1
|
Guo L, Ruan Q, Ma D, Wen J. Revealing quorum-sensing networks in Pseudomonas aeruginosa infections through internal and external signals to prevent new resistance trends. Microbiol Res 2024; 289:127915. [PMID: 39342746 DOI: 10.1016/j.micres.2024.127915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/18/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
In the context of growing antibiotic resistance in bacteria, the quorum-sensing (QS) system of Pseudomonas aeruginosa (P. aeruginosa) has become a target for new therapeutic strategies. QS is a crucial communication process and an essential pathogenic mechanism. This comprehensive review explores the critical role of QS in the pathogenesis of P. aeruginosa infections, including lung, burn, bloodstream, gastrointestinal, corneal, and urinary tract infections. In addition, this review delves into the complexity of the bacterial QS communication network and highlights the intricate mechanisms underlying these pathological processes. Notably, in addition to the four main QS systems, bacterial QS can interact with various external and internal signaling networks, such as host environments and nutrients in the external microbiome, as well as internal virulence regulation systems within bacteria. These elements can significantly influence the behavior and virulence of microbial communities. Therefore, this review reveals that inhibitors targeting singular QS pathways may inadvertently promote virulence in other pathways, leading to new trends in drug resistance. In response to evolving resistance challenges, this study proposes more cautious treatment strategies, including multitarget interventions and combination therapies, aimed at combating the escalating issue of resistance.
Collapse
Affiliation(s)
- Li Guo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiao Ruan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jun Wen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Mesas Vaz C, Guembe Mülberger A, Torrent Burgas M. The battle within: how Pseudomonas aeruginosa uses host-pathogen interactions to infect the human lung. Crit Rev Microbiol 2024:1-36. [PMID: 39381985 DOI: 10.1080/1040841x.2024.2407378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Pseudomonas aeruginosa is a versatile Gram-negative pathogen known for its ability to invade the respiratory tract, particularly in cystic fibrosis patients. This review provides a comprehensive analysis of the multifaceted strategies for colonization, virulence, and immune evasion used by P. aeruginosa to infect the host. We explore the extensive protein arsenal of P. aeruginosa, including adhesins, exotoxins, secreted proteases, and type III and VI secretion effectors, detailing their roles in the infective process. We also address the unique challenge of treating diverse lung conditions that provide a natural niche for P. aeruginosa on the airway surface, with a particular focus in cystic fibrosis. The review also discusses the current limitations in treatment options due to antibiotic resistance and highlights promising future approaches that target host-pathogen protein-protein interactions. These approaches include the development of new antimicrobials, anti-attachment therapies, and quorum-sensing inhibition molecules. In summary, this review aims to provide a holistic understanding of the pathogenesis of P. aeruginosa in the respiratory system, offering insights into the underlying molecular mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Mesas Vaz
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba Guembe Mülberger
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marc Torrent Burgas
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
3
|
Surdel MC, Coburn J. Leptospiral adhesins: from identification to future perspectives. Front Microbiol 2024; 15:1458655. [PMID: 39206373 PMCID: PMC11350617 DOI: 10.3389/fmicb.2024.1458655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Leptospirosis is a significant zoonosis worldwide, with disease severity ranging from a mild non-specific illness to multi-organ dysfunction and hemorrhage. The disease is caused by pathogenic bacteria of the genus Leptospira, which are classified into pathogenic and saprophytic clades. Bacterial binding to host molecules and cells, coordinated by adhesin proteins, is an important step in pathogenesis. While many leptospiral adhesins have been identified, the vast majority have not been characterized in vivo. Herein, we present an overview of the current methodologies and successes in identifying adhesins in Leptospira, including known biological roles in vivo. We will also identify and discuss potential areas for future research.
Collapse
Affiliation(s)
- Matthew C. Surdel
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jenifer Coburn
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
4
|
Solanki V, Tiwari M, Tiwari V. Investigation of Peptidoglycan-Associated Lipoprotein of Acinetobacter baumannii and Its Interaction with Fibronectin To Find Its Therapeutic Potential. Infect Immun 2023; 91:e0002323. [PMID: 37017535 PMCID: PMC10187120 DOI: 10.1128/iai.00023-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/07/2023] [Indexed: 04/06/2023] Open
Abstract
Acinetobacter baumannii causes hospital-acquired infections and is responsible for high mortality and morbidity. The interaction of this bacterium with the host is critical in bacterial pathogenesis and infection. Here, we report the interaction of peptidoglycan-associated lipoprotein (PAL) of A. baumannii with host fibronectin (FN) to find its therapeutic potential. The proteome of A. baumannii was explored in the host-pathogen interaction database to filter out the PAL of the bacterial outer membrane that interacts with the host's FN protein. This interaction was confirmed experimentally using purified recombinant PAL and pure FN protein. To investigate the pleiotropic role of PAL protein, different biochemical assays using wild-type PAL and PAL mutants were performed. The result showed that PAL mediates bacterial pathogenesis, adherence, and invasion in host pulmonary epithelial cells and has a role in the biofilm formation, bacterial motility, and membrane integrity of bacteria. All of the results suggest that PAL's interaction with FN plays a vital role in host-cell interaction. In addition, the PAL protein also interacts with Toll-like receptor 2 and MARCO receptor, which suggests the role of PAL protein in innate immune responses. We have also investigated the therapeutic potential of this protein for vaccine and therapeutic design. Using reverse vaccinology, PAL's potential epitopes were filtered out that exhibit binding potential with host major histocompatibility complex class I (MHC-I), MHC-II, and B cells, suggesting that PAL protein is a potential vaccine target. The immune simulation showed that PAL protein could elevate innate and adaptive immune response with the generation of memory cells and would have subsequent potential to eliminate bacterial infection. Therefore, the present study highlights the interaction ability of a novel host-pathogen interacting partner (PAL-FN) and uncovers its therapeutic potential to combat infection caused by A. baumannii.
