1
|
Zhuang W, Mun SY, Park WS. Direct effects of antipsychotics on potassium channels. Biochem Biophys Res Commun 2025; 749:151344. [PMID: 39842331 DOI: 10.1016/j.bbrc.2025.151344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) and are severe psychiatric conditions that contribute to disability and increased healthcare costs globally. Although first-, second-, and third-generation antipsychotics are available for treating BD and SCZ, most have various side effects unrelated to their unique functions. Many antipsychotics affect K+ channels (Kv, KCa, Kir, K2P, and other channels), which change the functions of various organs. This review summarizes the biological actions of antipsychotics, including off-target side effects involving K+ channels.
Collapse
Affiliation(s)
- Wenwen Zhuang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
2
|
Hall PR, Jouen-Tachoire T, Schewe M, Proks P, Baukrowitz T, Carpenter EP, Newstead S, Rödström KEJ, Tucker SJ. Structures of TASK-1 and TASK-3 K2P channels provide insight into their gating and dysfunction in disease. Structure 2025; 33:115-122.e4. [PMID: 39637865 DOI: 10.1016/j.str.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
TASK-1 and TASK-3 are pH-sensitive two-pore domain (K2P/KCNK) K+ channels. Their functional roles make them promising targets for treatment of multiple disorders including sleep apnea, pain, and atrial fibrillation. Mutations in these channels are also associated with neurodevelopmental and hypertensive disorders. A previous crystal structure of TASK-1 revealed a lower "X-gate" as a hotspot for missense gain-of-function (GoF) mutations associated with DDSA (developmental delay with sleep apnea). However, the mechanisms of gating in TASK channels are still not fully understood. Here, we resolve structures for both human TASK-1 and TASK-3 by cryoelectron microscopy (cryo-EM), as well as a recurrent TASK-3 variant (G236R) associated with KCNK9 imprinting syndrome (KIS) (formerly known as Birk-Barel syndrome). Combined with functional studies of the X-gating mechanism, we provide evidence for how a highly conserved gating mechanism becomes defective in disease, and also provide further insight into the pathway of conformational changes that underlie the pH-dependent inhibition of TASK channel activity.
Collapse
Affiliation(s)
- Peter Rory Hall
- Department of Biochemistry, University of Oxford, Oxford, UK; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; Scripps Institute, San Diego, CA, USA; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Thibault Jouen-Tachoire
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; Department of Pharmacology, University of Oxford, Oxford, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| | - Marcus Schewe
- Institute of Physiology, Kiel University, Kiel, Germany
| | - Peter Proks
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | | | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Karin E J Rödström
- Department of Biochemistry, University of Oxford, Oxford, UK; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Shin J, Hammer MJ, Paul SM, Conley YP, Harris C, Oppegaard K, Morse L, Cooper BA, Levine JD, Miaskowski C. Associations Between Preoperative Shortness of Breath and Potassium Channels Gene Variations in Women With Breast Cancer. Biol Res Nurs 2025; 27:81-90. [PMID: 39137431 PMCID: PMC11788816 DOI: 10.1177/10998004241268088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
OBJECTIVES Shortness of breath is a common symptom in patients with cancer. However, the mechanisms that underlie this troublesome symptom are poorly understood. Therefore, this study aimed to determine the prevalence of and associated risk factors for shortness of breath in women prior to breast cancer surgery and identify associations between shortness of breath and polymorphisms for potassium channel genes. METHODS Patients were recruited prior to breast cancer surgery and completed a self-report questionnaire on the occurrence of shortness of breath. Genotyping of single nucleotides polymorphism (SNPs) in potassium channel genes was performed using a custom array. Multiple logistic regression analyses were done to identify associations between the occurrence of shortness of breath and SNPs in ten candidate genes. RESULTS Of the 398 patients, 11.1% reported shortness of breath. These patients had a lower annual household income, a higher comorbidity burden, and a lower functional status. After controlling for functional status, comorbidity burden, genomic estimates of ancestry and self-reported race and ethnicity, the genetic associations that remained significant in the multiple regression analyses were for potassium voltage-gated channel subfamily D (KCND2) rs12673992, potassium voltage-gated channel modifier subfamily S (KCNS1) rs4499491, and potassium two pore channel subfamily K (KCNK2) rs4411107. CONCLUSIONS While these findings warrant replication, they suggest that alterations in potassium channel function may contribute to the occurrence of shortness of breath in women prior to breast cancer surgery.
Collapse
Affiliation(s)
- Joosun Shin
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Steven M. Paul
- School of Nursing, University of California San Francisco, San Francisco, CA, USA
| | - Yvette P. Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carolyn Harris
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Lisa Morse
- School of Nursing, University of California San Francisco, San Francisco, CA, USA
| | - Bruce A. Cooper
- School of Nursing, University of California San Francisco, San Francisco, CA, USA
| | | | - Christine Miaskowski
- School of Nursing, University of California San Francisco, San Francisco, CA, USA
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Sun ZY, Lu GQ, Sun HY, Jiang WD, Wang L, Wang YH, Liu LQ, Wang HJ, Tang B, Gao Q, Kang PF. Salidroside ameliorates hypoxic pulmonary hypertension by regulating the two-pore domain potassium TASK-1 channel. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156206. [PMID: 39520952 DOI: 10.1016/j.phymed.2024.156206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Hypoxic pulmonary vasoconstriction (HPV) is a reflex constriction of vascular smooth muscle. This study aims to investigate the role of Salidroside (Sal) in pulmonary arterial dilatation and the potential mechanism of Sal regulating hypoxic pulmonary hypertension in vitro and in vivo. METHODS A rat model of hypoxic pulmonary hypertension (HPH) was constructed using hypoxic chamber. The effect of Sal on HPH were evaluated using vascular ring, whole cell patch-clamp, WGA staining, HE staining, and Sirius Scarlet staining assays. RESULTS Sal treatment alleviated the injury of acute hypoxia on pulmonary circulation in SD rats. Meanwhile, Sal treatment reduced the pulmonary vascular tone of acute hypoxia in a concentration-dependent manner, which was involved in the TWIK-related acid-sensitive potassium channel 1 (TASK-1) mediating diastolic effect. We found that Sal treatment significantly increased the TASK-1 current of pulmonary artery smooth muscle cells (PASMCs) in a concentration-dependent manner, as well as reversed the inhibitory effect of acute hypoxia on the TASK-1 current. Moreover, Sal treatment improved the TASK-1 current density, suppressed the proliferation, and enhanced the apoptosis of PASMCs in SD rats under continuous hypoxic condition. In addition, we found that the electrophysiological remodeling and pulmonary vascular remodeling of PASMCs were improved by the treatment of Sal through the regulation of TASK-1 channel. CONCLUSIONS Sal could alleviate HPH by restoring the function of TASK-1 channel, which may provide a novel method for the treatment of HPH.
Collapse
Affiliation(s)
- Zheng-Yu Sun
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Guo-Qing Lu
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Hong-Yan Sun
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Wen-Di Jiang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, 233000, PR China
| | - Lei Wang
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Yu-Hang Wang
- School of Clinical Medicine of Bengbu Medical University, Bengbu, Anhui 233000, PR China
| | - Le-Qiang Liu
- School of General Practice Medicine of Bengbu Medical University, 2600 Dong hai Avenu, Bengbu, Anhui 233000, PR China
| | - Hong-Ju Wang
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China
| | - Bi Tang
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China.
| | - Qin Gao
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China; Department of Physiology, Bengbu Medical University, Bengbu, Anhui 233000, PR China
| | - Pin-Fang Kang
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China.
| |
Collapse
|
5
|
Leonard EM, Porteus CS, Brink D, Milsom WK. Fish gill chemosensing: knowledge gaps and inconsistencies. J Comp Physiol B 2024; 194:1-33. [PMID: 38758303 DOI: 10.1007/s00360-024-01553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
In this review, we explore the inconsistencies in the data and gaps in our knowledge that exist in what is currently known regarding gill chemosensors which drive the cardiorespiratory reflexes in fish. Although putative serotonergic neuroepithelial cells (NEC) dominate the literature, it is clear that other neurotransmitters are involved (adrenaline, noradrenaline, acetylcholine, purines, and dopamine). And although we assume that these agents act on neurons synapsing with the NECs or in the afferent or efferent limbs of the paths between chemosensors and central integration sites, this process remains elusive and may explain current discrepancies or species differences in the literature. To date it has been impossible to link the distribution of NECs to species sensitivity to different stimuli or fish lifestyles and while the gills have been shown to be the primary sensing site for respiratory gases, the location (gills, oro-branchial cavity or elsewhere) and orientation (external/water or internal/blood sensing) of the NECs are highly variable between species of water and air breathing fish. Much of what has been described so far comes from studies of hypoxic responses in fish, however, changes in CO2, ammonia and lactate have all been shown to elicit cardio-respiratory responses and all have been suggested to arise from stimulation of gill NECs. Our view of the role of NECs is broadening as we begin to understand the polymodal nature of these cells. We begin by presenting the fundamental picture of gill chemosensing that has developed, followed by some key unanswered questions about gill chemosensing in general.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Cosima S Porteus
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
| | - Deidre Brink
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Ribeuz HL, Willer ASM, Chevalier B, Sancho M, Masson B, Eyries M, Jung V, Guerrera IC, Dutheil M, Jekmek KE, Laubry L, Carpentier G, Perez-Vizcaino F, Tu L, Guignabert C, Chaumais MC, Péchoux C, Humbert M, Hinzpeter A, Mercier O, Capuano V, Montani D, Antigny F. Role of KCNK3 Dysfunction in Dasatinib-associated Pulmonary Arterial Hypertension and Endothelial Cell Dysfunction. Am J Respir Cell Mol Biol 2024; 71:95-109. [PMID: 38546978 DOI: 10.1165/rcmb.2023-0185oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/27/2024] [Indexed: 07/02/2024] Open
Abstract
Pulmonary arterial (PA) hypertension (PAH) is a severe cardiopulmonary disease that may be triggered by exposure to drugs such as dasatinib or facilitated by genetic predispositions. The incidence of dasatinib-associated PAH is estimated at 0.45%, suggesting individual predispositions. The mechanisms of dasatinib-associated PAH are still incomplete. We discovered a KCNK3 gene (Potassium channel subfamily K member 3; coding for outward K+ channel) variant in a patient with dasatinib-associated PAH and investigated the impact of this variant on KCNK3 function. Additionally, we assessed the effects of dasatinib exposure on KCNK3 expression. In control human PA smooth muscle cells (hPASMCs) and human pulmonary endothelial cells (hPECs), we evaluated the consequences of KCNK3 knockdown on cell migration, mitochondrial membrane potential, ATP production, and in vitro tube formation. Using mass spectrometry, we determined the KCNK3 interactome. Patch-clamp experiments revealed that the KCNK3 variant represents a loss-of-function variant. Dasatinib contributed to PA constriction by decreasing KCNK3 function and expression. In control hPASMCs, KCNK3 knockdown promotes mitochondrial membrane depolarization and glycolytic shift. Dasatinib exposure or KCNK3 knockdown reduced the number of caveolae in hPECs. Moreover, KCNK3 knockdown in control hPECs reduced migration, proliferation, and in vitro tubulogenesis. Using proximity labeling and mass spectrometry, we identified the KCNK3 interactome, revealing that KCNK3 interacts with various proteins across different cellular compartments. We identified a novel pathogenic variant in KCNK3 and showed that dasatinib downregulates KCNK3, emphasizing the relationship between dasatinib-associated PAH and KCNK3 dysfunction. We demonstrated that a loss of KCNK3-dependent signaling contributes to endothelial dysfunction in PAH and glycolytic switch of hPASMCs.
