1
|
Ma W, Tang S, Yao P, Zhou T, Niu Q, Liu P, Tang S, Chen Y, Gan L, Cao Y. Advances in acute respiratory distress syndrome: focusing on heterogeneity, pathophysiology, and therapeutic strategies. Signal Transduct Target Ther 2025; 10:75. [PMID: 40050633 PMCID: PMC11885678 DOI: 10.1038/s41392-025-02127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 03/09/2025] Open
Abstract
In recent years, the incidence of acute respiratory distress syndrome (ARDS) has been gradually increasing. Despite advances in supportive care, ARDS remains a significant cause of morbidity and mortality in critically ill patients. ARDS is characterized by acute hypoxaemic respiratory failure with diffuse pulmonary inflammation and bilateral edema due to excessive alveolocapillary permeability in patients with non-cardiogenic pulmonary diseases. Over the past seven decades, our understanding of the pathology and clinical characteristics of ARDS has evolved significantly, yet it remains an area of active research and discovery. ARDS is highly heterogeneous, including diverse pathological causes, clinical presentations, and treatment responses, presenting a significant challenge for clinicians and researchers. In this review, we comprehensively discuss the latest advancements in ARDS research, focusing on its heterogeneity, pathophysiological mechanisms, and emerging therapeutic approaches, such as cellular therapy, immunotherapy, and targeted therapy. Moreover, we also examine the pathological characteristics of COVID-19-related ARDS and discuss the corresponding therapeutic approaches. In the face of challenges posed by ARDS heterogeneity, recent advancements offer hope for improved patient outcomes. Further research is essential to translate these findings into effective clinical interventions and personalized treatment approaches for ARDS, ultimately leading to better outcomes for patients suffering from ARDS.
Collapse
Affiliation(s)
- Wen Ma
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Songling Tang
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Yao
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tingyuan Zhou
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Qingsheng Niu
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Liu
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyuan Tang
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Chen
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Gan
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Yu Cao
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China.
| |
Collapse
|
2
|
Zhang D, Yang G, Hu X, Liu X, Zhang J, Jia D, Zhang A. Antibiotics versus Non-Antibiotic in the treatment of Aspiration Pneumonia: analysis of the MIMIC-IV database. BMC Pulm Med 2024; 24:621. [PMID: 39695560 DOI: 10.1186/s12890-024-03441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Aspiration pneumonia (AP) is a common complication in the intensive care unit (ICU), which is associated with significantly increased morbidity and mortality and has a significant impact on patient prognosis. Antibiotics are commonly used in the clinical treatment of AP. However, the prognostic impact of antibiotics on patients with AP has not been adequately characterized. The purpose of this study is to illustrate the relationship between the use of antibiotics and in-hospital mortality of AP patients, as well as to analyze the effects of different antibiotic treatment regimens on the prognosis of the patients, and to further understand the distribution of pathogens and drug resistance in AP patients, so as to provide guidance information for the rational use of medication for patients in the clinic. METHODS Clinical data of AP patients were extracted from the MIMIC-IV database. Statistical methods included multivariate logistic regression, propensity score matching (PSM), and inverse probability weighting (IPW) based on propensity scores to ensure the robustness of the findings. In addition, the characteristics of the medications used by patients with AP were described using statistical graphs and tables. RESULTS A total of 4132 patients with AP were included. In-hospital mortality was significantly lower in the group using antibiotics compared to the group not using antibiotics (odds ratio [OR] = 0.44, 95% confidence interval [CI] 0.27- 0.71, P = 0.001). Furthermore, in the group using mechanical ventilation (MV), antibiotics use significantly reduced in-hospital mortality (OR = 0.30, 95% CI 0.15-0.57, P < 0.001). Vancomycin and cephalosporins are the most commonly used antibiotics to treat AP. Specifically, vancomycin in combination with piperacillin-tazobactam was used most frequently with 396 cases. The highest survival rate (97.6\%) was observed in patients treated with levofloxacin combined with metronidazole. Additionally, vancomycin combined with piperacillin-tazobactam had many inflammation related features that differed significantly from those in patients who did not receive medication. CONCLUSIONS Antibiotics use is closely associated with lower in-hospital mortality in ICU patients with AP. Moreover, understanding antibiotics use, the composition of pathogenic bacteria, and the rates of drug resistance in patients with AP can aid in disease prevention and prompt infection control.