Collapse
Affiliation(s)
- Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
5
|
Hogwood J, Mulloy B, Lever R, Gray E, Page CP. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol Rev 2023; 75:328-379. [PMID: 36792365 DOI: 10.1124/pharmrev.122.000684] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity. This illustrates that heparin interacts with a broad range of biomolecules, exerting both anticoagulant and nonanticoagulant actions. Since our previous review, there has been an increased interest in these nonanticoagulant effects of heparin, with the beneficial role in patients infected with SARS2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. SIGNIFICANCE STATEMENT: This state-of-the-art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immunothrombosis observations, and as nonanticoagulant including a role in the treatment of SARS-coronavirus and inflammatory conditions.
Collapse
Affiliation(s)
- John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Rebeca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| |
Collapse
|
6
|
Host Cell Binding Mediated by Leptospira interrogans Adhesins. Int J Mol Sci 2022; 23:ijms232415550. [PMID: 36555188 PMCID: PMC9779477 DOI: 10.3390/ijms232415550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Leptospirosis is a neglected infectious disease with global impact on both humans and animals. The increase in urban development without sanitation planning is one of the main reasons for the disease spreading. The symptoms are similar to those of flu-like diseases, such as dengue, yellow fever, and malaria, which can result in a misleading clinical diagnosis. The characterization of host-pathogen interactions is important in the development of new vaccines, treatments, and diagnostics. However, the pathogenesis of leptospirosis is not well understood, and many gaps remain to be addressed. Here, we aimed to determine if Leptospira strains, virulent, culture-attenuated, and saprophytic, and the major outer membrane proteins OmpL37, OmpL1, LipL21, LipL41, and LipL46 are able to adhere to different endothelial, epithelial and fibroblast cell lines in vitro. We showed that virulent leptospires robustly bind to all cells compared to the culture-attenuated and saprophytic lines. The recombinant proteins exhibited certain adhesion, but only OmpL1 and LipL41 were able to bind to several cell lines, either in monolayer or in cell suspension. Blocking OmpL1 with polyclonal antibodies caused a decrease in bacterial binding to cells, contrasting with an increase observed when anti-LipL41 antibodies were used. The adhesion of OmpL1 to HMEC-1 and EA.hy926 was inhibited when cells were pre-incubated with collagen IV, suggesting that both compete for the same cell receptor. We present here for the first time the interaction of five leptospiral outer membrane proteins with several cell lines, and we conclude that LipL41 and OmpL1 may have an impact on leptospiral adhesion to mammalian cells and may mediate the colonization process in leptospiral pathogenesis.
Collapse
|
7
|
Kenaston MW, Pham OH, Petit MJ, Shah PS. Transcriptomic profiling implicates PAF1 in both active and repressive immune regulatory networks. BMC Genomics 2022; 23:787. [PMID: 36451099 PMCID: PMC9713194 DOI: 10.1186/s12864-022-09013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Sitting at the interface of gene expression and host-pathogen interaction, polymerase associated factor 1 complex (PAF1C) is a rising player in the innate immune response. The complex localizes to the nucleus and associates with chromatin to modulate RNA polymerase II (RNAPII) elongation of gene transcripts. Performing this function at both proximal and distal regulatory elements, PAF1C interacts with many host factors across such sites, along with several microbial proteins during infection. Therefore, translating the ubiquity of PAF1C into specific impacts on immune gene expression remains especially relevant. RESULTS Advancing past work, we treat PAF1 knockout cells with a slate of immune stimuli to identify key trends in PAF1-dependent gene expression with broad analytical depth. From our transcriptomic data, we confirm PAF1 is an activator of traditional immune response pathways as well as other cellular pathways correlated with pathogen defense. With this model, we employ computational approaches to refine how PAF1 may contribute to both gene activation and suppression. Specifically focusing on transcriptional motifs and regulons, we predict gene regulatory elements strongly associated with PAF1, including those implicated in an immune response. Overall, our results suggest PAF1 is involved in innate immunity at several distinct axes of regulation. CONCLUSIONS By identifying PAF1-dependent gene expression across several pathogenic contexts, we confirm PAF1C to be a key mediator of innate immunity. Combining these transcriptomic profiles with potential regulatory networks corroborates the previously identified functions of PAF1C. With this, we foster new avenues for its study as a regulator of innate immunity, and our results will serve as a basis for targeted study of PAF1C in future validation studies.