Collapse
Affiliation(s)
- Hélène Le Ribeuz
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Anaïs Saint-Martin Willer
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Benoit Chevalier
- Paris Cité University, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, France
| | - Maria Sancho
- Department of Physiology and
- Department of Pharmacology, University of Vermont, Burlington, Vermont
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Bastien Masson
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Mélanie Eyries
- Genetics Department, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vincent Jung
- INSERM US24/CNRS UAR3633, Proteomic Platform Necker, Université Paris Cité-Federative Research Structure Necker, Paris, France
| | - Ida Chiara Guerrera
- INSERM US24/CNRS UAR3633, Proteomic Platform Necker, Université Paris Cité-Federative Research Structure Necker, Paris, France
| | - Mary Dutheil
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Kristelle El Jekmek
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Loann Laubry
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Gilles Carpentier
- Gly-CRRET Research Unit 4397, Paris-Est Créteil University, Créteil, France
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ly Tu
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Christophe Guignabert
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Marie-Camille Chaumais
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
- Paris-Saclay University, Faculty of Pharmacy, Orsay, France
- Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Christine Péchoux
- Paris-Saclay University, INRAE, AgroparisTech, GABI, Jouy-en-Josas, France
| | - Marc Humbert
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
- Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Alexandre Hinzpeter
- Paris Cité University, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, France
| | - Olaf Mercier
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
- Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Groupe Hospitalier Paris Saint-Joseph-Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Véronique Capuano
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - David Montani
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
- Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| |
Collapse
|
7
|
Shima N, Yamamura A, Fujiwara M, Amano T, Matsumoto K, Sekine T, Okano H, Kondo R, Suzuki Y, Yamamura H. Up-regulated expression of two-pore domain K + channels, KCNK1 and KCNK2, is involved in the proliferation and migration of pulmonary arterial smooth muscle cells in pulmonary arterial hypertension. Front Cardiovasc Med 2024; 11:1343804. [PMID: 38410243 PMCID: PMC10894933 DOI: 10.3389/fcvm.2024.1343804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a severe and rare disease in the cardiopulmonary system. Its pathogenesis involves vascular remodeling of the pulmonary artery, which results in progressive increases in pulmonary arterial pressure. Chronically increased pulmonary arterial pressure causes right ventricular hypertrophy and subsequent right heart failure. Pulmonary vascular remodeling is attributed to the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are induced by enhanced Ca2+ signaling following the up-/down-regulation of ion channel expression. Objectives In the present study, the functional expression of two-pore domain potassium KCNK channels was investigated in PASMCs from idiopathic PAH (IPAH) patients and experimental pulmonary hypertensive (PH) animals. Results In IPAH-PASMCs, the expression of KCNK1/TWIK1 and KCNK2/TREK1 channels was up-regulated, whereas that of KCNK3/TASK1 and KCNK6/TWIK2 channels was down-regulated. The similar up-regulated expression of KCNK1 and KCNK2 channels was observed in the pulmonary arterial smooth muscles of monocrotaline-induced PH rats, Sugen 5416/hypoxia-induced PH rats, and hypoxia-induced PH mice. The facilitated proliferation of IPAH-PASMCs was suppressed by the KCNK channel blockers, quinine and tetrapentylammonium. The migration of IPAH-PASMCs was also suppressed by these channel blockers. Furthermore, increases in the proliferation and migration were inhibited by the siRNA knockdown of KCNK1 or KCNK2 channels. The siRNA knockdown also caused membrane depolarization and subsequent decrease in cytosolic [Ca2+]. The phosphorylated level of c-Jun N-terminal kinase (JNK) was elevated in IPAH-PASMCs compared to normal-PASMCs. The increased phosphorylation was significantly reduced by the siRNA knockdown of KCNK1 or KCNK2 channels. Conclusion Collectively, these findings indicate that the up-regulated expression of KCNK1 and KCNK2 channels facilitates the proliferation and migration of PASMCs via enhanced Ca2+ signaling and JNK signaling pathway, which is associated with vascular remodeling in PAH.
Collapse
Affiliation(s)
- Natsumi Shima
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Aya Yamamura
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| | - Moe Fujiwara
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Taiki Amano
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuyuki Matsumoto
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Taiga Sekine
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Haruka Okano
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Rubii Kondo
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
8
|
Zhi Y, Wu X, Chen Y, Chen X, Chen X, Luo H, Yi X, Lin X, Ma L, Chen Y, Cao Y, Li F, Zhou P. A novel TWIK2 channel inhibitor binds at the bottom of the selectivity filter and protects against LPS-induced experimental endotoxemia in vivo. Biochem Pharmacol 2023; 218:115894. [PMID: 37898389 DOI: 10.1016/j.bcp.2023.115894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
TWIK2 channel plays a critical role in NLRP3 inflammasome activation and mice deficient in TWIK2 channel are protected from sepsis and inflammatory lung injury. However, inhibitors of TWIK2 channel are currently in an early stage of development, and the molecular determinants underlying the chemical modulation of TWIK2 channel remain unexplored. In this study, we identified NPBA and the synthesized derivative NPBA-4 potently and selectively inhibited TWIK2 channel by using whole-cell patch clamp techniques. Furthermore, the mutation of the last residues of the selectivity filter in both P1 and P2 (i.e., T106A, T214A) of TWIK2 channel substantially abolished the effect of NPBA on TWIK2 channel. Our data suggest that NPBA blocked TWIK2 channel through binding at the bottom of the selectivity filter, which was also supported by molecular docking prediction. Moreover, we found that NPBA significantly suppressed NLRP3 inflammasome activation in macrophages and alleviated LPS-induced endotoxemia and organ injury in vivo. Notably, the protective effects of NPBA against LPS-induced endotoxemia were abolished in Kcnk6-/- mice. In summary, our study has uncovered a series of novel inhibitors of TWIK2 channel and revealed their distinct molecular determinants interacting TWIK2 channel. These findings provide new insights into the mechanisms of pharmacological action on TWIK2 channel and opportunities for the development of selective TWIK2 channel modulators to treat related inflammatory diseases.
Collapse
Affiliation(s)
- Yuanxing Zhi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Xiaoyan Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanshan Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xingyuan Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiangyu Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hui Luo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Yi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiuling Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liang Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yao Chen
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengxian Li
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
9
|
Yegen CH, Lambert M, Beurnier A, Montani D, Humbert M, Planès C, Boncoeur E, Voituron N, Antigny F. KCNK3 channel is important for the ventilatory response to hypoxia in rats. Respir Physiol Neurobiol 2023; 318:104164. [PMID: 37739151 DOI: 10.1016/j.resp.2023.104164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
To clarify the contribution of KCNK3/TASK-1 channel chemoreflex in response to hypoxia and hypercapnia, we used a unique Kcnk3-deficient rat. We assessed ventilatory variables using plethysmography in Kcnk3-deficient and wild-type rats at rest in response to hypoxia (10% O2) and hypercapnia (4% CO2). Immunostaining for C-Fos, a marker of neuronal activity, was performed to identify the regions of the respiratory neuronal network involved in the observed response.Under basal conditions, we observed increased minute ventilation in Kcnk3-deficient rats, which was associated with increased c-Fos positive cells in the ventrolateral region of the medulla oblongata. Kcnk3-deficient rats show an increase in ventilatory response to hypoxia without changes in response to hypercapnia. In Kcnk3-deficient rats, linked to an increased hypoxia response, we observed a greater increase in c-Fos-positive cells in the first central relay of peripheral chemoreceptors and Raphe Obscurus. This study reports that KCNK3/TASK-1 deficiency in rats induces an inadequate peripheral chemoreflex, alternating respiratory rhythmogenesis, and hypoxic chemoreflex.
Collapse
Affiliation(s)
- Céline-Hivda Yegen
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France
| | - Mélanie Lambert
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Antoine Beurnier
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Service de Physiologie et d'explorations fonctionnelles, Hôpital Avicenne, APHP, Hôpitaux de Paris, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 " Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique ", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Carole Planès
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France; AP-HP, Department of Physiology - Functional Explorations, DMU Thorinno, bi-site Hôpital Bicêtre (Le Kremlin Bicêtre) and Ambroise Paré (Boulogne-Billancourt), France
| | - Emilie Boncoeur
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France
| | - Nicolas Voituron
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France; Département STAPS, Université Sorbonne Paris Nord, Bobigny, France.
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France.
| |
Collapse
|
10
|
Saint-Martin Willer A, Santos-Gomes J, Adão R, Brás-Silva C, Eyries M, Pérez-Vizcaino F, Capuano V, Montani D, Antigny F. Physiological and pathophysiological roles of the KCNK3 potassium channel in the pulmonary circulation and the heart. J Physiol 2023; 601:3717-3737. [PMID: 37477289 DOI: 10.1113/jp284936] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
Potassium channel subfamily K member 3 (KCNK3), encoded by the KCNK3 gene, is part of the two-pore domain potassium channel family, constitutively active at resting membrane potentials in excitable cells, including smooth muscle and cardiac cells. Several physiological and pharmacological mediators, such as intracellular signalling pathways, extracellular pH, hypoxia and anaesthetics, regulate KCNK3 channel function. Recent studies show that modulation of KCNK3 channel expression and function strongly influences pulmonary vascular cell and cardiomyocyte function. The altered activity of KCNK3 in pathological situations such as atrial fibrillation, pulmonary arterial hypertension and right ventricular dysfunction demonstrates the crucial role of KCNK3 in cardiovascular homeostasis. Furthermore, loss of function variants of KCNK3 have been identified in patients suffering from pulmonary arterial hypertension and atrial fibrillation. This review focuses on current knowledge of the role of the KCNK3 channel in pulmonary circulation and the heart, in healthy and pathological conditions.
Collapse
Affiliation(s)
- Anaïs Saint-Martin Willer
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Joana Santos-Gomes
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Adão
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Carmen Brás-Silva
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Mélanie Eyries
- Département de génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
| | - Francisco Pérez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Véronique Capuano
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 'Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique', Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
11
|
Villegas-Esguevillas M, Cho S, Vera-Zambrano A, Kwon JW, Barreira B, Telli G, Navarro-Dorado J, Morales-Cano D, de Olaiz B, Moreno L, Greenwood I, Pérez-Vizcaíno F, Kim SJ, Climent B, Cogolludo A. The novel K V7 channel activator URO-K10 exerts enhanced pulmonary vascular effects independent of the KCNE4 regulatory subunit. Biomed Pharmacother 2023; 164:114952. [PMID: 37295249 DOI: 10.1016/j.biopha.2023.114952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
KV7 channels exert a pivotal role regulating vascular tone in several vascular beds. In this context, KV7 channel agonists represent an attractive strategy for the treatment of pulmonary arterial hypertension (PAH). Therefore, in this study, we have explored the pulmonary vascular effects of the novel KV7 channel agonist URO-K10. Consequently, the vasodilator and electrophysiological effects of URO-K10 were tested in rat and human pulmonary arteries (PA) and PA smooth muscle cells (PASMC) using myography and patch-clamp techniques. Protein expression was also determined by Western blot. Morpholino-induced knockdown of KCNE4 was assessed in isolated PA. PASMC proliferation was measured by BrdU incorporation assay. In summary, our data show that URO-K10 is a more effective relaxant of PA than the classical KV7 activators retigabine and flupirtine. URO-K10 enhanced KV currents in PASMC and its electrophysiological and relaxant effects were inhibited by the KV7 channel blocker XE991. The effects of URO-K10 were confirmed in human PA. URO-K10 also exhibited antiproliferative effects in human PASMC. Unlike retigabine and flupirtine, URO-K10-induced pulmonary vasodilation was not affected by morpholino-induced knockdown of the KCNE4 regulatory subunit. Noteworthy, the pulmonary vasodilator efficacy of this compound was considerably increased under conditions mimicking the ionic remodelling (as an in vitro model of PAH) and in PA from monocrotaline-induced pulmonary hypertensive rats. Taking all together, URO-K10 behaves as a KCNE4-independent KV7 channel activator with much increased pulmonary vascular effects compared to classical KV7 channel activators. Our study identifies a promising new drug in the context of PAH.
Collapse
Affiliation(s)
- Marta Villegas-Esguevillas
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Suhan Cho
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Alba Vera-Zambrano
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Jae Won Kwon
- Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain
| | - Bianca Barreira
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Göcken Telli
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Jorge Navarro-Dorado
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Daniel Morales-Cano
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Beatriz de Olaiz
- Department of Thoracic Surgery, Hospital Universitario de Getafe, Getafe, Spain
| | - Laura Moreno
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Iain Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, United Kingdom
| | - Francisco Pérez-Vizcaíno
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Sung Joon Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Belén Climent
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| | - Angel Cogolludo
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| |
Collapse
|
12
|
Horner RL. Targets for obstructive sleep apnea pharmacotherapy: principles, approaches, and emerging strategies. Expert Opin Ther Targets 2023; 27:609-626. [PMID: 37494064 DOI: 10.1080/14728222.2023.2240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) is a common and serious breathing disorder. Several pathophysiological factors predispose individuals to OSA. These factors are quantifiable, and modifiable pharmacologically. AREAS COVERED Four key pharmacotherapeutic targets are identified and mapped to the major determinants of OSA pathophysiology. PubMed and Clinicaltrials.gov were searched through April 2023. EXPERT OPINION Target #1: Pharyngeal Motor Effectors. Increasing pharyngeal muscle activity and responsivity with noradrenergic-antimuscarinic combination is central to recent breakthrough OSA pharmacotherapy. Assumptions, knowledge gaps, future directions, and other targets are identified. #2: Upper Airway Sensory Afferents. There is translational potential of sensitizing and amplifying reflex pharyngeal dilator muscle responses to negative airway pressure via intranasal delivery of new potassium channel blockers. Rationales, advantages, findings, and potential strategies to enhance effectiveness are identified. #3: Chemosensory Afferents and Ventilatory Control. Strategies to manipulate ventilatory control system sensitivity by carbonic anhydrase inhibitors are supported in theory and initial studies. Intranasal delivery of agents to stimulate central respiratory activity are also introduced. #4: Sleep-Wake Mechanisms. Arousability is the fourth therapeutic target rationalized. Evolving automated tools to measure key pathophysiological factors predisposing to OSA will accelerate pharmacotherapy. Although not currently ready for general clinical settings, the identified targets are of future promise.
