1
|
Domingo C, Busse WW, Hanania NA, Ertugrul M, Millette LA, Maio‐Twofoot T, Jaumont X, Palomares O. The Direct and Indirect Role of IgE on Airway Epithelium in Asthma. Allergy 2025; 80:919-931. [PMID: 39963805 PMCID: PMC11969325 DOI: 10.1111/all.16459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 04/05/2025]
Abstract
Asthma is a chronic airway inflammatory disorder, affecting over 350 million people worldwide, with allergic asthma being the most common form of the disease. Allergic asthma is characterized by a type 2 (T2) inflammatory response triggered by numerous allergens beginning in the airway epithelium, which acts as a physical barrier to allergens as well as other external irritants including infectious agents, and atmospheric pollutants. T2 inflammation is propagated by several key cell types including T helper 2 (Th2) cells, eosinophils, mast cells, and B cells. Immunoglobulin E (IgE), produced by B cells, is a key molecule in allergic airway disease and plays an important role in T2 inflammation, as well as being central to remodeling processes within the airway epithelium. Blocking IgE with omalizumab has been shown to be efficacious in treating allergic asthma however, the role of IgE on airway epithelial cells is less communicated. Developing a deeper explanation of the complex network of interactions between IgE and the airway epithelium will facilitate an improved understanding of asthma pathophysiology. This review discusses the indirect and direct roles of IgE on airway epithelial cells, with a focus on allergic asthma disease.
Collapse
Affiliation(s)
- Christian Domingo
- Department of Pulmonary Medicine, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT‐CERCA)Universitat Autònoma de BarcelonaSabadellSpain
| | - William W. Busse
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Nicola A. Hanania
- Section of Pulmonary, Critical Care and Sleep MedicineBaylor College of MedicineHoustonTexasUSA
| | | | | | | | | | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| |
Collapse
|
2
|
Martín-Cruz L, Palomares O. Allergen-Specific Immunotherapy and Trained Immunity. Allergy 2025; 80:677-689. [PMID: 39641571 DOI: 10.1111/all.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
The high prevalence of allergic diseases reached over the last years is attributed to the complex interplay of genetic factors, lifestyle changes, and environmental exposome. Allergen-specific immunotherapy (AIT) is the single therapeutic strategy for allergic diseases with the potential capacity to modify the course of the disease. Our knowledge of the mechanisms involved in allergy and successful AIT has significantly improved. Recent findings indicate that long-term allergen tolerance upon AIT discontinuation not only relies on the generation of proper adaptive immune responses by the generation of allergen-specific regulatory T and B cells enabling the induction of different isotypes of blocking antibodies but also relies on the restoration of proper innate immune responses. Trained immunity (TRIM) is the process by which innate immune cells acquire memory by mechanisms depending on metabolic and epigenetic reprogramming, thus conferring the host with increased broad protection against infection. This concept was initially explored for infectious diseases, as well as for vaccination against infections, but compelling experimental evidence suggests that TRIM might also play a role in allergy and AIT. Hyperinflammatory innate immune responses in early life, likely due to TRIM maladaptations, lead to aberrant type 2 inflammation-enhancing allergy. However, exposure to farming environments and specific microbes prevents recurrent infections and allergy development, likely due to mechanisms partially depending on TRIM. TRIM-based vaccines and next-generation AIT vaccines inducing metabolic and epigenetic reprogramming in innate immune cells and their precursors have shown protective antiallergic effects. A better understanding of the factors involved in early-life TRIM mechanisms in the context of allergy and the identification and characterization of novel tolerance inducers might well enable the design of alternative TRIM-based allergen vaccines for allergic diseases.
Collapse
Affiliation(s)
- Leticia Martín-Cruz
- School of Chemistry, Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain
- School of Pharmacy, Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain
| | - Oscar Palomares
- School of Chemistry, Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain
| |
Collapse
|
3
|
Zhou X, Dunham D, Sindher SB, Long A, Fernandes A, Chang I, Assa’ad A, Pongracic J, Spergel JM, Tam J, Tilles S, Wang J, Boyd SD, Chinthrajah RS, Nadeau KC. HLA-DR + regulatory T cells and IL-10 are associated with success or failure of desensitization outcomes. Allergy 2025; 80:762-774. [PMID: 39291303 PMCID: PMC11893263 DOI: 10.1111/all.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/14/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Omalizumab (XOLAIR®)-assisted multi-food oral immunotherapy (mOIT) has been shown to safely, effectively, and rapidly desensitize patients with multiple food allergies. In our clinical trial (NCT02626611) on omalizumab-assisted mOIT, different desensitization outcomes (success or failure of desensitization) were observed following a period of either continued or discontinued mOIT. However, the association between the immunological changes induced by omalizumab-assisted mOIT and desensitization outcomes has not yet been fully elucidated. In this study, due to the key roles of regulatory T (Treg) cells and the type 2 helper T cell (Th2) pathway in immune tolerance to food allergens, we aimed to characterize their association with the desensitization outcomes of omalizumab-assisted mOIT. METHODS Mass cytometry and multiplex cytokine assays were performed on blood samples obtained from participants with allergies to peanut, cashew, or milk in our phase 2 clinical study (NCT02626611). Comprehensive statistical and bioinformatic analyses were conducted on high-dimensional cytometry-based single-cell data and high-throughput multiplex cytokine data. RESULTS Our results demonstrated that the frequency of HLA-DR+ Treg cells, and the production of Th2 cytokines (IL-4, IL-5, IL-13, and IL-9) as well as the immunoregulatory cytokine IL-10 by peripheral blood mononuclear cells (PBMCs) was significantly increased in cultures with allergen compared to cultures with media alone at baseline (Week 0). We also observed increased frequency of allergen responsive HLA-DR+ Treg cells and enhanced production of IL-10 by PBMCs in participants who achieved successful desensitization compared to those with failure of desensitization. However, the production of Th2 cytokines by PBMCs did not show significant differences between participants with different desensitization outcomes (success vs. failure of desensitization), despite omalizumab-assisted mOIT inducing a significant reduction in the production of Th2 cytokines. CONCLUSIONS We demonstrated that the frequency of HLA-DR+ Treg cells and IL-10 cytokine production by PBMCs are associated with desensitization outcomes of omalizumab-assisted mOIT. These findings suggest potential immunological parameters that could be targeted to enhance desensitization success rates.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Diane Dunham
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sayantani B Sindher
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew Long
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrea Fernandes
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Iris Chang
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Amal Assa’ad
- Division of Allergy and Immunology, Cincinnati Children’s Medical Center, Cincinnati, OH, USA
| | - Jacqueline Pongracic
- Division of Allergy and Immunology, the Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Jonathan M Spergel
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Tam
- Division of Clinical Immunology and Allergy, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Stephen Tilles
- Seattle Allergy and Asthma Research Institute, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Julie Wang
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott D. Boyd
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - R. Sharon Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kari C. Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