Collapse
Affiliation(s)
- Di Zhang
- School of Computer Science, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Guan Yang
- School of Computer Science, Zhongyuan University of Technology, Zhengzhou, 450007, China.
- Zhengzhou Key Laboratory of Text Processing and Image Understanding, Zhengzhou, State, 450007, China.
| | - Xingang Hu
- School of Computer Science, Zhongyuan University of Technology, Zhengzhou, 450007, China.
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, 450000, China.
| | - Xiaoming Liu
- School of Computer Science, Zhongyuan University of Technology, Zhengzhou, 450007, China
- China Language Intelligence Research Center, Beijing, 100000, China
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, 450000, China
| | - Dongqing Jia
- Medical Department, Kaifeng University, Kaifeng, 475004, China
| | - Aojun Zhang
- School of Computer Science, Zhongyuan University of Technology, Zhengzhou, 450007, China
| |
Collapse
|
3
|
Genčić MS, Stojanović NM, Denić JM, Stojanović-Radić ZZ, Stojanović P, Van Hecke K, Jovanović LS, Nikolić MV, Jevtović-Stoimenov T, Radulović NS, D'hooghe M. Repurposing of monocyclic β-lactams as anti-inflammatory agents - The case of new ferrocene-azetidin-2-one hybrids. Eur J Med Chem 2024; 280:116910. [PMID: 39406117 DOI: 10.1016/j.ejmech.2024.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 11/25/2024]
Abstract
There is growing interest in developing monotherapy drugs that treat inflammation caused by microbial infections, focusing on dual antimicrobial and anti-inflammatory agents with minimal side effects and high safety margins. This study synthesized and characterized a library of novel cis-4-ferrocenylazetidin-2-ones, evaluating their antimicrobial and anti-inflammatory activities. These organometallic monocyclic β-lactams showed moderate in vitro antimicrobial activity against various standard microbial strains, including yeasts and Gram-negative and Gram-positive bacteria. Some compounds overcame the resistance of clinical Staphylococcus aureus isolates. Traditionally, monocyclic β-lactams target Gram-negative bacilli, but adding a ferrocene moiety and substituting the COOH group near the N-1 position with a non-ionizable ester group (COOR) extended their activity spectrum. The anti-inflammatory properties were assessed in macrophage-based models, revealing non-cytotoxicity below 10 μM. Two compounds were shown to be strong and selective arginase inhibitors, while five others effectively suppressed excessive NO formation without affecting basal NO production. The presence of a phenoxy group at C-3 of the β-lactam ring appeared to be crucial for selective NO inhibition. These hybrids did not scavenge NO but inhibited NO synthesis by suppressing iNOS expression. Overall, two novel hybrids were identified as promising hit candidates for treating infection-induced inflammatory reactions.
Collapse
Affiliation(s)
- Marija S Genčić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Nikola M Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, Bulevar Zorana Đinđića 81, 18000, Niš, Serbia
| | - Jelena M Denić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Zorica Z Stojanović-Radić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Predrag Stojanović
- National Reference Laboratory for Anaerobic Infections - Clostridium difficile, Center of Microbiology, Institute for Public Health Niš, Bulevar Zorana Đinđića 50, 18000, Niš, Serbia
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Faculty of Science, Ghent University, Krijgslaan 281-S3, B-9000, Ghent, Belgium
| | - Ljiljana S Jovanović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Marija Vukelić Nikolić
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Bulevar Zorana Đinđića 81, 18000, Niš, Serbia
| | - Tatjana Jevtović-Stoimenov
- Department of Biochemistry, Faculty of Medicine, University of Niš, Bulevar Zorana Đinđića 81, 18000, Niš, Serbia
| | - Niko S Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000, Gent, Belgium.
| |
Collapse
|
4
|
Raghavan S, Kim KS. Host immunomodulation strategies to combat pandemic-associated antimicrobial-resistant secondary bacterial infections. Int J Antimicrob Agents 2024; 64:107308. [PMID: 39168417 DOI: 10.1016/j.ijantimicag.2024.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/20/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
The incidence of secondary bacterial infections has increased in recent decades owing to various viral pandemics. These infections further increase the morbidity and mortality rates associated with viral infections and remain a significant challenge in clinical practice. Intensive antibiotic therapy has mitigated the threat of such infections; however, overuse and misuse of antibiotics have resulted in poor outcomes, such as inducing the emergence of bacterial populations with antimicrobial resistance (AMR) and reducing the therapeutic options for this crisis. Several antibiotic substitutes have been suggested and employed; however, they have certain limitations and novel alternatives are urgently required. This review highlights host immunomodulation as a promising strategy against secondary bacterial infections to overcome AMR. The definition and risk factors of secondary bacterial infections, features and limitations of currently available therapeutic strategies, host immune responses, and future perspectives for treating such infections are discussed.