Collapse
Affiliation(s)
- Richard L Horner
- Departments of Physiology and Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
14
|
Huang S, Wang J, Liu N, Li P, Wu S, Qi L, Xia L. A cross-tissue transcriptome association study identifies key genes in essential hypertension. Front Genet 2023; 14:1114174. [PMID: 36845374 PMCID: PMC9950398 DOI: 10.3389/fgene.2023.1114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Genome-wide association study (GWAS) have identified over 1,000 loci associated with blood pressure. However, these loci only explain 6% of heritability. Transcriptome-wide association studies (TWAS) combine GWAS summary data with expression quantitative trait loci (eQTL) to provide a better approach to finding genes associated with complex traits. GWAS summary data (N = 450,584) for essential hypertension originating from European samples were subjected to Post-GWAS analysis using FUMA software and then combined with eQTL data from Genotype-Tissues Expression Project (GTEx) v8 for TWAS analysis using UTMOST, FUSION software, and then validated the results with SMR. FUMA identified 346 significant genes associated with hypertension, FUSION identified 461, and UTMOST cross-tissue analysis identified 34, of which 5 were common. SMR validation identified 3 key genes: ENPEP, USP38, and KCNK3. In previous GWAS studies on blood pressure regulation, the association of ENPEP and KCNK3 with hypertension has been established, and the association between USP38 and blood pressure regulation still needs further validation.
Collapse
Affiliation(s)
- Sihui Huang
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Key Laboratory of Traditional Chinese Medicine Regimen and Health Industry Development, State Administration of TCM, Chengdu, China,Leshan Vocational and Technical College, Leshan, China
| | - Jie Wang
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Key Laboratory of Traditional Chinese Medicine Regimen and Health Industry Development, State Administration of TCM, Chengdu, China
| | - Nannan Liu
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Key Laboratory of Traditional Chinese Medicine Regimen and Health Industry Development, State Administration of TCM, Chengdu, China
| | - Ping Li
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Key Laboratory of Traditional Chinese Medicine Regimen and Health Industry Development, State Administration of TCM, Chengdu, China
| | - Sha Wu
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Key Laboratory of Traditional Chinese Medicine Regimen and Health Industry Development, State Administration of TCM, Chengdu, China
| | - Luming Qi
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Key Laboratory of Traditional Chinese Medicine Regimen and Health Industry Development, State Administration of TCM, Chengdu, China,*Correspondence: Luming Qi, ; Lina Xia,
| | - Lina Xia
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Key Laboratory of Traditional Chinese Medicine Regimen and Health Industry Development, State Administration of TCM, Chengdu, China,*Correspondence: Luming Qi, ; Lina Xia,
| |
Collapse
|
15
|
Fan X, Lu Y, Du G, Liu J. Advances in the Understanding of Two-Pore Domain TASK Potassium Channels and Their Potential as Therapeutic Targets. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238296. [PMID: 36500386 PMCID: PMC9736439 DOI: 10.3390/molecules27238296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
TWIK-related acid-sensitive K+ (TASK) channels, including TASK-1, TASK-3, and TASK-5, are important members of the two-pore domain potassium (K2P) channel family. TASK-5 is not functionally expressed in the recombinant system. TASK channels are very sensitive to changes in extracellular pH and are active during all membrane potential periods. They are similar to other K2P channels in that they can create and use background-leaked potassium currents to stabilize resting membrane conductance and repolarize the action potential of excitable cells. TASK channels are expressed in both the nervous system and peripheral tissues, including excitable and non-excitable cells, and are widely engaged in pathophysiological phenomena, such as respiratory stimulation, pulmonary hypertension, arrhythmia, aldosterone secretion, cancers, anesthesia, neurological disorders, glucose homeostasis, and visual sensitivity. Therefore, they are important targets for innovative drug development. In this review, we emphasized the recent advances in our understanding of the biophysical properties, gating profiles, and biological roles of TASK channels. Given the different localization ranges and biologically relevant functions of TASK-1 and TASK-3 channels, the development of compounds that selectively target TASK-1 and TASK-3 channels is also summarized based on data reported in the literature.
Collapse
Affiliation(s)
- Xueming Fan
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Yongzhi Lu
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510700, China
| | - Guizhi Du
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (G.D.); (J.L.)
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (G.D.); (J.L.)
| |
Collapse
|
16
|
Dai L, Du L. Genes in pediatric pulmonary arterial hypertension and the most promising BMPR2 gene therapy. Front Genet 2022; 13:961848. [PMID: 36506323 PMCID: PMC9730536 DOI: 10.3389/fgene.2022.961848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but progressive and lethal vascular disease of diverse etiologies, mainly caused by proliferation of endothelial cells, smooth muscle cells in the pulmonary artery, and fibroblasts, which ultimately leads to right-heart hypertrophy and cardiac failure. Recent genetic studies of childhood-onset PAH report that there is a greater genetic burden in children than in adults. Since the first-identified pathogenic gene of PAH, BMPR2, which encodes bone morphogenetic protein receptor 2, a receptor in the transforming growth factor-β superfamily, was discovered, novel causal genes have been identified and substantially sharpened our insights into the molecular genetics of childhood-onset PAH. Currently, some newly identified deleterious genetic variants in additional genes implicated in childhood-onset PAH, such as potassium channels (KCNK3) and transcription factors (TBX4 and SOX17), have been reported and have greatly updated our understanding of the disease mechanism. In this review, we summarized and discussed the advances of genetic variants underlying childhood-onset PAH susceptibility and potential mechanism, and the most promising BMPR2 gene therapy and gene delivery approaches to treat childhood-onset PAH in the future.
Collapse
|
17
|
Sörmann J, Schewe M, Proks P, Jouen-Tachoire T, Rao S, Riel EB, Agre KE, Begtrup A, Dean J, Descartes M, Fischer J, Gardham A, Lahner C, Mark PR, Muppidi S, Pichurin PN, Porrmann J, Schallner J, Smith K, Straub V, Vasudevan P, Willaert R, Carpenter EP, Rödström KEJ, Hahn MG, Müller T, Baukrowitz T, Hurles ME, Wright CF, Tucker SJ. Gain-of-function mutations in KCNK3 cause a developmental disorder with sleep apnea. Nat Genet 2022; 54:1534-1543. [PMID: 36195757 PMCID: PMC9534757 DOI: 10.1038/s41588-022-01185-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/09/2022] [Indexed: 11/07/2022]
Abstract
Sleep apnea is a common disorder that represents a global public health burden. KCNK3 encodes TASK-1, a K+ channel implicated in the control of breathing, but its link with sleep apnea remains poorly understood. Here we describe a new developmental disorder with associated sleep apnea (developmental delay with sleep apnea, or DDSA) caused by rare de novo gain-of-function mutations in KCNK3. The mutations cluster around the 'X-gate', a gating motif that controls channel opening, and produce overactive channels that no longer respond to inhibition by G-protein-coupled receptor pathways. However, despite their defective X-gating, these mutant channels can still be inhibited by a range of known TASK channel inhibitors. These results not only highlight an important new role for TASK-1 K+ channels and their link with sleep apnea but also identify possible therapeutic strategies.
Collapse
Affiliation(s)
- Janina Sörmann
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Marcus Schewe
- Institute of Physiology, Faculty of Medicine, Kiel University, Kiel, Germany
| | - Peter Proks
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Thibault Jouen-Tachoire
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Elena B Riel
- Institute of Physiology, Faculty of Medicine, Kiel University, Kiel, Germany
| | | | | | - John Dean
- Department of Medical Genetics, NHS Grampian, Aberdeen, UK
| | - Maria Descartes
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Fischer
- Institute for Clinical Genetics, Universitätsklinikum, Technischen Universität Dresden, Dresden, Germany
| | - Alice Gardham
- North West Thames Regional Genetics Service, London North West Healthcare NHS Trust, London, UK
| | | | - Paul R Mark
- Spectrum Health Medical Genetics, Grand Rapids, MI, USA
| | | | | | - Joseph Porrmann
- Institute for Clinical Genetics, Universitätsklinikum, Technischen Universität Dresden, Dresden, Germany
| | - Jens Schallner
- Department of Neuropediatrics, Universitätsklinikum, Technischen Universität Dresden, Dresden, Germany
| | - Kirstin Smith
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Volker Straub
- Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| | - Pradeep Vasudevan
- University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, Leicester, UK
| | | | - Elisabeth P Carpenter
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | | | - Michael G Hahn
- Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Thomas Müller
- Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Thomas Baukrowitz
- Institute of Physiology, Faculty of Medicine, Kiel University, Kiel, Germany
| | - Matthew E Hurles
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Caroline F Wright
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK.
| |
Collapse
|
18
|
Redel-Traub G, Sampson KJ, Kass RS, Bohnen MS. Potassium Channels as Therapeutic Targets in Pulmonary Arterial Hypertension. Biomolecules 2022; 12:1341. [PMID: 36291551 PMCID: PMC9599705 DOI: 10.3390/biom12101341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 12/08/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease with high morbidity and mortality. Deleterious remodeling in the pulmonary arterial system leads to irreversible arterial constriction and elevated pulmonary arterial pressures, right heart failure, and eventually death. The difficulty in treating PAH stems in part from the complex nature of disease pathogenesis, with several signaling compounds known to be involved (e.g., endothelin-1, prostacyclins) which are indeed targets of PAH therapy. Over the last decade, potassium channelopathies were established as novel causes of PAH. More specifically, loss-of-function mutations in the KCNK3 gene that encodes the two-pore-domain potassium channel KCNK3 (or TASK-1) and loss-of-function mutations in the ABCC8 gene that encodes a key subunit, SUR1, of the ATP-sensitive potassium channel (KATP) were established as the first two potassium channelopathies in human cohorts with pulmonary arterial hypertension. Moreover, voltage-gated potassium channels (Kv) represent a third family of potassium channels with genetic changes observed in association with PAH. While other ion channel genes have since been reported in association with PAH, this review focuses on KCNK3, KATP, and Kv potassium channels as promising therapeutic targets in PAH, with recent experimental pharmacologic discoveries significantly advancing the field.
Collapse
Affiliation(s)
- Gabriel Redel-Traub
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kevin J. Sampson
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Robert S. Kass
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael S. Bohnen
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
19
|
Lin G, Lin L, Lin H, Chen W, Chen L, Chen X, Chen S, Lin Q, Xu Y, Zeng Y. KCNK3 inhibits proliferation and glucose metabolism of lung adenocarcinoma via activation of AMPK-TXNIP pathway. Cell Death Dis 2022; 8:360. [PMID: 35963847 PMCID: PMC9376064 DOI: 10.1038/s41420-022-01152-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a primary histological subtype of lung cancer with increased morbidity and mortality. K+ channels have been revealed to be involved in carcinogenesis in various malignant tumors. However, TWIK-related acid-sensitive potassium channel 1 (TASK-1, also called KCNK3), a genetic member of K2P channels, remains an enigma in lung adenocarcinoma (LUAD). Herein, we investigated the pathological process of KCNK3 in proliferation and glucose metabolism of LUAD. The expressions of KCNK3 in LUAD tissues and corresponding adjacent tissues were identified by RNA sequencing, quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry. Gain and loss-of-function assays were performed to estimate the role of KCNK3 in proliferation and glucose metabolism of LUAD. Additionally, energy metabolites of LUAD cells were identified by targeted metabolomics analysis. The expressions of metabolic molecules and active biomarkers associated with AMPK-TXNIP signaling pathway were detected via western blot and immunofluorescence. KCNK3 was significantly downregulated in LUAD tissues and correlated with patients' poor prognosis. Overexpression of KCNK3 largely regulated the process of oncogenesis and glycometabolism in LUAD in vitro and in vivo. Mechanistic studies found that KCNK3-mediated differential metabolites were mainly enriched in AMPK signaling pathway. Furthermore, rescue experiments demonstrated that KCNK3 suppressed proliferation and glucose metabolism via activation of the AMPK-TXNIP pathway in LUAD cells. In summary, our research highlighted an emerging role of KCNK3 in the proliferative activity and glycometabolism of LUAD, suggesting that KCNK3 may be an optimal predictor for prognosis and a potential therapeutic target of LUAD.
