1
|
Machnik K, Smoliński J, Paściak M. Evaluation of protein extraction protocols for MALDI-TOF Biotyper analysis of mycobacteria. J Microbiol Methods 2024; 227:107052. [PMID: 39384072 DOI: 10.1016/j.mimet.2024.107052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Infections caused by Mycobacterium tuberculosis and nontuberculous mycobacteria represent a significant global threat and medical concern. Therefore, accurate and reliable methods must be employed to identify mycobacteria rapidly. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a technique that compares the cellular protein profiles of unknown isolates with reference mass spectra in a database to identify microorganisms. However, the thick and waxy lipid layer, which is rich in mycolic acids and is present in mycobacterial cells, makes protein extraction challenging. To identify the optimal protocol for correctly identifying bacilli using MALDI-TOF mass spectrometry, this study compared four different cellular protein extraction methods. Four strains of M. bovis BCG were selected as representatives of slow-growing mycobacteria, while three strains of fast-growing mycobacteria were also included: M. peregrinum, M. smegmatis, and M. farcinogenes. The extraction method that proved most effective was the extraction of inactivated cells with chloroform and methanol, which partially delipidates the cells. These cells were then extracted with formic acid, as is standard practice for protein extraction. The advantage of this method is that it allows the parallel analysis of cellular lipids and proteins from a single sample. It is therefore important to optimize mycobacterial protein extraction for MALDI-TOF MS analysis in clinical microbiology laboratories.
Collapse
Affiliation(s)
- Katarzyna Machnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland.
| | - Jakub Smoliński
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland.
| | - Mariola Paściak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland.
| |
Collapse
|
2
|
Chevillon C, de Thoisy B, Rakestraw AW, Fast KM, Pechal JL, Picq S, Epelboin L, Le Turnier P, Dogbe M, Jordan HR, Sandel MW, Benbow ME, Guégan JF. Ecological and evolutionary perspectives advance understanding of mycobacterial diseases. THE LANCET. MICROBE 2024; 5:100906. [PMID: 39116907 DOI: 10.1016/s2666-5247(24)00138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 08/10/2024]
Abstract
Predicting the outbreak of infectious diseases and designing appropriate preventive health actions require interdisciplinary research into the processes that drive exposure to and transmission of disease agents. In the case of mycobacterial diseases, the epidemiological understanding of the scientific community hitherto was based on the clinical studies of infections in vertebrates. To evaluate the information gained by comprehensively accounting for the ecological and evolutionary constraints, we conducted literature searches assessing the role of mycobacteria interactions with non-vertebrate species in the origin of their pathogenicity and variations in disease risk. The reviewed literature challenges the current theory of person-to-person transmission for several mycobacterial infections. Furthermore, the findings suggest that diverse non-vertebrate organisms influence virulence, mediate transmission, and contribute to pathogen abundance in relation to vertebrate exposure. We advocate that an ecological and evolutionary framework provides novel insights to support a more comprehensive understanding of the prevention and management of diseases in vertebrates.
Collapse
Affiliation(s)
- Christine Chevillon
- MIVEGEC, Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Institut National de Recherches pour l'Agriculture, l'Alimentation et l'Environnement, Montpellier, France.
| | - Benoît de Thoisy
- Laboratoire des Interactions Virus Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Alex W Rakestraw
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Kayla M Fast
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, MS, USA
| | - Jennifer L Pechal
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Sophie Picq
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Loïc Epelboin
- Unité des Maladies Infectieuses et Tropicales, Centre Hospitalier de Cayenne, Cayenne, French Guiana, France; Centre d'Investigation Clinique Antilles-Guyane, Inserm 1424, Centre Hospitalier de Cayenne, Cayenne, French Guiana, France
| | - Paul Le Turnier
- Unité des Maladies Infectieuses et Tropicales, Centre Hospitalier de Cayenne, Cayenne, French Guiana, France; Centre d'Investigation Clinique Antilles-Guyane, Inserm 1424, Centre Hospitalier de Cayenne, Cayenne, French Guiana, France
| | - Magdalene Dogbe
- Department of Biological Sciences, Mississippi State University, MS, USA
| | - Heather R Jordan
- Department of Biological Sciences, Mississippi State University, MS, USA
| | - Michael W Sandel
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, MS, USA; Forest and Wildlife Research Center, Mississippi State University, MS, USA
| | - Mark Eric Benbow
- Department of Entomology, Michigan State University, East Lansing, MI, USA; Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, USA; Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA; Agbioresearch, Michigan State University, East Lansing, MI, USA
| | - Jean-François Guégan
- MIVEGEC, Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Institut National de Recherches pour l'Agriculture, l'Alimentation et l'Environnement, Montpellier, France; Epidémiologie des maladies animales et zoonotiques, Université Clermont Auvergne, INRAE, VetAgro Sup, Saint-Genès-Champanelle, France; Epidémiologie des maladies animales et zoonotiques, Université de Lyon, INRAE, VetAgro Sup, Marcy l'Etoile, France
| |
Collapse
|
3
|
Venter SN, Rodriguez-R LM, Chuvochina M, Palmer M, Hugenholtz P, Steenkamp ET. Options and considerations for validation of prokaryotic names under the SeqCode. Syst Appl Microbiol 2024; 47:126554. [PMID: 39305564 DOI: 10.1016/j.syapm.2024.126554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 11/26/2024]
Abstract
Stable taxon names for Bacteria and Archaea are essential for capturing and documenting prokaryotic diversity. They are also crucial for scientific communication, effective accumulation of biological data related to the taxon names and for developing a comprehensive understanding of prokaryotic evolution. However, after more than a hundred years, taxonomists have succeeded in valid publication of only around 30 000 species names, based mostly on pure cultures under the International Code of Nomenclature of Prokaryotes (ICNP), out of the millions estimated to reside in the biosphere. The vast majority of prokaryotic species have not been cultured and are becoming increasingly known to us via culture-independent sequence-based approaches. Until recently, such taxa could only be addressed nomenclaturally via provisional names such as Candidatus or alphanumeric identifiers. Here, we present options and considerations to facilitate validation of names for these taxa using the recently established Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode). Community engagement and participation of relevant taxon specialists are critical and encouraged for the success of endeavours to formally name the uncultured majority.
Collapse
Affiliation(s)
- Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Luis M Rodriguez-R
- Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Australia
| | - Marike Palmer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Australia
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Roberto Tavolari Jortieke C, Rocha Joaquim A, Fumagalli F. Advances in antibacterial agents for Mycobacterium fortuitum. RSC Med Chem 2024; 16:d4md00508b. [PMID: 39493226 PMCID: PMC11528911 DOI: 10.1039/d4md00508b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Mycobacterium fortuitum is an emerging human pathogen, characterized by an increase in prevalence and antibacterial resistance over the years, highlighting the need for the development of new drugs against this rapidly growing nontuberculous mycobacterium (NTM). To support this crusade, this review summarizes findings from the past two decades concerning compounds with antimycobacterial activity against M. fortuitum. It identifies the most promising and effective chemical frameworks to inspire the development of new therapeutic alternatives for infections caused by this microorganism. Most compounds effective against M. fortuitum are synthetic, with macozinone, featuring a 2-piperazine-benzothiazinone framework, standing out as a notable drug candidate. Among natural products, the polyphenolic polyketide clostrubin and the sansanmycin peptide analogs have shown efficacy against this NTM. Some compounds' mechanisms of action on M. fortuitum have been studied, including NITD-916, which acts as an enoyl-acyl carrier protein reductase inhibitor, and TBAJ-5307, which inhibits F-ATP synthase. Moreover, this review discusses the pathogenic molecular mechanisms and potential therapeutic targets within this mycobacterium.
Collapse
Affiliation(s)
| | - Angélica Rocha Joaquim
- Department of Pharmacy, Health Sciences Centre, Federal University of Santa Maria Santa Maria RS Brazil +55 (55) 3220 9372
| | - Fernando Fumagalli
- Department of Pharmacy, Health Sciences Centre, Federal University of Santa Maria Santa Maria RS Brazil +55 (55) 3220 9372
| |
Collapse
|
5
|
Zimenkov D, Atanasova Y, Ushtanit A, Yordanova S, Baykova A, Filippova M, Semenova U, Mokrousov I, Bachiyska E. The Intriguing Pattern of Nontuberculous Mycobacteria in Bulgaria and Description of Mycobacterium bulgaricum sp. nov. Int J Mol Sci 2024; 25:10434. [PMID: 39408759 PMCID: PMC11476446 DOI: 10.3390/ijms251910434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
We investigated the rise of nontuberculous mycobacteria (NTM) infections in Bulgaria, focusing on species identification and distribution from 2018 to 2022. Utilizing advanced diagnostic tools, including the Hain Mycobacterium CM/AS method, Myco-biochip assay, and whole-genome sequencing, the study identifies and characterizes a diverse range of Mycobacterium species from clinical samples. While M. avium, M. gordonae, M. fortuitum, and M. chelonae were dominating, a number of rare species were also found. They include such species as M. marseillense and M. celatum. Moreover, the noticeable prevalence of M. terrae complex species missed by conventional testing was observed. We identified a rare species, highly homologous to previously described strains from Japan; based on genome-genome distance data, we propose its reannotation as a new species. Further, a novel species was identified, which is significantly distinct from its closest neighbor, M. iranicum, with ANI = 87.18%. Based on the SeqCode procedure, we propose to name this new species Mycobacterium bulgaricum sp. nov. Dynamic changes in NTM species prevalence in Bulgaria observed from 2011 to 2022 highlight the emergence of new species and variations tied to environmental and demographic factors. This underscores the importance of accurate species identification and genotyping for understanding NTM epidemiology, informing public health strategies, and enhancing diagnostic accuracy and treatment protocols.
Collapse
Affiliation(s)
- Danila Zimenkov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.U.); (M.F.); (U.S.)
| | - Yuliana Atanasova
- National Reference Laboratory of Tuberculosis, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 44A General Nikolai Stoletov Boulevard, 1233 Sofia, Bulgaria; (S.Y.); (A.B.); (E.B.)
| | - Anastasia Ushtanit
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.U.); (M.F.); (U.S.)
| | - Stanislava Yordanova
- National Reference Laboratory of Tuberculosis, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 44A General Nikolai Stoletov Boulevard, 1233 Sofia, Bulgaria; (S.Y.); (A.B.); (E.B.)
| | - Ana Baykova
- National Reference Laboratory of Tuberculosis, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 44A General Nikolai Stoletov Boulevard, 1233 Sofia, Bulgaria; (S.Y.); (A.B.); (E.B.)
| | - Marina Filippova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.U.); (M.F.); (U.S.)
| | - Uliana Semenova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.U.); (M.F.); (U.S.)