4
|
Ogulur I, Mitamura Y, Yazici D, Pat Y, Ardicli S, Li M, D'Avino P, Beha C, Babayev H, Zhao B, Zeyneloglu C, Giannelli Viscardi O, Ardicli O, Kiykim A, Garcia-Sanchez A, Lopez JF, Shi LL, Yang M, Schneider SR, Skolnick S, Dhir R, Radzikowska U, Kulkarni AJ, Imam MB, Veen WVD, Sokolowska M, Martin-Fontecha M, Palomares O, Nadeau KC, Akdis M, Akdis CA. Type 2 immunity in allergic diseases. Cell Mol Immunol 2025; 22:211-242. [PMID: 39962262 PMCID: PMC11868591 DOI: 10.1038/s41423-025-01261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/09/2025] [Indexed: 03/01/2025] Open
Abstract
Significant advancements have been made in understanding the cellular and molecular mechanisms of type 2 immunity in allergic diseases such as asthma, allergic rhinitis, chronic rhinosinusitis, eosinophilic esophagitis (EoE), food and drug allergies, and atopic dermatitis (AD). Type 2 immunity has evolved to protect against parasitic diseases and toxins, plays a role in the expulsion of parasites and larvae from inner tissues to the lumen and outside the body, maintains microbe-rich skin and mucosal epithelial barriers and counterbalances the type 1 immune response and its destructive effects. During the development of a type 2 immune response, an innate immune response initiates starting from epithelial cells and innate lymphoid cells (ILCs), including dendritic cells and macrophages, and translates to adaptive T and B-cell immunity, particularly IgE antibody production. Eosinophils, mast cells and basophils have effects on effector functions. Cytokines from ILC2s and CD4+ helper type 2 (Th2) cells, CD8 + T cells, and NK-T cells, along with myeloid cells, including IL-4, IL-5, IL-9, and IL-13, initiate and sustain allergic inflammation via T cell cells, eosinophils, and ILC2s; promote IgE class switching; and open the epithelial barrier. Epithelial cell activation, alarmin release and barrier dysfunction are key in the development of not only allergic diseases but also many other systemic diseases. Recent biologics targeting the pathways and effector functions of IL4/IL13, IL-5, and IgE have shown promising results for almost all ages, although some patients with severe allergic diseases do not respond to these therapies, highlighting the unmet need for a more detailed and personalized approach.
Collapse
Affiliation(s)
- Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Paolo D'Avino
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Carina Beha
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Bingjie Zhao
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Can Zeyneloglu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Division of Food Processing, Milk and Dairy Products Technology Program, Karacabey Vocational School, Bursa Uludag University, Bursa, Turkey
| | - Ayca Kiykim
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Asuncion Garcia-Sanchez
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Biomedical and Diagnostic Science, School of Medicine, University of Salamanca, Salamanca, Spain
| | - Juan-Felipe Lopez
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Li-Li Shi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Minglin Yang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Stephen Skolnick
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Seed Health Inc., Los Angeles, CA, USA
| | - Raja Dhir
- Seed Health Inc., Los Angeles, CA, USA
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Abhijeet J Kulkarni
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mar Martin-Fontecha
- Departamento de Quimica Organica, Facultad de Optica y Optometria, Complutense University of Madrid, Madrid, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
| |
Collapse
|
5
|
Eggel A, Pennington LF, Jardetzky TS. Therapeutic monoclonal antibodies in allergy: Targeting IgE, cytokine, and alarmin pathways. Immunol Rev 2024; 328:387-411. [PMID: 39158477 PMCID: PMC11659931 DOI: 10.1111/imr.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The etiology of allergy is closely linked to type 2 inflammatory responses ultimately leading to the production of allergen-specific immunoglobulin E (IgE), a key driver of many allergic conditions. At a high level, initial allergen exposure disrupts epithelial integrity, triggering local inflammation via alarmins including IL-25, IL-33, and TSLP, which activate type 2 innate lymphoid cells as well as other immune cells to secrete type 2 cytokines IL-4, IL-5 and IL-13, promoting Th2 cell development and eosinophil recruitment. Th2 cell dependent B cell activation promotes the production of allergen-specific IgE, which stably binds to basophils and mast cells. Rapid degranulation of these cells upon allergen re-exposure leads to allergic symptoms. Recent advances in our understanding of the molecular and cellular mechanisms underlying allergic pathophysiology have significantly shaped the development of therapeutic intervention strategies. In this review, we highlight key therapeutic targets within the allergic cascade with a particular focus on past, current and future treatment approaches using monoclonal antibodies. Specific targeting of alarmins, type 2 cytokines and IgE has shown varying degrees of clinical benefit in different allergic indications including asthma, chronic spontaneous urticaria, atopic dermatitis, chronic rhinosinusitis with nasal polyps, food allergies and eosinophilic esophagitis. While multiple therapeutic antibodies have been approved for clinical use, scientists are still working on ways to improve on current treatment approaches. Here, we provide context to understand therapeutic targeting strategies and their limitations, discussing both knowledge gaps and promising future directions to enhancing clinical efficacy in allergic disease management.
Collapse
Affiliation(s)
- Alexander Eggel
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
- Department of Rheumatology and ImmunologyUniversity Hospital BernBernSwitzerland
| | | | - Theodore S. Jardetzky
- Department of Structural BiologyStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
6
|
Yan S, Yang B, Qin H, Du C, Liu H, Jin T. Exploring the therapeutic potential of monoclonal antibodies targeting TSLP and IgE in asthma management. Inflamm Res 2024; 73:1425-1434. [PMID: 38907743 DOI: 10.1007/s00011-024-01908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND In recent years, there has been a growing interest in the utilization of biologic therapies for the management of asthma. Both TSLP and IgE are important immune molecules in the development of asthma, and they are involved in the occurrence and regulation of inflammatory response. METHODS A comprehensive search of PubMed and Web of Science was conducted to gather information on anti-TSLP antibody and anti-IgE antibody. RESULTS This investigation elucidates the distinct mechanistic roles of Thymic Stromal Lymphopoietin (TSLP) and Immunoglobulin E (IgE) in the pathogenesis of asthma, with a particular emphasis on delineating the therapeutic mechanisms and pharmacological properties of monoclonal antibodies targeting IgE and TSLP. Through a meticulous examination of clinical trials involving paradigmatic agents such as omalizumab and tezepelumab, we offer valuable insights into the potential treatment modalities for diseases with shared immunopathogenic pathways involving IgE and TSLP. CONCLUSION The overarching objective of this comprehensive study is to delve into the latest advancements in asthma therapeutics and to provide guidance for future investigations in this domain.
Collapse
Affiliation(s)
- Shuang Yan
- Sichuan University of Arts and Science, DaZhou, 635000, China.
- Key Laboratory of Exploitation and Study of Distinctive Plants in Education Department of Sichuan Province, Sichuan Institute of Arts and Science, DaZhou, 635000, China.
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, ZiGong, 643000, China.
| | - Bowen Yang
- Unit for Drug and Instrument Supervision and Inspection of Wuxi Joint Logistic Support Center, Nanjing, 210000, China
| | - Haichuan Qin
- Sichuan University of Arts and Science, DaZhou, 635000, China
| | - Chengzhen Du
- Sichuan University of Arts and Science, DaZhou, 635000, China
| | - Hua Liu
- Sichuan University of Arts and Science, DaZhou, 635000, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, P.R. China.