Collapse
Affiliation(s)
- Matthew W. Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Oanh H. Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Marine J. Petit
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA ,grid.301713.70000 0004 0393 3981MRC-University of Glasgow, Centre for Virus Research, G61 1HQ, Glasgow, UK
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA ,Department of Chemical Engineering, University of California, Davis, Davis, California, USA
| |
Collapse
|
8
|
Liu Y, Li B, Wei Y. New understanding of gut microbiota and colorectal anastomosis leak: A collaborative review of the current concepts. Front Cell Infect Microbiol 2022; 12:1022603. [PMID: 36389160 PMCID: PMC9663802 DOI: 10.3389/fcimb.2022.1022603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023] Open
Abstract
Anastomotic leak (AL) is a life-threatening postoperative complication following colorectal surgery, which has not decreased over time. Until now, no specific risk factors or surgical technique could be targeted to improve anastomotic healing. In the past decade, gut microbiota dysbiosis has been recognized to contribute to AL, but the exact effects are still vague. In this context, interpretation of the mechanisms underlying how the gut microbiota contributes to AL is significant for improving patients' outcomes. This review concentrates on novel findings to explain how the gut microbiota of patients with AL are altered, how the AL-specific pathogen colonizes and is enriched on the anastomosis site, and how these pathogens conduct their tissue breakdown effects. We build up a framework between the gut microbiota and AL on three levels. Firstly, factors that shape the gut microbiota profiles in patients who developed AL after colorectal surgery include preoperative intervention and surgical factors. Secondly, AL-specific pathogenic or collagenase bacteria adhere to the intestinal mucosa and defend against host clearance, including the interaction between bacterial adhesion and host extracellular matrix (ECM), the biofilm formation, and the weakened host commercial bacterial resistance. Thirdly, we interpret the potential mechanisms of pathogen-induced poor anastomotic healing.
Collapse
Affiliation(s)
- Yang Liu
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Science, Ningbo, China,Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, China
| | - Bowen Li
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Science, Ningbo, China,Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunwei Wei
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Science, Ningbo, China,Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, China,*Correspondence: Yunwei Wei,
| |
Collapse
|
9
|
Phan QT, Solis NV, Lin J, Swidergall M, Singh S, Liu H, Sheppard DC, Ibrahim AS, Mitchell AP, Filler SG. Serum bridging molecules drive candidal invasion of human but not mouse endothelial cells. PLoS Pathog 2022; 18:e1010681. [PMID: 35797411 PMCID: PMC9295963 DOI: 10.1371/journal.ppat.1010681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/19/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
During hematogenously disseminated candidiasis, blood borne fungi must invade the endothelial cells that line the blood vessels to infect the deep tissues. Although Candida albicans, which forms hyphae, readily invades endothelial cells, other medically important species of Candida are poorly invasive in standard in vitro assays and have low virulence in immunocompetent mouse models of disseminated infection. Here, we show that Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei can bind to vitronectin and high molecular weight kininogen present in human serum. Acting as bridging molecules, vitronectin and kininogen bind to αv integrins and the globular C1q receptor (gC1qR), inducing human endothelial cells to endocytose the fungus. This mechanism of endothelial cell invasion is poorly supported by mouse endothelial cells but can be restored when mouse endothelial cells are engineered to express human gC1qR or αv integrin. Overall, these data indicate that bridging molecule-mediated endocytosis is a common pathogenic strategy used by many medically important Candida spp. to invade human vascular endothelial cells.
Collapse
Affiliation(s)
- Quynh T. Phan
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Norma V. Solis
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Jianfeng Lin
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Marc Swidergall
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Shakti Singh
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Hong Liu
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Donald C. Sheppard
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ashraf S. Ibrahim
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Scott G. Filler
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Péter B, Farkas E, Kurunczi S, Szittner Z, Bősze S, Ramsden JJ, Szekacs I, Horvath R. Review of Label-Free Monitoring of Bacteria: From Challenging Practical Applications to Basic Research Perspectives. BIOSENSORS 2022; 12:bios12040188. [PMID: 35448248 PMCID: PMC9026780 DOI: 10.3390/bios12040188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 05/10/2023]
Abstract
Novel biosensors already provide a fast way to detect the adhesion of whole bacteria (or parts of them), biofilm formation, and the effect of antibiotics. Moreover, the detection sensitivities of recent sensor technologies are large enough to investigate molecular-scale biological processes. Usually, these measurements can be performed in real time without using labeling. Despite these excellent capabilities summarized in the present work, the application of novel, label-free sensor technologies in basic biological research is still rare; the literature is dominated by heuristic work, mostly monitoring the presence and amount of a given analyte. The aims of this review are (i) to give an overview of the present status of label-free biosensors in bacteria monitoring, and (ii) to summarize potential novel directions with biological relevancies to initiate future development. Optical, mechanical, and electrical sensing technologies are all discussed with their detailed capabilities in bacteria monitoring. In order to review potential future applications of the outlined techniques in bacteria research, we summarize the most important kinetic processes relevant to the adhesion and survival of bacterial cells. These processes are potential targets of kinetic investigations employing modern label-free technologies in order to reveal new fundamental aspects. Resistance to antibacterials and to other antimicrobial agents, the most important biological mechanisms in bacterial adhesion and strategies to control adhesion, as well as bacteria-mammalian host cell interactions are all discussed with key relevancies to the future development and applications of biosensors.
