1
|
Sun Y, Jia Y, Yan X, Zhang Q, Li X, Yang Z, Wei D, Wu X, Mao Z, Cao X, Tong X, Huang F. Huatanhuoxue Decoction alleviates airway inflammation by regulating IL-17A signaling pathway in obese asthmatic mice. JOURNAL OF ETHNOPHARMACOLOGY 2025:119814. [PMID: 40245963 DOI: 10.1016/j.jep.2025.119814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huatanhuoxue Decoction (HTHX) is a traditional Chinese formula consisting of nine herbs. It is used to improve obesity-related asthma symptoms and reduce airway inflammation. AIM OF THE STUDY To study HTHX effects on airway inflammation in obese asthmatic mice via the IL-17A signaling pathway. MATERIALS AND METHODS Network pharmacology was used to predict the bioactive ingredients in HTHX. Subsequently, an obese asthma model was established by high-fat diet feeding and exposure to house dust mite. The effects of HTHX on obesity-related asthma progression were investigated using histopathological examinations, airway hyperresponsiveness determinations, and enzyme-linked immunosorbent assays. The mechanism of action of HTHX was confirmed by Western blots, flow cytometry, immunohistochemistry, and immunofluorescence analyses. RESULTS HTHX alleviated the development in obese asthma mice by improving the pathological condition of lung tissue, airway hyperresponsiveness, and inflammatory factors. Network pharmacology identified the involvement of the IL-17 signaling pathway. HTHX decreased the production of neutrophils and the expression of NETs in lung tissue. HTHX also reduced group 3 innate lymphoid cells and Th17 cells, which are responsible for producing IL-17A. The production of IL-17A-related protein was also suppressed. The results indicate that HTHX inhibited the excessive activation of the IL-17A signaling pathway. CONCLUSIONS HTHX alleviated airway inflammation by regulating the IL-17A signaling pathway in obese asthmatic mice.
Collapse
Affiliation(s)
- Yun Sun
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yongrui Jia
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xiaodong Yan
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Qiushi Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xiaohong Li
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Zhuya Yang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Danxia Wei
- The third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650599, China
| | - Xiangnong Wu
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, China
| | - Zewei Mao
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xue Cao
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, 650500, China
| | - Xiaoyun Tong
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China; The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, China.
| | - Feng Huang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
2
|
Shailesh H, Noor S, Hayati L, Belavendra A, Van Panhuys N, Abou-Samra AB, Worgall S, Janahi I. Asthma and obesity increase inflammatory markers in children. FRONTIERS IN ALLERGY 2025; 5:1536168. [PMID: 39902293 PMCID: PMC11788363 DOI: 10.3389/falgy.2024.1536168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/31/2024] [Indexed: 02/05/2025] Open
Abstract
Background Asthma and obesity are both characterized by inflammation. However, the combined impact of these conditions on inflammatory mechanisms in children has not been studied extensively. To address this gap, we investigated the interaction effects of asthma and obesity on inflammation in children. Methods The multiplex and singleplex assays were used to measure the levels of circulating cytokines, including IL-2, IL-5, IL-10, IL-13, IL-17A, IL-22, IL-33, IFN-γ, TNF-α, and the adipokine leptin, in plasma. The study included 97 children with normal weight and asthma (NW-A), 100 children with overweight/obesity and asthma (OO-A), 100 with overweight/obesity and no asthma (OO), and 67 normal weight children and no asthma (NW). The independent effects of asthma, obesity, and their interaction effect on these inflammatory markers were assessed using multiple regression analysis. Results Asthma was associated with the increased expression of pro-inflammatory cytokines, including IL-2, IL-5, IL-13, IL-17A, IL-22, IL-33, and TNF-α, and reduced levels of anti-inflammatory cytokine, IL-10 and adipokine, leptin in the circulation. Overweight/obesity was also linked to increased plasma levels of IL-5, IL-17A, IL-22, IL-33, TNF-α, and leptin and decreased levels of IL-10. In addition, obesity and asthma showed a significant interaction effect on the plasma levels of IL-5, IL-10, IL-17A, IL-33, TNF-α, and leptin. However, the interaction did not result in a synergistic or additive impact on cytokines, indicating a moderating effect of obesity on inflammation in pediatric asthma. Conclusion Both asthma and overweight/obesity were independently associated with increased expression of pro-inflammatory cytokines and decreased expression of anti-inflammatory cytokine in children. While the concurrent presence of asthma and obesity altered the inflammatory profile, it did not synergistically amplify the inflammation. These findings challenge the previous view that obesity enhances inflammation in individuals with asthma and highlight the importance of considering both conditions while treating obesity-associated asthma in children. Future studies are necessary to further explore the mechanisms that link obesity and asthma in the pediatric population.
Collapse
Affiliation(s)
- Harshita Shailesh
- Department of Pediatric Medicine, Division of Pulmonology, Sidra Medicine, Doha, Qatar
| | - Safa Noor
- Department of Pediatric Medicine, Division of Pulmonology, Sidra Medicine, Doha, Qatar
| | - Lena Hayati
- Department of Pediatric Medicine, Division of Pulmonology, Sidra Medicine, Doha, Qatar
| | - Antonisamy Belavendra
- Department of Pediatric Medicine, Division of Pulmonology, Sidra Medicine, Doha, Qatar
| | | | - Abdul Badi Abou-Samra
- Academic Health System, Hamad Medical Corporation, Qatar Metabolic Institute, Doha, Qatar
| | - Stefan Worgall
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, United States
| | - Ibrahim Janahi
- Department of Pediatric Medicine, Division of Pulmonology, Sidra Medicine, Doha, Qatar
- Department of Pediatrics, Weill Cornel Medicine-Qatar (WCM-Q), Doha, Qatar
| |
Collapse
|
3
|
Weare-Regales N, Carr T, Holguin F, Tibbitt CA, Lockey RF. Obesity and hormonal influences on asthma: Mechanisms, management challenges, and emerging therapeutic strategies. J Allergy Clin Immunol 2024; 154:1355-1368. [PMID: 39362350 DOI: 10.1016/j.jaci.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/13/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024]
Abstract
Obesity and hormone dysregulation, common comorbidities of asthma, not only influence asthma risk and onset but can also complicate its management. The pathobiologic characteristics of obesity, such as insulin resistance and metabolism alterations, can impact lung function and airway inflammation while highlighting potential opportunities for therapeutic intervention. Likewise, obesity alters immune cell phenotypes and corticosteroid pharmacokinetics. Hormones such as sex hormones, incretins, and thyroid hormones can also affect asthma. This review highlights the mechanisms underlying obesity-related asthma and hormonal pathologies while exploring potential therapeutic strategies and the need for more research and innovative approaches in managing these comorbid conditions.