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China.
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
7
|
M Yusoff NNF, Ahmad S, Wan Abdul Rahman WF, Mohamud R, C Boer J, Plebanski M, Abdullah B, Chen X, Tengku Din TADAA. CD4+ Foxp3+ Regulatory T-cells in Modulating Inflammatory Microenvironment in Chronic Rhinosinusitis with Nasal Polyps: Progress and Future Prospect. Cytokine 2024; 178:156557. [PMID: 38452440 DOI: 10.1016/j.cyto.2024.156557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a subtype of chronic rhinosinusitis (CRS) characterized by the presence of nasal polyps (NP) in the paranasal mucosa. Despite the complex etiology, NP is believed to result from chronic inflammation. The long-term aftermath of the type 2 response is responsible for symptoms seen in NP patients, i.e. rhinorrhea, hyposmia, and nasal obstruction. Immune cellular tolerogenic mechanisms, particularly CD4 + Foxp3 + regulatory T cells (Tregs), are crucial to curtail inflammatory responses. Current evidence suggests impaired Treg activity is the main reason underlying the compromise of self-tolerance, contributing to the onset of CRSwNP. There is compelling evidence that tumor necrosis factor 2 (TNFR2) is preferentially expressed by Tregs, and TNFR2 is able to identify the most potent suppressive subset of Tregs. Tumor necrosis factor (TNF)-TNFR2 interaction plays a decisive role in the activation and expansion of Tregs. This review summarizes current understanding of Tregs biology, focusing on the discussion of the recent advances in the study of TNF-TNFR2 axis in the upregulation of Treg function as a negative feedback mechanism in the control of chronic inflammation. The role of dysregulation of Tregs in the immunopathogenesis of CRSwNP will be analyzed. The future perspective on the harnessing Tregs-mediated self-tolerant mechanism in the management of CRSwNP will be introduced.
Collapse
Affiliation(s)
- Nur Najwa Farahin M Yusoff
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Jennifer C Boer
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Baharudin Abdullah
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | | |
Collapse
|
8
|
Martín-Cruz L, Benito-Villalvilla C, Sirvent S, Angelina A, Palomares O. The Role of Regulatory T Cells in Allergic Diseases: Collegium Internationale Allergologicum (CIA) Update 2024. Int Arch Allergy Immunol 2024; 185:503-518. [PMID: 38408438 DOI: 10.1159/000536335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Allergy represents a major health problem of increasing prevalence worldwide with a high socioeconomic impact. Our knowledge on the molecular mechanisms underlying allergic diseases and their treatments has significantly improved over the last years. The generation of allergen-specific regulatory T cells (Tregs) is crucial in the induction of healthy immune responses to allergens, preventing the development and worsening of allergic diseases. SUMMARY In the last decades, intensive research has focused on the study of the molecular mechanisms involved in Treg development and Treg-mediated suppression. These mechanisms are essential for the induction of sustained tolerance by allergen-specific immunotherapy (AIT) after treatment discontinuation. Compelling experimental evidence demonstrated altered suppressive capacity of Tregs in patients suffering from allergic rhinitis, allergic asthma, food allergy, or atopic dermatitis, as well as the restoration of their numbers and functionality after successful AIT. KEY MESSAGE The better understanding of the molecular mechanisms involved in Treg generation during allergen tolerance induction might well contribute to the development of novel strategies for the prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
- Leticia Martín-Cruz
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Complutense University, Madrid, Spain
| | - Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University, Madrid, Spain
| | - Sofía Sirvent
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| |
Collapse
|
9
|
Charles N, Kortekaas-Krohn I, Kocaturk E, Scheffel J, Altrichter S, Steinert C, Xiang YK, Gutermuth J, Reber LL, Maurer M. Autoreactive IgE: Pathogenic role and therapeutic target in autoimmune diseases. Allergy 2023; 78:3118-3135. [PMID: 37555488 DOI: 10.1111/all.15843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/08/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Autoimmunity is the break of tolerance to self-antigens that leads to organ-specific or systemic diseases often characterized by the presence of pathogenic autoreactive antibodies (AAb) produced by plasmablast and/or plasma cells. AAb are prevalent in the general population and not systematically associated with clinical symptoms. In contrast, in some individuals, these AAb are pathogenic and drive the development of signs and symptoms of antibody-mediated autoimmune diseases (AbAID). AAb production, isotype profiles, and glycosylations are promoted by pro-inflammatory triggers linked to genetic, environmental, and hormonal parameters. Recent evidence supports a role for pathogenic AAb of the IgE isotype in a number of AbAID. Autoreactive IgE can drive the activation of mast cells, basophils, and other types of FcεRI-bearing cells and may play a role in promoting autoantibody production and other pro-inflammatory pathways. In this review, we discuss the current knowledge on the pathogenicity of autoreactive IgE in AbAID and their status as therapeutic targets. We also highlight unresolved issues including the need for assays that reproducibly quantify IgE AAbs, to validate their diagnostic and prognostic value, and to further study their pathophysiological contributions to AbAID.
Collapse
Affiliation(s)
- Nicolas Charles
- Faculté de Médecine site Bichat, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Université Paris Cité, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| | - Inge Kortekaas-Krohn
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Department of Dermatology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Emek Kocaturk
- Department of Dermatology, Koç University School of Medicine, Istanbul, Turkey
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Jörg Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Sabine Altrichter
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
- Departement of Dermatology and Venerology, Kepler University Hospital, Linz, Austria
| | - Carolin Steinert
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
- Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Berlin, Germany
| | - Yi-Kui Xiang
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Jan Gutermuth
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Department of Dermatology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Laurent L Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR 1291, University of Toulouse, INSERM, CNRS, Toulouse, France
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| |
Collapse
|
10
|
Kolkhir P, Akdis CA, Akdis M, Bachert C, Bieber T, Canonica GW, Guttman-Yassky E, Metz M, Mullol J, Palomares O, Renz H, Ständer S, Zuberbier T, Maurer M. Type 2 chronic inflammatory diseases: targets, therapies and unmet needs. Nat Rev Drug Discov 2023; 22:743-767. [PMID: 37528191 DOI: 10.1038/s41573-023-00750-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 08/03/2023]
Abstract
Over the past two decades, significant progress in understanding of the pathogenesis of type 2 chronic inflammatory diseases has enabled the identification of compounds for more than 20 novel targets, which are approved or at various stages of development, finally facilitating a more targeted approach for the treatment of these disorders. Most of these newly identified pathogenic drivers of type 2 inflammation and their corresponding treatments are related to mast cells, eosinophils, T cells, B cells, epithelial cells and sensory nerves. Epithelial barrier defects and dysbiotic microbiomes represent exciting future drug targets for chronic type 2 inflammatory conditions. Here, we review common targets, current treatments and emerging therapies for the treatment of five major type 2 chronic inflammatory diseases - atopic dermatitis, chronic prurigo, chronic urticaria, asthma and chronic rhinosinusitis with nasal polyps - with a high need for targeted therapies. Unmet needs and future directions in the field are discussed.