Collapse
Affiliation(s)
- Guofu Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Lanlan Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Hai Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Wenhan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Luyang Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Xiaohui Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China.,The Second Clinical College, Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Shaohua Chen
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Qinhui Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China
| | - Yuan Xu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China. .,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China. .,Clinical Research Unit, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China. .,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian province, 362000, China. .,Clinical Research Unit, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China.
| |
Collapse
|
20
|
Jiang W, Xie N, Xu C. Characterization of a prognostic model for lung squamous cell carcinoma based on eight stemness index-related genes. BMC Pulm Med 2022; 22:224. [PMID: 35676660 PMCID: PMC9178800 DOI: 10.1186/s12890-022-02011-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cancer stem cells (CSCs) are implicated in cancer progression, chemoresistance, and poor prognosis; thus, they may be promising therapeutic targets. In this study, we aimed to investigate the prognostic application of differentially expressed CSC-related genes in lung squamous cell carcinoma (LUSC). Methods The mRNA stemness index (mRNAsi)-related differentially expressed genes (DEGs) in tumors were identified and further categorized by LASSO Cox regression analysis and 1,000-fold cross-validation, followed by the construction of a prognostic score model for risk stratification. The fractions of tumor-infiltrating immune cells and immune checkpoint genes were analyzed in different risk groups. Results We found 404 mRNAsi-related DEGs in LUSC, 77 of which were significantly associated with overall survival. An eight-gene prognostic signature (PPP1R27, TLX2, ANKLE1, TIGD3, AMH, KCNK3, FLRT3, and PPBP) was identified and used to construct a risk score model. The TCGA set was dichotomized into two risk groups that differed significantly (p = 0.00057) in terms of overall survival time (1, 3, 5-year AUC = 0.830, 0.749, and 0.749, respectively). The model performed well in two independent GEO datasets (p = 0.029, 0.033; 1-year AUC = 0747, 0.783; 3-year AUC = 0.746, 0.737; 5-year AUC = 0.706, 0.723). Low-risk patients had markedly increased numbers of CD8+ T cells and M1 macrophages and downregulated immune checkpoint genes compared to the corresponding values in high-risk patients (p < 0.05). Conclusion A stemness-related prognostic model based on eight prognostic genes in LUSC was developed and validated. The results of this study would have prognostic and therapeutic implications. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02011-0.
Collapse
Affiliation(s)
- Wenfa Jiang
- Thoracic Surgery Department, Ganzhou People's Hospital, 16 MeiGuan Ave, Zhanggong, 341000, Ganzhou, China
| | - Ning Xie
- Thoracic Surgery Department, Ganzhou People's Hospital, 16 MeiGuan Ave, Zhanggong, 341000, Ganzhou, China
| | - Chenyang Xu
- Thoracic Surgery Department, Ganzhou People's Hospital, 16 MeiGuan Ave, Zhanggong, 341000, Ganzhou, China.
| |
Collapse
|
21
|
Demirel S, Sahinturk S, Isbil N, Ozyener F. Physiological role of K + channels in irisin-induced vasodilation in rat thoracic aorta. Peptides 2022; 147:170685. [PMID: 34748790 DOI: 10.1016/j.peptides.2021.170685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022]
Abstract
Irisin, an exercise-induced myokine, has been shown to have a peripheral vasodilator effect. However, little is known about the mechanisms underlying its effects. In this study, it was aimed to investigate the vasoactive effects of irisin on rat thoracic aorta, and the hypothesis that voltage-gated potassium (KV) channels, ATP-sensitive potassium (KATP) channels, small-conductance calcium-activated potassium (SKCa) channels, large-conductance calcium-activated potassium (BKCa) channels, intermediate-conductance calcium-activated potassium (IKCa) channels, inward rectifier potassium (Kir) channels, and two-pore domain potassium (K2P) channels may have roles in these effects. Isometric contraction-relaxation responses of isolated thoracic aorta rings were measured with an organ bath model. The steady contraction was induced with both 10-5 M phenylephrine and 45 mM KCl, and then the concentration-dependent responses of irisin (10-9-10-6 M) were examined. Irisin exerted the vasorelaxant effects in both endothelium-intact and -denuded aortic rings at concentrations of 10-8, 10-7, and 10-6 M (p < 0.001). Besides, KV channel blocker 4-aminopyridine, KATP channel blocker glibenclamide, SKCa channel blocker apamin, BKCa channel blockers tetraethylammonium and iberiotoxin, IKCa channel blocker TRAM-34, and Kir channel blocker barium chloride incubations significantly inhibited the irisin-induced relaxation responses. However, incubation of K2P TASK-1 channel blocker anandamide did not cause a significant decrease in the relaxation responses of irisin. In conclusion, the first physiological findings were obtained regarding the functional relaxing effects of irisin in rat thoracic aorta. Furthermore, this study is the first to report that irisin-induced relaxation responses are associated with the activity of KV, KATP, SKCa, BKCa, IKCa, and Kir channels.
Collapse
Affiliation(s)
- Sadettin Demirel
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
| | - Serdar Sahinturk
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
| | - Naciye Isbil
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
| | - Fadil Ozyener
- Department of Physiology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
| |
Collapse
|
22
|
Perros F, Humbert M, Dorfmüller P. Smouldering fire or conflagration? An illustrated update on the concept of inflammation in pulmonary arterial hypertension. Eur Respir Rev 2021; 30:30/162/210161. [PMID: 34937704 DOI: 10.1183/16000617.0161-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/20/2021] [Indexed: 11/05/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare condition that is characterised by a progressive increase of pulmonary vascular resistances that leads to right ventricular failure and death, if untreated. The underlying narrowing of the pulmonary vasculature relies on several independent and interdependent biological pathways, such as genetic predisposition and epigenetic changes, imbalance of vasodilating and vasoconstrictive mediators, as well as dysimmunity and inflammation that will trigger endothelial dysfunction, smooth muscle cell proliferation, fibroblast activation and collagen deposition. Progressive constriction of the pulmonary vasculature, in turn, initiates and sustains hypertrophic and maladaptive myocardial remodelling of the right ventricle. In this review, we focus on the role of inflammation and dysimmunity in PAH which is generally accepted today, although existing PAH-specific medical therapies still lack targeted immune-modulating approaches.
Collapse
Affiliation(s)
- Frédéric Perros
- Université Paris-Saclay, School of Medicine, Le Kremlin Bicêtre, France.,INSERM UMR S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France.,Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), INSERM, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Université Paris-Saclay, School of Medicine, Le Kremlin Bicêtre, France.,INSERM UMR S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Peter Dorfmüller
- Institut für Pathologie, Universitätklinikum Giessen und Marburg, Giessen, Germany .,Deutsches Zentrum für Lungenforschung (DZL), Giessen, Germany
| |
Collapse
|
23
|
Lambert M, Mendes-Ferreira P, Ghigna MR, LeRibeuz H, Adão R, Boet A, Capuano V, Rucker-Martin C, Brás-Silva C, Quarck R, Domergue V, Vachiéry JL, Humbert M, Perros F, Montani D, Antigny F. Kcnk3 dysfunction exaggerates the development of pulmonary hypertension induced by left ventricular pressure overload. Cardiovasc Res 2021; 117:2474-2488. [PMID: 33483721 DOI: 10.1093/cvr/cvab016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/09/2021] [Indexed: 12/17/2022] Open
Abstract
AIMS Pulmonary hypertension (PH) is a common complication of left heart disease (LHD, Group 2 PH) leading to right ventricular (RV) failure and death. Several loss-of-function (LOF) mutations in KCNK3 were identified in pulmonary arterial hypertension (PAH, Group 1 PH). Additionally, we found that KCNK3 dysfunction is a hallmark of PAH at pulmonary vascular and RV levels. However, the role of KCNK3 in the pathobiology of PH due to LHD is unknown. METHODS AND RESULTS We evaluated the role of KCNK3 on PH induced by ascending aortic constriction (AAC), in WT and Kcnk3-LOF-mutated rats, by echocardiography, RV catheterization, histology analyses, and molecular biology experiments. We found that Kcnk3-LOF-mutation had no consequence on the development of left ventricular (LV) compensated concentric hypertrophy in AAC, while left atrial emptying fraction was impaired in AAC-Kcnk3-mutated rats. AAC-animals (WT and Kcnk3-mutated rats) developed PH secondary to AAC and Kcnk3-mutated rats developed more severe PH than WT. AAC-Kcnk3-mutated rats developed RV and LV fibrosis in association with an increase of Col1a1 mRNA in right ventricle and left ventricle. AAC-Kcnk3-mutated rats developed severe pulmonary vascular (pulmonary artery as well as pulmonary veins) remodelling with intense peri-vascular and peri-bronchial inflammation, perivascular oedema, alveolar wall thickening, and exaggerated lung vascular cell proliferation compared to AAC-WT-rats. Finally, in lung, right ventricle, left ventricle, and left atrium of AAC-Kcnk3-mutated rats, we found a strong increased expression of Il-6 and periostin expression and a reduction of lung Ctnnd1 mRNA (coding for p120 catenin), contributing to the exaggerated pulmonary and heart remodelling and pulmonary vascular oedema in AAC-Kcnk3-mutated rats. CONCLUSIONS Our results indicate that Kcnk3-LOF is a key event in the pathobiology of PH due to AAC, suggesting that Kcnk3 channel dysfunction could play a potential key role in the development of PH due to LHD.
Collapse
Affiliation(s)
- Mélanie Lambert
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Pedro Mendes-Ferreira
- Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto,Portugal
- Laboratory of Respiratory Diseases & Thoracic Surgery (BREATHE), Department of Chronic Diseases & Metabolism (CHROMETA), KU Leuven-University of Leuven, Leuven,Belgium
| | - Maria-Rosa Ghigna
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Hélène LeRibeuz
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Rui Adão
- Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto,Portugal
| | - Angèle Boet
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Véronique Capuano
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Catherine Rucker-Martin
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Carmen Brás-Silva
- Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto,Portugal
| | - Rozenn Quarck
- Laboratory of Respiratory Diseases & Thoracic Surgery (BREATHE), Department of Chronic Diseases & Metabolism (CHROMETA), KU Leuven-University of Leuven, Leuven,Belgium
- Clinical Department of Respiratory Diseases, University Hospitals of Leuven, Leuven, Belgium
| | - Valérie Domergue
- Animal Facility, Institut Paris Saclay d'Innovation Thérapeutique (UMS IPSIT), Université Paris-Saclay, Châtenay-Malabry, France
| | - Jean-Luc Vachiéry
- Department of Cardiology, Cliniques Universitaires de Bruxelles-Hôpital Erasme, Brussels, Belgium
| | - Marc Humbert
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Frédéric Perros
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - David Montani
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| | - Fabrice Antigny
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre,France
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Inserm UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson,France
| |
Collapse
|
24
|
Perez-Vizcaino F, Cogolludo A, Mondejar-Parreño G. Transcriptomic profile of cationic channels in human pulmonary arterial hypertension. Sci Rep 2021; 11:15829. [PMID: 34349187 PMCID: PMC8338963 DOI: 10.1038/s41598-021-95196-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
The dysregulation of K+ channels is a hallmark of pulmonary arterial hypertension (PAH). Herein, the channelome was analyzed in lungs of patients with PAH in a public transcriptomic database. Sixty six (46%) mRNA encoding cationic channels were dysregulated in PAH with most of them downregulated (83%). The principal component analysis indicated that dysregulated cationic channel expression is a signature of the disease. Changes were very similar in idiopathic, connective tissue disease and congenital heart disease associated PAH. This analysis 1) is in agreement with the widely recognized pathophysiological role of TASK1 and KV1.5, 2) supports previous preliminary reports pointing to the dysregulation of several K+ channels including the downregulation of KV1.1, KV1.4, KV1.6, KV7.1, KV7.4, KV9.3 and TWIK2 and the upregulation of KCa1.1 and 3) points to other cationic channels dysregulated such as Kv7.3, TALK2, CaV1 and TRPV4 which might play a pathophysiological role in PAH. The significance of other changes found in Na+ and TRP channels remains to be investigated.