Collapse
Affiliation(s)
- Natalia Weare-Regales
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of South Florida, Morsani College of Medicine, and the Division of Endocrinology, Department of Internal Medicine, James A. Haley Veterans Administration, Tampa.
| | - Tara Carr
- Asthma and Airway Disease Research Center, University of Arizona, and the Section of Allergy and Immunology, Department of Medicine, University of Arizona College of Medicine, Tucson
| | - Fernando Holguin
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Medical School, Aurora
| | - Christopher Andrew Tibbitt
- Department of Medicine Huddinge, Centre for Infectious Medicine, Karolinska Institutet, and the Clinical Lung and Allergy Research Medical Unit for Lung and Allergy Diseases, Karolinska University Hospital, Stockholm
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa
| |
Collapse
|
4
|
Jin Z, Sun W, Huang J, Wang G. Association between advanced lung cancer inflammation index and unstable asthma: a population-based study from the NHANES 2007-2018. Front Nutr 2024; 11:1482328. [PMID: 39606578 PMCID: PMC11598702 DOI: 10.3389/fnut.2024.1482328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Background Asthma exacerbation is associated with obesity and systemic inflammatory diseases, and advanced lung cancer inflammation index (ALI) is a novel biomarker of nutritional inflammation. The purpose of this study was to investigate the potential relationship between ALI and unstable asthma. Methods This cross-sectional study utilized data from the 2007-2018 National Health and Nutrition Examination Survey (NHANES). Asthma was assessed through self-reported questionnaires. Multifactorial logistic regression, subgroup analyses, interaction assessments, smoothed curve fitting, and threshold effect analysis models were conducted to investigate the association between ALI and unstable asthma. Results The study included 1,822 subjects with current asthma, and we found a linear positive association between ALI and unstable asthma, with higher levels of ALI significantly associated with an increased risk of asthma exacerbations in fully corrected models. However, the associations were not entirely consistent across subgroups. In subgroup analyses by body mass index (BMI) and race, unstable asthma and ALI were independently significant in the BMI (25-29.9) range and the Non-Hispanic White group. Interaction analysis suggested that BMI moderated the relationship between ALI and unstable asthma. Furthermore, smoothed curve fitting showed an inverted U-shaped relationship between log ALI and unstable asthma in subjects with a BMI <25 and male individuals, with inflection points observed at 1.53 and 2.13, respectively. Conclusion We found a linear positive association between ALI and unstable asthma, which remained constant in the fully adjusted model. These findings suggest that higher levels of ALI were significantly associated with an increased risk of asthma exacerbation, particularly in asthmatic populations with BMI in the 25-29.9 range. However, more prospective studies are required to confirm our findings.
Collapse
Affiliation(s)
| | | | | | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
5
|
Mendes FC, Garcia-Larsen V, Moreira A. Obesity and Asthma: Implementing a Treatable Trait Care Model. Clin Exp Allergy 2024; 54:881-894. [PMID: 38938020 DOI: 10.1111/cea.14520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
Recognition of obesity as a treatable trait of asthma, impacting its development, clinical presentation and management, is gaining widespread acceptance. Obesity is a significant risk factor and disease modifier for asthma, complicating treatment. Epidemiological evidence highlights that obese asthma correlates with poorer disease control, increased severity and persistence, compromised lung function and reduced quality of life. Various mechanisms contribute to the physiological and clinical complexities observed in individuals with obesity and asthma. These encompass different immune responses, including Type IVb, where T helper 2 cells are pivotal and driven by cytokines like interleukins 4, 5, 9 and 13, and Type IVc, characterised by T helper 17 cells and Type 3 innate lymphoid cells producing interleukin 17, which recruits neutrophils. Additionally, Type V involves immune response dysregulation with significant activation of T helper 1, 2 and 17 responses. Finally, Type VI is recognised as metabolic-induced immune dysregulation associated with obesity. Body mass index (BMI) stands out as a biomarker of a treatable trait in asthma, readily identifiable and targetable, with significant implications for disease management. There exists a notable gap in treatment options for individuals with obese asthma, where asthma management guidelines lack specificity. For example, there is currently no evidence supporting the use of incretin mimetics to improve asthma outcomes in asthmatic individuals without Type 2 diabetes mellitus (T2DM). In this review, we advocate for integrating BMI into asthma care models by establishing clear target BMI goals, promoting sustainable weight loss via healthy dietary choices and physical activity and implementing regular reassessment and referral as necessary.