Collapse
Affiliation(s)
- Beatrix Péter
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
- Correspondence: (B.P.); (R.H.)
| | - Eniko Farkas
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Sandor Kurunczi
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Zoltán Szittner
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1120 Budapest, Hungary;
- National Public Health Center, 1097 Budapest, Hungary
| | - Jeremy J. Ramsden
- Clore Laboratory, Department of Biomedical Research, University of Buckingham, Buckingham MK18 1AD, UK;
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Robert Horvath
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
- Correspondence: (B.P.); (R.H.)
| |
Collapse
|
11
|
YORMAZ B, ERGÜN D, TÜLEK B, ERGÜN R, ARSLAN U, KANAT F. Impact of low molecular weight heparin administration on the clinical course of the COVID-19 disease. Turk J Med Sci 2021; 51:28-38. [PMID: 32892540 PMCID: PMC7991848 DOI: 10.3906/sag-2006-184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/20/2020] [Indexed: 01/08/2023] Open
Abstract
Background Lymphopenia is the most important criterion of mortality and discharging feature for patients infected with coronavirus disease 2019 (COVID-19). This study aimed to investigate the clinical impact of a low molecular weight heparin (LMWH) treatment on the clinical course of COVID-19. Materials and methods Patients’ clinical symptoms, radiologic outcomes, hematologic, biochemical, D-dimer, and C-reactive protein (CRP) results were obtained from their medical records. Participants were separated into 2 groups: one was treated with LMWH and the other was not. Improvement in the patients was compared before and after treatment. Results Ninety-six patients who were diagnosed with COVID-19 between April and May 2020 were retrospectively analyzed. The multivariable analysis showed that the count of lymphocytes, D-dimer, and CRP levels were significantly improved in the LMWH group, as compared to the control group (OR, (95% CI) 0.628 (0.248–0.965), P < 0.001); OR, (95% CI) 0.356 (0.089–0.674), P < 0.001, respectively). The area under the receiver operating characteristic (ROC) curve analysis was AUC: 0.679 ± 0.055, 0.615 ± 0.058, and 0.633 ± 0.057, respectively; the β-value was found to be –1.032, –0.026, and –0.465, respectively. Conclusion The LMWH treatment group demonstrated better laboratory findings, including recovery in the lymphocyte count, CRP, and D-dimer results.
Collapse
Affiliation(s)
- Burcu YORMAZ
- Department of Pulmonology, Faculty of Medicine, Selçuk University, KonyaTurkey
| | - Dilek ERGÜN
- Department of Pulmonology, Faculty of Medicine, Selçuk University, KonyaTurkey
| | - Baykal TÜLEK
- Department of Pulmonology, Faculty of Medicine, Selçuk University, KonyaTurkey
| | - Recai ERGÜN
- Department of Pulmonology, Faculty of Medicine, Selçuk University, KonyaTurkey
| | - Uğur ARSLAN
- Department of Microbiology, Faculty of Medicine, Selçuk University, KonyaTurkey
| | - Fikret KANAT
- Department of Pulmonology, Faculty of Medicine, Selçuk University, KonyaTurkey
| |
Collapse
|
12
|
Arora S, Gordon J, Hook M. Collagen Binding Proteins of Gram-Positive Pathogens. Front Microbiol 2021; 12:628798. [PMID: 33613497 PMCID: PMC7893114 DOI: 10.3389/fmicb.2021.628798] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Collagens are the primary structural components of mammalian extracellular matrices. In addition, collagens regulate tissue development, regeneration and host defense through interaction with specific cellular receptors. Their unique triple helix structure, which requires a glycine residue every third amino acid, is the defining structural feature of collagens. There are 28 genetically distinct collagens in humans. In addition, several other unrelated human proteins contain a collagen domain. Gram-positive bacteria of the genera Staphylococcus, Streptococcus, Enterococcus, and Bacillus express cell surface proteins that bind to collagen. These proteins of Gram-positive pathogens are modular proteins that can be classified into different structural families. This review will focus on the different structural families of collagen binding proteins of Gram-positive pathogen. We will describe how these proteins interact with the triple helix in collagens and other host proteins containing a collagenous domain and discuss how these interactions can contribute to the pathogenic processes.