Collapse
Affiliation(s)
- Pavel Kolkhir
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany.
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) Davos, University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) Davos, University of Zürich, Davos, Switzerland
| | - Claus Bachert
- Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital of Münster, Münster, Germany
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Division of ENT diseases, Karolinska Hospital, Stockholm, Sweden
| | - Thomas Bieber
- Department of Dermatology and Allergy, University Hospital, Bonn, Germany
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
- Davos Biosciences, Davos, Switzerland
| | - Giorgio Walter Canonica
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Asthma & Allergy Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Martin Metz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Joaquim Mullol
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clínic Barcelona, FRCB-IDIBAPS, Universitat de Barcelona, CIBERES, Barcelona, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Harald Renz
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Sonja Ständer
- Section Pruritus Medicine, Department of Dermatology and Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Torsten Zuberbier
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany.
| |
Collapse
|
11
|
Sindher SB, Hillier C, Anderson B, Long A, Chinthrajah RS. Treatment of food allergy: Oral immunotherapy, biologics, and beyond. Ann Allergy Asthma Immunol 2023; 131:29-36. [PMID: 37100276 PMCID: PMC10330596 DOI: 10.1016/j.anai.2023.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
The prevalence of food allergy (FA) has been increasing globally and comes with a heavy burden not just economically, but also on quality of life. Although oral immunotherapy (OIT) is effective at inducing desensitization to food allergens, it has several limitations that weaken its success. Limitations include a long duration of build-up, especially when used for multiple allergens, and a high rate of reported adverse events. Furthermore, OIT may not be effective in all patients. Efforts are underway to identify additional treatment options, either as monotherapy or in combination, to treat FA or enhance the safety and efficacy of OIT. Biologics such as omalizumab and dupilumab, which already have US Food and Drug Administration approval for other atopic conditions have been the most studied, but additional biologics and novel strategies are emerging. In this review, we discuss therapeutic strategies including immunoglobulin E inhibitors, immunoglobulin E disruptors, interleukin-4 and interleukin-13 inhibitors, antialarmins, JAK1 and BTK inhibitors, and nanoparticles, and the data surrounding their application in FA and highlighting their potential.
Collapse
Affiliation(s)
- Sayantani B Sindher
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, California.
| | - Claire Hillier
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, California
| | - Brent Anderson
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, California
| | - Andrew Long
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, California
| | - R Sharon Chinthrajah
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, California
| |
Collapse
|
12
|
Olewicz-Gawlik A, Kowala-Piaskowska A. Self-reactive IgE and anti-IgE therapy in autoimmune diseases. Front Pharmacol 2023; 14:1112917. [PMID: 36755957 PMCID: PMC9899859 DOI: 10.3389/fphar.2023.1112917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Growing evidence indicates the pathogenic role of autoreactive IgE in autoimmune diseases. Incidence of autoimmune and allergic diseases in the industrialized countries is consistently icreasing, thus leading to concerted efforts to comprehend the regulation of IgE-mediated mechanisms. The first reports of a presence of IgE autoantibodies in patients with autoimmune diseases have been published a long time ago, and it is now recognized that self-reactive IgE can mediate inflammatory response in bullous pemhigoid, systemic lupus erythematosus, chronic urticaria, and atopic dermatitis. The advances in understanding the pathomechanisms of these disorders brought to a successful use of anti-IgE strategies in their management. The present review discusses the current state of knowledge on the IgE-mediated autoimmunity and anti-IgE treatment, and pave the way for further exploration of the subject.
Collapse
Affiliation(s)
- Anna Olewicz-Gawlik
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland,Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Poznan University of Medical Sciences, Poznan, Poland,*Correspondence: Anna Olewicz-Gawlik,
| | - Arleta Kowala-Piaskowska
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
13
|
Zuberbier T, Wood RA, Bindslev-Jensen C, Fiocchi A, Chinthrajah RS, Worm M, Deschildre A, Fernandez-Rivas M, Santos AF, Jaumont X, Tassinari P. Omalizumab in IgE-Mediated Food Allergy: A Systematic Review and Meta-Analysis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 11:1134-1146. [PMID: 36529441 DOI: 10.1016/j.jaip.2022.11.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND A growing number of studies have shown encouraging results with omalizumab (OMA) as monotherapy and as an adjunct to oral immunotherapy (OMA+OIT) in patients with single/multiple food allergies. OBJECTIVES To evaluate the efficacy and safety of OMA or OMA+OIT in patients with immunoglobulin E (IgE)-mediated food allergy. METHODS An extensive literature search (inception to December 31, 2020) was performed to identify randomized, controlled, and observational studies that assessed OMA as monotherapy or OMA+OIT in patients with IgE-mediated food allergy. The outcomes were an increase in tolerated dose of foods, successful desensitization, sustained unresponsiveness, immunological biomarkers, severity of allergic reactions to food, quality of life (QoL), and safety. A P less than .05 was considered significant. RESULTS In total, 36 studies were included. The OMA monotherapy (vs pre-OMA) significantly increased the tolerated dose of multiple foods; increased the threshold of tolerated dose for milk, egg, wheat, and baked milk; improved QoL; and reduced food-induced allergic reactions (all P < .01). The OMA+OIT significantly increased the tolerated dose of multiple foods (vs placebo and pre-OMA), desensitization (vs placebo+OIT and pre-OMA) (all P ≤ .01), and improved QoL (vs pre-OMA) and immunoglobulin G4 levels (both P < .01). No major safety concerns were identified. CONCLUSIONS In IgE-mediated food allergy, OMA can help patients consume multiple foods and allow for food dose escalation. As an adjunct to OIT, OMA can also support high-dose desensitization and higher maintenance doses. Further studies are warranted to empirically evaluate the effect of OMA and confirm these findings.
Collapse
Affiliation(s)
- Torsten Zuberbier
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany; Institute for Allergology, Charité - University Medicine Berlin, Corporate Member of Freie University of Berlin and Humboldt University of Berlin, Berlin, Germany.
