicine and psychiatry, Universidad de Cantabria; Rheumatology division, Hospital Universitario Marqués de Valdecilla; Research group on genetic epidemiology and atherosclerosis in systemic diseases and in metabolic diseases of the musculoskeletal system, IDIVAL, Santander, Cantabria, Spain,Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
11
|
Axelsson GT, Gudmundsson G, Pratte KA, Aspelund T, Putman RK, Sanders JL, Gudmundsson EF, Hatabu H, Gudmundsdottir V, Gudjonsson A, Hino T, Hida T, Hobbs BD, Cho MH, Silverman EK, Bowler RP, Launer LJ, Jennings LL, Hunninghake GM, Emilsson V, Gudnason V. The Proteomic Profile of Interstitial Lung Abnormalities. Am J Respir Crit Care Med 2022; 206:337-346. [PMID: 35438610 PMCID: PMC9890263 DOI: 10.1164/rccm.202110-2296oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rationale: Knowledge on biomarkers of interstitial lung disease is incomplete. Interstitial lung abnormalities (ILAs) are radiologic changes that may present in its early stages. Objectives: To uncover blood proteins associated with ILAs using large-scale proteomics methods. Methods: Data from two prospective cohort studies, the AGES-Reykjavik (Age, Gene/Environment Susceptibility-Reykjavik) study (N = 5,259) for biomarker discovery and the COPDGene (Genetic Epidemiology of COPD) study (N = 4,899) for replication, were used. Blood proteins were measured using DNA aptamers, targeting more than 4,700 protein analytes. The association of proteins with ILAs and ILA progression was assessed with regression modeling, as were associations with genetic risk factors. Adaptive Least Absolute Shrinkage and Selection Operator models were applied to bootstrap data samples to discover sets of proteins predictive of ILAs and their progression. Measurements and Main Results: Of 287 associations, SFTPB (surfactant protein B) (odds ratio [OR], 3.71 [95% confidence interval (CI), 3.20-4.30]; P = 4.28 × 10-67), SCGB3A1 (Secretoglobin family 3A member 1) (OR, 2.43 [95% CI, 2.13-2.77]; P = 8.01 × 10-40), and WFDC2 (WAP four-disulfide core domain protein 2) (OR, 2.42 [95% CI, 2.11-2.78]; P = 4.01 × 10-36) were most significantly associated with ILA in AGES-Reykjavik and were replicated in COPDGene. In AGES-Reykjavik, concentrations of SFTPB were associated with the rs35705950 MUC5B (mucin 5B) promoter polymorphism, and SFTPB and WFDC2 had the strongest associations with ILA progression. Multivariate models of ILAs in AGES-Reykjavik, ILAs in COPDGene, and ILA progression in AGES-Reykjavik had validated areas under the receiver operating characteristic curve of 0.880, 0.826, and 0.824, respectively. Conclusions: Novel, replicated associations of ILA, its progression, and genetic risk factors with numerous blood proteins are demonstrated as well as machine-learning-based models with favorable predictive potential. Several proteins are revealed as potential markers of early fibrotic lung disease.
Collapse
Affiliation(s)
- Gisli Thor Axelsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland;,Icelandic Heart Association, Kopavogur, Iceland
| | - Gunnar Gudmundsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland;,Department of Respiratory Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Thor Aspelund
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland;,Icelandic Heart Association, Kopavogur, Iceland
| | | | | | | | - Hiroto Hatabu
- Department of Radiology, and,Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Valborg Gudmundsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland;,Icelandic Heart Association, Kopavogur, Iceland
| | | | - Takuya Hino
- Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tomoyuki Hida
- Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts;,Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Brian D. Hobbs
- Pulmonary and Critical Care Division,,Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Michael H. Cho
- Pulmonary and Critical Care Division,,Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Edwin K. Silverman
- Pulmonary and Critical Care Division,,Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Russell P. Bowler
- National Jewish Health, Denver, Colorado;,School of Medicine, University of Colorado, Aurora, Colorado
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, Maryland; and
| | - Lori L. Jennings
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Gary M. Hunninghake
- Pulmonary and Critical Care Division,,Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland;,Icelandic Heart Association, Kopavogur, Iceland
| |
Collapse
|
12
|
Maher TM. Biomarkers for Interstitial Lung Abnormalities: A Stepping-stone Toward Idiopathic Pulmonary Fibrosis Prevention? Am J Respir Crit Care Med 2022; 206:244-246. [PMID: 35580066 PMCID: PMC9890254 DOI: 10.1164/rccm.202205-0839ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Toby M. Maher
- Keck School of MedicineUniversity of Southern CaliforniaLos Angeles, California,Royal Brompton and Harefield HospitalsGuy’s and St Thomas’ NHS Foundation TrustLondon, United Kingdom,National Heart and Lung InstituteImperial College LondonLondon, United Kingdom
| |
Collapse
|
13
|