Collapse
Affiliation(s)
- Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| | - Jay Gordon
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| | - Magnus Hook
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| |
Collapse
|
13
|
Bista S, Singh P, Bernard Q, Yang X, Hart T, Lin YP, Kitsou C, Singh Rana V, Zhang F, Linhardt RJ, Zhnag K, Akins DR, Hritzo L, Kim Y, Grab DJ, Dumler JS, Pal U. A Novel Laminin-Binding Protein Mediates Microbial-Endothelial Cell Interactions and Facilitates Dissemination of Lyme Disease Pathogens. J Infect Dis 2021; 221:1438-1447. [PMID: 31758693 DOI: 10.1093/infdis/jiz626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Borrelia burgdorferi conserved gene products BB0406 and BB0405, members of a common B. burgdorferi paralogous gene family, share 59% similarity. Although both gene products can function as potential porins, only BB0405 is essential for infection. Here we show that, despite sequence homology and coexpression from the same operon, both proteins differ in their membrane localization attributes, antibody accessibility, and immunogenicity in mice. BB0406 is required for spirochete survival in mammalian hosts, particularly for the disseminated infection in distant organs. We identified that BB0406 interacts with laminin, one of the major constituents of the vascular basement membrane, and facilitates spirochete transmigration across host endothelial cell barriers. A better understanding of how B. burgdorferi transmigrates through dermal and tissue vascular barriers and establishes disseminated infections will contribute to the development of novel therapeutics to combat early infection.
Collapse
Affiliation(s)
- Sandhya Bista
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Preeti Singh
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Quentin Bernard
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Thomas Hart
- Department of Biological Science, State University of New York at Albany, Albany, New York, USA.,Division of Infectious Diseases, Wadsworth Center New York State Department of Health, Albany, New York, USA
| | - Yi-Pin Lin
- Department of Biological Science, State University of New York at Albany, Albany, New York, USA.,Department of Biomedical Science, State University of New York at Albany, Albany, New York, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Vipin Singh Rana
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA.,Department of Biology and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Kai Zhnag
- Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Darrin R Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lucy Hritzo
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Yuri Kim
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Dennis J Grab
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - J Stephen Dumler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA.,Virginia-Maryland College of Veterinary Medicine, College Park, Maryland
| |
Collapse
|
14
|
Giannakou LE, Giannopoulos AS, Hatzoglou C, Gourgoulianis KI, Rouka E, Zarogiannis SG. Investigation and Functional Enrichment Analysis of the Human Host Interaction Network with Common Gram-Negative Respiratory Pathogens Predicts Possible Association with Lung Adenocarcinoma. PATHOPHYSIOLOGY 2021; 28:20-33. [PMID: 35366267 PMCID: PMC8830454 DOI: 10.3390/pathophysiology28010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 11/16/2022] Open
Abstract
Haemophilus influenzae (Hi), Moraxella catarrhalis (MorCa) and Pseudomonas aeruginosa (Psa) are three of the most common gram-negative bacteria responsible for human respiratory diseases. In this study, we aimed to identify, using the functional enrichment analysis (FEA), the human gene interaction network with the aforementioned bacteria in order to elucidate the full spectrum of induced pathogenicity. The Human Pathogen Interaction Database (HPIDB 3.0) was used to identify the human proteins that interact with the three pathogens. FEA was performed via the ToppFun tool of the ToppGene Suite and the GeneCodis database so as to identify enriched gene ontologies (GO) of biological processes (BP), cellular components (CC) and diseases. In total, 11 human proteins were found to interact with the bacterial pathogens. FEA of BP GOs revealed associations with mitochondrial membrane permeability relative to apoptotic pathways. FEA of CC GOs revealed associations with focal adhesion, cell junctions and exosomes. The most significantly enriched annotations in diseases and pathways were lung adenocarcinoma and cell cycle, respectively. Our results suggest that the Hi, MorCa and Psa pathogens could be related to the pathogenesis and/or progression of lung adenocarcinoma via the targeting of the epithelial cellular junctions and the subsequent deregulation of the cell adhesion and apoptotic pathways. These hypotheses should be experimentally validated.
Collapse
Affiliation(s)
- Lydia-Eirini Giannakou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (L.-E.G.); (A.-S.G.); (C.H.); (S.G.Z.)
| | - Athanasios-Stefanos Giannopoulos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (L.-E.G.); (A.-S.G.); (C.H.); (S.G.Z.)
| | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (L.-E.G.); (A.-S.G.); (C.H.); (S.G.Z.)
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece;
| | - Konstantinos I. Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece;
| | - Erasmia Rouka
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (L.-E.G.); (A.-S.G.); (C.H.); (S.G.Z.)
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece;
- Correspondence:
| | - Sotirios G. Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (L.-E.G.); (A.-S.G.); (C.H.); (S.G.Z.)