Collapse
Affiliation(s)
- Srimathi Raghavan
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, Korea.
| |
Collapse
|
5
|
Li F, Yan W, Dong W, Chen Z, Chen Z. PNSC928, a plant-derived compound, specifically disrupts CtBP2-p300 interaction and reduces inflammation in mice with acute respiratory distress syndrome. Biol Direct 2024; 19:48. [PMID: 38902802 PMCID: PMC11191317 DOI: 10.1186/s13062-024-00491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Prior research has highlighted the involvement of a transcriptional complex comprising C-terminal binding protein 2 (CtBP2), histone acetyltransferase p300, and nuclear factor kappa B (NF-κB) in the transactivation of proinflammatory cytokine genes, contributing to inflammation in mice with acute respiratory distress syndrome (ARDS). Nonetheless, it remains uncertain whether the therapeutic targeting of the CtBP2-p300-NF-κB complex holds potential for ARDS suppression. METHODS An ARDS mouse model was established using lipopolysaccharide (LPS) exposure. RNA-Sequencing (RNA-Seq) was performed on ARDS mice and LPS-treated cells with CtBP2, p300, and p65 knockdown. Small molecules inhibiting the CtBP2-p300 interaction were identified through AlphaScreen. Gene and protein expression levels were quantified using RT-qPCR and immunoblots. Tissue damage was assessed via histological staining. KEY FINDINGS We elucidated the specific role of the CtBP2-p300-NF-κB complex in proinflammatory gene regulation. RNA-seq analysis in LPS-challenged ARDS mice and LPS-treated CtBP2-knockdown (CtBP2KD), p300KD, and p65KD cells revealed its significant impact on proinflammatory genes with minimal effects on other NF-κB targets. Commercial inhibitors for CtBP2, p300, or NF-κB exhibited moderate cytotoxicity in vitro and in vivo, affecting both proinflammatory genes and other targets. We identified a potent inhibitor, PNSC928, for the CtBP2-p300 interaction using AlphaScreen. PNSC928 treatment hindered the assembly of the CtBP2-p300-NF-κB complex, substantially downregulating proinflammatory cytokine gene expression without observable cytotoxicity in normal cells. In vivo administration of PNSC928 significantly reduced CtBP2-driven proinflammatory gene expression in ARDS mice, alleviating inflammation and lung injury, ultimately improving ARDS prognosis. CONCLUSION Our results position PNSC928 as a promising therapeutic candidate to specifically target the CtBP2-p300 interaction and mitigate inflammation in ARDS management.
Collapse
Affiliation(s)
- Fan Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Wenqing Yan
- Department of Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, Shanghai, 200065, China
- Department of Emergency, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, China
- Department of Emergency, Jiangxi Provincial People's Hospital, No. 92, Aiguo Road, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Weihua Dong
- Department of Emergency, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, China
- Department of Emergency, Jiangxi Provincial People's Hospital, No. 92, Aiguo Road, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Zhiping Chen
- Department of Emergency, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, China.
- Department of Emergency, Jiangxi Provincial People's Hospital, No. 92, Aiguo Road, Donghu District, Nanchang, Jiangxi, 330006, China.
| | - Zhi Chen
- Department of Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, Shanghai, 200065, China.
- Department of Emergency, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, China.