Collapse
Affiliation(s)
- Francisca Castro Mendes
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional Em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
- Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Vanessa Garcia-Larsen
- Program in Human Nutrition, Department of International Health, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland, USA
| | - André Moreira
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional Em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
- Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- Serviço de Imunoalergologia, Centro Hospitalar Universitário São João, Porto, Portugal
| |
Collapse
|
6
|
Lin T, Mao H, Huang S, Xie Z, Xu Z. Association between asthma and visceral adipose tissue in adults, a cross-sectional study from NHANES 2011-2018. Sci Rep 2024; 14:23217. [PMID: 39369037 PMCID: PMC11455868 DOI: 10.1038/s41598-024-74297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
Asthma is a chronic inflammatory disease that affects millions of people worldwide. Obesity, particularly visceral adipose tissue (VAT), is known to secrete adipokines and pro-inflammatory factors, which are closely associated with various metabolic and cardiovascular diseases. Research indicates that these metabolic disturbances can exacerbate inflammatory conditions, contributing to both cardiovascular and respiratory diseases, including asthma. Despite these associations, studies on the specific relationship between VAT and asthma remain limited and warrant further investigation. Utilizing the NHANES database from 2011 to 2018, we included a total of 11,137 participants. Multivariable regression analysis was performed, stratifying subjects based on VAT levels and adjusting for various confounders. Subgroup interaction analysis and nonlinear analysis were conducted to explore potential effect modifiers and nonlinear associations. In this study, 11,137 participants were included, with 49.74% being female. Among the 509 asthma patients, 69.35% were female. The number of asthma patients among Non-Hispanic Whites was 212, representing 41.65% of the total, the highest proportion among the studied groups. The VAT for asthma patients was 529 g, significantly higher than the 455 g in the non-asthma group (P < 0.001). Multivariable regression analysis showed that for every 200 g increase in VAT, the risk of asthma increased by 10.4% (P = 0.032), 20.8% (P < 0.001), and 20.3% (P = 0.004) across three models (unadjusted, adjusted for demographic factors, and fully adjusted). Subgroup analysis indicated a stronger association between VAT and asthma risk in females and individuals over 40 years old. Nonlinear analysis uncovers a J-shaped relationship between VAT and asthma, with the lowest risk observed at 464.57 g (P < 0.001). The study findings suggest that increased VAT is associated with elevated asthma risk, particularly among females and older individuals. These results underscore the importance of considering VAT in asthma risk assessment and highlight potential targeted interventions to reduce asthma risk associated with excess visceral adiposity.
Collapse
Affiliation(s)
- Tong Lin
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Haiyan Mao
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Shanshan Huang
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Zhenye Xie
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Zhiwei Xu
- Department of Neurocritical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China.
| |
Collapse
|
7
|
Zaffanello M, Ferrante G, Piazza M, Nosetti L, Tenero L, Piacentini G. Exploring the Relationship between Inhaled Corticosteroid Usage, Asthma Severity, and Sleep-Disordered Breathing: A Systematic Literature Review. Adv Respir Med 2024; 92:300-317. [PMID: 39194421 PMCID: PMC11352062 DOI: 10.3390/arm92040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
(1) Background: Sleep-disordered breathing and asthma are often interrelated. Children and adults with asthma are more susceptible to sleep apnea. Inhaled corticosteroids effectively reduce inflammation and prevent structural changes in the airways. Objective: to explore the existing literature to determine whether inhaled corticosteroids play a role in sleep-disordered breathing in patients with asthma. (2) Methods: We conducted a thorough search of the PubMed, Scopus, and Web of Science databases for English-language articles published up to 12 May 2024. We utilized the ROBINS-E tool to assess the risk of bias. (4) Conclusions: 136 articles were discerned upon conducting the literature search. A total of 13 articles underwent exhaustive full-text scrutiny, resulting in 6 being considered non-relevant. The remaining seven articles, assessed for eligibility, were incorporated into the final analysis. Five studies were identified in adults and two in children. In adult patients, inhaled corticosteroids, especially at high doses, appear to increase the risk of sleep apnea in a dose-dependent manner. Moreover, the properties of inhaled corticosteroids, such as particle size, may impact the risk of developing sleep apnea. In children, the severity of asthma is a key factor affecting the prevalence of sleep apnea, whereas inhaled corticosteroids appear to be a less significant risk factor compared to adults. All of the studies reviewed were classified as having a high risk of bias or some concerns regarding bias. Each study revealed at least one type of bias that raised notable concerns. This research highlights a complex interaction between the use of inhaled corticosteroids, the severity of asthma, and the onset of sleep apnea. Additional research is necessary to investigate these relationships further.
Collapse
Affiliation(s)
- Marco Zaffanello
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37100 Verona, Italy; (G.F.); (M.P.); (L.T.); (G.P.)
| | - Giuliana Ferrante
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37100 Verona, Italy; (G.F.); (M.P.); (L.T.); (G.P.)
| | - Michele Piazza
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37100 Verona, Italy; (G.F.); (M.P.); (L.T.); (G.P.)
| | - Luana Nosetti
- Pediatric Sleep Disorders Center, Division of Pediatrics, “F. Del Ponte” Hospital, University of Insubria, 21100 Varese, Italy;
| | - Laura Tenero
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37100 Verona, Italy; (G.F.); (M.P.); (L.T.); (G.P.)
| | - Giorgio Piacentini
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37100 Verona, Italy; (G.F.); (M.P.); (L.T.); (G.P.)