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, 197101 St. Petersburg, Russia;
| | - Elizabeta Bachiyska
- National Reference Laboratory of Tuberculosis, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 44A General Nikolai Stoletov Boulevard, 1233 Sofia, Bulgaria; (S.Y.); (A.B.); (E.B.)
| |
Collapse
|
6
|
Godmer A, Bigey L, Giai‐Gianetto Q, Pierrat G, Mohammad N, Mougari F, Piarroux R, Veziris N, Aubry A. Contribution of machine learning for subspecies identification from Mycobacterium abscessus with MALDI-TOF MS in solid and liquid media. Microb Biotechnol 2024; 17:e14545. [PMID: 39257027 PMCID: PMC11387462 DOI: 10.1111/1751-7915.14545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/26/2024] [Indexed: 09/12/2024] Open
Abstract
Mycobacterium abscessus (MABS) displays differential subspecies susceptibility to macrolides. Thus, identifying MABS's subspecies (M. abscessus, M. bolletii and M. massiliense) is a clinical necessity for guiding treatment decisions. We aimed to assess the potential of Machine Learning (ML)-based classifiers coupled to Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) MS to identify MABS subspecies. Two spectral databases were created by using 40 confirmed MABS strains. Spectra were obtained by using MALDI-TOF MS from strains cultivated on solid (Columbia Blood Agar, CBA) or liquid (MGIT®) media for 1 to 13 days. Each database was divided into a dataset for ML-based pipeline development and a dataset to assess the performance. An in-house programme was developed to identify discriminant peaks specific to each subspecies. The peak-based approach successfully distinguished M. massiliense from the other subspecies for strains grown on CBA. The ML approach achieved 100% accuracy for subspecies identification on CBA, falling to 77.5% on MGIT®. This study validates the usefulness of ML, in particular the Random Forest algorithm, to discriminate MABS subspecies by MALDI-TOF MS. However, identification in MGIT®, a medium largely used in mycobacteriology laboratories, is not yet reliable and should be a development priority.
Collapse
Affiliation(s)
- Alexandre Godmer
- U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi‐Paris)Sorbonne UniversitéParisFrance
- AP‐HP, Sorbonne Université (Assistance Publique Hôpitaux de Paris), Département de BactériologieGroupe Hospitalier Universitaire, Sorbonne Université, HôpitalParisFrance
| | - Lise Bigey
- U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi‐Paris)Sorbonne UniversitéParisFrance
- DER (Département d'Enseignement et de Recherche) de Biologie, ENS Paris‐SaclayUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Quentin Giai‐Gianetto
- Institut PasteurUniversité Paris Cité, Bioinformatics and Biostatistics HUBParisFrance
- Institut PasteurUniversité Paris Cité, Proteomics Platform, Mass Spectrometry for Biology Unit, UAR CNRS 2024ParisFrance
| | - Gautier Pierrat
- AP‐HP, Sorbonne Université (Assistance Publique Hôpitaux de Paris), Département de BactériologieGroupe Hospitalier Universitaire, Sorbonne Université, HôpitalParisFrance
| | - Noshine Mohammad
- Inserm, Institut Pierre‐Louis d'Epidémiologie et de Santé Publique, IPLESP, AP‐HP, Groupe Hospitalier Pitié‐Salpêtrière, Service de Parasitologie‐ MycologieSorbonne UniversitéParisFrance
| | - Faiza Mougari
- Service de Mycobactériologie spécialisée et de référence, Centre National de Référence des Mycobactéries (Laboratoire associé), APHP GHU NordUniversité Paris Cité, INSERM IAME UMRParisFrance
| | - Renaud Piarroux
- Inserm, Institut Pierre‐Louis d'Epidémiologie et de Santé Publique, IPLESP, AP‐HP, Groupe Hospitalier Pitié‐Salpêtrière, Service de Parasitologie‐ MycologieSorbonne UniversitéParisFrance
| | - Nicolas Veziris
- U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi‐Paris)Sorbonne UniversitéParisFrance
- AP‐HP, Sorbonne Université (Assistance Publique Hôpitaux de Paris), Département de BactériologieGroupe Hospitalier Universitaire, Sorbonne Université, HôpitalParisFrance
- AP‐HP, Sorbonne Université (Assistance Publique Hôpitaux de Paris)Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux AntituberculeuxParisFrance
| | - Alexandra Aubry
- U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi‐Paris)Sorbonne UniversitéParisFrance
- AP‐HP, Sorbonne Université (Assistance Publique Hôpitaux de Paris)Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux AntituberculeuxParisFrance
| |
Collapse
|
7
|
Zhang L, Lin TY, Liu WT, Ling F. Toward Characterizing Environmental Sources of Non-tuberculous Mycobacteria (NTM) at the Species Level: A Tutorial Review of NTM Phylogeny and Phylogenetic Classification. ACS ENVIRONMENTAL AU 2024; 4:127-141. [PMID: 38765059 PMCID: PMC11100324 DOI: 10.1021/acsenvironau.3c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 05/21/2024]
Abstract
Nontuberculous mycobacteria (NTM) are any mycobacteria that do not cause tuberculosis or leprosy. While the majority of NTM are harmless and some of them are considered probiotic, a growing number of people are being diagnosed with NTM infections. Therefore, their detection in the environment is of interest to clinicians, environmental microbiologists, and water quality researchers alike. This review provides a tutorial on the foundational approaches for taxonomic classifications, with a focus on the phylogenetic relationships among NTM revealed by the 16S rRNA gene, rpoB gene, and hsp65 gene, and by genome-based approaches. Recent updates on the Mycobacterium genus taxonomy are also provided. A synthesis on the habitats of 189 mycobacterial species in a genome-based taxonomy framework was performed, with attention paid to environmental sources (e.g., drinking water, aquatic environments, and soil). The 16S rRNA gene-based classification accuracy for various regions was evaluated (V3, V3-V4, V3-V5, V4, V4-V5, and V1-V9), revealing overall excellent genus-level classification (up to 100% accuracy) yet only modest performance (up to 63.5% accuracy) at the species level. Future research quantifying NTM species in water systems, determining the effects of water treatment and plumbing conditions on their variations, developing high throughput species-level characterization tools for use in the environment, and incorporating the characterization of functions in a phylogenetic framework will likely fill critical knowledge gaps. We believe this tutorial will be useful for researchers new to the field of molecular or genome-based taxonomic profiling of environmental microbiomes. Experts may also find this review useful in terms of the selected key findings of the past 30 years, recent updates on phylogenomic analyses, as well as a synthesis of the ecology of NTM in a phylogenetic framework.
Collapse
Affiliation(s)
- Lin Zhang
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tzu-Yu Lin
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Wen-Tso Liu
- Department
of Civil and Environmental Engineering, University of Illinois, Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Fangqiong Ling
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
8
|
Ranganath N, Mendoza MA, Stevens R, Kind D, Wengenack N, Shah A. Rhodococcus infection: a 10-year retrospective analysis of clinical experience and antimicrobial susceptibility profile. J Clin Microbiol 2024; 62:e0153723. [PMID: 38349145 PMCID: PMC10935630 DOI: 10.1128/jcm.01537-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/07/2024] [Indexed: 02/24/2024] Open
Abstract
Rhodococcus equi is an opportunistic pathogen known to cause pulmonary and extrapulmonary disease among immunocompromised patients. Treatment is frequently challenging due to intrinsic resistance to multiple antibiotic classes. While non-equi Rhodococcus spp. are prevalent, their clinical significance is poorly defined. There is also limited data on antibiotic susceptibility testing (AST) of Rhodococcus infection in humans. We conducted a single-center, retrospective cohort study evaluating clinical characteristics, microbiologic profile, and AST of Rhodococcus infections between June 2012 and 2022 at our tertiary academic medical center. Identification of Rhodococcus spp. was performed by Sanger 16S rRNA gene sequencing and/or matrix-assisted laser desorption ionization-time of flight mass spectrometry, and AST was performed by agar dilution. Three hundred twenty-two isolates of Rhodococcus spp. were identified from blood (50%), pulmonary (26%), and bone/joint (12%) sources. R. equi/hoagii, R. corynebacterioides, and R. erythropolis were the most frequently isolated species, with 19% of isolates identified only to genus level. One hundred ninety-nine isolates evaluated for AST demonstrated high-level resistance to amoxicillin/clavulanate, cephalosporins, and aminoglycosides. More than 95% susceptibility to imipenem, vancomycin, linezolid, rifampin, and clarithromycin was observed. Non-equi species showed a significantly more favorable AST profile relative to R. equi. Clinically significant Rhodococcus infection was rare with 10 cases diagnosed (majority due to R. equi) and managed. The majority of patients received 2- or 3-drug combination therapy for 2-6 months, with favorable clinical response. Significant differences in AST were observed between R. equi and non-equi species. Despite high antimicrobial resistance to several antibiotic classes, imipenem and vancomycin remain appropriate empiric treatment options for R. equi. Future research evaluating mechanisms underlying antimicrobial resistance is warranted.
Collapse
Affiliation(s)
- Nischal Ranganath
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria Alejandra Mendoza
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan Stevens
- Department of Pharmacy, Mayo Clinic, Rochester, Minnesota, USA
| | - Dalton Kind
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nancy Wengenack
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Aditya Shah
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Orgeur M, Sous C, Madacki J, Brosch R. Evolution and emergence of Mycobacterium tuberculosis. FEMS Microbiol Rev 2024; 48:fuae006. [PMID: 38365982 PMCID: PMC10906988 DOI: 10.1093/femsre/fuae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases in human history, prevailing even in the 21st century. The causative agents of TB are represented by a group of closely related bacteria belonging to the Mycobacterium tuberculosis complex (MTBC), which can be subdivided into several lineages of human- and animal-adapted strains, thought to have shared a last common ancestor emerged by clonal expansion from a pool of recombinogenic Mycobacterium canettii-like tubercle bacilli. A better understanding of how MTBC populations evolved from less virulent mycobacteria may allow for discovering improved TB control strategies and future epidemiologic trends. In this review, we highlight new insights into the evolution of mycobacteria at the genus level, describing different milestones in the evolution of mycobacteria, with a focus on the genomic events that have likely enabled the emergence and the dominance of the MTBC. We also review the recent literature describing the various MTBC lineages and highlight their particularities and differences with a focus on host preferences and geographic distribution. Finally, we discuss on putative mechanisms driving the evolution of tubercle bacilli and mycobacteria in general, by taking the mycobacteria-specific distributive conjugal transfer as an example.