Axelsson GT, Gudmundsson G. Interstitial lung abnormalities - current knowledge and future directions. Eur Clin Respir J 2021; 8:1994178. [PMID: 34745461 PMCID: PMC8567914 DOI: 10.1080/20018525.2021.1994178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Efforts to grasp the significance of radiologic changes similar to interstitial lung disease (ILD) in undiagnosed individuals have intensified in the recent decade. The term interstitial lung abnormalities (ILA) is an emerging definition of such changes, defined by visual examination of computed tomography scans. Substantial insights have been made in the origins and clinical consequences of these changes, as well as automated measures of early lung fibrosis, which will likely lead to increased recognition of early fibrotic lung changes among clinicians and researchers alike. Interstitial lung abnormalities have an estimated prevalence of 7–10% in elderly populations. They correlate with many ILD risk factors, both epidemiologic and genetic. Additionally, histopathological similarities with IPF exist in those with ILA. While no established blood biomarker of ILA exists, several have been suggested. Distinct imaging patterns indicating advanced fibrosis correlate with worse clinical outcomes. ILA are also linked with adverse clinical outcomes such as increased mortality and risk of lung cancer. Progression of ILA has been noted in a significant portion of those with ILA and is associated with many of the same features as ILD, including advanced fibrosis. Those with ILA progression are at risk of accelerated FVC decline and increased mortality. Radiologic changes resembling ILD have also been attained by automated measures. Such measures associate with some, but not all the same factors as ILA. ILA and similar radiologic changes are in many ways analogous to ILD and likely represent a precursor of ILD in some cases. While warranting an evaluation for ILD, they are associated with poor clinical outcomes beyond possible ILD development and thus are by themselves a significant finding. Among the present objectives of this field are the stratification of patients with regards to progression and the discovery of biomarkers with predictive value for clinical outcomes.
Collapse
Affiliation(s)
- Gisli Thor Axelsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Icelandic Heart Association, Kopavogur, Iceland
| | - Gunnar Gudmundsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Respiratory Medicine and Sleep, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
14
|
Abstract
Cellular level changes that lead to interstitial lung disease (ILD) may take years to become clinically apparent and have been termed preclinical ILD. Incidentally identified interstitial lung abnormalities (ILA) are increasingly being recognized on chest computed tomographic scans done as part of lung cancer screening and for other purposes. Many individuals found to have ILA will progress to clinically significant ILD. ILA are independently associated with greater risk of death, lung function decline, and incident lung cancer. Current management recommendations focus on identifying individuals with ILA at high risk of progression, through a combination of clinical and radiological features.
Collapse
Affiliation(s)
- Anna J Podolanczuk
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, 1305 York Avenue, Y-1053, Box 96, New York, NY 10021, USA
| | - Rachel K Putman
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Thorn 908D, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Sanders JL, Putman RK, Dupuis J, Xu H, Murabito JM, Araki T, Nishino M, Benjamin EJ, Levy DL, Ramachandran VS, Washko GR, Curtis JL, Freeman CM, Bowler RP, Hatabu H, O’Connor GT, Hunninghake GM. The Association of Aging Biomarkers, Interstitial Lung Abnormalities, and Mortality. Am J Respir Crit Care Med 2021; 203:1149-1157. [PMID: 33080140 PMCID: PMC8314902 DOI: 10.1164/rccm.202007-2993oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022] Open
Abstract
Rationale: The association between aging and idiopathic pulmonary fibrosis has been established. The associations between aging-related biomarkers and interstitial lung abnormalities (ILA) have not been comprehensively evaluated.Objectives: To evaluate the associations among aging biomarkers, ILA, and all-cause mortality.Methods: In the FHS (Framingham Heart Study), we evaluated associations among plasma biomarkers (IL-6, CRP [C-reactive protein], TNFR [tumor necrosis factor α receptor II], GDF15 [growth differentiation factor 15], cystatin-C, HGBA1C [Hb A1C], insulin, IGF1 [insulin-like growth factor 1], and IGFBP1 [IGF binding protein 1] and IGFBP3]), ILA, and mortality. Causal inference analysis was used to determine whether biomarkers mediated age. GDF15 results were replicated in the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease) Study.Measurements and Main Results: In the FHS, there were higher odds of ILA per increase in natural log-transformed GDF15 (odds ratio [95% confidence interval], 3.4 [1.8-6.4]; P = 0.0002), TNFR (3.1 [1.6-5.8]; P = 0.004), IL-6 (1.8 [1.4-2.4]; P < 0.0001), and CRP (1.7 [1.3-2.0]; P < 0.0001). In the FHS, after adjustment for multiple comparisons, no biomarker was associated with increased mortality, but the associations of GDF15 (hazard ratio, 2.0 [1.1-3.5]; P = 0.02), TNFR (1.8 [1.0-3.3]; P = 0.05), and IGFBP1 (1.3 [1.1-1.7]; P = 0.01) approached significance. In the COPDGene Study, higher natural log-transformed GDF15 was associated with ILA (odds ratio, 8.1 [3.1-21.4]; P < 0.0001) and mortality (hazard ratio, 1.6 [1.1-2.2]; P = 0.01). Causal inference analysis showed that the association of age with ILA was mediated by IL-6 (P < 0.0001) and TNFR (P = 0.002) and was likely mediated by GDF15 (P = 0.008) in the FHS and was mediated by GDF15 (P = 0.001) in the COPDGene Study.Conclusions: Some aging-related biomarkers are associated with ILA. GDF15, in particular, may explain some of the associations among age, ILA, and mortality.