| |
Collapse
|
8
|
Liang Y, Shen S, Ye X, Zhang W, Lin X. Celastrol alleviates airway hyperresponsiveness and inflammation in obese asthma through mediation of alveolar macrophage polarization. Eur J Pharmacol 2024; 972:176560. [PMID: 38604543 DOI: 10.1016/j.ejphar.2024.176560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Obese asthma is a unique asthma phenotype that decreases sensitivity to inhaled corticosteroids, and currently lacks efficient therapeutic medication. Celastrol, a powerful bioactive substance obtained naturally from the roots of Tripterygium wilfordii, has been reported to possess the potential effect of weight loss in obese individuals. However, its role in the treatment of obese asthma is not fully elucidated. In the present study, diet-induced obesity (DIO) mice were used with or without ovalbumin (OVA) sensitization, the therapeutic effects of celastrol on airway hyperresponsiveness (AHR) and airway inflammation were examined. We found celastrol significantly decreased methacholine-induced AHR in obese asthma, as well as reducing the infiltration of inflammatory cells and goblet cell hyperplasia in the airways. This effect was likely due to the inhibition of M1-type alveolar macrophages (AMs) polarization and the promotion of M2-type macrophage polarization. In vitro, celastrol yielded equivalent outcomes in Lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells, featuring a reduction in the expression of M1 macrophage makers (iNOS, IL-1β, TNF-α) and heightened M2 macrophage makers (Arg-1, IL-10). Mechanistically, the PI3K/AKT signaling pathway has been implicated in these processes. In conclusion, we demonstrated that celastrol assisted in mitigating various parameters of obese asthma by regulating the balance of M1/M2 AMs polarization.
Collapse
Affiliation(s)
- Yafeng Liang
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Sijia Shen
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xiaoxiao Ye
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Xixi Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
9
|
Listyoko AS, Okazaki R, Harada T, Inui G, Yamasaki A. Impact of obesity on airway remodeling in asthma: pathophysiological insights and clinical implications. FRONTIERS IN ALLERGY 2024; 5:1365801. [PMID: 38562155 PMCID: PMC10982419 DOI: 10.3389/falgy.2024.1365801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
The prevalence of obesity among asthma patients has surged in recent years, posing a significant risk factor for uncontrolled asthma. Beyond its impact on asthma severity and patients' quality of life, obesity is associated with reduced lung function, increased asthma exacerbations, hospitalizations, heightened airway hyperresponsiveness, and elevated asthma-related mortality. Obesity may lead to metabolic dysfunction and immune dysregulation, fostering chronic inflammation characterized by increased pro-inflammatory mediators and adipocytokines, elevated reactive oxygen species, and reduced antioxidant activity. This chronic inflammation holds the potential to induce airway remodeling in individuals with asthma and obesity. Airway remodeling encompasses structural and pathological changes, involving alterations in the airway's epithelial and subepithelial layers, hyperplasia and hypertrophy of airway smooth muscle, and changes in airway vascularity. In individuals with asthma and obesity, airway remodeling may underlie heightened airway hyperresponsiveness and increased asthma severity, ultimately contributing to the development of persistent airflow limitation, declining lung function, and a potential increase in asthma-related mortality. Despite efforts to address the impact of obesity on asthma outcomes, the intricate mechanisms linking obesity to asthma pathophysiology, particularly concerning airway remodeling, remain incompletely understood. This comprehensive review discusses current research investigating the influence of obesity on airway remodeling, to enhance our understanding of obesity's role in the context of asthma airway remodeling.
Collapse
Affiliation(s)
- Aditya Sri Listyoko
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
- Pulmonology and Respiratory Medicine Department, Faculty of Medicine, Brawijaya University-Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Ryota Okazaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Tomoya Harada
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Genki Inui
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Akira Yamasaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
10
|
Rajizadeh MA, Najafipour H, Bejeshk MA. An Updated Comprehensive Review of Plants and Herbal Compounds with Antiasthmatic Effect. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:5373117. [PMID: 39263346 PMCID: PMC11390241 DOI: 10.1155/2024/5373117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/11/2023] [Accepted: 01/27/2024] [Indexed: 09/13/2024]
Abstract
Background Asthma is a common disease with rising prevalence worldwide, especially in industrialized countries. Current asthma therapy with traditional medicines lacks satisfactory success, hence the patients' search for alternative and complementary treatments for their diseases. Researchers have conducted many studies on plants with antiallergic and antiasthmatic effects in recent decades. Many of these plants are now used in clinics, and searching for their mechanism of action may result in creating new ideas for producing more effective drugs. Purpose The goal of this review was to provide a compilation of the findings on plants and their active agents with experimentally confirmed antiasthmatic effects. Study Design and Method. A literature search was conducted from 1986 to November 2023 in Scopus, Springer Link, EMBASE, Science Direct, PubMed, Google Scholar, and Web of Science to identify and report the accumulated knowledge on herbs and their compounds that may be effective in asthma treatment. Results The results revealed that 58 plants and 32 herbal extracted compounds had antiasthmatic activity. Also, 32 plants were shown to have anti-inflammatory and antioxidative effects or may act as bronchodilators and potentially have antiasthmatic effects, which must be investigated in future studies. Conclusion The ability of herbal medicine to improve asthma symptoms has been confirmed by clinical and preclinical studies, and such compounds may be used as a source for developing new antiasthmatic drugs. Moreover, this review suggests that many bioactive compounds have therapeutic potential against asthma.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Huang J, Zhou X, Dong B, Tan H, Li Q, Zhang J, Su H, Sun X. Obesity-related asthma and its relationship with microbiota. Front Cell Infect Microbiol 2024; 13:1303899. [PMID: 38292857 PMCID: PMC10825962 DOI: 10.3389/fcimb.2023.1303899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Obesity and asthma are global public health problems. Obesity-related asthma is a special phenotype of asthma with a complex pathogenesis. Its occurrence and development are related to mechanical compression, inflammatory response, metabolic regulation, gene regulation, and vitamin D deficiency. Different treatment strategies used in the process of weight loss have a beneficial impact on asthma. Alterations in gut and airway microbial community structure and their metabolites may also contribute to obesity-related asthma. The role of the Th17/Treg balance in the gut microbiota regulating the immune responses and host metabolism is important. Therapeutic measures associated with the gut microbiota variety may contribute to improving chronic inflammation associated with obesity by regulating the Th17/Treg balance. An early reduction in microbial diversity can predict the development of asthma and lead to allergy through an imbalance of Th2/Th1 responses. Short-chain fatty acids (SCFAs) regulate the differentiation and activation of regulatory T cells, thereby regulating immune homeostasis in the lung to suppress allergic inflammation and weight gain. Therefore, clarifying the microbial mechanism of obesity-related asthma has important guiding significance for clinical treatment. In this review, we used the following terms: "asthma and obesity" and "obesity-related asthma", combining "phenotype", "airway inflammation" and "lung function", and reviewed the characteristics and pathogenesis of obesity-related asthma, the relationship between the gut and airway microbiota and obesity-related asthma, and the current treatment measures for the disease.