- Department of Emergency, Jiangxi Provincial People's Hospital, No. 92, Aiguo Road, Donghu District, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
6
|
Paukner S, Kimber S, Cumper C, Rea-Davies T, Sueiro Ballesteros L, Kirkham C, Hargreaves A, Gelone SP, Richards C, Wicha WW. In Vivo Immune-Modulatory Activity of Lefamulin in an Influenza Virus A (H1N1) Infection Model in Mice. Int J Mol Sci 2024; 25:5401. [PMID: 38791439 PMCID: PMC11121702 DOI: 10.3390/ijms25105401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Lefamulin is a first-in-class systemic pleuromutilin antimicrobial and potent inhibitor of bacterial translation, and the most recent novel antimicrobial approved for the treatment of community-acquired pneumonia (CAP). It exhibits potent antibacterial activity against the most prevalent bacterial pathogens that cause typical and atypical pneumonia and other infectious diseases. Early studies indicate additional anti-inflammatory activity. In this study, we further investigated the immune-modulatory activity of lefamulin in the influenza A/H1N1 acute respiratory distress syndrome (ARDS) model in BALB/c mice. Comparators included azithromycin, an anti-inflammatory antimicrobial, and the antiviral oseltamivir. Lefamulin significantly decreased the total immune cell infiltration, specifically the neutrophils, inflammatory monocytes, CD4+ and CD8+ T-cells, NK cells, and B-cells into the lung by Day 6 at both doses tested compared to the untreated vehicle control group (placebo), whereas azithromycin and oseltamivir did not significantly affect the total immune cell counts at the tested dosing regimens. Bronchioalveolar lavage fluid concentrations of pro-inflammatory cytokines and chemokines including TNF-α, IL-6, IL-12p70, IL-17A, IFN-γ, and GM-CSF were significantly reduced, and MCP-1 concentrations were lowered (not significantly) by lefamulin at the clinically relevant 'low' dose on Day 3 when the viral load peaked. Similar effects were also observed for oseltamivir and azithromycin. Lefamulin also decreased the viral load (TCID50) by half a log10 by Day 6 and showed positive effects on the gross lung pathology and survival. Oseltamivir and lefamulin were efficacious in the suppression of the development of influenza-induced bronchi-interstitial pneumonia, whereas azithromycin did not show reduced pathology at the tested treatment regimen. The observed anti-inflammatory and immune-modulatory activity of lefamulin at the tested treatment regimens highlights a promising secondary pharmacological property of lefamulin. While these results require confirmation in a clinical trial, they indicate that lefamulin may provide an immune-modulatory activity beyond its proven potent antibacterial activity. This additional activity may benefit CAP patients and potentially prevent acute lung injury (ALI) and ARDS.
Collapse
Affiliation(s)
- Susanne Paukner
- Nabriva Therapeutics GmbH, Leberstrasse 20, 1110 Vienna, Austria;
| | - Sandra Kimber
- Charles River Discovery, Portishead BS20 7AW, UK; (S.K.); (C.C.); (T.R.-D.); (L.S.B.); (C.K.); (C.R.)
| | - Charlotte Cumper
- Charles River Discovery, Portishead BS20 7AW, UK; (S.K.); (C.C.); (T.R.-D.); (L.S.B.); (C.K.); (C.R.)
| | - Tina Rea-Davies
- Charles River Discovery, Portishead BS20 7AW, UK; (S.K.); (C.C.); (T.R.-D.); (L.S.B.); (C.K.); (C.R.)
| | - Lorena Sueiro Ballesteros
- Charles River Discovery, Portishead BS20 7AW, UK; (S.K.); (C.C.); (T.R.-D.); (L.S.B.); (C.K.); (C.R.)
| | - Christopher Kirkham
- Charles River Discovery, Portishead BS20 7AW, UK; (S.K.); (C.C.); (T.R.-D.); (L.S.B.); (C.K.); (C.R.)
| | | | | | - Claire Richards
- Charles River Discovery, Portishead BS20 7AW, UK; (S.K.); (C.C.); (T.R.-D.); (L.S.B.); (C.K.); (C.R.)