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece;
| |
Collapse
|
15
|
Marre ATDO, Domingues RMCP, Lobo LA. Adhesion of anaerobic periodontal pathogens to extracellular matrix proteins. Braz J Microbiol 2020; 51:1483-1491. [PMID: 32557245 PMCID: PMC7688880 DOI: 10.1007/s42770-020-00312-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular matrix (ECM) proteins are highly abundant in the human body and can be found in various tissues, most prominently in connective tissue and basement membrane. For invasive bacterial pathogens, these structures function as physical barriers that block access to underlying tissues. The ability to bind and degrade these barriers is important for the establishment of infections and migration to other body sites. In the oral cavity, the ECM and the basement membrane (BM) are important components of the Junctional epithelium (JE) that closes the gap between the teeth surface and the mucosa. In periodontitis, the JE is breached by invading pathogenic bacteria, particularly strict anaerobic species. In periodontitis, invading microorganisms induce an unregulated and destructive host response through polymicrobial synergism and dysbiosis that attracts immune cells and contributes to the destruction of connective tissue and bone in the periodontal pocket. Colonization of the periodontal pocket is the first step to establish this infection, and binding to ECM is a major advantage in this site. Several species of strict anaerobic bacteria are implicated in acute and chronic periodontitis, and although binding to ECM proteins was studied in these species, few adhesins were identified so far, and the mechanisms involved in adhesion are largely unidentified. This review summarizes the data available on the interaction of strict anaerobic bacteria and components of the ECM.
Collapse
Affiliation(s)
- Andressa Temperine de Oliveira Marre
- Medical Microbiology Department, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro - UFRJ, CCS - Centro de Ciências da Saúde, 373 Avenida Carlos Chagas Filho, Bloco I - sala I2-06, Cidade Universitária, Rio de Janeiro, 21941-902, Brazil
| | - Regina M C P Domingues
- Medical Microbiology Department, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro - UFRJ, CCS - Centro de Ciências da Saúde, 373 Avenida Carlos Chagas Filho, Bloco I - sala I2-06, Cidade Universitária, Rio de Janeiro, 21941-902, Brazil
| | - Leandro A Lobo
- Medical Microbiology Department, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro - UFRJ, CCS - Centro de Ciências da Saúde, 373 Avenida Carlos Chagas Filho, Bloco I - sala I2-06, Cidade Universitária, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
16
|
Paulsson M, Su YC, Ringwood T, Uddén F, Riesbeck K. Pseudomonas aeruginosa uses multiple receptors for adherence to laminin during infection of the respiratory tract and skin wounds. Sci Rep 2019; 9:18168. [PMID: 31796854 PMCID: PMC6890786 DOI: 10.1038/s41598-019-54622-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa efficiently adheres to human tissues, including the lungs and skin, causing infections that are difficult to treat. Laminin is a main component of the extracellular matrix, and in this study we defined bacterial laminin receptors on P. aeruginosa. Persistent clinical P. aeruginosa isolates from patients with cystic fibrosis, wounds or catheter-related urinary tract infections bound more laminin compared to blood isolates. Laminin receptors in the outer membrane were revealed by 2D-immunblotting, and the specificities of interactions were confirmed with ELISA and biolayer interferometry. Four new high-affinity laminin receptors were identified in the outer membrane; EstA, OprD, OprG and PA3923. Mutated bacteria devoid of these receptors adhered poorly to immobilized laminin. All bacterial receptors bound to the heparin-binding domains on LG4 and LG5 of the laminin alpha chain as assessed with truncated laminin fragments, transmission electron microscopy and inhibition by heparin. In conclusion, P. aeruginosa binds laminin via multiple surface receptors, and isolates from lungs of cystic fibrosis patients bound significantly more laminin compared to bacteria isolated from the skin and urine. Since laminin is abundant in both the lungs and skin, we suggest that laminin binding is an important mechanism in P. aeruginosa pathogenesis.
Collapse
Affiliation(s)
- Magnus Paulsson
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Jan Waldenströms gata 59, SE-205 02, Malmö, Sweden.,Division for Infectious Diseases, Skåne University Hospital, Lund, Sweden
| | - Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Jan Waldenströms gata 59, SE-205 02, Malmö, Sweden
| | - Tamara Ringwood
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Jan Waldenströms gata 59, SE-205 02, Malmö, Sweden
| | - Fabian Uddén
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Jan Waldenströms gata 59, SE-205 02, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Jan Waldenströms gata 59, SE-205 02, Malmö, Sweden.
| |
Collapse
|
17
|
Costa-Hurtado M, Garcia-Rodriguez L, Lopez-Serrano S, Aragon V. Haemophilus parasuis VtaA2 is involved in adhesion to extracellular proteins. Vet Res 2019; 50:69. [PMID: 31547880 PMCID: PMC6755704 DOI: 10.1186/s13567-019-0687-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Haemophilus parasuis is part of the microbiota of the upper respiratory tract in swine. However, virulent strains can cause a systemic disease known as Glässer’s disease. Several virulence factors have been described in H. parasuis including the virulence-associated trimeric autotransporters (VtaAs). VtaA2 is up-regulated during infection and is only found in virulent strains. In order to determine its biological function, the vtaA2 gene was cloned with its native promotor region in pACYC184, and the transformed Escherichia coli was used to perform functional in vitro assays. VtaA2 was found to have a role in attachment to plastic, mucin, BSA, fibronectin and collagen. As other VtaAs from H. parasuis, the passenger domain of VtaA2 contains collagen domains. In order to examine the contribution of the collagen repeats to VtaA2 function, a recombinant vtaA2 without the central collagen domains was obtained and named vtaA2OL. VtaA2OL showed similar capacity than VtaA2 to adhere to plastic, mucin, BSA, fibronectin and plasma but a reduced capacity to adhere to collagen, suggesting that the collagen domains of VtaA2 are involved in collagen attachment. No function in cell adhesion and invasion to epithelial alveolar cell line A549 or unspecific binding to primary alveolar macrophages was found. Likewise VtaA2 had no role in serum or phagocytosis resistance. We propose that VtaA2 mediates adherence to the host by binding to the mucin, found in the upper respiratory tract mucus, and to the extracellular matrix proteins, present in the connective tissue of systemic sites, such as the serosa.