Collapse
Affiliation(s)
- Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology. School of Medicine, Universidad Complutense de Madrid, Madrid, Spain. .,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain. .,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology. School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Gema Mondejar-Parreño
- Department of Pharmacology and Toxicology. School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| |
Collapse
|
25
|
Mathie A, Veale EL, Golluscio A, Holden RG, Walsh Y. Pharmacological Approaches to Studying Potassium Channels. Handb Exp Pharmacol 2021; 267:83-111. [PMID: 34195873 DOI: 10.1007/164_2021_502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this review, we consider the pharmacology of potassium channels from the perspective of these channels as therapeutic targets. Firstly, we describe the three main families of potassium channels in humans and disease states where they are implicated. Secondly, we describe the existing therapeutic agents which act on potassium channels and outline why these channels represent an under-exploited therapeutic target with potential for future drug development. Thirdly, we consider the evidence desired in order to embark on a drug discovery programme targeting a particular potassium channel. We have chosen two "case studies": activators of the two-pore domain potassium (K2P) channel TREK-2 (K2P10.1), for the treatment of pain and inhibitors of the voltage-gated potassium channel KV1.3, for use in autoimmune diseases such as multiple sclerosis. We describe the evidence base to suggest why these are viable therapeutic targets. Finally, we detail the main technical approaches available to characterise the pharmacology of potassium channels and identify novel regulatory compounds. We draw particular attention to the Comprehensive in vitro Proarrhythmia Assay initiative (CiPA, https://cipaproject.org ) project for cardiac safety, as an example of what might be both desirable and possible in the future, for ion channel regulator discovery projects.
Collapse
Affiliation(s)
- Alistair Mathie
- Medway School of Pharmacy, University of Kent, Kent, UK. .,Medway School of Pharmacy, University of Greenwich, London, UK. .,School of Engineering, Arts, Science and Technology, University of Suffolk, Ipswich, UK.
| | - Emma L Veale
- Medway School of Pharmacy, University of Kent, Kent, UK.,Medway School of Pharmacy, University of Greenwich, London, UK
| | - Alessia Golluscio
- Medway School of Pharmacy, University of Kent, Kent, UK.,Medway School of Pharmacy, University of Greenwich, London, UK
| | - Robyn G Holden
- Medway School of Pharmacy, University of Kent, Kent, UK.,Medway School of Pharmacy, University of Greenwich, London, UK
| | - Yvonne Walsh
- Medway School of Pharmacy, University of Kent, Kent, UK.,Medway School of Pharmacy, University of Greenwich, London, UK
| |
Collapse
|
26
|
Yoo HY, Kim SJ. Oxygen-dependent regulation of ion channels: acute responses, post-translational modification, and response to chronic hypoxia. Pflugers Arch 2021; 473:1589-1602. [PMID: 34142209 DOI: 10.1007/s00424-021-02590-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/15/2021] [Accepted: 05/30/2021] [Indexed: 12/19/2022]
Abstract
Oxygen is a vital element for the survival of cells in multicellular aerobic organisms such as mammals. Lack of O2 availability caused by environmental or pathological conditions leads to hypoxia. Active oxygen distribution systems (pulmonary and circulatory) and their neural control mechanisms ensure that cells and tissues remain oxygenated. However, O2-carrying blood cells as well as immune and various parenchymal cells experience wide variations in partial pressure of oxygen (PO2) in vivo. Hence, the reactive modulation of the functions of the oxygen distribution systems and their ability to sense PO2 are critical. Elucidating the physiological responses of cells to variations in PO2 and determining the PO2-sensing mechanisms at the biomolecular level have attracted considerable research interest in the field of physiology. Herein, we review the current knowledge regarding ion channel-dependent oxygen sensing and associated signalling pathways in mammals. First, we present the recent findings on O2-sensing ion channels in representative chemoreceptor cells as well as in other types of cells such as immune cells. Furthermore, we highlight the transcriptional regulation of ion channels under chronic hypoxia and its physiological implications and summarize the findings of studies on the post-translational modification of ion channels under hypoxic or ischemic conditions.
Collapse
Affiliation(s)
- Hae Young Yoo
- Department of Nursing, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
27
|
Le Ribeuz H, Montani D, Antigny F. The Experimental TASK-1 Potassium Channel Inhibitor A293 Can Be Employed for Rhythm Control of Persistent Atrial Fibrillation in a Translational Large Animal Model. Front Physiol 2021; 12:668267. [PMID: 33912077 PMCID: PMC8072364 DOI: 10.3389/fphys.2021.668267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hélène Le Ribeuz
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 ≪ Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique ≫, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 ≪ Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique ≫, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 ≪ Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique ≫, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| |
Collapse
|
28
|
Kraft M, Büscher A, Wiedmann F, L’hoste Y, Haefeli WE, Frey N, Katus HA, Schmidt C. Current Drug Treatment Strategies for Atrial Fibrillation and TASK-1 Inhibition as an Emerging Novel Therapy Option. Front Pharmacol 2021; 12:638445. [PMID: 33897427 PMCID: PMC8058608 DOI: 10.3389/fphar.2021.638445] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia with a prevalence of up to 4% and an upwards trend due to demographic changes. It is associated with an increase in mortality and stroke incidences. While stroke risk can be significantly reduced through anticoagulant therapy, adequate treatment of other AF related symptoms remains an unmet medical need in many cases. Two main treatment strategies are available: rate control that modulates ventricular heart rate and prevents tachymyopathy as well as rhythm control that aims to restore and sustain sinus rhythm. Rate control can be achieved through drugs or ablation of the atrioventricular node, rendering the patient pacemaker-dependent. For rhythm control electrical cardioversion and pharmacological cardioversion can be used. While electrical cardioversion requires fasting and sedation of the patient, antiarrhythmic drugs have other limitations. Most antiarrhythmic drugs carry a risk for pro-arrhythmic effects and are contraindicated in patients with structural heart diseases. Furthermore, catheter ablation of pulmonary veins can be performed with its risk of intraprocedural complications and varying success. In recent years TASK-1 has been introduced as a new target for AF therapy. Upregulation of TASK-1 in AF patients contributes to prolongation of the action potential duration. In a porcine model of AF, TASK-1 inhibition by gene therapy or pharmacological compounds induced cardioversion to sinus rhythm. The DOxapram Conversion TO Sinus rhythm (DOCTOS)-Trial will reveal whether doxapram, a potent TASK-1 inhibitor, can be used for acute cardioversion of persistent and paroxysmal AF in patients, potentially leading to a new treatment option for AF.
Collapse
Affiliation(s)
- Manuel Kraft
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Antonius Büscher
- Clinic for Cardiology II: Electrophysiology, University Hospital Münster, Münster, Germany
| | - Felix Wiedmann
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Yannick L’hoste
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Walter E. Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Hugo A. Katus
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
29
|
Manaud G, Nossent EJ, Lambert M, Ghigna MR, Boët A, Vinhas MC, Ranchoux B, Dumas SJ, Courboulin A, Girerd B, Soubrier F, Bignard J, Claude O, Lecerf F, Hautefort A, Florio M, Sun B, Nadaud S, Verleden SE, Remy S, Anegon I, Bogaard HJ, Mercier O, Fadel E, Simonneau G, Vonk Noordegraaf A, Grünberg K, Humbert M, Montani D, Dorfmüller P, Antigny F, Perros F. Comparison of Human and Experimental Pulmonary Veno-Occlusive Disease. Am J Respir Cell Mol Biol 2020; 63:118-131. [PMID: 32209028 DOI: 10.1165/rcmb.2019-0015oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pulmonary veno-occlusive disease (PVOD) occurs in humans either as a heritable form (hPVOD) due to biallelic inactivating mutations of EIF2AK4 (encoding GCN2) or as a sporadic form in older age (sPVOD). The chemotherapeutic agent mitomycin C (MMC) is a potent inducer of PVOD in humans and in rats (MMC-PVOD). Here, we compared human hPVOD and sPVOD, and MMC-PVOD pathophysiology at the histological, cellular, and molecular levels to unravel common altered pathomechanisms. MMC exposure in rats was associated primarily with arterial and microvessel remodeling, and secondarily by venous remodeling, when PVOD became symptomatic. In all forms of PVOD tested, there was convergent GCN2-dependent but eIF2α-independent pulmonary protein overexpression of HO-1 (heme oxygenase 1) and CHOP (CCAAT-enhancer-binding protein [C/EBP] homologous protein), two downstream effectors of GCN2 signaling and endoplasmic reticulum stress. In human PVOD samples, CHOP immunohistochemical staining mainly labeled endothelial cells in remodeled veins and arteries. Strong HO-1 staining was observed only within capillary hemangiomatosis foci, where intense microvascular proliferation occurs. HO-1 and CHOP stainings were not observed in control and pulmonary arterial hypertension lung tissues, supporting the specificity for CHOP and HO-1 involvement in PVOD pathobiology. In vivo loss of GCN2 (EIF2AK4 mutations carriers and Eif2ak4-/- rats) or in vitro GCN2 inhibition in cultured pulmonary artery endothelial cells using pharmacological and siRNA approaches demonstrated that GCN2 loss of function negatively regulates BMP (bone morphogenetic protein)-dependent SMAD1/5/9 signaling. Exogenous BMP9 was still able to reverse GCN2 inhibition-induced proliferation of pulmonary artery endothelial cells. In conclusion, we identified CHOP and HO-1 inhibition, and BMP9, as potential therapeutic options for PVOD.
Collapse
Affiliation(s)
- Grégoire Manaud
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Esther J Nossent
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Mélanie Lambert
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | | | - Angèle Boët
- Department of Research, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | | | - Benoit Ranchoux
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Sébastien J Dumas
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Audrey Courboulin
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Barbara Girerd
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Florent Soubrier
- INSERM UMR_S 956, Pierre and Marie Curie Université (Paris 06), Paris, France
| | - Juliette Bignard
- INSERM UMR_S 956, Pierre and Marie Curie Université (Paris 06), Paris, France
| | - Olivier Claude
- INSERM UMR_S 956, Pierre and Marie Curie Université (Paris 06), Paris, France
| | - Florence Lecerf
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Aurélie Hautefort
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Monica Florio
- Cardio-Metabolic Disorders, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Banghua Sun
- Cardio-Metabolic Disorders, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Sophie Nadaud
- INSERM UMR_S 956, Pierre and Marie Curie Université (Paris 06), Paris, France
| | - Stijn E Verleden
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing KU Leuven, Leuven, Belgium
| | - Séverine Remy
- INSERM UMR 1064, Center for Research in Transplantation and Immunology-ITUN et Transgenic Rats and Immunophenomic Platform, Nantes, France; and
| | - Ignacio Anegon
- INSERM UMR 1064, Center for Research in Transplantation and Immunology-ITUN et Transgenic Rats and Immunophenomic Platform, Nantes, France; and
| | - Harm Jan Bogaard
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Olaf Mercier
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and.,Service de Chirurgie Thoracique, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Elie Fadel
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and.,Service de Chirurgie Thoracique, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Gérald Simonneau
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Anton Vonk Noordegraaf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Katrien Grünberg
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Marc Humbert
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - David Montani
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Peter Dorfmüller
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and.,Department of Pathology and.,Department of Pathology, University of Giessen and Marburg Lung Center, Justus-Liebig University Giessen, German Center for Lung Research, Giessen, Germany
| | - Fabrice Antigny
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Frédéric Perros
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| |
Collapse
|
30
|
Le Ribeuz H, Dumont F, Ruellou G, Lambert M, Balliau T, Quatredeniers M, Girerd B, Cohen-Kaminsky S, Mercier O, Yen-Nicolaÿ S, Humbert M, Montani D, Capuano V, Antigny F. Proteomic Analysis of KCNK3 Loss of Expression Identified Dysregulated Pathways in Pulmonary Vascular Cells. Int J Mol Sci 2020; 21:E7400. [PMID: 33036472 PMCID: PMC7582549 DOI: 10.3390/ijms21197400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
The physiopathology of pulmonary arterial hypertension (PAH) is characterized by pulmonary artery smooth muscle cell (PASMC) and endothelial cell (PAEC) dysfunction, contributing to pulmonary arterial obstruction and PAH progression. KCNK3 loss of function mutations are responsible for the first channelopathy identified in PAH. Loss of KCNK3 function/expression is a hallmark of PAH. However, the molecular mechanisms involved in KCNK3 dysfunction are mostly unknown. To identify the pathological molecular mechanisms downstream of KCNK3 in human PASMCs (hPASMCs) and human PAECs (hPAECs), we used a Liquid Chromatography-Tandem Mass Spectrometry-based proteomic approach to identify the molecular pathways regulated by KCNK3. KCNK3 loss of expression was induced in control hPASMCs or hPAECs by specific siRNA targeting KCNK3. We found that the loss of KCNK3 expression in hPAECs and hPASMCs leads to 326 and 222 proteins differentially expressed, respectively. Among them, 53 proteins were common to hPAECs and hPASMCs. The specific proteome remodeling in hPAECs in absence of KCNK3 was mostly related to the activation of glycolysis, the superpathway of methionine degradation, and the mTOR signaling pathways, and to a reduction in EIF2 signaling pathways. In hPASMCs, we found an activation of the PI3K/AKT signaling pathways and a reduction in EIF2 signaling and the Purine Nucleotides De Novo Biosynthesis II and IL-8 signaling pathways. Common to hPAECs and hPASMCs, we found that the loss of KCNK3 expression leads to the activation of the NRF2-mediated oxidative stress response and a reduction in the interferon pathway. In the hPAECs and hPASMCs, we found an increased expression of HO-1 (heme oxygenase-1) and a decreased IFIT3 (interferon-induced proteins with tetratricopeptide repeats 3) (confirmed by Western blotting), allowing us to identify these axes to understand the consequences of KCNK3 dysfunction. Our experiments, based on the loss of KCNK3 expression by a specific siRNA strategy in control hPAECs and hPASMCs, allow us to identify differences in the activation of several signaling pathways, indicating the key role played by KCNK3 dysfunction in the development of PAH. Altogether, these results allow us to better understand the consequences of KCNK3 dysfunction and suggest that KCNK3 loss of expression acts in favor of the proliferation and migration of hPASMCs and promotes the metabolic shift and apoptosis resistance of hPAECs.