| | | |
Collapse
|
7
|
Tosi M, Coloretti I, Meschiari M, De Biasi S, Girardis M, Busani S. The Interplay between Antibiotics and the Host Immune Response in Sepsis: From Basic Mechanisms to Clinical Considerations: A Comprehensive Narrative Review. Antibiotics (Basel) 2024; 13:406. [PMID: 38786135 PMCID: PMC11117367 DOI: 10.3390/antibiotics13050406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Sepsis poses a significant global health challenge due to immune system dysregulation. This narrative review explores the complex relationship between antibiotics and the immune system, aiming to clarify the involved mechanisms and their clinical impacts. From pre-clinical studies, antibiotics exhibit various immunomodulatory effects, including the regulation of pro-inflammatory cytokine production, interaction with Toll-Like Receptors, modulation of the P38/Pmk-1 Pathway, inhibition of Matrix Metalloproteinases, blockade of nitric oxide synthase, and regulation of caspase-induced apoptosis. Additionally, antibiotic-induced alterations to the microbiome are associated with changes in systemic immunity, affecting cellular and humoral responses. The adjunctive use of antibiotics in sepsis patients, particularly macrolides, has attracted attention due to their immune-regulatory effects. However, there are limited data comparing different types of macrolides. More robust evidence comes from studies on community-acquired pneumonia, especially in severe cases with a hyper-inflammatory response. While studies on septic shock have shown mixed results regarding mortality rates and immune response modulation, conflicting findings are also observed with macrolides in acute respiratory distress syndrome. In conclusion, there is a pressing need to tailor antibiotic therapy based on the patient's immune profile to optimize outcomes in sepsis management.
Collapse
Affiliation(s)
- Martina Tosi
- Anesthesia and Intensive Care Medicine, Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.T.); (I.C.); (M.G.)
| | - Irene Coloretti
- Anesthesia and Intensive Care Medicine, Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.T.); (I.C.); (M.G.)
| | | | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena, and Reggio Emilia, 41125 Modena, Italy;
| | - Massimo Girardis
- Anesthesia and Intensive Care Medicine, Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.T.); (I.C.); (M.G.)
| | - Stefano Busani
- Anesthesia and Intensive Care Medicine, Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.T.); (I.C.); (M.G.)
| |
Collapse
|
8
|
Grümme L, Dombret S, Knösel T, Skapenko A, Schulze-Koops H. Colitis induced by IL-17A-inhibitors. Clin J Gastroenterol 2024; 17:263-270. [PMID: 38060157 PMCID: PMC10960887 DOI: 10.1007/s12328-023-01893-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Interleukin (IL)-17A is essential for intestinal mucosal integrity, contributing to the prevention of detrimental immunity such as infectious colitis and inflammatory bowel disease (IBD). Indeed, neutralization of IL-17A has been abandoned as a therapeutic principle in IBD because of increased disease activity. However, it is controversial whether IL-17A inhibitors increase the risk of developing colitis in patients who do not have underlying IBD. Here, we present two cases of different forms of colitis that occurred during treatment with two IL-17A inhibitors, secukinumab and ixekizumab. CASE PRESENTATIONS We report the case of a 35-year-old female with SAPHO (synovitis-acne-pustulosis-hyperostosis-osteitis) syndrome who was admitted due to severe colitis with bloody diarrhea, fever, abdominal pain and weight loss after receiving secukinumab for 3 months as well as the case of a 41-year-old male with psoriatic arthritis who presented himself to the outpatient clinic with bloody stools, abdominal pain and nausea 5 months after changing his therapy from secukinumab to ixekizumab. In both patients, treatment with IL-17A-inhibitors was stopped and tumor necrosis factor inhibitors were started. Both patients recovered, are clinically stable and show no more signs of active colitis. CONCLUSION The role of IL-17A inhibitors in the pathogenesis of infectious colitis and new-onset IBD is not fully understood and requires further research. Patients receiving IL-17A-inhibitor therapy should be carefully screened and notified of the possible side effects.
Collapse
Affiliation(s)
- Lea Grümme
- Division of Rheumatology and Clinical Immunology, Department of Medicine IV, LMU Clinic Munich, Pettenkoferstraße 8a, 80336, Munich, Germany
| | - Sophia Dombret
- Division of Rheumatology and Clinical Immunology, Department of Medicine IV, LMU Clinic Munich, Pettenkoferstraße 8a, 80336, Munich, Germany
| | - Thomas Knösel
- Institute of Pathology, LMU Clinic Munich, Munich, Germany
| | - Alla Skapenko
- Division of Rheumatology and Clinical Immunology, Department of Medicine IV, LMU Clinic Munich, Pettenkoferstraße 8a, 80336, Munich, Germany
| | - Hendrik Schulze-Koops
- Division of Rheumatology and Clinical Immunology, Department of Medicine IV, LMU Clinic Munich, Pettenkoferstraße 8a, 80336, Munich, Germany.