| | - Robert A Wood
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Carsten Bindslev-Jensen
- Odense Research Centre for Anaphylaxis, Odense University Hospital, Odense, Denmark; Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Alessandro Fiocchi
- Translational Research in Paediatric Specialities Area, Division of Allergy, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - R Sharon Chinthrajah
- Sean N. Parker Centre for Allergy and Asthma Research, Stanford University, Stanford, Calif; Division of Pulmonary and Critical Care Medicine, Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, Calif
| | - Margitta Worm
- Division of Allergy and Immunology, Department of Dermatology, Venerology and Allergy, Charité - University Medicine, Berlin, Germany
| | - Antoine Deschildre
- CHU Lille, Pediatric Pulmonology and Allergy Unit, Jeanne de Flandre Hospital, University of Nord de France, Lille, France
| | - Montserrat Fernandez-Rivas
- Allergy Department, Hospital Clinico San Carlos, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK; Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, UK; Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | | | | |
Collapse
|
14
|
Bryant N, Muehling LM. T-cell responses in asthma exacerbations. Ann Allergy Asthma Immunol 2022; 129:709-718. [PMID: 35918022 PMCID: PMC9987567 DOI: 10.1016/j.anai.2022.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Asthma is a chronic lung disease comprising multiple endotypes and characterized by periodic exacerbations. A diverse array of T cells has been found to contribute to all endotypes of asthma in pathogenic and regulatory roles. Here, we review the contributions of CD4+, CD8+, and unconventional T cells in allergic and nonallergic asthma. DATA SOURCES Review of published literature pertaining to conventional and unconventional T-cell types in asthma. STUDY SELECTIONS Recent peer-reviewed articles pertaining to T cells in asthma, with additional peer-reviewed studies for context. RESULTS Much research in asthma has focused on the roles of CD4+ TH cells. Roles for TH2 cells in promoting allergic asthma pathogenesis have been well-described, and the recent description of pathogenic TH2A cells provides additional insight into these responses. Other TH types, notably TH1 and TH17, have been linked to neutrophilic and steroid-resistant asthma phenotypes. Beyond CD4+ T cells, CD8+ Tc2 cells are also strongly associated with allergic asthma. An emerging area for study is unconventional T-cell types, including γδT, invariant natural killer T, and mucosal-associated invariant T cells. Although data in asthma remain limited for these cells, their ability to bridge innate and adaptive responses likely makes them key players in asthma. A number of asthma therapies target T-cell responses, and, although data are limited, they seem to modulate T-cell populations. CONCLUSION Given the diversity and heterogeneity of asthma and T-cell responses, there remain many rich avenues for research to better understand the pathogenesis of asthma. Despite the breadth of T cells in asthma, approved therapeutics remain limited to TH2 networks.
Collapse
Affiliation(s)
- Naomi Bryant
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lyndsey M Muehling
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
15
|
Benito‐Villalvilla C, de la Rocha‐Muñoz A, López‐Abente J, Eggel A, Bottoli I, Severin T, Woisetschläger M, Palomares O. Ligelizumab impairs
IgE
‐binding to plasmacytoid dendritic cells more potently than omalizumab and restores
IFN
‐α production and
FOXP3
+
Treg generation. Allergy 2022; 78:1060-1072. [PMID: 36315052 DOI: 10.1111/all.15567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Ligelizumab is an anti-IgE monoclonal antibody binding IgE with higher affinity than omalizumab that is under clinical investigation for several IgE-mediated diseases. We previously showed that omalizumab removes IgE bound to FcεRI on plasmacytoid dendritic cells (pDCs) and restores their ability to produce IFN-α and regulatory T cells (Tregs). The aim of this work is to investigate the capacity of ligelizumab to regulate functional properties of pDCs in comparison with omalizumab. METHODS pDCs were isolated from atopic donors and IgE was detached from FcεRI on pDCs with designed ankyrin repeat protein (DARPin) bi53-79. pDCs were resensitized with IgE alone or in the presence of ligelizumab or omalizumab prior to IgE-FcεRI crosslinking and Toll-like receptor 9 (TLR9) stimulation. Flow cytometry, ELISA, coculture experiments and intranuclear staining were performed to determine cytokine production and Treg generation. An antigen-specific model of resensitization and IgE-crosslinking was also performed. RESULTS The levels of serum total free IgE show a non-linear positive correlation with the frequency of IgE+ pDCs displaying IgE bound to FcεRI within the 43 individual donors included in the study. Ligelizumab displays stronger capacity than omalizumab to block the binding of free IgE to FcεRI on human pDCs, resulting in a greater restoration of TLR9-L-induced IFN-α production. Ligelizumab also restores the ability of pDCs to generate FOXP3+ Tregs as previously reported for omalizumab. CONCLUSIONS The uncovered novel molecular mechanisms of ligelizumab to regulate functional properties of pDCs from atopic donors might have important clinical implications for anti-IgE treatments in different IgE-mediated diseases.
Collapse
Affiliation(s)
| | - Andrés de la Rocha‐Muñoz
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
- Autonomous University of Madrid Madrid Spain
| | - Jacobo López‐Abente
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Alexander Eggel
- Department of BioMedical Research University of Bern Bern Switzerland
- Department of Rheumatology and Immunology University Hospital of Bern Bern Switzerland
| | | | | | | | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| |
Collapse
|
16
|
Palomares O, Elewaut D, Irving PM, Jaumont X, Tassinari P. Regulatory T cells and immunoglobulin E: A new therapeutic link for autoimmunity? Allergy 2022; 77:3293-3308. [PMID: 35852798 DOI: 10.1111/all.15449] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 01/28/2023]
Abstract
Autoimmune diseases have a prevalence of approximately 7 to 9% and are classified as either organ-specific diseases, including type I diabetes, multiple sclerosis, inflammatory bowel disease and myasthenia gravis, or systemic diseases, including systemic lupus erythematosus, rheumatoid arthritis and Sjögren's syndrome. While many advancements have been made in understanding of the mechanisms of autoimmune disease, including the nature of self-tolerance and its breakdown, there remain unmet needs in terms of effective and highly targeted treatments. T regulatory cells (Tregs) are key mediators of peripheral tolerance and are implicated in many autoimmune diseases, either as a result of reduced numbers or altered function. Tregs may be broadly divided into those generated in the thymus (tTregs) and those generated in the periphery (pTregs). Tregs target many different immune cell subsets and tissues to suppress excessive inflammation and to support tissue repair and homeostasis: there is a fine balance between Treg cell stability and the plasticity that is required to adjust Tregs' regulatory purposes to particular immune responses. The central role of immunoglobulin E (IgE) in allergic disease is well recognized, and it is becoming increasingly apparent that this immunoglobulin also has a wider role encompassing other diseases including autoimmune disease. Anti-IgE treatment restores the capacity of plasmacytoid dendritic cells (pDCs) impaired by IgE- high-affinity IgE receptor (FcεR1) cross-linking to induce Tregs in vitro in atopic patients. The finding that anti-IgE therapy restores Treg cell homeostasis, and that this mechanism is associated with clinical improvement in asthma and chronic spontaneous urticaria suggests that anti-IgE therapy may also have a potential role in the treatment of autoimmune diseases in which Tregs are involved.