Collapse
Affiliation(s)
- Mar Costa-Hurtado
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Laura Garcia-Rodriguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Sergi Lopez-Serrano
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
18
|
Bros M, Haas K, Moll L, Grabbe S. RhoA as a Key Regulator of Innate and Adaptive Immunity. Cells 2019; 8:cells8070733. [PMID: 31319592 PMCID: PMC6678964 DOI: 10.3390/cells8070733] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
RhoA is a ubiquitously expressed cytoplasmic protein that belongs to the family of small GTPases. RhoA acts as a molecular switch that is activated in response to binding of chemokines, cytokines, and growth factors, and via mDia and the ROCK signaling cascade regulates the activation of cytoskeletal proteins, and other factors. This review aims to summarize our current knowledge on the role of RhoA as a general key regulator of immune cell differentiation and function. The contribution of RhoA for the primary functions of innate immune cell types, namely neutrophils, macrophages, and conventional dendritic cells (DC) to (i) get activated by pathogen-derived and endogenous danger signals, (ii) migrate to sites of infection and inflammation, and (iii) internalize pathogens has been fairly established. In activated DC, which constitute the most potent antigen-presenting cells of the immune system, RhoA is also important for the presentation of pathogen-derived antigen and the formation of an immunological synapse between DC and antigen-specific T cells as a prerequisite to induce adaptive T cell responses. In T cells and B cells as the effector cells of the adaptive immune system Rho signaling is pivotal for activation and migration. More recently, mutations of Rho and Rho-modulating factors have been identified to predispose for autoimmune diseases and as causative for hematopoietic malignancies.
Collapse
Affiliation(s)
- Matthias Bros
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Katharina Haas
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Lorna Moll
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stephan Grabbe
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
19
|
Montes-García JF, Delgado-Tapia WA, Vazquez-Cruz C, Vaca S, Cruz-Córdova A, Negrete-Abascal E. Actinobacillus seminis GroEL-homologous protein agglutinates sheep erythrocytes. Antonie van Leeuwenhoek 2019; 112:1655-1662. [PMID: 31230158 DOI: 10.1007/s10482-019-01292-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/18/2019] [Indexed: 11/29/2022]
Abstract
Actinobacillus seminis, a commensal of ovine and caprine reproductive organs, is able to induce epididymitis in the small ruminants that it infects. In this work, we characterised two protein bands of approximately 150 kDa and 65 kDa. These proteins cross-reacted with a polyclonal serum against Gallibacterium anatis hemagglutinin and with a polyclonal serum from sheep with epididymitis, indicating that the proteins are expressed in vivo; the two proteins also interacted with biotin-labeled sheep fibrinogen and fibronectin, suggesting that they may function as adhesins. The participation of these proteins as adhesins was confirmed by a cultured human bladder cell-A. seminis adhesion assay and adherence inhibition by preincubation of A. seminis with polyclonal antiserum to the 150 kDa protein. Both proteins presented sequence identity with an A. seminis GroEL protein by mass spectrometry analysis and agglutinated glutaraldehyde-fixed sheep red blood cells. Immunogold labeling was observed by transmission electron microscopy on bacterial cells that were negatively stained, and a peroxidase reaction was detected in A. seminis biofilms, when an anti-A. seminis 150 kDa protein serum was used, indicating the presence of this protein on the surface of A. seminis and in biofilms. The A. seminis GroEL-homologue is a multifunctional protein that likely acts as a hemagglutinin.
Collapse
Affiliation(s)
- Juan Fernando Montes-García
- Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios # 1, Los Reyes Iztacala, 54090, Tlalnepantla, Estado de México, Mexico
| | - Willy Angel Delgado-Tapia
- Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios # 1, Los Reyes Iztacala, 54090, Tlalnepantla, Estado de México, Mexico
| | - Candelario Vazquez-Cruz
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, BUAP, Apdo. Postal 1622, 72560, Puebla, Mexico
| | - Sergio Vaca
- Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios # 1, Los Reyes Iztacala, 54090, Tlalnepantla, Estado de México, Mexico
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México "Federico Gómez", Ciudad de México, Mexico
| | - Erasmo Negrete-Abascal
- Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios # 1, Los Reyes Iztacala, 54090, Tlalnepantla, Estado de México, Mexico.