Collapse
Affiliation(s)
- Mickael Orgeur
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| | - Camille Sous
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| | - Jan Madacki
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Unit for Human Evolutionary Genetics, 75015 Paris, France
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| |
Collapse
|
10
|
Hall MB, Coin LJM. Pangenome databases improve host removal and mycobacteria classification from clinical metagenomic data. Gigascience 2024; 13:giae010. [PMID: 38573185 PMCID: PMC10993716 DOI: 10.1093/gigascience/giae010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/10/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Culture-free real-time sequencing of clinical metagenomic samples promises both rapid pathogen detection and antimicrobial resistance profiling. However, this approach introduces the risk of patient DNA leakage. To mitigate this risk, we need near-comprehensive removal of human DNA sequences at the point of sequencing, typically involving the use of resource-constrained devices. Existing benchmarks have largely focused on the use of standardized databases and largely ignored the computational requirements of depletion pipelines as well as the impact of human genome diversity. RESULTS We benchmarked host removal pipelines on simulated and artificial real Illumina and Nanopore metagenomic samples. We found that construction of a custom kraken database containing diverse human genomes results in the best balance of accuracy and computational resource usage. In addition, we benchmarked pipelines using kraken and minimap2 for taxonomic classification of Mycobacterium reads using standard and custom databases. With a database representative of the Mycobacterium genus, both tools obtained improved specificity and sensitivity, compared to the standard databases for classification of Mycobacterium tuberculosis. Computational efficiency of these custom databases was superior to most standard approaches, allowing them to be executed on a laptop device. CONCLUSIONS Customized pangenome databases provide the best balance of accuracy and computational efficiency when compared to standard databases for the task of human read removal and M. tuberculosis read classification from metagenomic samples. Such databases allow for execution on a laptop, without sacrificing accuracy, an especially important consideration in low-resource settings. We make all customized databases and pipelines freely available.
Collapse
Affiliation(s)
- Michael B Hall
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, 3000 Victoria, Australia
| | - Lachlan J M Coin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, 3000 Victoria, Australia
| |
Collapse
|
11
|
Lawhon SD, Burbick CR, Munson E, Thelen E, Zapp A, Wilson A. Update on novel validly published taxa of bacteria isolated from domestic animals described in 2022. J Clin Microbiol 2023; 61:e0083923. [PMID: 37889054 PMCID: PMC10729710 DOI: 10.1128/jcm.00839-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Expansion of our knowledge of the microbial world continues to progress at a rapid rate and carries with it an associated need for recognizing and understanding the implications of those changes. Here, we describe additions of novel taxa from domestic animals published in 2022 that are validly published per the International Code of Nomenclature of Prokaryotes. These included new members of Staphylococcaceae, Moraxella nasovis sp. nov. in sheep with respiratory disease, three additions to Campylobacteraceae (including one from chickens with spotty liver disease), and multiple additions of organisms from the microbiota of dogs, pigs, and especially honeybees and other important pollinators. Noteworthy additions were associated with diseases of cattle, including mastitis, endocarditis, orchitis, and endometritis. Also described in 2022 was Pseudochrobactrum algeriense sp. nov., a member of the Brucellaceae family, isolated from the mammary lymph nodes of cows.
Collapse
Affiliation(s)
- Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Anastasia Wilson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
12
|
Khare R, Brown-Elliott BA. Culture, Identification, and Antimicrobial Susceptibility Testing of Pulmonary Nontuberculous Mycobacteria. Clin Chest Med 2023; 44:743-755. [PMID: 37890913 DOI: 10.1016/j.ccm.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Nontuberculous mycobacteria (NTM) typically cause opportunistic pulmonary infections and reliable laboratory results can assist with diagnosis of disease. Microscopy can detect acid-fast bacilli from specimens though it has poor sensitivity. Solid and liquid culture are used to grow NTM, which are identified by molecular or protein-based assays. Because culture has a long turnaround time, some assays are designed to identify NTM directly from sputum specimens. When indicated, phenotypic susceptibility testing should be performed by broth microdilution as per the guidelines from the Clinical Laboratory Standards Institute. Genotypic susceptibility methods may be used to decrease the turnaround time for some antimicrobials.
Collapse
Affiliation(s)
- Reeti Khare
- Mycobacteriology Laboratory, 1400 Jackson Street, National Jewish Health, Denver, CO 80238, USA.
| | - Barbara A Brown-Elliott
- The University of TX Health Science Center at Tyler, Mycobacteria/Nocardia Laboratory, 11937 US Highway 271, Tyler, TX 75708, USA
| |
Collapse
|
13
|
Val-Calvo J, Vázquez-Boland JA. Mycobacteriales taxonomy using network analysis-aided, context-uniform phylogenomic approach for non-subjective genus demarcation. mBio 2023; 14:e0220723. [PMID: 37796005 PMCID: PMC10653829 DOI: 10.1128/mbio.02207-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE A robust taxonomy is essential for the organized study of prokaryotes and the effective communication of microbial knowledge. The genus rank is the mainstay of biological classification as it brings together under a common name a group of closely related organisms sharing the same recent ancestry and similar characteristics. Despite the unprecedented resolution afforded by whole-genome sequencing in defining evolutionary relationships, a consensus approach for phylogenomics-based prokaryotic genus delineation remains elusive. Taxonomists use different demarcation criteria, sometimes leading to genus rank over-splitting and the creation of multiple new genera. This work reports a simple, reliable, and standardizable method that seeks to minimize subjectivity in genomics-based demarcation of prokaryotic genera, exemplified through application to the order Mycobacteriales. Formal descriptions of proposed taxonomic changes based on our study are included.
Collapse
Affiliation(s)
- Jorge Val-Calvo
- Microbial Pathogenesis Laboratory, Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - José A. Vázquez-Boland
- Microbial Pathogenesis Laboratory, Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
14
|
Abad L, Gauthier CH, Florian I, Jacobs-Sera D, Hatfull GF. The heterogenous and diverse population of prophages in Mycobacterium genomes. mSystems 2023; 8:e0044623. [PMID: 37791767 PMCID: PMC10654092 DOI: 10.1128/msystems.00446-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Mycobacterium species include several human pathogens and mycobacteriophages show potential for therapeutic use to control Mycobacterium infections. However, phage infection profiles vary greatly among Mycobacterium abscessus clinical isolates and phage therapies must be personalized for individual patients. Mycobacterium phage susceptibility is likely determined primarily by accessory parts of bacterial genomes, and we have identified the prophage and phage-related genomic regions across sequenced Mycobacterium strains. The prophages are numerous and diverse, especially in M. abscessus genomes, and provide a potentially rich reservoir of new viruses that can be propagated lytically and used to expand the repertoire of therapeutically useful phages.
Collapse
Affiliation(s)
- Lawrence Abad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christian H. Gauthier
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Isabella Florian
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Deng Y, Mou T, Wang J, Su J, Yan Y, Zhang YQ. Characterization of three rapidly growing novel Mycobacterium species with significant polycyclic aromatic hydrocarbon bioremediation potential. Front Microbiol 2023; 14:1225746. [PMID: 37744919 PMCID: PMC10517868 DOI: 10.3389/fmicb.2023.1225746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Mycobacterium species exhibit high bioremediation potential for the degradation of polycyclic aromatic hydrocarbons (PAHs) that are significant environmental pollutants. In this study, three Gram-positive, rapidly growing strains (YC-RL4T, MB418T, and HX176T) were isolated from petroleum-contaminated soils and were classified as Mycobacterium within the family Mycobacteriaceae. Genomic average nucleotide identity (ANI; < 95%) and digital DNA-DNA hybridization (dDDH; < 70%) values relative to other Mycobacterium spp. indicated that the strains represented novel species. The morphological, physiological, and chemotaxonomic characteristics of the isolates also supported their affiliation with Mycobacterium and their delineation as novel species. The strains were identified as Mycobacterium adipatum sp. nov. (type strain YC-RL4T = CPCC 205684T = CGMCC 1.62027T), Mycobacterium deserti sp. nov. (type strain MB418T = CPCC 205710T = KCTC 49782T), and Mycobacterium hippophais sp. nov. (type strain HX176T = CPCC 205372T = KCTC 49413T). Genes encoding enzymes involved in PAH degradation and metal resistance were present in the genomes of all three strains. Specifically, genes encoding alpha subunits of aromatic ring-hydroxylating dioxygenases were encoded by the genomes. The genes were also identified as core genes in a pangenomic analysis of the three strains along with 70 phylogenetically related mycobacterial strains that were previously classified as Mycolicibacterium. Notably, strain YC-RL4T could not only utilize phthalates as their sole carbon source for growth, but also convert di-(2-ethylhexyl) phthalate into phthalic acid. These results indicated that strains YC-RL4T, MB418T, and HX176T were important resources with significant bioremediation potential in soils contaminated by PAHs and heavy metals.