Collapse
Affiliation(s)
- Jinli Huang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Xuehua Zhou
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Bo Dong
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Hong Tan
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Qiuhong Li
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Juan Zhang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Hui Su
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| |
Collapse
|
12
|
Peña-García PE, Fastiggi VA, Mank MM, Ather JL, Garrow OJ, Anathy V, Dixon AE, Poynter ME. Bariatric surgery decreases the capacity of plasma from obese asthmatic subjects to augment airway epithelial cell proinflammatory cytokine production. Am J Physiol Lung Cell Mol Physiol 2024; 326:L71-L82. [PMID: 37988602 PMCID: PMC11292671 DOI: 10.1152/ajplung.00205.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/03/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
Obesity is a risk factor for asthma. Individuals with asthma and obesity often have poor asthma control and do not respond as well to therapies such as inhaled corticosteroids and long-acting bronchodilators. Weight loss improves asthma control, with a 5%-10% loss in body mass necessary and sufficient to lead to clinically relevant improvements. Preclinical studies have demonstrated the pathogenic contribution of adipocytes from obese mice to the augmented production of proinflammatory cytokines from airway epithelial cells and the salutary effects of diet-induced weight loss to decrease these consequences. However, the effects of adipocyte-derived products on airway epithelial function in human obesity remain incompletely understood. We utilized samples collected from a 12-mo longitudinal study of subjects with obesity undergoing weight loss (bariatric) surgery including controls without asthma and subjects with allergic and nonallergic obese asthma. Visceral adipose tissue (VAT) samples were collected during bariatric surgery and from recruited normal weight controls without asthma undergoing elective abdominal surgery. Human bronchial epithelial (HBEC3-KT) cells were exposed to plasma or conditioned media from cultured VAT adipocytes with or without agonists. Human bronchial smooth muscle (HBSM) cells were similarly exposed to adipocyte-conditioned media. Proinflammatory cytokines were augmented in supernatants from HBEC3-KT cells exposed to plasma as compared with subsequent visits. Whereas exposure to obese adipocyte-conditioned media induced proinflammatory responses, there were no differences between groups in both HBEC3-KT and HBSM cells. These data show that bariatric surgery and subsequent weight loss beneficially change the circulating factors that augment human airway epithelial and bronchial smooth muscle cell proinflammatory responses.NEW & NOTEWORTHY This longitudinal study following subjects with asthma and obesity reveals that weight loss following bariatric surgery decreases the capacity for plasma to augment proinflammatory cytokine secretion by human bronchial epithelial cells, implicating that circulating but not adipocyte-derived factors are important modulators in obese asthma.
Collapse
Affiliation(s)
- Paola E Peña-García
- Vermont Lung Center, University of Vermont, Burlington, Vermont, United States
- Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, Vermont, United States
- Cellular, Molecular, and Biomedical Sciences doctoral program, University of Vermont, Burlington, Vermont, United States
| | - V Amanda Fastiggi
- Vermont Lung Center, University of Vermont, Burlington, Vermont, United States
- Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, Vermont, United States
- Cellular, Molecular, and Biomedical Sciences doctoral program, University of Vermont, Burlington, Vermont, United States
| | - Madeleine M Mank
- Vermont Lung Center, University of Vermont, Burlington, Vermont, United States
- Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, Vermont, United States
| | - Jennifer L Ather
- Vermont Lung Center, University of Vermont, Burlington, Vermont, United States
- Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, Vermont, United States
| | - Olivia J Garrow
- Vermont Lung Center, University of Vermont, Burlington, Vermont, United States
- Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, Vermont, United States
| | - Vikas Anathy
- Vermont Lung Center, University of Vermont, Burlington, Vermont, United States
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, United States
| | - Anne E Dixon
- Vermont Lung Center, University of Vermont, Burlington, Vermont, United States
- Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, Vermont, United States
| | - Matthew E Poynter
- Vermont Lung Center, University of Vermont, Burlington, Vermont, United States
- Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, Vermont, United States
| |
Collapse
|
13
|
Ahmed MI, Ahmed RI, Osama H, Khalifa AK, Alshehri AA, El-Saber Batiha G, Negm WA, Kamal M. Bronchodilator reversibility testing in morbidly obese non-smokers: fluticasone/salmeterol efficacy versus salbutamol bronchodilator. BMC Pulm Med 2023; 23:381. [PMID: 37814253 PMCID: PMC10563321 DOI: 10.1186/s12890-023-02682-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023] Open
Abstract
A positive response in reversibility testing is widely used to diagnose patients with airway limitations. However, despite its simple procedure, it doesn't accurately reflect the exact airway irreversibility. This study aimed to investigate the efficacy of a bronchodilation reversibility test using salbutamol and fluticasone/salmeterol combination in obese non-smoker subjects.The study included patients without a history of obstructive lung disease or bronchodilators. A sub-classification of patients based on body mass index (BMI) was carried out into normal (< 24.9 kg/m2), overweight (25-29.9 kg/m2), and obese (BMI ≥ 30). Spirometry measurements were performed before and after salbutamol or fluticasone/salmeterol administration.The study included 415 (49.9% male) patients with a mean age of 40.92 ± 10.86 years. Obese subjects showed a high prevalence of restrictive patterns (23.4%), with non-significantly lower spirometric values compared to normal and overweight subjects (p > 0.05). The magnitude of bronchodilation, as identified by spirometry, following fluticasone/salmeterol was higher in all participants, with a significant increase in obese subjects with a p-value of 0.013, 0.002, and 0.035 for FEV1, FEV1% predicted, and FEV1/FVC, respectively.Fluticasone/salmeterol combination increases FEV1, FEV1% of predicted, and FEV1/FVC ratio than the conventional test using salbutamol inhaler, and it can be a potential candidate for assessment of airway obstruction using reversibility test, especially among the obese population.