Collapse
Affiliation(s)
- Hélène Le Ribeuz
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Florent Dumont
- UMS Ingénierie et Plateformes au Service de l’Innovation Thérapeutique, Université Paris-Saclay, 92290 Châtenay-Malabry, France; (F.D.); (G.R.); (S.Y.-N.)
| | - Guillaume Ruellou
- UMS Ingénierie et Plateformes au Service de l’Innovation Thérapeutique, Université Paris-Saclay, 92290 Châtenay-Malabry, France; (F.D.); (G.R.); (S.Y.-N.)
| | - Mélanie Lambert
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Thierry Balliau
- PAPPSO-GQE-Le Moulon, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France;
| | - Marceau Quatredeniers
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Barbara Girerd
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Sylvia Cohen-Kaminsky
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Olaf Mercier
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Stéphanie Yen-Nicolaÿ
- UMS Ingénierie et Plateformes au Service de l’Innovation Thérapeutique, Université Paris-Saclay, 92290 Châtenay-Malabry, France; (F.D.); (G.R.); (S.Y.-N.)
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Véronique Capuano
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (M.L.); (M.Q.); (B.G.); (S.C.-K.); (O.M.); (M.H.); (D.M.); (V.C.)
- INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
31
|
Mondéjar-Parreño G, Barreira B, Callejo M, Morales-Cano D, Barrese V, Esquivel-Ruiz S, Olivencia MA, Macías M, Moreno L, Greenwood IA, Perez-Vizcaino F, Cogolludo A. Uncovered Contribution of Kv7 Channels to Pulmonary Vascular Tone in Pulmonary Arterial Hypertension. Hypertension 2020; 76:1134-1146. [DOI: 10.1161/hypertensionaha.120.15221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
K
+
channels play a fundamental role regulating membrane potential of pulmonary artery (PA) smooth muscle cells and their impairment is a common feature in pulmonary arterial hypertension (PAH). K
+
voltage-gated channel subfamily Q (
KCNQ1-5
) or Kv7 channels and their regulatory subunits subfamily E (KCNE) regulatory subunits are known to regulate vascular tone, but whether Kv7 channel function is impaired in PAH and how this can affect the rationale for targeting Kv7 channels in PAH remains unknown. Here, we have studied the role of Kv7/KCNE subunits in rat PA and their possible alteration in PAH. Using the patch-clamp technique, we found that the total K
+
current is reduced in PA smooth muscle cells from pulmonary hypertension animals (SU5416 plus hypoxia) and Kv7 currents made a higher contribution to the net K
+
current. Likewise, enhanced vascular responses to Kv7 channel modulators were found in pulmonary hypertension rats. Accordingly, KCNE4 subunit was highly upregulated in lungs from pulmonary hypertension animals and patients. Additionally, Kv7 channel activity was enhanced in the presence of Kv1.5 and TASK-1 channel inhibitors and this was associated with an increased KCNE4 membrane abundance. Compared with systemic arteries, PA showed a poor response to Kv7 channel modulators which was associated with reduced expression and membrane abundance of Kv7.4 and KCNE4. Our data indicate that Kv7 channel function is preserved and KCNE4 is upregulated in PAH. Therefore, compared with other downregulated channels, the contribution of Kv7 channels is increased in PAH resulting in an enhanced sensitivity to Kv7 channel modulators. This study provides insight into the potential usefulness of targeting Kv7 channels in PAH.
Collapse
Affiliation(s)
- Gema Mondéjar-Parreño
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Bianca Barreira
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - María Callejo
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Daniel Morales-Cano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (D.M.-C.)
| | - Vincenzo Barrese
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George’s University of London, United Kingdom (V.B., I.A.G.)
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy (V.B.)
| | - Sergio Esquivel-Ruiz
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Miguel A. Olivencia
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Miguel Macías
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Laura Moreno
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Iain A. Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George’s University of London, United Kingdom (V.B., I.A.G.)
| | - Francisco Perez-Vizcaino
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| | - Angel Cogolludo
- From the Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Ciber Enfermedades Respiratorias (Ciberes), Spain (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) (G.M.-P., B.B., M.C., S.E.-R., M.A.O., M.M., L.M., F.P.-V., A.C.)
| |
Collapse
|
32
|
Le Ribeuz H, Capuano V, Girerd B, Humbert M, Montani D, Antigny F. Implication of Potassium Channels in the Pathophysiology of Pulmonary Arterial Hypertension. Biomolecules 2020; 10:biom10091261. [PMID: 32882918 PMCID: PMC7564204 DOI: 10.3390/biom10091261] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare and severe cardiopulmonary disease without curative treatments. PAH is a multifactorial disease that involves genetic predisposition, epigenetic factors, and environmental factors (drugs, toxins, viruses, hypoxia, and inflammation), which contribute to the initiation or development of irreversible remodeling of the pulmonary vessels. The recent identification of loss-of-function mutations in KCNK3 (KCNK3 or TASK-1) and ABCC8 (SUR1), or gain-of-function mutations in ABCC9 (SUR2), as well as polymorphisms in KCNA5 (Kv1.5), which encode two potassium (K+) channels and two K+ channel regulatory subunits, has revived the interest of ion channels in PAH. This review focuses on KCNK3, SUR1, SUR2, and Kv1.5 channels in pulmonary vasculature and discusses their pathophysiological contribution to and therapeutic potential in PAH.
Collapse
Affiliation(s)
- Hélène Le Ribeuz
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Véronique Capuano
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Barbara Girerd
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
- Correspondence: or ; Tel.: +33-1-40-94-22-99
| |
Collapse
|
33
|
Clinical Importance of the Human Umbilical Artery Potassium Channels. Cells 2020; 9:cells9091956. [PMID: 32854241 PMCID: PMC7565333 DOI: 10.3390/cells9091956] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Potassium (K+) channels are usually predominant in the membranes of vascular smooth muscle cells (SMCs). These channels play an important role in regulating the membrane potential and vessel contractility-a role that depends on the vascular bed. Thus, the activity of K+ channels represents one of the main mechanisms regulating the vascular tone in physiological and pathophysiological conditions. Briefly, the activation of K+ channels in SMC leads to hyperpolarization and vasorelaxation, while its inhibition induces depolarization and consequent vascular contraction. Currently, there are four different types of K+ channels described in SMCs: voltage-dependent K+ (KV) channels, calcium-activated K+ (KCa) channels, inward rectifier K+ (Kir) channels, and 2-pore domain K+ (K2P) channels. Due to the fundamental role of K+ channels in excitable cells, these channels are promising therapeutic targets in clinical practice. Therefore, this review discusses the basic properties of the various types of K+ channels, including structure, cellular mechanisms that regulate their activity, and new advances in the development of activators and blockers of these channels. The vascular functions of these channels will be discussed with a focus on vascular SMCs of the human umbilical artery. Then, the clinical importance of K+ channels in the treatment and prevention of cardiovascular diseases during pregnancy, such as gestational hypertension and preeclampsia, will be explored.
Collapse
|
34
|
Mathie A, Veale EL, Cunningham KP, Holden RG, Wright PD. Two-Pore Domain Potassium Channels as Drug Targets: Anesthesia and Beyond. Annu Rev Pharmacol Toxicol 2020; 61:401-420. [PMID: 32679007 DOI: 10.1146/annurev-pharmtox-030920-111536] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two-pore domain potassium (K2P) channels stabilize the resting membrane potential of both excitable and nonexcitable cells and, as such, are important regulators of cell activity. There are many conditions where pharmacological regulation of K2P channel activity would be of therapeutic benefit, including, but not limited to, atrial fibrillation, respiratory depression, pulmonary hypertension, neuropathic pain, migraine, depression, and some forms of cancer. Up until now, few if any selective pharmacological regulators of K2P channels have been available. However, recent publications of solved structures with small-molecule activators and inhibitors bound to TREK-1, TREK-2, and TASK-1 K2P channels have given insight into the pharmacophore requirements for compound binding to these sites. Together with the increasing availability of a number of novel, active, small-molecule compounds from K2P channel screening programs, these advances have opened up the possibility of rational activator and inhibitor design to selectively target K2P channels.
Collapse
Affiliation(s)
- Alistair Mathie
- Medway School of Pharmacy, University of Greenwich and University of Kent, Kent ME4 4TB, United Kingdom;
| | - Emma L Veale
- Medway School of Pharmacy, University of Greenwich and University of Kent, Kent ME4 4TB, United Kingdom;
| | - Kevin P Cunningham
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Robyn G Holden
- Medway School of Pharmacy, University of Greenwich and University of Kent, Kent ME4 4TB, United Kingdom;
| | | |
Collapse
|
35
|
Withaferin A suppresses breast cancer cell proliferation by inhibition of the two-pore domain potassium (K2P9) channel TASK-3. Biomed Pharmacother 2020; 129:110383. [PMID: 32563149 DOI: 10.1016/j.biopha.2020.110383] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/07/2020] [Indexed: 12/30/2022] Open
Abstract
Withaferin A (WFA), a C5,C6-epoxy steroidal lactone isolated from the medicinal plant Withania somnifera (L.) Dunal, inhibits growth of tumor cells in different cancer types. However, the mechanisms underlying the effect of WFA on tumor cells are not fully understood. In the present study, we evaluated the blockade of TASK-3 channels by WFA in TASK-3-expressing HEK-293 cells. Explore if the WFA-mediated TASK-3 blockade can be used as a pharmacological tool to decrease the cell viability in cancer cells. A combination of functional experiments (patch-clamp, gene downregulation, overexpression and pharmacological inhibition) and molecular docking analysis were used to get insights into the mechanism by which the inhibition of TASK-3 by WFA affects the growth and viability of cancer cells. Withaferin A was found to inhibit the activity of TASK-3 channels. The inhibitory effect of Withaferin A on TASK-3 potassium currents was dose-dependent and independent of voltage. Molecular modeling studies identified putative WFA-binding sites in TASK-3 channel involved the channel blockade. In agreements with the molecular modeling predictions, mutation of residues F125 to A (F125A), L197 to V (L197 V) and the double mutant F125A-L197 V markedly decreased the WFA-induced inhibition of TASK-3. Finally, the cytotoxic effect of WFA was tested in MDA-MB-231 human breast cancer cells transfected with TASK-3 or shRNA that decreases TASK-3 expression. Together, our results show that the cytotoxic effect of WFA on fully transformed MDA-MB-231 cells depends on the expression of TASK-3. Herein, we also provide insights into the mechanism of TASK-3 inhibition by WFA.