Collapse
Affiliation(s)
- Yang Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Dao-di Herbs, Beijing, China
| | - Tong Mou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Dao-di Herbs, Beijing, China
| | - Junhuan Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanchun Yan
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Dao-di Herbs, Beijing, China
| |
Collapse
|
16
|
Moreno E, Middlebrook EA, Altamirano-Silva P, Al Dahouk S, Araj GF, Arce-Gorvel V, Arenas-Gamboa Á, Ariza J, Barquero-Calvo E, Battelli G, Bertu WJ, Blasco JM, Bosilkovski M, Cadmus S, Caswell CC, Celli J, Chacón-Díaz C, Chaves-Olarte E, Comerci DJ, Conde-Álvarez R, Cook E, Cravero S, Dadar M, De Boelle X, De Massis F, Díaz R, Escobar GI, Fernández-Lago L, Ficht TA, Foster JT, Garin-Bastuji B, Godfroid J, Gorvel JP, Güler L, Erdenliğ-Gürbilek S, Gusi AM, Guzmán-Verri C, Hai J, Hernández-Mora G, Iriarte M, Jacob NR, Keriel A, Khames M, Köhler S, Letesson JJ, Loperena-Barber M, López-Goñi I, McGiven J, Melzer F, Mora-Cartin R, Moran-Gilad J, Muñoz PM, Neubauer H, O'Callaghan D, Ocholi R, Oñate Á, Pandey P, Pappas G, Pembroke JT, Roop M, Ruiz-Villalonos N, Ryan MP, Salcedo SP, Salvador-Bescós M, Sangari FJ, de Lima Santos R, Seimenis A, Splitter G, Suárez-Esquivel M, Tabbaa D, Trangoni MD, Tsolis RM, Vizcaíno N, Wareth G, Welburn SC, Whatmore A, Zúñiga-Ripa A, Moriyón I. If You're Not Confused, You're Not Paying Attention: Ochrobactrum Is Not Brucella. J Clin Microbiol 2023; 61:e0043823. [PMID: 37395662 PMCID: PMC10446859 DOI: 10.1128/jcm.00438-23] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Bacteria of the genus Brucella are facultative intracellular parasites that cause brucellosis, a severe animal and human disease. Recently, a group of taxonomists merged the brucellae with the primarily free-living, phylogenetically related Ochrobactrum spp. in the genus Brucella. This change, founded only on global genomic analysis and the fortuitous isolation of some opportunistic Ochrobactrum spp. from medically compromised patients, has been automatically included in culture collections and databases. We argue that clinical and environmental microbiologists should not accept this nomenclature, and we advise against its use because (i) it was presented without in-depth phylogenetic analyses and did not consider alternative taxonomic solutions; (ii) it was launched without the input of experts in brucellosis or Ochrobactrum; (iii) it applies a non-consensus genus concept that disregards taxonomically relevant differences in structure, physiology, population structure, core-pangenome assemblies, genome structure, genomic traits, clinical features, treatment, prevention, diagnosis, genus description rules, and, above all, pathogenicity; and (iv) placing these two bacterial groups in the same genus creates risks for veterinarians, medical doctors, clinical laboratories, health authorities, and legislators who deal with brucellosis, a disease that is particularly relevant in low- and middle-income countries. Based on all this information, we urge microbiologists, bacterial collections, genomic databases, journals, and public health boards to keep the Brucella and Ochrobactrum genera separate to avoid further bewilderment and harm.
Collapse
Affiliation(s)
- Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Earl A. Middlebrook
- Genomics and Bioanalytics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Pamela Altamirano-Silva
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Sascha Al Dahouk
- Department of Environmental Hygiene, German Environment Agency, Berlin, Germany
| | - George F. Araj
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Vilma Arce-Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, CNRS, INSERM, Marseille, France
| | - Ángela Arenas-Gamboa
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Javier Ariza
- Infectious Disease Department, Hospital Universitario de Bellvitge, Universidad de Barcelona, Barcelona, Spain
| | - Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Giorgio Battelli
- Department of Medical Veterinary Sciences, University of Bologna, Bologna, Italy
| | - Wilson J. Bertu
- Brucellosis Research Laboratory, Bacterial Research Division, National Veterinary Research Institute, Vom, Nigeria
| | - José María Blasco
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain
| | - Mile Bosilkovski
- University Hospital for Infectious Diseases and Febrile Conditions, Medical Faculty, Saints Cyril and Methodius University, Skopje, Republic of North Macedonia
| | - Simeon Cadmus
- Centre for Control and Prevention of Zoonoses, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Clayton C. Caswell
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Jean Celli
- Larner College of Medicine at the University of Vermont, Department of Microbiology and Molecular Genetics, Burlington, Vermont, USA
| | - Carlos Chacón-Díaz
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Diego J. Comerci
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Raquel Conde-Álvarez
- Instituto de Investigación Sanitaria de Navarra (IdisNa), Pamplona, Spain
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Elizabeth Cook
- International Livestock Research Institute, Nairobi, Kenya
| | - Silvio Cravero
- Centro de Investigación en Ciencias Veterinarias y Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Xavier De Boelle
- Research Unit in Biology of Microorganisms, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| | - Fabrizio De Massis
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Ramón Díaz
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Gabriela I. Escobar
- Laboratorio de Brucelosis, Laboratorio Nacional de Referencia, INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Luis Fernández-Lago
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Thomas A. Ficht
- Texas A&M University, Veterinary Pathobiology, College Station, Texas, USA
| | - Jeffrey T. Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Bruno Garin-Bastuji
- French Agency for Food, Environmental, and Occupational Health and Safety, Maisons-Alfort, France
| | - Jacques Godfroid
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries, and Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, CNRS, INSERM, Marseille, France
| | - Leyla Güler
- MG Veterinary Diagnostic Laboratory, Meram, Konya, Turkey
| | - Sevil Erdenliğ-Gürbilek
- Harran University, Faculty of Veterinary Medicine, Microbiology Department, Şanlıurfa, Şanlıurfa, Turkey
| | - Amayel M. Gusi
- Brucellosis Research Laboratory, Bacterial Research Division, National Veterinary Research Institute, Vom, Nigeria
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Jiang Hai
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Beijing, People's Republic of China
| | - Gabriela Hernández-Mora
- Servicio Nacional de Salud Animal, Ministerio de Agricultura y Ganadería, Heredia, Costa Rica
| | - Maite Iriarte
- Instituto de Investigación Sanitaria de Navarra (IdisNa), Pamplona, Spain
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Nestor R. Jacob
- Hospital Argerich, Department of Infectious Diseases, Buenos Aires, Argentina
| | - Anne Keriel
- Centre National de Référence des Brucella, U1047, University of Montpellier/INSERM, CHU de Nîmes, Nimes, France
| | - Maamar Khames
- University of Medea, Faculty of Sciences, Department of Biology, Medea, Algeria
| | - Stephan Köhler
- Institut de Recherche en Infectiologie de Montpellier, CNRS, University of Montpellier, Montpellier, France
| | - Jean-Jacques Letesson
- Research Unit in Biology of Microorganisms, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| | - Maite Loperena-Barber
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Ignacio López-Goñi
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - John McGiven
- WOAH Reference Laboratory for Brucellosis, Animal and Plant Health Agency, Weybridge, United Kingdom
- FAO Reference Centre for Brucellosis, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Falk Melzer
- Friedrich Loeffler Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Ricardo Mora-Cartin
- Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Jacob Moran-Gilad
- Microbiology, Advanced Genomics, and Infection Control Applications Laboratory, Department of Health Systems Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Pilar M. Muñoz
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain
| | - Heinrich Neubauer
- Friedrich Loeffler Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - David O'Callaghan
- Centre National de Référence des Brucella, U1047, University of Montpellier/INSERM, CHU de Nîmes, Nimes, France
| | - Reuben Ocholi
- Bacteriology, Parasitology, and Virology Department, National Veterinary Research Institute, Vom, Nigeria
| | - Ángel Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Georgios Pappas
- Institute of Continuing Medical Education of Ioannina, Ioannina, Greece
| | - J. Tony Pembroke
- School of Natural Sciences and Bernal Institute, University of Limerick, Limerick, Ireland
| | - Martin Roop
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, North Carolina, USA
| | - Nazaret Ruiz-Villalonos
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Michael P. Ryan
- Department of Applied Science, Technological University of the Shanno, Limerick, Ireland
| | - Suzana P. Salcedo
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Miriam Salvador-Bescós
- Instituto de Investigación Sanitaria de Navarra (IdisNa), Pamplona, Spain
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Félix J. Sangari
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas, Universidad de Cantabria, Santander, Spain
| | - Renato de Lima Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aristarchos Seimenis
- Mediterranean Zoonoses Control Centre, World Health Organization, Athens, Greece
| | - Gary Splitter
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marcela Suárez-Esquivel
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Darem Tabbaa
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Hama University, Hama, Syria
| | - Marcos David Trangoni
- Centro de Investigación en Ciencias Veterinarias y Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Renee M. Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Nieves Vizcaíno
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Gamal Wareth
- Friedrich Loeffler Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Susan C. Welburn
- Division of Infection and Pathway Medicine, Centre for Infectious Diseases, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Adrian Whatmore
- WOAH Reference Laboratory for Brucellosis, Animal and Plant Health Agency, Weybridge, United Kingdom
- FAO Reference Centre for Brucellosis, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Amaia Zúñiga-Ripa
- Instituto de Investigación Sanitaria de Navarra (IdisNa), Pamplona, Spain
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Ignacio Moriyón
- Instituto de Investigación Sanitaria de Navarra (IdisNa), Pamplona, Spain
- Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
17
|
Lang M, Ganapathy US, Mann L, Abdelaziz R, Seidel RW, Goddard R, Sequenzia I, Hoenke S, Schulze P, Aragaw WW, Csuk R, Dick T, Richter A. Synthesis and Characterization of Phenylalanine Amides Active against Mycobacterium abscessus and Other Mycobacteria. J Med Chem 2023; 66:5079-5098. [PMID: 37001025 PMCID: PMC10586324 DOI: 10.1021/acs.jmedchem.3c00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Nα-2-thiophenoyl-d-phenylalanine-2-morpholinoanilide [MMV688845, Pathogen Box; Medicines for Malaria Venture; IUPAC: (2R)-N-(1-((2-morpholinophenyl)amino)-1-oxo-3-phenylpropan-2-yl)thiophene-2-carboxamide)] is a hit compound, which shows activity against Mycobacterium abscessus (MIC90 6.25-12.5 μM) and other mycobacteria. This work describes derivatization of MMV688845 by introducing a thiomorpholine moiety and the preparation of the corresponding sulfones and sulfoxides. The molecular structures of three analogs are confirmed by X-ray crystallography. Conservation of the essential R configuration during synthesis is proven by chiral HPLC for an exemplary compound. All analogs were characterized in a MIC assay against M. abscessus, Mycobacterium intracellulare, Mycobacterium smegmatis, and Mycobacterium tuberculosis. The sulfone derivatives exhibit lower MIC90 values (M. abscessus: 0.78 μM), and the sulfoxides show higher aqueous solubility than the hit compound. The most potent derivatives possess bactericidal activity (99% inactivation of M. abscessus at 12.5 μM), while they are not cytotoxic against mammalian cell lines.