Collapse
Affiliation(s)
| | | | - Josée Dupuis
- Department of Biostatistics, School of Public Health
| | - Hanfei Xu
- Department of Biostatistics, School of Public Health
| | - Joanne M. Murabito
- Department of Medicine, and
- Framingham Heart Study, Framingham, Massachusetts
| | - Tetsuro Araki
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Emelia J. Benjamin
- Department of Medicine, and
- Framingham Heart Study, Framingham, Massachusetts
| | - Daniel L. Levy
- Department of Medicine, and
- Framingham Heart Study, Framingham, Massachusetts
| | | | | | - Jeffrey L. Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
- Medical Service and
| | - Christine M. Freeman
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Russell P. Bowler
- Department of Medicine, National Jewish Health–Health Sciences Center, University of Colorado at Denver, Denver, Colorado
| | - Hiroto Hatabu
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
- Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital–Harvard Medical School, Harvard University, Boston, Massachusetts; and
| | - George T. O’Connor
- Pulmonary Center, School of Medicine, Boston University, Boston, Massachusetts
- Division of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Boston Medical Center, Boston, Massachusetts
| | - Gary M. Hunninghake
- Division of Pulmonary and Critical Care Medicine and
- Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital–Harvard Medical School, Harvard University, Boston, Massachusetts; and
| |
Collapse
|
16
|
Liu GY, Kalhan R. Impaired Respiratory Health and Life Course Transitions From Health to Chronic Lung Disease. Chest 2021; 160:879-889. [PMID: 33865834 DOI: 10.1016/j.chest.2021.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 12/21/2022] Open
Abstract
Primary prevention and interception of chronic lung disease are essential in the effort to reduce the morbidity and mortality caused by respiratory conditions. In this review, we apply a life course approach that examines exposures across the life span to identify risk factors that are associated with not only chronic lung disease but also an intermediate phenotype between ideal lung health and lung disease, termed "impaired respiratory health." Notably, risk factors such as exposure to tobacco smoke and air pollution, as well as obesity and physical fitness, affect respiratory health across the life course by being associated with both abnormal lung growth and lung function decline. We then discuss the importance of disease interception and identifying those at highest risk of developing chronic lung disease. This work begins with understanding and detecting impaired respiratory health, and we review several promising molecular biomarkers, predictive symptoms, and early imaging findings that may lead to a better understanding of this intermediate phenotype.
Collapse
Affiliation(s)
- Gabrielle Y Liu
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Preventative Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL.