Collapse
Affiliation(s)
- Mona Ibrahim Ahmed
- Department of chest Ds & TB, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Randa Ibrahim Ahmed
- Department of chest Ds & TB, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Hasnaa Osama
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-suef University, Beni-suef, Egypt
| | - Amira Karam Khalifa
- Department of Medical pharmacology, Kasr El-Ainy School of Medicine, Cairo University, El Manial, Cairo, 11562, Egypt
- Department of Medical Pharmacology, Nahda Faculty of Medicine, Beni Suef, 62521, Egypt
| | - Abdullah Ali Alshehri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Al Hawiyah, Taif, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Marwa Kamal
- Clinical Pharmacy Department, Faculty of Pharmacy, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
14
|
Wang Y, Wan R, Hu C. Leptin/obR signaling exacerbates obesity-related neutrophilic airway inflammation through inflammatory M1 macrophages. Mol Med 2023; 29:100. [PMID: 37488474 PMCID: PMC10367413 DOI: 10.1186/s10020-023-00702-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Obesity-related asthma is a kind of nonallergic asthma with excessive neutrophil infiltration in the airways. However, the underlying mechanisms have been poorly elucidated. Among the adipokines related to obesity, leptin is related to the inflammatory response. However, little is understood about how leptin acts on the leptin receptor (obR) in neutrophilic airway inflammation in obesity-associated asthma. We explored the inflammatory effects of leptin/obR signaling in an obesity-related neutrophilic airway inflammation mouse model. METHODS We established a neutrophilic airway inflammation mouse model using lipopolysaccharide (LPS)/ovalbumin (OVA) sensitization and OVA challenge (LPS + OVA/OVA) in lean, obese, or db/db (obR deficiency) female mice. Histopathological, bronchoalveolar lavage fluid (BALF) inflammatory cell, and lung inflammatory cytokine analyses were used to analyze airway inflammation severity. Western blotting, flow cytometry, reverse transcription-polymerase chain reaction (RT-PCR), and enzyme-linked immunosorbent assay (ELISA) were used to evaluate the underlying mechanisms. In vitro bone marrow-derived macrophage (BMDM) and bone marrow-derived neutrophil experiments were performed. RESULTS We found that the serum leptin level was higher in obese than in lean female mice. Compared to LPS/OVA + OVA-treated lean female mice, LPS/OVA + OVA-treated obese female mice had higher peribronchial inflammation levels, neutrophil counts, Th1/Th17-related inflammatory cytokine levels, M1 macrophage polarization levels, and long isoform obR activation, which could be decreased by the obR blockade (Allo-Aca) or obR deficiency, suggesting a critical role of leptin/obR signaling in the pathogenesis of obesity-related neutrophilic airway inflammation in female mice. In in vitro experiments, leptin synergized with LPS/IFN-γ to promote the phosphorylation of the long isoform obR and JNK/STAT3/AKT signaling pathway members to increase M1 macrophage polarization, which was reversed by Allo-Aca. Moreover, leptin/obR-mediated M1 macrophage activity significantly elevated CXCL2 production and neutrophil recruitment by regulating the JNK/STAT3/AKT pathways. In clinical studies, obese patients with asthma had higher serum leptin levels and M1 macrophage polarization levels in induced sputum than non-obese patients with asthma. Serum leptin levels were positively correlated with M1 macrophage polarization levels in patients with asthma. CONCLUSIONS Our results demonstrate leptin/obR signaling plays an important role in the pathogenesis of obesity-related neutrophilic airway inflammation in females by promoting M1 macrophage polarization.
Collapse
Affiliation(s)
- Yang Wang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Rongjun Wan
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Chengping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
15
|
Guarnieri G, Iervolino M, Cavallone S, Unfer V, Vianello A. The "Asthma-Polycystic Ovary Overlap Syndrome" and the Therapeutic Role of Myo-Inositol. Int J Mol Sci 2023; 24:ijms24086959. [PMID: 37108123 PMCID: PMC10138395 DOI: 10.3390/ijms24086959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Asthma is a heterogeneous inflammatory disease characterized by abnormalities in immune response. Due to the inherent complexity of the disease and the presence of comorbidities, asthma control is often difficult to obtain. In asthmatic patients, an increased prevalence of irregular menstrual cycles, infertility, obesity, and insulin resistance has been reported. Given that these conditions are also common in patients with polycystic ovary syndrome (PCOS), we propose the definition of "asthma-PCOS overlap syndrome" to indicate a medical condition which shares characteristics of both diseases. The aim of this review is to analyze the links between asthma and PCOS and evaluate the therapeutic role of myo-inositol, a natural compound currently utilized in patients with PCOS, in the management of asthma patients.