Collapse
Affiliation(s)
- Markus Lang
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Uday S. Ganapathy
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, 07110 Nutley, New Jersey, USA
| | - Lea Mann
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Rana Abdelaziz
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Rüdiger W. Seidel
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Richard Goddard
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Ilaria Sequenzia
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Sophie Hoenke
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle (Saale), Germany
| | - Philipp Schulze
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Wassihun Wedajo Aragaw
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, 07110 Nutley, New Jersey, USA
| | - René Csuk
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle (Saale), Germany
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, 07110 Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, 123 Metro Blvd, 07110 Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, 3900 Reservoir Road, N.W., 20007 Washington DC, USA
| | - Adrian Richter
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| |
Collapse
|
18
|
Hunkins JJ, de-Moura VCN, Eddy JJ, Daley CL, Khare R. In vitro susceptibility patterns for rapidly growing nontuberculous mycobacteria in the United States. Diagn Microbiol Infect Dis 2023; 105:115882. [PMID: 36610383 DOI: 10.1016/j.diagmicrobio.2022.115882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Antimicrobial susceptibility testing for rapidly growing mycobacteria (RGM) is uncommon or only performed in large reference laboratories. Here we developed a cumulative antibiogram for 14 RGM using the largest sample size to date (N = 3860). All RGM showed 82% to 100% susceptibility to amikacin. Mycobacterium abscessus showed low percentages of susceptibility to most antimicrobials; of antimicrobials without interpretations, the minimum inhibitory concentration-90 for clofazimine was low (≤0.5mg/L). All three subspecies had ≤2.6% rrl resistance mutations, however intact erm(41) was detected in 70% to100% of M. abscessus abscessus and bolletii. Mycobacterium chelonae had a similar susceptibility pattern to M. abscessus subsp. massiliense and Mycobacterium immunogenum except that it was susceptible to tobramycin (87%). Mycobacterium fortuitum complex and similar organisms showed higher frequency of susceptibility to fluoroquinolones, beta-lactams, linezolid, and trimethoprim/sulfamethoxazole. Although relatively small published RGM antibiograms showed substantial variance, a comprehensive antibiogram can help influence treatment and monitoring patterns of resistance.
Collapse
Affiliation(s)
- Joshua-J Hunkins
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO, USA
| | | | - Jared-J Eddy
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Charles-L Daley
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Reeti Khare
- Advanced Diagnostics Laboratories, National Jewish Health, Denver, CO, USA; Department of Medicine, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
19
|
Sparks IL, Derbyshire KM, Jacobs WR, Morita YS. Mycobacterium smegmatis: The Vanguard of Mycobacterial Research. J Bacteriol 2023; 205:e0033722. [PMID: 36598232 PMCID: PMC9879119 DOI: 10.1128/jb.00337-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genus Mycobacterium contains several slow-growing human pathogens, including Mycobacterium tuberculosis, Mycobacterium leprae, and Mycobacterium avium. Mycobacterium smegmatis is a nonpathogenic and fast growing species within this genus. In 1990, a mutant of M. smegmatis, designated mc2155, that could be transformed with episomal plasmids was isolated, elevating M. smegmatis to model status as the ideal surrogate for mycobacterial research. Classical bacterial models, such as Escherichia coli, were inadequate for mycobacteria research because they have low genetic conservation, different physiology, and lack the novel envelope structure that distinguishes the Mycobacterium genus. By contrast, M. smegmatis encodes thousands of conserved mycobacterial gene orthologs and has the same cell architecture and physiology. Dissection and characterization of conserved genes, structures, and processes in genetically tractable M. smegmatis mc2155 have since provided previously unattainable insights on these same features in its slow-growing relatives. Notably, tuberculosis (TB) drugs, including the first-line drugs isoniazid and ethambutol, are active against M. smegmatis, but not against E. coli, allowing the identification of their physiological targets. Furthermore, Bedaquiline, the first new TB drug in 40 years, was discovered through an M. smegmatis screen. M. smegmatis has become a model bacterium, not only for M. tuberculosis, but for all other Mycobacterium species and related genera. With a repertoire of bioinformatic and physical resources, including the recently established Mycobacterial Systems Resource, M. smegmatis will continue to accelerate mycobacterial research and advance the field of microbiology.
Collapse
Affiliation(s)
- Ian L. Sparks
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Keith M. Derbyshire
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yasu S. Morita
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
20
|
Updated Review on the Mechanisms of Pathogenicity in Mycobacterium abscessus, a Rapidly Growing Emerging Pathogen. Microorganisms 2022; 11:microorganisms11010090. [PMID: 36677382 PMCID: PMC9866562 DOI: 10.3390/microorganisms11010090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
In recent years, Mycobacterium abscessus has appeared as an emerging pathogen, with an increasing number of disease cases reported worldwide that mainly occur among patients with chronic lung diseases or impaired immune systems. The treatment of this pathogen represents a challenge due to the multi-drug-resistant nature of this species and its ability to evade most therapeutic approaches. However, although predisposing host factors for disease are well known, intrinsic pathogenicity mechanisms of this mycobacterium are still not elucidated. Like other mycobacteria, intracellular invasiveness and survival inside different cell lines are pathogenic factors related to the ability of M. abscessus to establish infection. Some of the molecular factors involved in this process are well-known and are present in the mycobacterial cell wall, such as trehalose-dimycolate and glycopeptidolipids. The ability to form biofilms is another pathogenic factor that is essential for the development of chronic disease and for promoting mycobacterial survival against the host immune system or different antibacterial treatments. This capability also seems to be related to glycopeptidolipids and other lipid molecules, and some studies have shown an intrinsic relationship between both pathogenic mechanisms. Antimicrobial resistance is also considered a mechanism of pathogenicity because it allows the mycobacterium to resist antimicrobial therapies and represents an advantage in polymicrobial biofilms. The recent description of hyperpathogenic strains with the potential interhuman transmission makes it necessary to increase our knowledge of pathogenic mechanisms of this species to design better therapeutic approaches to the management of these infections.
Collapse
|
21
|
Global trends of pulmonary infections with nontuberculous mycobacteria: a systematic review. Int J Infect Dis 2022; 125:120-131. [PMID: 36244600 DOI: 10.1016/j.ijid.2022.10.013] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To describe the global trends of pulmonary nontuberculous mycobacteria (NTM) infection and disease. METHODS A systematic review of studies including culture-based NTM data over time. Studies reporting on pulmonary NTM infection and/or disease were included. Information on the use of guideline-based criteria for disease were collected, in which, infection is defined as the absence of symptoms and radiological findings compatible with NTM pulmonary disease. The trends of change for incidence/prevalence were evaluated using linear regressions, and the corresponding pooled estimates were calculated. RESULTS Most studies reported increasing pulmonary NTM infection (82.1%) and disease (66.7%) trends. The overall annual rate of change for NTM infection and disease per 100,000 persons/year was 4.0% (95% confidence interval [CI]: 3.2-4.8) and 4.1% (95% CI: 3.2-5.0), respectively. For absolute numbers of NTM infection and disease, the overall annual change was 2.0 (95% CI: 1.6-2.3) and 0.5 (95% CI: 0.3-0.7), respectively. An increasing trend was also seen for Mycobacterium avium complex infection (n = 15/19, 78.9%) and disease (n = 10/12, 83.9%) and for Mycobacterium abscessus complex (n = 15/23, 65.2%) infection (n = 11/17, 64.7%) but less so for disease (n = 2/8, 25.0%). CONCLUSION Our data indicate an overall increase in NTM worldwide for both infection and disease. The explanation to this phenomenon warrants further investigation.
Collapse
|
22
|
Musser E, Smith C, Halse TA, Kohlerschmidt D, Rourke A, Fiero A, Musser KA, Escuyer V, Lapierre P. Characterization of Mycobacterium salfingeri sp. nov.: A novel nontuberculous mycobacteria isolated from a human wound infection. Front Microbiol 2022; 13:992610. [PMID: 36299734 PMCID: PMC9589434 DOI: 10.3389/fmicb.2022.992610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) are environmental bacteria commonly found in soil and water in almost every part of the world. While usually non-pathogenic, they can cause acute respiratory and cutaneous infections under certain circumstances or in patients with underlying medical conditions. Contrary to members of the Mycobacterium tuberculosis complex, documented human-to-human transmissions of NTM have been rarely reported and most cases result from direct environmental exposure. Here we describe the identification of a new NTM species isolated from a hand laceration of a New York State patient after a fall. This new NTM forms rough, orange pigmented colonies and is naturally resistant to doxycycline and tobramycin. Whole genome analysis reveal no close relatives present in public databases, and our findings are in accordance with the recognition of a new taxonomic species of NTM. We propose the name Mycobacterium salfingeri sp. nov. for this new NTM representative. The type strain is 20-157661T (DSM = 113368T, BCCM = ITM 501207T).
Collapse
|
23
|
Nimmo C, Millard J, Faulkner V, Monteserin J, Pugh H, Johnson EO. Evolution of Mycobacterium tuberculosis drug resistance in the genomic era. Front Cell Infect Microbiol 2022; 12:954074. [PMID: 36275027 PMCID: PMC9585206 DOI: 10.3389/fcimb.2022.954074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium tuberculosis has acquired drug resistance to all drugs that have been used against it, including those only recently introduced into clinical practice. Compared to other bacteria, it has a well conserved genome due to its role as an obligate human pathogen that has adapted to a niche over five to ten thousand years. These features facilitate reconstruction and dating of M. tuberculosis phylogenies, giving key insights into how resistance has been acquired and spread globally. Resistance to each new drug has occurred within five to ten years of clinical use and has occurred even more rapidly with recently introduced drugs. In most cases, resistance-conferring mutations come with a fitness cost, but this can be overcome by compensatory mutations which restore fitness to that of wild-type bacteria. It is likely that M. tuberculosis acquires drug resistance while maintaining limited genomic variability due the generation of low frequency within-host variation, combined with ongoing purifying selection causing loss of variants without a clear fitness advantage. However, variants that do confer an advantage, such as drug resistance, can increase in prevalence amongst all bacteria within a host and become the dominant clone. These resistant strains can then be transmitted leading to primary drug resistant infection in a new host. As many countries move towards genomic methods for diagnosis of M. tuberculosis infection and drug resistance, it is important to be aware of the implications for the evolution of resistance. Currently, understanding of resistance-conferring mutations is incomplete, and some targeted genetic diagnostics create their own selective pressures. We discuss an example where a rifampicin resistance-conferring mutation which was not routinely covered by standard testing became dominant. Finally, resistance to new drugs such as bedaquiline and delamanid is caused by individually rare mutations occurring across a large mutational genomic target that have been detected over a short time, and do not provide statistical power for genotype-phenotype correlation – in contrast to longer-established drugs that form the backbone of drug-sensitive antituberculosis therapy. Therefore, we need a different approach to identify resistance-conferring mutations of new drugs before their resistance becomes widespread, abrogating their usefulness.