| | - Ravi Kalhan
- Department of Preventative Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
17
|
Johansson MW, Grill BM, Barretto KT, Favour MC, Schira HM, Swanson CM, Lee KE, Sorkness RL, Mosher DF, Denlinger LC, Jarjour NN. Plasma P-Selectin Is Inversely Associated with Lung Function and Corticosteroid Responsiveness in Asthma. Int Arch Allergy Immunol 2020; 181:879-887. [PMID: 32777786 DOI: 10.1159/000509600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Severe asthma has multiple phenotypes for which biomarkers are still being defined. Plasma P-selectin reports endothelial and/or platelet activation. OBJECTIVE To determine if P-selectin is associated with features of asthma in a longitudinal study. METHODS Plasmas from 70 adult patients enrolled in the Severe Asthma Research Program (SARP) III at the University of Wisconsin-Madison were analyzed for concentration of P-selectin at several points over the course of 3 years, namely, at baseline (BPS), after intramuscular triamcinolone acetonide (TA) injection, and at 36 months after baseline. Thirty-four participants also came in during acute exacerbation and 6 weeks after exacerbation. RESULTS BPS correlated inversely with forced expiratory volume in 1 s (FEV1) and with residual volume/total lung capacity, an indicator of air trapping. BPS was inversely associated with FEV1 change after TA, by regression analysis. FEV1 did not change significantly after TA if BPS was above the median, whereas patients with BPS below the median had significantly increased FEV1 after TA. BPS was higher in and predicted assignment to SARP phenotype cluster 5 ("severe fixed-airflow asthma"). P-selectin was modestly but significantly increased at exacerbation but returned to baseline within 3 years. CONCLUSIONS High BPS is associated with airway obstruction, air trapping, the "severe fixed-airflow" cluster, and lack of FEV1 improvement in response to TA injection. P-selectin concentration, which is a stable trait with only modest elevation during exacerbation, may be a useful biomarker for a severe asthma pheno- or endotype characterized by low pulmonary function and lack of corticosteroid responsiveness.
Collapse
Affiliation(s)
- Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA,
| | - Brandon M Grill
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Karina T Barretto
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Molly C Favour
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Hazel M Schira
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Calvin M Swanson
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Kristine E Lee
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA
| | - Ronald L Sorkness
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Deane F Mosher
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA.,Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Loren C Denlinger
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
18
|
Abstract
The interstitial lung diseases (ILDs) are a group of progressive disorders characterized by chronic inflammation and/or fibrosis in the lung. While some ILDs can be linked to specific environmental causes (i.e., asbestosis, silicosis), in many individuals, no culprit exposure can be identified; these patients are deemed to have "idiopathic interstitial pneumonia" (IIP). Family history is now recognized as the strongest risk factor for IIP, and IIP cases that run in families comprise a syndrome termed "familial interstitial pneumonia" (FIP). Mutations in more than 10 different genes have been implicated as responsible for disease in FIP families. Diverse ILD clinical phenotypes can be seen within a family, and available evidence suggests underlying genetic risk is the primary determinant of disease outcomes. Together, these FIP studies have provided unique insights into the pathobiology of ILDs, and brought focus on the unique issues that arise in the care of patients with FIP.
Collapse
Affiliation(s)
- Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- U.S. Department of Veterans Affairs Medical Center, Nashville, Tennessee
| |
Collapse
|
19
|
Dexmedetomidine Attenuates Monocyte-Endothelial Adherence via Inhibiting Connexin43 on Vascular Endothelial Cells. Mediators Inflamm 2020; 2020:7039854. [PMID: 32104150 PMCID: PMC7035564 DOI: 10.1155/2020/7039854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/09/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
Current studies have identified the multifaceted protective functions of dexmedetomidine on multiple organs. For the first time, we clarify effects of dexmedetomidine on monocyte-endothelial adherence and whether its underlying mechanism is relative to connexin43 (Cx43), a key factor regulating monocyte-endothelial adherence. U937 monocytes and human umbilical vein endothelial cells (HUVECs) were used to explore monocyte-endothelial adherence. Two special siRNAs were designed to knock down Cx43 expression on HUVECs. U937-HUVEC adhesion, adhesion-related molecules, and the activation of the MAPK (p-ERK1/2, p-p38, and p-JNK1/2) signaling pathway were detected. Dexmedetomidine, at its clinically relevant concentrations (0.1 nM and 1 nM), was given as pretreatments to HUVECs. Its effects on Cx43 and U937-HUVEC adhesion were also investigated. The results show that inhibiting Cx43 on HUVECs could attenuate the contents of MCP-1, soluble ICAM-1 (sICAM-1), soluble VCAM-1 (sVCAM-1), and the nonprocessed variants of the adhesion molecules ICAM-1 and VCAM-1 and ultimately result in U937-HUVEC adhesion decrease. Meanwhile, the activation of MAPKs was also inhibited. U0126 (inhibiting p-ERK1/2) and SB202190 (inhibiting p38) decreased the contents of MCP-1, sICAM-1, and sVCAM-1, but SP600125 (inhibiting p-JNK1/2) had none of these effects. ICAM-1 and VCAM-1 could be regulated in a similar way. Dexmedetomidine pretreatment inhibited Cx43 on HUVECs, the activation of MAPKs, and U937-HUVEC adhesion. Therefore, we conclude that dexmedetomidine attenuates U937-HUVEC adhesion via inhibiting Cx43 on HUVECs modulating the activation of MAPK signaling pathways.
Collapse
|