Collapse
Affiliation(s)
- Gabriella Guarnieri
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | | | | | - Vittorio Unfer
- Systems Biology Group Laboratory, 00163 Rome, Italy
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
| | - Andrea Vianello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| |
Collapse
|
16
|
Wang CJ, Noble PB, Elliot JG, James AL, Wang KCW. From Beneath the Skin to the Airway Wall: Understanding the Pathological Role of Adipose Tissue in Comorbid Asthma-Obesity. Compr Physiol 2023; 13:4321-4353. [PMID: 36715283 DOI: 10.1002/cphy.c220011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This article provides a contemporary report on the role of adipose tissue in respiratory dysfunction. Adipose tissue is distributed throughout the body, accumulating beneath the skin (subcutaneous), around organs (visceral), and importantly in the context of respiratory disease, has recently been shown to accumulate within the airway wall: "airway-associated adipose tissue." Excessive adipose tissue deposition compromises respiratory function and increases the severity of diseases such as asthma. The mechanisms of respiratory impairment are inflammatory, structural, and mechanical in nature, vary depending on the anatomical site of deposition and adipose tissue subtype, and likely contribute to different phenotypes of comorbid asthma-obesity. An understanding of adipose tissue-driven pathophysiology provides an opportunity for diagnostic advancement and patient-specific treatment. As an exemplar, the potential impact of airway-associated adipose tissue is highlighted, and how this may change the management of a patient with asthma who is also obese. © 2023 American Physiological Society. Compr Physiol 13:4321-4353, 2023.
Collapse
Affiliation(s)
- Carolyn J Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - John G Elliot
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
17
|
Tooba R, Wu TD. Obesity and asthma: A focused review. Respir Med 2022; 204:107012. [PMID: 36279813 PMCID: PMC9671155 DOI: 10.1016/j.rmed.2022.107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Rubabin Tooba
- Department of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Tianshi David Wu
- Department of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Innovations in Quality, Effectiveness, and Safety, Michael E. DeBakey VA Medical Center, Houston, TX, USA.
| |
Collapse
|
18
|
Farzan S, Coyle T, Coscia G, Rebaza A, Santiago M. Clinical Characteristics and Management Strategies for Adult Obese Asthma Patients. J Asthma Allergy 2022; 15:673-689. [PMID: 35611328 PMCID: PMC9124473 DOI: 10.2147/jaa.s285738] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022] Open
Abstract
The rates of asthma and obesity are increasing concurrently in the United States. Epidemiologic studies demonstrate that the incidence of asthma increases with obesity. Furthermore, obese individuals have asthma that is more severe, harder to control, and resistant to standard medications. In fact, specific asthma-obesity phenotypes have been identified. Various pathophysiologic mechanisms, including mechanical, inflammatory, metabolic and microbiome-associated, are at play in promulgating the obese-asthma phenotypes. While standard asthma medications, such as inhaled corticosteroids and biologics, are currently used to treat obese asthmatics, they may have limited effectiveness. Targeting the underlying aberrant processes, such as addressing steroid resistance, microbiome, metabolic and weight loss approaches, may be helpful.
Collapse
Affiliation(s)
- Sherry Farzan
- Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Great Neck, NY, USA
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasett, NY, USA
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
- Correspondence: Sherry Farzan, Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, 865 Northern Blvd, Suite 101, Great Neck, NY, 11021, USA, Tel +1 516-622-5070, Fax +1 516-622-5060, Email
| | - Tyrone Coyle
- Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Great Neck, NY, USA
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasett, NY, USA
| | - Gina Coscia
- Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Great Neck, NY, USA
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasett, NY, USA
| | - Andre Rebaza
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Division of Pediatric Pulmonology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, New York, NY, USA
| | - Maria Santiago
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Division of Pediatric Pulmonology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, New York, NY, USA
| |
Collapse
|
19
|
McLoughlin RF, McDonald VM. The Management of Extrapulmonary Comorbidities and Treatable Traits; Obesity, Physical Inactivity, Anxiety, and Depression, in Adults With Asthma. FRONTIERS IN ALLERGY 2022; 2:735030. [PMID: 35387051 PMCID: PMC8974714 DOI: 10.3389/falgy.2021.735030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022] Open
Abstract
Asthma is a complex and heterogenous disease characterized by variability in disease expression and severity. Multiple extrapulmonary comorbidities and treatable traits are common in people with asthma, and there is an increasing appreciation of how these may complicate asthma management. This review will discuss the prevalence and impact of extrapulmonary comorbidities/risk factors or "traits," which have been found to co-exist in asthma (obesity, symptoms of depression and/or anxiety and physical inactivity), the impact these traits have on future outcomes (including exacerbation risk and quality of life) and asthma management, and how we should target treatment in asthma when these extrapulmonary traits are present.
Collapse
Affiliation(s)
- Rebecca F McLoughlin
- National Health and Medical Research Council, Centre of Excellence in Treatable Traits, New Lambton Heights, NSW, Australia.,School of Nursing and Midwifery, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Nursing and Midwifery, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Vanessa M McDonald
- National Health and Medical Research Council, Centre of Excellence in Treatable Traits, New Lambton Heights, NSW, Australia.,School of Nursing and Midwifery, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Nursing and Midwifery, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia
| |
Collapse
|
20
|
Busse WW, Kraft M. Current unmet needs and potential solutions to uncontrolled asthma. Eur Respir Rev 2022; 31:210176. [PMID: 35082128 PMCID: PMC9488919 DOI: 10.1183/16000617.0176-2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Despite the availability of effective inhaled therapies, many patients with asthma have poor asthma control. Uncontrolled asthma presents a significant burden on the patient and society, and, for many, remains largely preventable. There are numerous reasons why a patient may remain uncontrolled despite access to therapies, including incorrect inhaler technique, poor adherence to treatment, oversight of triggers and suboptimal medical care. Shared decision-making, good patient-clinician communication, supported self-management, multidisciplinary patient education, new technology and risk stratification may all provide solutions to this major unmet need in asthma. Novel treatments such as biologics could benefit patients' lives, while the investigations into biomarkers, non-Type 2 asthma, treatable traits and disease modification give an exciting glimpse into the future of asthma care.