Collapse
Affiliation(s)
| | - Dirk Elewaut
- Department of Rheumatology, VIB Center for Inflammation Research, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Peter M Irving
- Guy's and St Thomas' Hospital Foundation Trust, London, UK
- King's College London, London, UK
| | | | | |
Collapse
|
17
|
Wood RA, Chinthrajah RS, Eggel A, Bottoli I, Gautier A, Woisetschlaeger M, Tassinari P, Altman P. The rationale for development of ligelizumab in food allergy. World Allergy Organ J 2022; 15:100690. [PMID: 36185545 PMCID: PMC9483652 DOI: 10.1016/j.waojou.2022.100690] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
Food allergy (FA) is a growing healthcare problem worldwide and the rising prevalence in many countries can be attributed to lifestyle, environmental, and nutritional changes. Immunoglobulin E (IgE)-mediated FA is the most common form of FA affecting approximately 3%-10% of adults and 8% of children across the globe. Food allergen-induced immediate hypersensitivity reactions mediated by IgE and high-affinity IgE receptor (FcεRI) complexes on mast cells and basophils are a major hallmark of the disease. FA can affect several aspects of health-related quality of life and impose a substantial financial burden on patients and healthcare systems. Although currently there is one United States Food and Drug Administration (FDA) and European Medicines Agency (EMA)-approved treatment for peanut allergy (Palforzia), the main treatment approaches are based on allergen avoidance and symptom management. Thus, there is an urgent need for more effective and ideally disease-modifying strategies. Given the crucial role of IgE in FA, anti-IgE monoclonal antibodies are considered promising therapeutic agents. Talizumab was the first humanized anti-IgE antibody to demonstrate substantial protection against allergic reactions from accidental peanut exposure by substantially increasing the peanut reactivity threshold on oral food challenge. However, development of talizumab was discontinued and further trials were performed using omalizumab. In double-blind, Phase 2, placebo-controlled trials in patients with multi-FAs, sustained dosing with omalizumab, or omalizumab in combination with oral immunotherapy, enabled rapid desensitization to multiple trigger foods. In this review, we describe the development of ligelizumab (a derivative of talizumab), a next generation, humanized monoclonal anti-IgE antibody, its existing clinical evidence, and its potential in the management of FA. When compared with omalizumab, ligelizumab binds with ∼88-fold higher affinity for human IgE and recognizes a different epitope that substantially overlaps with the binding site of FcεRI. These properties translate into a high potency to block IgE/FcεRI signaling in both in vitro and in vivo studies. Given its efficient suppression of IgE levels, good safety and pharmacokinetic/pharmacodynamic profile, ligelizumab clearly warrants further studies for the potential management of FA.
Collapse
Affiliation(s)
- Robert A Wood
- Division of Allergy & Immunology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R Sharon Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Alexander Eggel
- Department of BioMedical Research, University of Bern, Bern, Switzerland.,Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| | | | | | | | | | - Pablo Altman
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| |
Collapse
|
18
|
Jutel M, Torres MJ, Palomares O, Akdis CA, Eiwegger T, Untersmayr E, Barber D, Zemelka-Wiacek M, Kosowska A, Palmer E, Vieths S, Mahler V, Canonica WG, Nadeau K, Shamji MH, Agache I. COVID-19 vaccination in patients receiving allergen immunotherapy (AIT) or biologicals-EAACI recommendations. Allergy 2022; 77:2313-2336. [PMID: 35147230 PMCID: PMC9111382 DOI: 10.1111/all.15252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Immune modulation is a key therapeutic approach for allergic diseases, asthma and autoimmunity. It can be achieved in an antigen-specific manner via allergen immunotherapy (AIT) or in an endotype-driven approach using biologicals that target the major pathways of the type 2 (T2) immune response: immunoglobulin (Ig)E, interleukin (IL)-5 and IL-4/IL-13 or non-type 2 response: anti-cytokine antibodies and B-cell depletion via anti-CD20. Coronavirus disease 2019 (COVID-19) vaccination provides an excellent opportunity to tackle the global pandemics and is currently being applied in an accelerated rhythm worldwide. The vaccine exerts its effects through immune modulation, induces and amplifies the response against the severe acute respiratory syndrome coronavirus (SARS-CoV-2). Thus, as there may be a discernible interference between these treatment modalities, recommendations on how they should be applied in sequence are expected. The European Academy of Allergy and Clinical Immunology (EAACI) assembled an expert panel under its Research and Outreach Committee (ROC). This expert panel evaluated the evidence and have formulated recommendations on the administration of COVID-19 vaccine in patients with allergic diseases and asthma receiving AIT or biologicals. The panel also formulated recommendations for COVID-19 vaccine in association with biologicals targeting the type 1 or type 3 immune response. In formulating recommendations, the panel evaluated the mechanisms of COVID-19 infection, of COVID-19 vaccine, of AIT and of biologicals and considered the data published for other anti-infectious vaccines administered concurrently with AIT or biologicals.
Collapse
Affiliation(s)
- Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Maria J Torres
- Allergy Unit, Regional University Hospital of Malaga, IBIMA-UMA-ARADyAL-BIONAND, Malaga, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Thomas Eiwegger
- Division of Immunology and Allergy, The Department of 13 Pediatrics, Food Allergy and Anaphylaxis Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Domingo Barber
- Facultad de Medicina, Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | | | - Anna Kosowska
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Elizabeth Palmer
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London. MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Stefan Vieths
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | | | - Walter G Canonica
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Personalized Medicine Asthma, & Allergy Center-IRCCS Humanitas Research Hospital, Milan, Italy
| | - Kari Nadeau
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Stanford, California, USA
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London. MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | | |
Collapse
|
19
|
Angelina A, Jiménez-Saiz R, Pérez-Diego M, Maldonado A, Rückert B, Akdis M, Martín-Fontecha M, Akdis CA, Palomares O. The cannabinoid WIN55212-2 impairs peanut allergic sensitization and promotes the generation of allergen-specific regulatory T cells. Clin Exp Allergy 2022; 52:540-549. [PMID: 34995385 DOI: 10.1111/cea.14092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/27/2021] [Accepted: 01/02/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cannabinoids are lipid-derived mediators with anti-inflammatory properties in different diseases. WIN55212-2, a non-selective synthetic cannabinoid, reduces immediate anaphylactic reactions in a mouse model of peanut allergy, but its capacity to prevent peanut allergic sensitization and the underlying mechanisms remains largely unknown. OBJECTIVE To investigate the capacity of WIN55212-2 to immunomodulate peanut-stimulated human dendritic cells (DCs) and peanut allergic sensitization in mice. METHODS Surface markers and cytokines were quantified by flow cytometry, ELISA and qPCR in human monocyte-derived DCs (hmoDCs) and T cell cocultures after stimulation with peanut alone or in the presence of WIN55212-2. Mice were epicutaneously sensitized with peanut alone or peanut/WIN55212-2. After peanut challenge, drop in body temperature, hematocrit, clinical symptoms, peanut-specific antibodies in serum and FOXP3+ regulatory (Treg) cells in spleen and lymph nodes were quantified. Splenocytes were stimulated in vitro with peanut to analyse allergen-specific T cell responses. RESULTS WIN55212-2 reduced peanut-induced hmoDC activation and promoted the generation of CD4+ CD127- CD25+ FOXP3+ Treg cells, while reducing the induction of IL-5-producing T cells. In vivo, WIN55212-2 impaired the peanut-induced migration of DCs to lymph nodes and their maturation. WIN55212-2 significantly reduced the induction of peanut-specific IgE and IgG1 antibodies in serum during epicutaneous peanut sensitization, reduced the clinical symptoms score upon peanut challenge and promoted the generation of allergen-specific FOXP3+ Treg cells. CONCLUSIONS The synthetic cannabinoid WIN55212-2 interferes with peanut sensitization and promotes tolerogenic responses, which might well pave the way for the development of novel prophylactic and therapeutic strategies for peanut allergy.