Collapse
|
36
|
TASK channels: channelopathies, trafficking, and receptor-mediated inhibition. Pflugers Arch 2020; 472:911-922. [DOI: 10.1007/s00424-020-02403-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 01/06/2023]
|
37
|
Sommer N, Alebrahimdehkordi N, Pak O, Knoepp F, Strielkov I, Scheibe S, Dufour E, Andjelković A, Sydykov A, Saraji A, Petrovic A, Quanz K, Hecker M, Kumar M, Wahl J, Kraut S, Seeger W, Schermuly RT, Ghofrani HA, Ramser K, Braun T, Jacobs HT, Weissmann N, Szibor M. Bypassing mitochondrial complex III using alternative oxidase inhibits acute pulmonary oxygen sensing. SCIENCE ADVANCES 2020; 6:eaba0694. [PMID: 32426457 PMCID: PMC7159913 DOI: 10.1126/sciadv.aba0694] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/22/2020] [Indexed: 05/02/2023]
Abstract
Mitochondria play an important role in sensing both acute and chronic hypoxia in the pulmonary vasculature, but their primary oxygen-sensing mechanism and contribution to stabilization of the hypoxia-inducible factor (HIF) remains elusive. Alteration of the mitochondrial electron flux and increased superoxide release from complex III has been proposed as an essential trigger for hypoxic pulmonary vasoconstriction (HPV). We used mice expressing a tunicate alternative oxidase, AOX, which maintains electron flux when respiratory complexes III and/or IV are inhibited. Respiratory restoration by AOX prevented acute HPV and hypoxic responses of pulmonary arterial smooth muscle cells (PASMC), acute hypoxia-induced redox changes of NADH and cytochrome c, and superoxide production. In contrast, AOX did not affect the development of chronic hypoxia-induced pulmonary hypertension and HIF-1α stabilization. These results indicate that distal inhibition of the mitochondrial electron transport chain in PASMC is an essential initial step for acute but not chronic oxygen sensing.
Collapse
Affiliation(s)
- Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392 Giessen, Germany
| | - Nasim Alebrahimdehkordi
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392 Giessen, Germany
| | - Oleg Pak
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392 Giessen, Germany
| | - Fenja Knoepp
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392 Giessen, Germany
| | - Ievgen Strielkov
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392 Giessen, Germany
| | - Susan Scheibe
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392 Giessen, Germany
| | - Eric Dufour
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | - Ana Andjelković
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | - Akylbek Sydykov
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392 Giessen, Germany
| | - Alireza Saraji
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392 Giessen, Germany
| | - Aleksandar Petrovic
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392 Giessen, Germany
| | - Karin Quanz
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392 Giessen, Germany
| | - Matthias Hecker
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392 Giessen, Germany
| | - Manish Kumar
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392 Giessen, Germany
| | - Joel Wahl
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Simone Kraut
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392 Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392 Giessen, Germany
| | - Ralph T. Schermuly
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392 Giessen, Germany
| | - Hossein A. Ghofrani
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392 Giessen, Germany
- Department of Medicine, Imperial College London, Du Cane Road, Hammersmith Campus, London W12 0NN, UK
| | - Kerstin Ramser
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Thomas Braun
- Department I, Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| | - Howard T. Jacobs
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392 Giessen, Germany
- Corresponding author. (M.S.); (N.W.)
| | - Marten Szibor
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
- Corresponding author. (M.S.); (N.W.)
| |
Collapse
|
38
|
Manoury B, Idres S, Leblais V, Fischmeister R. Ion channels as effectors of cyclic nucleotide pathways: Functional relevance for arterial tone regulation. Pharmacol Ther 2020; 209:107499. [PMID: 32068004 DOI: 10.1016/j.pharmthera.2020.107499] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Numerous mediators and drugs regulate blood flow or arterial pressure by acting on vascular tone, involving cyclic nucleotide intracellular pathways. These signals lead to regulation of several cellular effectors, including ion channels that tune cell membrane potential, Ca2+ influx and vascular tone. The characterization of these vasocontrictive or vasodilating mechanisms has grown in complexity due to i) the variety of ion channels that are expressed in both vascular endothelial and smooth muscle cells, ii) the heterogeneity of responses among the various vascular beds, and iii) the number of molecular mechanisms involved in cyclic nucleotide signalling in health and disease. This review synthesizes key data from literature that highlight ion channels as physiologically relevant effectors of cyclic nucleotide pathways in the vasculature, including the characterization of the molecular mechanisms involved. In smooth muscle cells, cation influx or chloride efflux through ion channels are associated with vasoconstriction, whereas K+ efflux repolarizes the cell membrane potential and mediates vasodilatation. Both categories of ion currents are under the influence of cAMP and cGMP pathways. Evidence that some ion channels are influenced by CN signalling in endothelial cells will also be presented. Emphasis will also be put on recent data touching a variety of determinants such as phosphodiesterases, EPAC and kinase anchoring, that complicate or even challenge former paradigms.
Collapse
Affiliation(s)
- Boris Manoury
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France.
| | - Sarah Idres
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | - Véronique Leblais
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | | |
Collapse
|
39
|
Duan W, Hicks J, Makara MA, Ilkayeva O, Abraham DM. TASK-1 and TASK-3 channels modulate pressure overload-induced cardiac remodeling and dysfunction. Am J Physiol Heart Circ Physiol 2020; 318:H566-H580. [PMID: 31977249 DOI: 10.1152/ajpheart.00739.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tandem pore domain acid-sensitive K+ (TASK) channels are present in cardiac tissue; however, their contribution to cardiac pathophysiology is not well understood. Here, we investigate the role of TASK-1 and TASK-3 in the pathogenesis of cardiac dysfunction using both human tissue and mouse models of genetic TASK channel loss of function. Compared with normal human cardiac tissue, TASK-1 gene expression is reduced in association with either cardiac hypertrophy alone or combined cardiac hypertrophy and heart failure. In a pressure overload cardiomyopathy model, TASK-1 global knockout (TASK-1 KO) mice have both reduced cardiac hypertrophy and preserved cardiac function compared with wild-type mice. In contrast to the TASK-1 KO mouse pressure overload response, TASK-3 global knockout (TASK-3 KO) mice develop cardiac hypertrophy and a delayed onset of cardiac dysfunction compared with wild-type mice. The cardioprotective effects observed in TASK-1 KO mice are associated with pressure overload-induced augmentation of AKT phosphorylation and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression, with consequent augmentation of cardiac energetics and fatty acid oxidation. The protective effects of TASK-1 loss of function are associated with an enhancement of physiologic hypertrophic signaling and preserved metabolic functions. These findings may provide a rationale for TASK-1 channel inhibition in the treatment of cardiac dysfunction.NEW & NOTEWORTHY The role of tandem pore domain acid-sensitive K+ (TASK) channels in cardiac function is not well understood. This study demonstrates that TASK channel gene expression is associated with the onset of human cardiac hypertrophy and heart failure. TASK-1 and TASK-3 strongly affect the development of pressure overload cardiomyopathies in genetic models of TASK-1 and TASK-3 loss of function. The effects of TASK-1 loss of function were associated with enhanced AKT phosphorylation and expression of peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) transcription factor. These data suggest that TASK channels influence the development of cardiac hypertrophy and dysfunction in response to injury.
Collapse
Affiliation(s)
- Wei Duan
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jonné Hicks
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - Olga Ilkayeva
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Dennis M Abraham
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
40
|
Impact of Nutrition on Pulmonary Arterial Hypertension. Nutrients 2020; 12:nu12010169. [PMID: 31936113 PMCID: PMC7019983 DOI: 10.3390/nu12010169] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by sustained vasoconstriction, vascular remodeling, inflammation, and in situ thrombosis. Although there have been important advances in the knowledge of the pathophysiology of PAH, it remains a debilitating, limiting, and rapidly progressive disease. Vitamin D and iron deficiency are worldwide health problems of pandemic proportions. Notably, these nutritional alterations are largely more prevalent in PAH patients than in the general population and there are several pieces of evidence suggesting that they may trigger or aggravate disease progression. There are also several case reports associating scurvy, due to severe vitamin C deficiency, with PAH. Flavonoids such as quercetin, isoflavonoids such as genistein, and other dietary polyphenols including resveratrol slow the progression of the disease in animal models of PAH. Finally, the role of the gut microbiota and its interplay with the diet, host immune system, and energy metabolism is emerging in multiple cardiovascular diseases. The alteration of the gut microbiota has also been reported in animal models of PAH. It is thus possible that in the near future interventions targeting the nutritional status and the gut dysbiosis will improve the outcome of these patients.
Collapse
|
41
|
Antigny F, Mercier O, Humbert M, Sabourin J. Excitation-contraction coupling and relaxation alteration in right ventricular remodelling caused by pulmonary arterial hypertension. Arch Cardiovasc Dis 2020; 113:70-84. [DOI: 10.1016/j.acvd.2019.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 02/09/2023]
|
42
|
Lerche M, Eichstaedt CA, Hinderhofer K, Grünig E, Tausche K, Ziemssen T, Halank M, Wirtz H, Seyfarth HJ. Mutually reinforcing effects of genetic variants and interferon-β 1a therapy for pulmonary arterial hypertension development in multiple sclerosis patients. Pulm Circ 2019; 9:2045894019872192. [PMID: 31798832 PMCID: PMC6862775 DOI: 10.1177/2045894019872192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Based on a small number of cases, interferon beta (IFN-β) has been added to the list of drugs that might induce pulmonary arterial hypertension (PAH) in the current European guidelines for the diagnosis and treatment of pulmonary hypertension. Here, we propose that multiple sclerosis patients who are genetically predisposed to PAH may be at higher risk to develop disease when treated with IFN-β. We included two patients with multiple sclerosis who developed a manifest PAH after five amd eight years on IFN-β 1a therapy, respectively (without confirmed right heart catheterization). In both patients, PAH markedly improved after discontinuation of IFN-β 1a and initiation of targeted PAH therapy. For genetic analysis, we used a PAH-gene panel based on next-generation sequencing of 16 PAH and 38 candidate genes. In one of the two patients, we could identify a nonsense variant in the PAH gene ATP13A3. The second patient showed a missense variant of the CYP1B1 gene, which might be linked to PAH predisposition. The results of this study support the hypothesis that multiple sclerosis patients who receive IFN-β 1a therapy might be at higher risk for the development of manifest PAH, if they carry a pathogenic variant or sequence variant genetically predisposing to the disease. However, further studies are necessary to systematically investigate the presence of predisposing PAH gene variants in these patients.
Collapse
Affiliation(s)
- Marianne Lerche
- Department of Respiratory Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Christina A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Centre, German Center for Lung Research, Heidelberg, Germany.,Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Ekkehard Grünig
- Center for Pulmonary Hypertension, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Centre, German Center for Lung Research, Heidelberg, Germany
| | - Kristin Tausche
- Internal Medicine, University Hospital Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Michael Halank
- Internal Medicine, University Hospital Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Hubert Wirtz
- Department of Respiratory Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Hans-Jürgen Seyfarth
- Department of Respiratory Medicine, University Hospital of Leipzig, Leipzig, Germany
| |
Collapse
|
43
|
Chemoreceptors as a key to understanding carcinogenesis process. Semin Cancer Biol 2019; 60:362-364. [PMID: 31622661 DOI: 10.1016/j.semcancer.2019.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 11/22/2022]
Abstract
The tissue organization field theory (TOFT) presented completely new, different from the previous one, perspective of research on neoplasm processes. It implicates that secretory neuroepithelial-like cells (NECs), putative chemoreceptors are probably responsible for the control of squamous epithelial cells proliferation in the digestive tract during hypoxia in gut breathing fish (GBF). On the other hand, chemoreceptors dysfunction can lead to uncontrolled proliferation and risk of cancer development in mammals, including humans. The studies on NECs like cells (signal capturing and transduction) may be crucial for understanding the processes of controlling the proliferation of squamous epithelial cells in the digestive tract of GBF fish during hypoxia states. This knowledge can contribute to the explanation of cancer processes.