Collapse
Affiliation(s)
- Camus Nimmo
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
- *Correspondence: Camus Nimmo,
| | - James Millard
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Valwynne Faulkner
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Johana Monteserin
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Hannah Pugh
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Eachan Oliver Johnson
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
24
|
Purushothaman S, Meola M, Egli A. Combination of Whole Genome Sequencing and Metagenomics for Microbiological Diagnostics. Int J Mol Sci 2022; 23:9834. [PMID: 36077231 PMCID: PMC9456280 DOI: 10.3390/ijms23179834] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/21/2022] Open
Abstract
Whole genome sequencing (WGS) provides the highest resolution for genome-based species identification and can provide insight into the antimicrobial resistance and virulence potential of a single microbiological isolate during the diagnostic process. In contrast, metagenomic sequencing allows the analysis of DNA segments from multiple microorganisms within a community, either using an amplicon- or shotgun-based approach. However, WGS and shotgun metagenomic data are rarely combined, although such an approach may generate additive or synergistic information, critical for, e.g., patient management, infection control, and pathogen surveillance. To produce a combined workflow with actionable outputs, we need to understand the pre-to-post analytical process of both technologies. This will require specific databases storing interlinked sequencing and metadata, and also involves customized bioinformatic analytical pipelines. This review article will provide an overview of the critical steps and potential clinical application of combining WGS and metagenomics together for microbiological diagnosis.
Collapse
Affiliation(s)
- Srinithi Purushothaman
- Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Marco Meola
- Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
- Swiss Institute of Bioinformatics, University of Basel, 4031 Basel, Switzerland
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
25
|
Judicial Opinions 112–122. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Opinion 112 denies the request to place
Seliberia
Aristovskaya and Parinkina 1963 (Approved Lists 1980) on the list of rejected names because the information provided is insufficient. For the same reason, Opinion 113 denies the request to reject
Shewanella irciniae
Lee et al. 2006 and Opinion 114 denies the request to reject the name
Enterobacter siamensis
Khunthongpan et al. 2014. Opinion 115 rejects the epithet of
Moorella thermoautotrophica
(Wiegel et al. 1981) Collins et al. 1994, which is regarded as a nomen confusum. To assess the consequences of Rule 8, Opinion 116 revisits names of taxa above the rank of genus which should comprise the stem of the name of a nomenclatural type and a category-specific ending but fail to do so. Such names should be orthographically corrected if the sole error is the inadvertent usage of an incorrect stem or be regarded as illegitimate if otherwise. The necessary corrections are made for a number of names. In Opinion 117, the request to designate
Methylothermus subterraneus
Hirayama et al. 2011 as the type species of the genus
Methylothermus
is denied because an equivalent action compatible with the Code was already conducted. In Opinion 118, the possible orthographical correction of the name
Flaviaesturariibacter
is treated, as are the analogous cases of
Fredinandcohnia
and
Hydrogeniiclostidium
. The genus names are corrected to Flaviaestuariibacter, Ferdinandcohnia and
Hydrogeniiclostridium
, respectively. Opinion 119 concludes that assigning
Actinomycetales
Buchanan 1917 (Approved Lists 1980) as nomenclatural type of the class
Actinobacteria
Stackebrandt et al. 1997 would not render that name legitimate if Rule 8 remained retroactive. The request is granted but
Actinomycetales
is also assigned as type of
Actinomycetes
Krassilnikov 1949 (Approved Lists 1980). In Opinion 120, the possible orthographical correction of the name
Amycolatopsis albidoflavus
is treated. It is grammatically corrected to Amycolatopsis albidoflava. Six names which could according to Rule 61 be grammatically corrected by anyone are also corrected. Opinion 121 denies the request to revise Opinion 69 and notes that Opinion 69 does not have the undesirable consequences emphasized in the request. In Opinion 122, the request to reject various taxon names of
Mollicutes
proposed in 2018 is denied because it is based on misinterpretations of the Code, which are clarified. Alternative ways to solve the perceived problems are outlined. These Opinions were ratified by the voting members of the International Committee on Systematics of Prokaryotes.
Collapse
|
26
|
Abdelaal HFM, Chan ED, Young L, Baldwin SL, Coler RN. Mycobacterium abscessus: It's Complex. Microorganisms 2022; 10:1454. [PMID: 35889173 PMCID: PMC9316637 DOI: 10.3390/microorganisms10071454] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium abscessus (M. abscessus) is an opportunistic pathogen usually colonizing abnormal lung airways and is often seen in patients with cystic fibrosis. Currently, there is no vaccine available for M. abscessus in clinical development. The treatment of M. abscessus-related pulmonary diseases is peculiar due to intrinsic resistance to several commonly used antibiotics. The development of either prophylactic or therapeutic interventions for M. abscessus pulmonary infections is hindered by the absence of an adequate experimental animal model. In this review, we outline the critical elements related to M. abscessus virulence mechanisms, host-pathogen interactions, and treatment challenges associated with M. abscessus pulmonary infections. The challenges of effectively combating this pathogen include developing appropriate preclinical animal models of infection, developing proper diagnostics, and designing novel strategies for treating drug-resistant M. abscessus.
Collapse
Affiliation(s)
- Hazem F. M. Abdelaal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98145, USA; (H.F.M.A.); (S.L.B.)
| | - Edward D. Chan
- Department of Academic Affairs and Medicine, National Jewish Health, Denver, CO 80206, USA;
- Pulmonary Section, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
| | - Lisa Young
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98145, USA; (H.F.M.A.); (S.L.B.)
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98145, USA; (H.F.M.A.); (S.L.B.)
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
27
|
Margos G, Wormser GP, Schwartz I, Markowicz M, Henningsson AJ, Lienhard R, Stevenson B, Estrada-Peña A, Sing A, Fingerle V, Göker M. Evidence of taxonomic bias in public databases: the example of the genus Borrelia. Ticks Tick Borne Dis 2022; 13:101994. [DOI: 10.1016/j.ttbdis.2022.101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
|
28
|
Hull RC, Huang JTJ, Barton AK, Keir HR, Ellis H, Cookson WOC, Moffatt MF, Loebinger MR, Chalmers JD. Sputum Proteomics in Nontuberculous Mycobacterial Lung Disease. Chest 2022; 161:1180-1191. [PMID: 34838525 DOI: 10.1016/j.chest.2021.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Nontuberculous mycobacterial (NTM) infections are difficult to diagnose and treat. Biomarkers to identify patients with active infection or at risk of disease progression would have clinical utility. Sputum is the most frequently used matrix for the diagnosis of NTM lung disease. RESEARCH QUESTION Can sputum proteomics be used to identify NTM-associated inflammatory profiles in sputum? STUDY DESIGN AND METHODS Patients with NTM lung disease and a matched cohort of patients with COPD, bronchiectasis (BE), and cystic fibrosis (CF) without NTM lung disease were enrolled from two hospitals in the United Kingdom. Liquid chromatography-tandem mass spectrometry was used to identify proteomic biomarkers associated with underlying diagnosis (COPD, BE, and CF), the presence of NTM lung disease defined according to American Thoracic Society/Infectious Diseases Society of America criteria, and severity of NTM. A subset of patients receiving guideline-concordant NTM treatment were studied to identify protein changes associated with treatment response. RESULTS This study analyzed 95 sputum samples from 55 subjects (BE, n = 21; COPD, n = 19; CF, n = 15). Underlying disease and infection with Pseudomonas aeruginosa were the strongest drivers of sputum protein profiles. Comparing protein abundance in COPD, BE, and CF found that 12 proteins were upregulated in CF compared with COPD, including MPO, AZU1, CTSG, CAT, and RNASE3, with 21 proteins downregulated, including SCGB1A1, IGFBP2, SFTPB, GC, and CFD. Across CF, BE, and COPD, NTM infection (n = 15) was not associated with statistically significant differences in sputum protein profiles compared with those without NTM. Two proteins associated with iron chelation were significantly downregulated in severe NTM disease. NTM treatment was associated with heterogeneous changes in the sputum protein profile. Patients with NTM and a decrease in immune response proteins had a subjective symptomatic improvement. INTERPRETATION Sputum proteomics identified candidate biomarkers of NTM severity and treatment response. However, underlying lung disease and typical bacterial pathogens such as P aeruginosa are also key determinants of the sputum proteomic profile.