Collapse
Affiliation(s)
- Alba Angelina
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Mario Pérez-Diego
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Angel Maldonado
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mar Martín-Fontecha
- Department of Organic Chemistry, School of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
20
|
Cannabinoids induce functional Tregs by promoting tolerogenic DCs via autophagy and metabolic reprograming. Mucosal Immunol 2022; 15:96-108. [PMID: 34548620 PMCID: PMC8732281 DOI: 10.1038/s41385-021-00455-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/04/2021] [Accepted: 09/07/2021] [Indexed: 02/04/2023]
Abstract
The generation of functional regulatory T cells (Tregs) is essential to keep tissue homeostasis and restore healthy immune responses in many biological and inflammatory contexts. Cannabinoids have been pointed out as potential therapeutic tools for several diseases. Dendritic cells (DCs) express the endocannabinoid system, including the cannabinoid receptors CB1 and CB2. However, how cannabinoids might regulate functional properties of DCs is not completely understood. We uncover that the triggering of cannabinoid receptors promote human tolerogenic DCs that are able to prime functional FOXP3+ Tregs in the context of different inflammatory diseases. Mechanistically, cannabinoids imprint tolerogenicity in human DCs by inhibiting NF-κB, MAPK and mTOR signalling pathways while inducing AMPK and functional autophagy flux via CB1- and PPARα-mediated activation, which drives metabolic rewiring towards increased mitochondrial activity and oxidative phosphorylation. Cannabinoids exhibit in vivo protective and anti-inflammatory effects in LPS-induced sepsis and also promote the generation of FOXP3+ Tregs. In addition, immediate anaphylactic reactions are decreased in peanut allergic mice and the generation of allergen-specific FOXP3+ Tregs are promoted, demonstrating that these immunomodulatory effects take place in both type 1- and type 2-mediated inflammatory diseases. Our findings might open new avenues for novel cannabinoid-based interventions in different inflammatory and immune-mediated diseases.
Collapse
|
21
|
Boonpiyathad T, Lao-Araya M, Chiewchalermsri C, Sangkanjanavanich S, Morita H. Allergic Rhinitis: What Do We Know About Allergen-Specific Immunotherapy? FRONTIERS IN ALLERGY 2021; 2:747323. [PMID: 35387059 PMCID: PMC8974870 DOI: 10.3389/falgy.2021.747323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 01/23/2023] Open
Abstract
Allergic rhinitis (AR) is an IgE-mediated disease that is characterized by Th2 joint inflammation. Allergen-specific immunotherapy (AIT) is indicated for AR when symptoms remain uncontrolled despite medication and allergen avoidance. AIT is considered to have been effective if it alleviated allergic symptoms, decreased medication use, improved the quality of life even after treatment cessation, and prevented the progression of AR to asthma and the onset of new sensitization. AIT can be administered subcutaneously or sublingually, and novel routes are still being developed, such as intra-lymphatically and epicutaneously. AIT aims at inducing allergen tolerance through modification of innate and adaptive immunologic responses. The main mechanism of AIT is control of type 2 inflammatory cells through induction of various functional regulatory cells such as regulatory T cells (Tregs), follicular T cells (Tfr), B cells (Bregs), dendritic cells (DCregs), innate lymphoid cells (IL-10+ ILCs), and natural killer cells (NKregs). However, AIT has a number of disadvantages: the long treatment period required to achieve greater efficacy, high cost, systemic allergic reactions, and the absence of a biomarker for predicting treatment responders. Currently, adjunctive therapies, vaccine adjuvants, and novel vaccine technologies are being studied to overcome the problems associated with AIT. This review presents an updated overview of AIT, with a special focus on AR.
Collapse
Affiliation(s)
- Tadech Boonpiyathad
- Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
- *Correspondence: Tadech Boonpiyathad
| | - Mongkol Lao-Araya
- Faculty of Medicine, Department of Pediatrics, Chiang Mai University, Chiang Mai, Thailand
| | - Chirawat Chiewchalermsri
- Department of Medicine, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Sasipa Sangkanjanavanich
- Faculty of Medicine Ramathibodi Hospital, Department of Medicine, Mahidol University, Bangkok, Thailand
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
22
|
Nakamura N, Kashitani Y, Yoshisue H, Nagasaki M, Sasajima T. Real-life long-term safety and effectiveness of omalizumab in Japanese pediatric patients with severe allergic asthma: A post-marketing surveillance. Allergol Int 2021; 70:319-326. [PMID: 33526351 DOI: 10.1016/j.alit.2021.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Omalizumab is approved as add-on therapy for pediatric asthma since 2013 in Japan, however, its data in clinical practice is limited. This post-marketing surveillance aimed to evaluate long-term safety and effectiveness of omalizumab in Japanese pediatric patients with severe allergic asthma in real-life setting. METHODS This 104-week, multicenter surveillance was conducted from September 2013 to May 2019 by central registration method. Patients with severe allergic asthma aged ≥6 and < 15 years at initiation of treatment who were first-time omalizumab users were included. The primary endpoints included incidence of adverse drug reactions and physician's Global Evaluation of Treatment Effectiveness (GETE). The secondary endpoints included incidence of serious adverse events, adverse events and adverse drug reactions of special interest and asthma exacerbation-related events. RESULTS Of the 128 patients enrolled, 127 completed the surveillance and were included for safety and effectiveness analysis. Thirteen patients experienced 20 adverse drug reactions with an incidence rate of 10.2%. The most frequent adverse drug reactions were pyrexia (2.4%) and urticaria (1.6%). In total, adverse events and serious adverse events occurred in 60 (47.2%) and 30 patients (23.6%) respectively. Two patients experienced anaphylactic reaction and 1 patient experienced type 1 hypersensitivity. 77.2% had an effective response to omalizumab according to GETE at final assessment, and frequency of all asthma exacerbation-related events decreased in post-treatment versus pre-treatment. CONCLUSIONS Long-term omalizumab treatment showed no new safety signals in pediatric patients with severe allergic asthma. The observed safety and effectiveness profile was consistent with previous studies.