| |
Collapse
|
9
|
Yudhawati R, Wicaksono NF. Immunomodulatory Effects of Fluoroquinolones in Community-Acquired Pneumonia-Associated Acute Respiratory Distress Syndrome. Biomedicines 2024; 12:761. [PMID: 38672119 PMCID: PMC11048665 DOI: 10.3390/biomedicines12040761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Community-acquired pneumonia is reported as one of the infectious diseases that leads to the development of acute respiratory distress syndrome. The innate immune system is the first line of defence against microbial invasion; however, its dysregulation during infection, resulting in an increased pathogen load, stimulates the over-secretion of chemokines and pro-inflammatory cytokines. This phenomenon causes damage to the epithelial-endothelial barrier of the pulmonary alveoli and the leakage of the intravascular protein into the alveolar lumen. Fluoroquinolones are synthetic antimicrobial agents with immunomodulatory properties that can inhibit bacterial proliferation as well as exhibit anti-inflammatory activities. It has been demonstrated that the structure of fluoroquinolones, particularly those with a cyclopropyl group, exerts immunomodulatory effects. Its capability to inhibit phosphodiesterase activity leads to the accumulation of intracellular cAMP, which subsequently enhances PKA activity, resulting in the inhibition of transcriptional factor NF-κB and the activation of CREB. Another mechanism reported is the inhibition of TLR and ERK signalling pathways. Although the sequence of events has not been completely understood, significant progress has been made in comprehending the specific mechanisms underlying the immunomodulatory effects of fluoroquinolones. Here, we review the indirect immunomodulatory effects of FQs as an alternative to empirical therapy in patients diagnosed with community-acquired pneumonia.
Collapse
Affiliation(s)
- Resti Yudhawati
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Department of Pulmonology and Respiratory Medicine, Universitas Airlangga Teaching Hospital, Surabaya 60015, Indonesia
- Department of Pulmonology and Respiratory Medicine, Dr. Soetomo General Hospital, Surabaya 60286, Indonesia
| | | |
Collapse
|
10
|
Priyandoko D, Widowati W, Lenny L, Novianti S, Revika R, Kusuma HSW, Sholihah IA. Green Tea Extract Reduced Lipopolysaccharide-Induced Inflammation in L2 Cells as Acute Respiratory Distress Syndrome Model Through Genes and Cytokine Pro-Inflammatory. Avicenna J Med Biotechnol 2024; 16:57-65. [PMID: 38605739 PMCID: PMC11005400 DOI: 10.18502/ajmb.v16i1.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/23/2023] [Indexed: 04/13/2024] Open
Abstract
Background Acute Respiratory Distress Syndrome (ARDS) is a severe lung inflammatory condition that has the capacity to impair gas exchange and lead to hypoxemia. This condition is found to have been one of the most prevalent in patients of COVID-19 with a more serious condition. Green tea (Camellia sinensis L.) contains polyphenols that possess many health benefits. The purpose of this study was to assess the anti-inflammatory activities of green tea extract in Lipopolysaccharide (LPS)-induced lung cells as ARDS cells model. Methods In this study, rat lung cells (L2) were induced by LPS to mimic the inflammation observed in ARDS and later treated with green tea extract. Pro-inflammatory cytokines such as Interleukin (IL)-12, C-Reactive Protein (CRP) as well as Tumor Necrosis Factor-α (TNF-α) were investigated using the ELISA method. Gene expression of NOD-Like Receptor Protein 3 (NLRP-3), Receptor for Advanced Glycation End-product (RAGE), Toll-like Receptor-4 (TLR-4), and Nuclear Factor-kappa B (NF-κB) were evaluated by qRTPCR. Apoptotic cells were measured using flow cytometry. Results The results showed that green tea extract treatment can reduce inflammation by suppressing gene expressions of NF-κB, NLRP-3, TLR-4, and RAGE, as well as pro-inflammatory cytokines such as IL-12, TNF-α, and CRP, an acute phase protein. Apoptosis levels of inflamed cells also found to be lowered when green tea extract was administered; thus, also increasing live cells compared to non-treated cells. Conclusion These findings could lead to the future development of supplements from green tea to help alleviate ARDS symptoms, especially during critical moments such as the current pandemic.