Collapse
Affiliation(s)
- Rebecca C Hull
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, United Kingdom; Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Jeffrey T J Huang
- Division of Systems Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Alun K Barton
- Division of Systems Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Holly R Keir
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Huw Ellis
- Royal Brompton and Harefield NHS Foundation Trust, London, England; National Heart and Lung Institute, Imperial College, London, England
| | - William O C Cookson
- Royal Brompton and Harefield NHS Foundation Trust, London, England; National Heart and Lung Institute, Imperial College, London, England
| | - Miriam F Moffatt
- Royal Brompton and Harefield NHS Foundation Trust, London, England; National Heart and Lung Institute, Imperial College, London, England
| | - Michael R Loebinger
- Royal Brompton and Harefield NHS Foundation Trust, London, England; National Heart and Lung Institute, Imperial College, London, England
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom.
| |
Collapse
|
29
|
Moore J, Millar B. Helping map the taxonomical position of the Nontuberculous Mycobacteria (NTM) in cystic fibrosis. Int J Mycobacteriol 2022; 11:303-308. [DOI: 10.4103/ijmy.ijmy_120_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
30
|
Munson E. Microbial Taxonomy Revision: Enough Is Enough! Or Is It? Clin Chem 2021; 68:138-142. [PMID: 34969113 DOI: 10.1093/clinchem/hvab189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022]
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, WI, USA.,Wisconsin Clinical Laboratory Network Laboratory Technical Advisory Group, Madison, WI, USA
| |
Collapse
|
31
|
Meehan CJ, Barco RA, Loh YHE, Cogneau S, Rigouts L. Reconstituting the genus Mycobacterium. Int J Syst Evol Microbiol 2021; 71:004922. [PMID: 34554081 PMCID: PMC8549266 DOI: 10.1099/ijsem.0.004922] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022] Open
Abstract
The definition of a genus has wide-ranging implications both in terms of binomial species names and also evolutionary relationships. In recent years, the definition of the genus Mycobacterium has been debated due to the proposed split of this genus into five new genera (Mycolicibacterium, Mycolicibacter, Mycolicibacillus, Mycobacteroides and an emended Mycobacterium). Since this group of species contains many important obligate and opportunistic pathogens, it is important that any renaming of species does not cause confusion in clinical treatment as outlined by the nomen periculosum rule (56a) of the Prokaryotic Code. In this study, we evaluated the proposed and original genus boundaries for the mycobacteria, to determine if the split into five genera was warranted. By combining multiple approaches for defining genus boundaries (16S rRNA gene similarity, amino acid identity index, average nucleotide identity, alignment fraction and percentage of conserved proteins) we show that the original genus Mycobacterium is strongly supported over the proposed five-way split. Thus, we propose that the original genus label be reapplied to all species within this group, with the proposed five genera potentially used as sub-genus complex names.
Collapse
Affiliation(s)
- Conor J. Meehan
- BCCM/ITM Mycobacterial Culture Collection, Institute of Tropical Medicine, Antwerp, Belgium
- School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | - Roman A. Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Yong-Hwee E. Loh
- Norris Medical Library, University of Southern California, Los Angeles, California, USA
| | - Sari Cogneau
- BCCM/ITM Mycobacterial Culture Collection, Institute of Tropical Medicine, Antwerp, Belgium
- Unit of Mycobacteriology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Leen Rigouts
- BCCM/ITM Mycobacterial Culture Collection, Institute of Tropical Medicine, Antwerp, Belgium
- Unit of Mycobacteriology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, Antwerp University, Antwerp, Belgium
| |
Collapse
|
32
|
Stephenson D, Perry A, Nelson A, Robb AE, Thomas MF, Bourke SJ, Perry JD, Jones AL. Decontamination Strategies Used for AFB Culture Significantly Reduce the Viability of Mycobacterium abscessus Complex in Sputum Samples from Patients with Cystic Fibrosis. Microorganisms 2021; 9:microorganisms9081597. [PMID: 34442676 PMCID: PMC8400212 DOI: 10.3390/microorganisms9081597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Nontuberculous mycobacteria are important respiratory pathogens in patients with cystic fibrosis (CF). For diagnosis, international guidelines recommend culture of sputum that has been decontaminated via chemical treatment. Fifty-six sputum samples from 32 patients known to be previously colonized or infected with NTM were subdivided, and the aliquots were subjected to six different decontamination strategies, followed by quantitative culture for NTM. Thirty sputum samples contained Mycobacterium abscessus complex (MABSC) and 11 contained Mycobacterium avium complex (MAC). Decontamination strategies included treatment with N-acetyl L-cysteine with 2% sodium hydroxide (NALC-NaOH), 4% NaOH, 1% chlorhexidine, 0.5 N sulfuric acid, 5% oxalic acid, double decontamination with NALC-NaOH, followed by 5% oxalic acid, and saline (0.85%) as a control. The samples were also cultured directly with no treatment. Treatment with NALC-NaOH resulted in an average reduction in colony count of 87% for MABSC when compared with direct culture. NaOH at 4% caused a 98.3% average reduction in colony count. All treatments that included NaOH resulted in colony counts that were statistically lower than those obtained from direct culture or the saline-treated control (p < 0.05). Standard treatments using sulfuric or oxalic acids were less deleterious, but still resulted in an average reduction in colony count of at least 30%. The viability of MAC was much less affected by most decontamination treatments. In conclusion, the viability of MABSC was severely compromised by standard decontamination regimens. This supports recent evidence showing that optimal recovery of MABSC is achieved by culture on an appropriate selective agar without decontamination of sputum samples.
Collapse
Affiliation(s)
- Dominic Stephenson
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK; (D.S.); (A.P.); (A.E.R.)
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (A.N.); (A.L.J.)
| | - Audrey Perry
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK; (D.S.); (A.P.); (A.E.R.)
| | - Andrew Nelson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (A.N.); (A.L.J.)
| | - Ali E. Robb
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK; (D.S.); (A.P.); (A.E.R.)
| | - Matthew F. Thomas
- Paediatric Respiratory Unit, Great North Children’s Hospital, Newcastle upon Tyne NE1 4LP, UK;
| | - Stephen J. Bourke
- Adult Cystic Fibrosis Centre, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK;
| | - John D. Perry
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK; (D.S.); (A.P.); (A.E.R.)
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (A.N.); (A.L.J.)
- Correspondence:
| | - Amanda L. Jones
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (A.N.); (A.L.J.)
| |
Collapse
|
33
|
Abstract
This minireview provides an updated overview of taxonomic changes for the genus Mycobacterium, with a focus on new species identified from humans or those associated with human disease for the period of 2018 to 2019.
Collapse
|
34
|
Biofilm accumulation in new flexible gastroscope channels in clinical use. Infect Control Hosp Epidemiol 2021; 43:174-180. [PMID: 34128460 DOI: 10.1017/ice.2021.99] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Assess the accumulation of protein and biofilm on the inner surfaces of new flexible gastroscope (FG) channels after 30 and 60 days of patient use and full reprocessing. DESIGN Clinical use study of biofilm accumulation in FG channels. SETTING Endoscopy service of a public hospital. METHODS First, we tested an FG in clinical use before the implementation of a revised reprocessing protocol (phase 1 baseline; n = 1). After replacement of the channels by new ones and the implementation of the protocol, 3 FGs were tested after 30 days of clinical use (phase 2; n = 3) and 3 FGs were tested after 60 days of clinical use (phase 3; n = 3), and the same FGs were tested in phase 2 and 3. Their biopsy, air, water, and air/water junction channels were removed and subjected to protein testing (n = 21), bacteriological culture (n = 21), and scanning electron microscopy (SEM) (n = 28). Air-water junction channels fragments were subjected to SEM only. RESULTS For the FGs, the average number of uses and reprocessing cycles was 60 times. Extensive biofilm was detected in air, water, and air-water junction channels (n = 18 of 28). All channels (28 of 28) showed residual matter, and structural damage was identified in most of them (20 of 28). Residual protein was detected in the air and water channels of all FG evaluated (phases 1-3), except for 1 air channel from phase 2. Bacteria were recovered from 8 of 21 channels, most air or water channels. CONCLUSIONS The short time before damage and biofilm accumulation in the channels was evident and suggests that improving the endoscope design is necessary. Better reprocessing methods and channel maintenance are needed.
Collapse
|
35
|
The Changing Face of the Family Enterobacteriaceae (Order: " Enterobacterales"): New Members, Taxonomic Issues, Geographic Expansion, and New Diseases and Disease Syndromes. Clin Microbiol Rev 2021; 34:34/2/e00174-20. [PMID: 33627443 DOI: 10.1128/cmr.00174-20] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The family Enterobacteriaceae has undergone significant morphogenetic changes in its more than 85-year history, particularly during the past 2 decades (2000 to 2020). The development and introduction of new and novel molecular methods coupled with innovative laboratory techniques have led to many advances. We now know that the global range of enterobacteria is much more expansive than previously recognized, as they play important roles in the environment in vegetative processes and through widespread environmental distribution through insect vectors. In humans, many new species have been described, some associated with specific disease processes. Some established species are now observed in new infectious disease settings and syndromes. The results of molecular taxonomic and phylogenetics studies suggest that the current family Enterobacteriaceae should possibly be divided into seven or more separate families. The logarithmic explosion in the number of enterobacterial species described brings into question the relevancy, need, and mechanisms to potentially identify these taxa. This review covers the progression, transformation, and morphogenesis of the family from the seminal Centers for Disease Control and Prevention publication (J. J. Farmer III, B. R. Davis, F. W. Hickman-Brenner, A. McWhorter, et al., J Clin Microbiol 21:46-76, 1985, https://doi.org/10.1128/JCM.21.1.46-76.1985) to the present.
Collapse
|
36
|
Wallace E, Hendrickson D, Tolli N, Mehaffy C, Peña M, Nick JA, Knabenbaur P, Watkins J, Simpson A, Amin AG, Chatterjee D, Dobos KM, Lahiri R, Adams L, Strong M, Salfinger M, Bradford R, Stedman TT, Riojas MA, Hazbón MH. Culturing Mycobacteria. Methods Mol Biol 2021; 2314:1-58. [PMID: 34235647 DOI: 10.1007/978-1-0716-1460-0_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Building upon the foundational research of Robert Koch, who demonstrated the ability to grow Mycobacterium tuberculosis for the first time in 1882 using media made of coagulated bovine serum, microbiologists have continued to develop new and more efficient ways to grow mycobacteria. Presently, all known mycobacterial species can be grown in the laboratory using either axenic culture techniques or in vivo passage in laboratory animals. This chapter provides conventional protocols to grow mycobacteria for diagnostic purposes directly from clinical specimens, as well as in research laboratories for scientific purposes. Detailed protocols used for production of M. tuberculosis in large scale (under normoxic and hypoxic conditions) in bioreactors and for production of obligate intracellular pathogens such as Mycobacterium leprae and "Mycobacterium lepromatosis" using athymic nude mice and armadillos are provided.