| |
Collapse
|
20
|
Warnke P, Köller T, Kreikemeyer B, Barrantes I, Mach H, Podbielski A. Molecular epidemiology study of a nosocomial Moraxella catarrhalis outbreak in a neurological rehabilitation unit. J Hosp Infect 2019; 103:27-34. [PMID: 31054937 DOI: 10.1016/j.jhin.2019.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Moraxella catarrhalis is a common agent causing upper and lower respiratory tract infections, particularly of ventilated patients. The bacteria are transmitted between humans by direct and indirect contacts. However, reports of nosocomial outbreaks by this pathogen are scarce. AIM To analyse M. catarrhalis strains isolated during an outbreak in a medical rehabilitation centre to reveal their clonal relationship and to elucidate potential transmission routes. METHODS Extensive environmental and medical staff sampling was performed. Phenotypic and genotypic analyses of 15 isolates were executed, including repetitive element palindromic polymerase chain reaction (repPCR) and whole-genome sequencing. Furthermore, an intensified hygiene regimen was installed. FINDINGS The clonal nature of nine patient isolates and a simultaneous presence of separate entities including a strain isolated from a physician during staff screening was confirmed. Although neither asymptomatic carriers among the staff persons nor outbreak strain-contaminated fomites were identified for a specific intervention, the outbreak ceased due to maximum general and specific hygiene precautions. Retrospective analysis showed the increasing prevalence of M. catarrhalis strains over a period of two years before the incidence. Since then and after returning to the regular hygiene regimen, only one patient with a phenotypically diverse M. catarrhalis isolate has been documented. CONCLUSION The first M. catarrhalis outbreak involving nine patients of a neurological and trauma rehabilitation centre was reported. Potential transmission pathways were discussed. Comprehensive outbreak analyses insinuated the extension of routine laboratory storage time for defined species.
Collapse
Affiliation(s)
- P Warnke
- Institute of Medical Microbiology, Virology & Hygiene, University Medicine Rostock, Germany.
| | - T Köller
- Institute of Medical Microbiology, Virology & Hygiene, University Medicine Rostock, Germany
| | - B Kreikemeyer
- Institute of Medical Microbiology, Virology & Hygiene, University Medicine Rostock, Germany
| | - I Barrantes
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University Medicine Rostock, Germany
| | - H Mach
- Center for Medical Rehabilitation, Waldeck-Schwaan, Germany
| | - A Podbielski
- Institute of Medical Microbiology, Virology & Hygiene, University Medicine Rostock, Germany
| |
Collapse
|
21
|
Mulloy B. The non-anticoagulant promise of heparin and its mimetics. Curr Opin Pharmacol 2019; 46:50-54. [PMID: 31009826 DOI: 10.1016/j.coph.2019.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Abstract
Heparin, the widely used anticoagulant and antithrombotic polysaccharide, has other potential therapeutic uses that arise from its similarity to heparan sulfate. This review provides a brief overview of the most recent developments in this field, paying particular respect to pulmonary and respiratory pharmacology. It has often been said that heparin, with its mimetics and derivatives, shows great promise in the treatment of inflammatory, infectious, and malignant conditions. Difficulties are encountered, however, in translating this promise into worthwhile treatment strategies for patients in some conditions. Several clinical trials of low molecular weight heparins as adjuvant therapy to standard treatment of lung cancers have recently provided no evidence to support the supposed beneficial effects of low molecular weight heparin.
Collapse
Affiliation(s)
- Barbara Mulloy
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
22
|
Meiners S, Lloyd C, Chambers RC. Cell-matrix interactions in lung disease and regeneration: ERS Lung Science Conference 2018 report. Eur Respir Rev 2018; 27:27/148/180040. [PMID: 29950307 PMCID: PMC9489055 DOI: 10.1183/16000617.0040-2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/05/2018] [Indexed: 12/03/2022] Open
Abstract
The extracellular matrix (ECM) is essential for the maintenance of tissue architecture, anchoring cells and sustaining normal tissue function. Cells sense and functionally respond to their physical three-dimensional (3D) environment by translating ECM interactions, as well as mechanical forces and deformations, into subsequent cell signalling events. Imbalances in these reciprocal interactions between cells and their ECM perturb normal cellular function and contribute to a diverse range of respiratory diseases, including those associated with abnormal lung development, acute lung injury, pulmonary fibrosis, airway remodelling and cancer [1]. The aim of the European Respiratory Society (ERS) Lung Science Conference (LSC) 2018 was to provide a state-of-the-art review of current understanding of the role of the perturbations of cell–matrix interactions as determinants of cell fate and function across the spectrum of respiratory diseases and lung regeneration. The conference took place on March 8–11, 2018 in Estoril, Portugal, and was regarded as an outstanding forum for the discussion of novel scientific concepts on cell–matrix interactions as well as their dysregulation in lung disease. Imbalances in cell–matrix interactions perturb normal cell function and contribute to a range of respiratory diseases, including those associated with abnormal lung development, acute lung injury, pulmonary fibrosis, airway remodelling and cancerhttp://ow.ly/AVXi30k3QPT
Collapse
Affiliation(s)
- Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Clare Lloyd
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| |
Collapse
|