Collapse
Affiliation(s)
- William W Busse
- Dept of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Monica Kraft
- University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
21
|
Fitzpatrick AM, Mutic AD, Mohammad AF, Stephenson ST, Grunwell JR. Obesity Is Associated with Sustained Symptomatology and Unique Inflammatory Features in Children with Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:815-826.e2. [PMID: 34688962 PMCID: PMC8917992 DOI: 10.1016/j.jaip.2021.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Obesity complicates the clinical manifestations of asthma in children. However, few studies have examined longitudinal outcomes or markers of systemic inflammation in obese asthmatic children. OBJECTIVE We hypothesized that obese children with asthma would have: (1) poorer clinical outcomes over 12 months, (2) decreased responsiveness to systemic corticosteroid administration, (3) greater markers of systemic inflammation, and (4) unique amino acid metabolites associated with oxidative stress. METHODS Children 6 to 17 years of age (lean, N = 257; overweight, N = 99; obese, N = 138) completed a baseline visit and follow-up visit at 12 months. Outcome measures included asthma control, quality of life, lung function, and exacerbations. A subset received intramuscular triamcinolone and were re-evaluated at 7(+7) days. Leptin, adiponectin, C-reactive protein, total cholesterol, interleukin (IL)-1β, IL-6, IL-17, interferon gamma, tumor necrosis factor alpha, monocyte-chemoattractant protein-1, and amino acid metabolites were also quantified in plasma as potential biomarkers of outcomes in obese children. RESULTS Obesity was associated with more symptoms, poorer quality life, and more exacerbations that persisted over 1 year despite greater medication requirements. Obese children also had minimal clinical improvement in asthma control and lung function after intramuscular triamcinolone. Leptin, C-reactive protein, and amino acid metabolites associated with glutathione synthesis and oxidative stress differed in obese children. Within the obese group, lower concentrations of arginine-related metabolites also distinguished uncontrolled from controlled asthma at 12 months. CONCLUSION Obesity is associated with poorer asthma outcomes and unique systemic inflammatory features that may not be adequately modified with conventional asthma therapies. Novel approaches may be needed given increased symptoms and unique inflammation and oxidative stress in obese children with asthma.
Collapse
Affiliation(s)
- Anne M. Fitzpatrick
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia,Children’s Healthcare of Atlanta, Atlanta, Georgia
| | - Abby D. Mutic
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, Georgia
| | - Ahmad F. Mohammad
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia
| | - Susan T. Stephenson
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia
| | - Jocelyn R. Grunwell
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia,Children’s Healthcare of Atlanta, Atlanta, Georgia
| |
Collapse
|
22
|
AlShareef S, McDonald CF, Lee J. Clinical and Lung Function Outcomes After Anti-IgE or Anti-IL5 Therapy in Severe Asthma. J Asthma Allergy 2022; 15:209-217. [PMID: 35210787 PMCID: PMC8857973 DOI: 10.2147/jaa.s348137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Although there have been indirect comparisons of the relative efficacy of mepolizumab (anti-IL-5) and benralizumab (anti-IL-5Rα) in severe asthma patients, long-term direct head-to-head comparisons are lacking. Here, we (i) examined the effect of mepolizumab, benralizumab, and omalizumab on symptom control and lung function parameters over time; and (ii) compared the efficacy of mepolizumab and benralizumab on symptom control and lung function outcomes. Methods This was a retrospective study of patients with severe asthma taking anti-IgE (omalizumab; n = 24), anti-IL5 (mepolizumab, n = 23), or anti-IL-Rα (benralizumab; n = 12) therapy. Data were extracted on (i) Asthma Control Questionnaire (ACQ-5) scores; (ii) forced expiratory volume over 1 second (FEV1); and (iii) peak expiratory flow rate (PEFR) at 4–6 months and 1 year and documented reductions in exacerbations. Clinical and lung function outcomes were compared between patients taking mepolizumab and benralizumab and over time. Results There were significant decreases in ACQ-5 scores (3.3 ± 0.93 to 1.7 ± 0.98 for mepolizumab, 3.5 ± 0.72 to 1.6 ±0.89 for benralizumab, and 3.5 ± 0.95 to 1.7 ± 1.1 for omalizumab; t-test, all p < 0.0001) but not increases in FEV1 and PEFR for all three agents after 4–6 months of therapy, which persisted but did not decrease further at one year. There were trends toward a greater percentage increase in FEV1 and PEFR from baseline and a decrease in the number of exacerbations in patients taking benralizumab than those taking mepolizumab. Conclusion Although limited by a small sample size, this real-world, head-to-head comparison of mepolizumab and benralizumab is consistent with comparative data on asthma biologicals and indirect comparisons showing no major difference in efficacy. The study also generates new testable hypotheses about the efficacy of asthma biologicals in different patient populations.
Collapse
Affiliation(s)
- Saad AlShareef
- Department of Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317-4233, Saudi Arabia
- Correspondence: Saad AlShareef, Email
| | - Christine F McDonald
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Australia
- Institute for Breathing and Sleep, Heidelberg, Australia
- Faculty of Medicine, University of Melbourne, Melbourne, Australia
| | - Joy Lee
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Australia
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
23
|
Clini E, Fabbri LM. Combined approach to define the clinical impact and decision making in asthmatics. Minerva Med 2021; 112:539-541. [PMID: 34814632 DOI: 10.23736/s0026-4806.21.07473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Enrico Clini
- Department of Medical and Surgical Sciences (SMECHIMAI), University of Modena and Reggio Emilia, Modena, Italy -
| | - Leonardo M Fabbri
- Department of Internal and Respiratory Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|