Collapse
Affiliation(s)
| | | | | | - Carolina Mehaffy
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - María Peña
- United States Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, USA
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Phillip Knabenbaur
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jackson Watkins
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Anne Simpson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Anita G Amin
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Karen M Dobos
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ramanuj Lahiri
- United States Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, USA
| | - Linda Adams
- United States Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, USA
| | - Michael Strong
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Max Salfinger
- College of Public Health & Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
37
|
Yamada H, Chikamatsu K, Aono A, Murata K, Miyazaki N, Kayama Y, Bhatt A, Fujiwara N, Maeda S, Mitarai S. Fundamental Cell Morphologies Examined With Cryo-TEM of the Species in the Novel Five Genera Robustly Correlate With New Classification in Family Mycobacteriaceae. Front Microbiol 2020; 11:562395. [PMID: 33304323 PMCID: PMC7701246 DOI: 10.3389/fmicb.2020.562395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/12/2020] [Indexed: 11/25/2022] Open
Abstract
A recent study proposed the novel classification of the family Mycobacteriaceae based on the genome analysis of core proteins in 150 Mycobacterium species. The results from these analyses supported the existence of five distinct monophyletic groups within the genus Mycobacterium. That is, Mycobacterium has been divided into two novel genera for rapid grower Mycobacteroides and Mycolicibacterium, and into three genera for slow grower Mycolicibacter, Mycolicibacillus, and an emended genus Mycobacterium, which include all the major human pathogens. Here, cryo-TEM examinations of 1,816 cells of 31 species (34 strains) belonging to the five novel genera were performed. The fundamental morphological properties of every single cell, such as cell diameter, cell length, cell perimeter, cell circularity, and aspect ratio were measured and compared between these genera. In 50 comparisons on the five parameters between any two genera, only five comparisons showed “non-significant” differences. That is, there are non-significant differences between slow grower genus Mycolicibacillus and genus Mycobacterium in average cell diameter (p = 0.15), between rapid grower genus Mycobacteroides and slow grower genus Mycobacterium in average cell length (p > 0.24), between genus Mycobacteroides and genus Mycobacterium (p > 0.68) and between genus Mycolicibacter and genus Mycolicibacillus (p > 0.11) in average cell perimeter, and between genus Mycolicibacterium and genus Mycobacterium in circularity (p > 0.73). The other 45 comparisons showed significant differences between the genera. Genus Mycobacteroides showed the longest average cell diameter, whereas the genus Mycolicibacter showed the shortest average diameter. Genus Mycolicibacterium showed the most extended average cell length, perimeter, and aspect ratio, whereas the genus Mycolicibacillus showed the shortest average cell length, perimeter, and aspect ratio. Genus Mycolicibacillus showed the highest average cell circularity, whereas genus Mycobacterium showed the lowest average cell circularity. These fundamental morphological data strongly support the new classification in the family Mycobacteriaceae, and this classification is rational and effective in the study of the members of the family Mycobacteriaceae. Because both the genus Mycolicibacterium and the genus Mycobacterium contain many species and showed larger significant standard deviations in every parameter, these genera may be divided into novel genera which show common genotype and phenotypes in morphology and pathogenicity.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kinuyo Chikamatsu
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Akio Aono
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kazuyoshi Murata
- Supportive Center for Brain Research, National Institute for Physiological Science, Okazaki, Japan
| | - Naoyuki Miyazaki
- Supportive Center for Brain Research, National Institute for Physiological Science, Okazaki, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | | | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Nagatoshi Fujiwara
- Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, Nara, Japan
| | - Shinji Maeda
- Department of Pharmacy, Faculty of Pharmaceutical Science, Hokkaido University of Science, Sapporo, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan.,Department of Basic Mycobacteriology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
38
|
Ghielmetti G, Giger U. Mycobacterium avium: an Emerging Pathogen for Dog Breeds with Hereditary Immunodeficiencies. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020; 7:67-80. [PMID: 33842195 DOI: 10.1007/s40588-020-00145-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose of Review Among the nontuberculous mycobacteria (NTM), Mycobacterium avium complex (MAC) is the leading cause of pulmonary disease in humans. Innate and acquired immunodeficiencies have been associated with an increased host susceptibility to NTM infections. The underlying mechanisms predisposing humans and dogs to MAC infections is being elucidated. Recent Findings Although MAC infection is infrequently diagnosed in dogs, a strong breed predisposition particularly for Miniature Schnauzer and Basset Hound dogs is evident. A recessively inherited defect of the adaptor protein CARD9 has recently been documented to be responsible for the increased susceptibility to MAC in the Miniature Schnauzer breed. Summary Given the zoonotic potential of a MAC infected dog particularly to immunocompromised human patients, diseased dogs pose a public health risk. While not a reportable disease, treatment of systemic mycobacteriosis is generally not effective and discouraged in dogs. The collaborative efforts by microbiologists, veterinary clinicians, dog breeders, primary care physicians, and infectious disease specialists applying the One Health approach is therefore crucial for the best management and prevention of MAC infection.
Collapse
Affiliation(s)
- Giovanni Ghielmetti
- Institute for Food Safety and Hygiene, Section of Veterinary Bacteriology, University of Zurich, Winterthurerstrasse 270, 8057 Zurich, Switzerland
| | - Urs Giger
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zürich, Switzerland
| |
Collapse
|
39
|
Janda JM. Proposed nomenclature or classification changes for bacteria of medical importance: taxonomic update 5. Diagn Microbiol Infect Dis 2020; 97:115047. [PMID: 32321664 DOI: 10.1016/j.diagmicrobio.2020.115047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 01/23/2023]
Abstract
A key aspect of medical, public health, and diagnostic microbiology laboratories is the accurate identification and rapid reporting and communication to medical staff regarding patients with infectious agents of clinical importance. Microbial taxonomy continues to change at a very rapid rate in the era of molecular diagnostics including whole genome sequencing. This update focuses on taxonomic changes and proposals that may be of medical importance from 2018 to 2020.
Collapse
Affiliation(s)
- J Michael Janda
- Public Health Laboratory, Public Health Services Department, Kern County, Bakersfield, CA 93306-3302.
| |
Collapse
|
40
|
Muñoz-Egea MC, Carrasco-Antón N, Esteban J. State-of-the-art treatment strategies for nontuberculous mycobacteria infections. Expert Opin Pharmacother 2020; 21:969-981. [PMID: 32200657 DOI: 10.1080/14656566.2020.1740205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Non-tuberculous Mycobacteria (NTM) are a group of organisms whose importance in medicine seems to be increasing in recent times. The increasing number of patients susceptible to these diseases make it necessary to expand our knowledge of therapeutic options and to explore future possibilities for the development of a therapeutic arsenal. AREAS COVERED In this review, the authors provide a brief introduction about the present importance of NTM and describe the present recommendations of the available guidelines for their treatment. They include a description of the future options for the management of these patients, especially focusing on new antibiotics. The authors also look at possibilities for future therapeutic options, such as antibiofilm strategies. EXPERT OPINION No actual changes have been made to the current recommendations for the management of most NTM infections (except perhaps the availability of nebulized amikacin). However, it is also true that we have increased the number of available antibiotic treatment options with good in vitro activity against NTM. The use of these drugs in selected cases could increase the therapeutic possibilities. However, some problems are still present, such as the knowledge of the actual meaning of a NTM isolate, and will probably be a key part of future research.
Collapse
Affiliation(s)
| | | | - Jaime Esteban
- Departments of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM , Madrid, Spain
| |
Collapse
|
41
|
Tortoli E. On the valid publication of names of mycobacteria. Eur Respir J 2019; 54:54/4/1901623. [PMID: 31649147 DOI: 10.1183/13993003.01623-2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Enrico Tortoli
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
42
|
Oren A, Trujillo ME. On the valid publication of names of mycobacteria. Eur Respir J 2019; 54:54/4/1901483. [PMID: 31649146 DOI: 10.1183/13993003.01483-2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Martha E Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
43
|
Tortoli E, Meehan CJ, Grottola A, Fregni Serpini G, Fabio A, Trovato A, Pecorari M, Cirillo DM. Genome-based taxonomic revision detects a number of synonymous taxa in the genus Mycobacterium. INFECTION GENETICS AND EVOLUTION 2019; 75:103983. [PMID: 31352146 DOI: 10.1016/j.meegid.2019.103983] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/21/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022]
Abstract
The aim of this study was to clarify the taxonomic status of named species within the genus Mycobacterium. The analysis of genomes belonging to 174 taxa (species or subspecies) of the genus Mycobacterium was conducted using both the Average Nucleotide Identity and the Genome to Genome Distance. A number of synonymous taxa were detected. The list of synonyms includes: two subspecies of M. chelonae (M. chelonae subsp. bovis and M. chelonae subsp. gwanakae), two subspecies of M. fortuitum (M. fortuitum subsp. fortuitum and M. fortuitum subsp. acetamidolyticum), four subspecies of M. avium (M. avium subsp. avium, M. avium subsp. silvaticum, M. avium subsp. paratuberculosis and "M. avium subsp. hominissuis"), two couples of subspecies of M. intracellulare (M. intracellulare subsp. intracellulare/M. intracellulare subsp. paraintracellulare and M. intracellulare subsp. chimaera/M. intracellulare subsp. yongonense), the species M. austroafricanum and M. vanbaalenii, the species M. senegalense and M. conceptionense, the species M. talmoniae and M. eburneum and the species M. marinum, M. ulcerans and M. pseudoshottsii. Furthermore one species were reclassified as subspecies of another mycobacterium: M. lepraemurium was reclassified as a subspecies of M. avium (M. avium subsp. lepraemurium). The updates to nomenclature are proposed basing on the priority of names according the Code of nomenclature of prokaryotes. For two species (M. bouchedurhonense and M. marseillense) the loss of standing in nomenclature is proposed because of unavailability of respective type strains in culture collections.
Collapse
Affiliation(s)
- Enrico Tortoli
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| | - Conor J Meehan
- BCCM/ITM Mycobacterial Culture Collection, Department of Biomedical Science, Institute of Tropical Medicine, Antwerp, Belgium
| | - Antonella Grottola
- Microbiology and Virology Unit, University Hospital Polyclinic, Modena, Italy
| | | | - Anna Fabio
- Microbiology and Virology Unit, University Hospital Polyclinic, Modena, Italy
| | - Alberto Trovato
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Monica Pecorari
- Microbiology and Virology Unit, University Hospital Polyclinic, Modena, Italy
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|