Collapse
|
44
|
Wen ZY, Wang J, Bian C, Zhang X, Li J, Peng Y, Zhan Q, Shi Q, Li YY. Molecular cloning of two kcnk3 genes from the Northern snakehead (Channa argus) for quantification of their transcriptions in response to fasting and refeeding. Gen Comp Endocrinol 2019; 281:49-57. [PMID: 31121162 DOI: 10.1016/j.ygcen.2019.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/06/2019] [Accepted: 05/18/2019] [Indexed: 01/18/2023]
Abstract
Potassium channel subfamily K member 3 (KCNK3) has been reported to play important roles in membrane potential conduction, pulmonary hypertension and thermogenesis regulation in mammals. However, its roles remain largely unknown and scarce reports were seen in fish. In the present study, we for the first time identified two kcnk3 genes (kcnk3a and kcnk3b) from the carnivorous Northern snakehead (Channa argus) by molecular cloning and a genomic survey. Subsequently, their transcription changes in response to different feeding status were investigated. Full-length coding sequences of the kcnk3a and kcnk3b genes are 1203 and 1176 bp, encoding 400 and 391 amino acids, respectively. Multiple alignments, 3D-structure prediction and phylogenetic analysis further suggested that these kcnk3 genes may be highly conserved in vertebrates. Tissue distribution analysis by real-time PCR demonstrated that both the snakehead kcnk3s were widely transcribed in majority of the examined tissues but with different distribution patterns. In a short-term (24-h) fasting experiment, we observed that brain kcnk3a and kcnk3b genes showed totally opposite transcription patterns. In a long-term (2-week) fasting and refeeding experiment, we also observed differential change patterns for the brain kcnk3 genes. In summary, our findings suggest that the two kcnk3 genes are close while present different transcription responses to fasting and refeeding. They therefore can be potentially selected as novel target genes for improvement of production and quality of this economically important fish.
Collapse
Affiliation(s)
- Zheng-Yong Wen
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; School of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; College of Life Sciences, Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641100, China
| | - Jun Wang
- College of Life Sciences, Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641100, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Yuxiang Peng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Qiuyao Zhan
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Yuan-You Li
- School of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
45
|
Affiliation(s)
- Aleksandra Babicheva
- From the Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, School of Medicine, San Diego, CA
| | - Tengteng Zhao
- From the Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, School of Medicine, San Diego, CA
| | - Jason X-J Yuan
- From the Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, School of Medicine, San Diego, CA
| |
Collapse
|
46
|
Lambert M, Capuano V, Boet A, Tesson L, Bertero T, Nakhleh MK, Remy S, Anegon I, Pechoux C, Hautefort A, Rucker-Martin C, Manoury B, Domergue V, Mercier O, Girerd B, Montani D, Perros F, Humbert M, Antigny F. Characterization of Kcnk3-Mutated Rat, a Novel Model of Pulmonary Hypertension. Circ Res 2019; 125:678-695. [PMID: 31347976 DOI: 10.1161/circresaha.119.314793] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RATIONALE Pulmonary arterial hypertension is a severe lethal cardiopulmonary disease. Loss of function mutations in KCNK3 (potassium channel subfamily K member 3) gene, which encodes an outward rectifier K+ channel, have been identified in pulmonary arterial hypertension patients. OBJECTIVE We have demonstrated that KCNK3 dysfunction is common to heritable and nonheritable pulmonary arterial hypertension and to experimental pulmonary hypertension (PH). Finally, KCNK3 is not functional in mouse pulmonary vasculature. METHODS AND RESULTS Using CRISPR/Cas9 technology, we generated a 94 bp out of frame deletion in exon 1 of Kcnk3 gene and characterized these rats at the electrophysiological, echocardiographic, hemodynamic, morphological, cellular, and molecular levels to decipher the cellular mechanisms associated with loss of KCNK3. Using patch-clamp technique, we validated our transgenic strategy by demonstrating the absence of KCNK3 current in freshly isolated pulmonary arterial smooth muscle cells from Kcnk3-mutated rats. At 4 months of age, echocardiographic parameters revealed shortening of the pulmonary artery acceleration time associated with elevation of the right ventricular systolic pressure. Kcnk3-mutated rats developed more severe PH than wild-type rats after monocrotaline exposure or chronic hypoxia exposure. Kcnk3-mutation induced a lung distal neomuscularization and perivascular extracellular matrix activation. Lungs of Kcnk3-mutated rats were characterized by overactivation of ERK1/2 (extracellular signal-regulated kinase1-/2), AKT (protein kinase B), SRC, and overexpression of HIF1-α (hypoxia-inducible factor-1 α), survivin, and VWF (Von Willebrand factor). Linked with plasma membrane depolarization, reduced endothelial-NOS expression and desensitization of endothelial-derived hyperpolarizing factor, Kcnk3-mutated rats presented predisposition to vasoconstriction of pulmonary arteries and a severe loss of sildenafil-induced pulmonary arteries relaxation. Moreover, we showed strong alteration of right ventricular cardiomyocyte excitability. Finally, Kcnk3-mutated rats developed age-dependent PH associated with low serum-albumin concentration. CONCLUSIONS We established the first Kcnk3-mutated rat model of PH. Our results confirm that KCNK3 loss of function is a key event in pulmonary arterial hypertension pathogenesis. This model presents new opportunities for understanding the initiating mechanisms of PH and testing biologically relevant therapeutic molecules in the context of PH.
Collapse
Affiliation(s)
- Mélanie Lambert
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Véronique Capuano
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Angèle Boet
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Laurent Tesson
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, France (L.T., S.R., I.A.).,PTransgenic Rat ImmunoPhenomic (TRIP) facility Nantes, Nantes, France (L.T., S.R., I.A.)
| | - Thomas Bertero
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France (T.B.)
| | - Morad K Nakhleh
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Séverine Remy
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, France (L.T., S.R., I.A.).,PTransgenic Rat ImmunoPhenomic (TRIP) facility Nantes, Nantes, France (L.T., S.R., I.A.)
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, France (L.T., S.R., I.A.).,PTransgenic Rat ImmunoPhenomic (TRIP) facility Nantes, Nantes, France (L.T., S.R., I.A.)
| | - Christine Pechoux
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.P.)
| | - Aurélie Hautefort
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Catherine Rucker-Martin
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Boris Manoury
- Signalisation et Physiopathologie Cardiovasculaire - UMR_S 1180, Univ. Paris-Sud, INSERM, Université Paris-Saclay, Châtenay-Malabry, France (B.M.)
| | - Valérie Domergue
- Animal Facility, Institut Paris Saclay d'Innovation Thérapeutique (UMS IPSIT), Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France (V.D.)
| | - Olaf Mercier
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Barbara Girerd
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - David Montani
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Frédéric Perros
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Canada (F.P.)
| | - Marc Humbert
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| | - Fabrice Antigny
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M. H., F.A.).,Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.).,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (M.L., V.C., A.B., M.K.N., A.H., C.R.-M., O.M., B.G., D.M., F.P., M.H., F.A.)
| |
Collapse
|
47
|
Antigny F. Potassium channels in vascular smooth muscle: a pathophysiological and pharmacological perspective. Fundam Clin Pharmacol 2019; 33:524-526. [DOI: 10.1111/fcp.12493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Fabrice Antigny
- Faculté de Médecine Univ. Paris–Sud Université Paris‐Saclay 8 rue du Général Leclerc Le Kremlin Bicêtre94275France
- AP‐HP, Service de Pneumologie Centre de Référence de l'Hypertension PulmonaireHôpital Bicêtre 8 rue du Général Leclerc Le Plessis-Robinson94275France
- Inserm UMR_S 999 Hôpital Marie Lannelongue 133 Avenue de la Résistance Le Plessis Robinson92350France
| |
Collapse
|
48
|
McClenaghan C, Woo KV, Nichols CG. Pulmonary Hypertension and ATP-Sensitive Potassium Channels. Hypertension 2019; 74:14-22. [PMID: 31132951 DOI: 10.1161/hypertensionaha.119.12992] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Conor McClenaghan
- From the Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO (C.M., C.G.N.)
| | - Kel Vin Woo
- Department of Pediatrics, Division of Cardiology, Washington University School of Medicine, St Louis, MO (K.V.W.)
| | - Colin G Nichols
- From the Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO (C.M., C.G.N.)
| |
Collapse
|
49
|
Wood CE, Keller-Wood M. Current paradigms and new perspectives on fetal hypoxia: implications for fetal brain development in late gestation. Am J Physiol Regul Integr Comp Physiol 2019; 317:R1-R13. [PMID: 31017808 DOI: 10.1152/ajpregu.00008.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The availability of oxygen to the fetus is limited by the route taken by oxygen from the atmosphere to fetal tissues, aided or diminished by pregnancy-associated changes in maternal physiology and, ultimately, a function of atmospheric pressure and composition of the mother's inspired gas. Much of our understanding of the fetal physiological response to hypoxia comes from experiments designed to elucidate the cardiovascular and endocrine responses to transient hypoxia. Complementing this work is equally impactful research into the origins of intrauterine growth restriction in which animal models designed to restrict the transfer of oxygen from the maternal to the fetal circulation were used. A common assumption has been that outcomes measured after a period of hypoxia are related to cellular deprivation of oxygen and reoxygenation: an assumption based on a focus on what we can see "under the streetlights." Recent studies demonstrate that availability of oxygen may not tell the whole story. Transient hypoxia in the fetal sheep stimulates transcriptomics responses that mirror inflammation. This response is accompanied by the appearance of bacteria in the fetal brain and other tissues, likely resulting from a hypoxia-stimulated release of bacteria from the placenta. The appearance of bacteria in the fetus after transient hypoxia complements the recent discovery of bacterial DNA in the normal human placenta and in the tissues of fetal sheep. An understanding of the mechanism of the physiological, cellular, and molecular responses to hypoxia requires an appreciation of stimuli other than cellular oxygen deprivation: stimuli that we would have never known about without looking "between the streetlights," illuminating direct responses to the manipulated variables.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine , Gainesville, Florida
| | - Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida College of Pharmacy , Gainesville, Florida
| |
Collapse
|
50
|
Edling CE, Fazmin IT, Chadda KR, Ahmad S, Valli H, Huang CLH, Jeevaratnam K. Atrial Transcriptional Profiles of Molecular Targets Mediating Electrophysiological Function in Aging and Pgc-1β Deficient Murine Hearts. Front Physiol 2019; 10:497. [PMID: 31068841 PMCID: PMC6491872 DOI: 10.3389/fphys.2019.00497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/08/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Deficiencies in the transcriptional co-activator, peroxisome proliferative activated receptor, gamma, coactivator-1β are implicated in deficient mitochondrial function. The latter accompanies clinical conditions including aging, physical inactivity, obesity, and diabetes. Recent electrophysiological studies reported that Pgc-1β-/- mice recapitulate clinical age-dependent atrial pro-arrhythmic phenotypes. They implicated impaired chronotropic responses to adrenergic challenge, compromised action potential (AP) generation and conduction despite normal AP recovery timecourses and background resting potentials, altered intracellular Ca2+ homeostasis, and fibrotic change in the observed arrhythmogenicity. OBJECTIVE We explored the extent to which these age-dependent physiological changes correlated with alterations in gene transcription in murine Pgc-1β-/- atria. METHODS AND RESULTS RNA isolated from murine atrial tissue samples from young (12-16 weeks) and aged (>52 weeks of age), wild type (WT) and Pgc-1β-/- mice were studied by pre-probed quantitative PCR array cards. We examined genes encoding sixty ion channels and other strategic atrial electrophysiological proteins. Pgc-1β-/- genotype independently reduced gene transcription underlying Na+-K+-ATPase, sarcoplasmic reticular Ca2+-ATPase, background K+ channel and cholinergic receptor function. Age independently decreased Na+-K+-ATPase and fibrotic markers. Both factors interacted to alter Hcn4 channel activity underlying atrial automaticity. However, neither factor, whether independently or interactively, affected transcription of cardiac Na+, voltage-dependent K+ channels, surface or intracellular Ca2+ channels. Nor were gap junction channels, β-adrenergic receptors or transforming growth factor-β affected. CONCLUSION These findings limit the possible roles of gene transcriptional changes in previously reported age-dependent pro-arrhythmic electrophysiologial changes observed in Pgc-1β-/- atria to an altered Ca2+-ATPase (Atp2a2) expression. This directly parallels previously reported arrhythmic mechanism associated with p21-activated kinase type 1 deficiency. This could add to contributions from the direct physiological outcomes of mitochondrial dysfunction, whether through reactive oxygen species (ROS) production or altered Ca2+ homeostasis.
Collapse
Affiliation(s)
- Charlotte E. Edling
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ibrahim T. Fazmin
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom,Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Karan R. Chadda
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom,Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Haseeb Valli
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L.-H. Huang
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom,Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom,School of Medicine, Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia,*Correspondence: Kamalan Jeevaratnam,
| |
Collapse
|