Collapse
|
23
|
Benito-Villalvilla C, Pérez-Diego M, Angelina A, Kisand K, Rebane A, Subiza JL, Palomares O. Allergoid-mannan conjugates reprogram monocytes into tolerogenic dendritic cells via epigenetic and metabolic rewiring. J Allergy Clin Immunol 2021; 149:212-222.e9. [PMID: 34153371 DOI: 10.1016/j.jaci.2021.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Allergoid-mannan conjugates are novel vaccines for allergen-specific immunotherapy being currently assayed in phase 2 clinical trials. Allergoid-mannan conjugates target dendritic cells (DCs) and generate functional forkhead box P3 (FOXP3)-positive Treg cells, but their capacity to reprogram monocyte differentiation remains unknown. OBJECTIVE We studied whether allergoid-mannan conjugates could reprogram monocyte differentiation into tolerogenic DCs and the underlying molecular mechanisms. METHODS Monocytes from nonatopic and allergic subjects were differentiated into DCs under conventional protocols in the absence or presence of allergoid-mannan conjugates. ELISA, real-time quantitative PCR, coculture, flow cytometry, and suppression assay were performed. Metabolic and epigenetic techniques were also used. RESULTS Monocyte differentiation from nonatopic and allergic subjects into DCs in the presence of allergoid-mannan conjugates yields stable tolerogenic DCs. Lipopolysaccharide-stimulated mannan-tolDCs show a significantly lower cytokine production, lower TNF-α/IL-10 ratio, and higher expression of the tolerogenic molecules PDL1, IDO, SOCS1, SOCS3, and IL10; and they induce higher numbers of functional FOXP3+ Treg cells than conventional DC counterparts. Mannan-tolDCs shift glucose metabolism from Warburg effect and lactate production to mitochondrial oxidative phosphorylation. They also display epigenetic reprogramming involving specific histone marks within tolerogenic loci and lower expression levels of histone deacetylase genes. Mannan-tolDCs significantly increase the expression of the anti-inflammatory miRNA-146a/b and decrease proinflammatory miRNA-155. CONCLUSIONS Allergoid-mannan conjugates reprogram monocyte differentiation into stable tolerogenic DCs via epigenetic and metabolic reprogramming. Our findings shed light on the novel mechanisms by which allergoid-mannan conjugates might contribute to allergen tolerance induction during allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Mario Pérez-Diego
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain.
| |
Collapse
|
24
|
Pfaar O, Creticos PS, Kleine-Tebbe J, Canonica GW, Palomares O, Schülke S. One Hundred Ten Years of Allergen Immunotherapy: A Broad Look Into the Future. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:1791-1803. [PMID: 33966868 DOI: 10.1016/j.jaip.2020.12.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
Allergen immunotherapy (AIT) is the only disease-modifying treatment option for patients with type 1-mediated allergic diseases such as allergic rhinitis/rhinoconjunctivitis with/without allergic asthma. Although many innovations have been developed since the first clinical report of Noon et al in 1911, the improvement of clinical efficacy and tolerability of this treatment is still an important unmet need. Hence, much progress has been made in the characterization of the cell types, cytokines, and intracellular signaling events involved in the development, maintenance, and regulation of allergic reactions, and also in the understanding of the mechanisms of tolerance induction in AIT. This comprehensive review aims to summarize the current innovative approaches in AIT, but also gives an outlook on promising candidates of the future. On the basis of an extensive literature review, integrating a clinical point of view, this article focuses on recent and future innovations regarding biologicals, allergen-derived peptides, recombinant allergens, "Toll"-like receptor agonists and other adjuvants, and novel application routes being developed for future AIT.
Collapse
Affiliation(s)
- Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany.
| | - Peter S Creticos
- Division of Allergy & Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md; Creticos Research Group, Crownsville, Md
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient & Clinical Research Center, Hanf, Ackermann & Kleine-Tebbe, Berlin, Germany
| | - Giorgio Walter Canonica
- Personalized Medicine Asthma & Allergy Clinic, Humanitas University & Research Hospital-IRCCS, Milano, Italy
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Stefan Schülke
- Vice Presidents Research Group, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
25
|
Menzella F, Ghidoni G, Galeone C, Capobelli S, Scelfo C, Facciolongo NC. Immunological Aspects Related to Viral Infections in Severe Asthma and the Role of Omalizumab. Biomedicines 2021; 9:348. [PMID: 33808197 PMCID: PMC8066139 DOI: 10.3390/biomedicines9040348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Viral respiratory infections are recognized risk factors for the loss of control of allergic asthma and the induction of exacerbations, both in adults and children. Severe asthma is more susceptible to virus-induced asthma exacerbations, especially in the presence of high IgE levels. In the course of immune responses to viruses, an initial activation of innate immunity typically occurs and the production of type I and III interferons is essential in the control of viral spread. However, the Th2 inflammatory environment still appears to be protective against viral infections in general and in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections as well. As for now, literature data, although extremely limited and preliminary, show that severe asthma patients treated with biologics don't have an increased risk of SARS-CoV-2 infection or progression to severe forms compared to the non-asthmatic population. Omalizumab, an anti-IgE monoclonal antibody, exerts a profound cellular effect, which can stabilize the effector cells, and is becoming much more efficient from the point of view of innate immunity in contrasting respiratory viral infections. In addition to the antiviral effect, clinical efficacy and safety of this biological allow a great improvement in the management of asthma.
Collapse
Affiliation(s)
- Francesco Menzella
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (G.G.); (C.G.); (S.C.); (C.S.); (N.C.F.)
| | | | | | | | | | | |
Collapse
|
26
|
Bachert C, Maurer M, Palomares O, Busse WW. What is the contribution of IgE to nasal polyposis? J Allergy Clin Immunol 2021; 147:1997-2008. [PMID: 33757720 DOI: 10.1016/j.jaci.2021.03.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Taking a novel approach, this narrative review collates knowledge about nasal polyposis and the biological functions of IgE in several diseases (allergic rhinitis, allergic asthma, nonsteroidal anti-inflammatory drugs-exacerbated respiratory disease, and chronic spontaneous urticaria) to consider which IgE-mediated mechanisms are relevant to nasal polyposis pathology. A type 2 eosinophil-dominated inflammatory signature is typical in nasal polyp tissue of European patients with nasal polyposis, with a shift toward this endotype observed in Asian populations in recent years. Elevated polyclonal IgE is present in the nasal tissue of patients with and without allergy. It is derived from many different B-cell clones and, importantly, is functional (proinflammatory). Staphylococcus aureus enterotoxins are thought to act as superantigens, inducing production of polyclonal IgE via B-cell and T-cell activation, and triggering release of inflammatory mediators. In some patients, exposure to antigens/triggers leads to production of high levels of antigen-specific IgE, which mediates cross-linking of the high-affinity IgE receptor on various cells, causing release of inflammatory mediators. The efficacy of omalizumab confirms IgE as an important inflammatory mediator in nasal polyposis. By blocking IgE, omalizumab targets the T2 inflammation in nasal polyposis, reduces nasal polyp score and improves symptoms.
Collapse
Affiliation(s)
- Claus Bachert
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium; Division of ENT Diseases, CLINTEC, Karolinska Institute, Stockholm, Sweden.
| | - Marcus Maurer
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - William W Busse
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| |
Collapse
|
27
|
Chinthrajah RS, Galli SJ. Omalizumab in "non-IgE-mediated" diseases. J Allergy Clin Immunol 2020; 147:1207-1208. [PMID: 33160970 DOI: 10.1016/j.jaci.2020.10.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Affiliation(s)
- R Sharon Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, Calif; Division of the Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, Calif
| | - Stephen J Galli
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, Calif; Department of Pathology, Stanford University, Stanford, Calif; Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|