Collapse
Affiliation(s)
- Didik Priyandoko
- Biology Study Program, Faculty of Mathematics and Natural Sciences, Indonesia University of Education, Bandung 40154, Indonesia
| | - Wahyu Widowati
- Faculty of Medicine, Maranatha Christian University, Bandung 40164, Indonesia
| | - Lenny Lenny
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | - Sintya Novianti
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | - Revika Revika
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | | | - Ika Adhani Sholihah
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung 40163, Indonesia
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung 40132, Indonesia
| |
Collapse
|
11
|
Bode C, Weis S, Sauer A, Wendel-Garcia P, David S. Targeting the host response in sepsis: current approaches and future evidence. Crit Care 2023; 27:478. [PMID: 38057824 PMCID: PMC10698949 DOI: 10.1186/s13054-023-04762-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
Sepsis, a dysregulated host response to infection characterized by organ failure, is one of the leading causes of death worldwide. Disbalances of the immune response play an important role in its pathophysiology. Patients may develop simultaneously or concomitantly states of systemic or local hyperinflammation and immunosuppression. Although a variety of effective immunomodulatory treatments are generally available, attempts to inhibit or stimulate the immune system in sepsis have failed so far to improve patients' outcome. The underlying reason is likely multifaceted including failure to identify responders to a specific immune intervention and the complex pathophysiology of organ dysfunction that is not exclusively caused by immunopathology but also includes dysfunction of the coagulation system, parenchymal organs, and the endothelium. Increasing evidence suggests that stratification of the heterogeneous population of septic patients with consideration of their host response might led to treatments that are more effective. The purpose of this review is to provide an overview of current studies aimed at optimizing the many facets of host response and to discuss future perspectives for precision medicine approaches in sepsis.
Collapse
Affiliation(s)
- Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Sebastian Weis
- Institute for Infectious Disease and Infection Control, University Hospital Jena, Friedrich-Schiller University Jena, Jena, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Friedrich-Schiller University Jena, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute-HKI, Jena, Germany
| | - Andrea Sauer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Pedro Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Lee J, Jang J, Cha SR, Lee SB, Hong SH, Bae HS, Lee YJ, Yang SR. Recombinant Human Bone Morphogenetic Protein-2 Priming of Mesenchymal Stem Cells Ameliorate Acute Lung Injury by Inducing Regulatory T Cells. Immune Netw 2023; 23:e48. [PMID: 38188599 PMCID: PMC10767548 DOI: 10.4110/in.2023.23.e48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) possess immunoregulatory properties and their regulatory functions represent a potential therapy for acute lung injury (ALI). However, uncertainties remain with respect to defining MSCs-derived immunomodulatory pathways. Therefore, this study aimed to investigate the mechanism underlying the enhanced effect of human recombinant bone morphogenic protein-2 (rhBMP-2) primed ES-MSCs (MSCBMP2) in promoting Tregs in ALI mice. MSC were preconditioned with 100 ng/ml rhBMP-2 for 24 h, and then administrated to mice by intravenous injection after intratracheal injection of 1 mg/kg LPS. Treating MSCs with rhBMP-2 significantly increased cellular proliferation and migration, and cytokines array reveled that cytokines release by MSCBMP2 were associated with migration and growth. MSCBMP2 ameliorated LPS induced lung injury and reduced myeloperoxidase activity and permeability in mice exposed to LPS. Levels of inducible nitric oxide synthase were decreased while levels of total glutathione and superoxide dismutase activity were further increased via inhibition of phosphorylated STAT1 in ALI mice treated with MSCBMP2. MSCBMP2 treatment increased the protein level of IDO1, indicating an increase in Treg cells, and Foxp3+CD25+ Treg of CD4+ cells were further increased in ALI mice treated with MSCBMP2. In co-culture assays with MSCs and RAW264.7 cells, the protein level of IDO1 was further induced in MSCBMP2. Additionally, cytokine release of IL-10 was enhanced while both IL-6 and TNF-α were further inhibited. In conclusion, these findings suggest that MSCBMP2 has therapeutic potential to reduce massive inflammation of respiratory diseases by promoting Treg cells.
Collapse
Affiliation(s)
- Jooyeon Lee
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Sang-Ryul Cha
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Se Bi Lee
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Han-Sol Bae
- Cellular Therapeutics Team, Daewoong Pharmaceutical, Yongin 17028, Korea
| | - Young Jin Lee
- Cellular Therapeutics Team, Daewoong Pharmaceutical, Yongin 17028, Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
13
|
Acharya Y, Taneja KK, Haldar J. Dual functional therapeutics: mitigating bacterial infection and associated inflammation. RSC Med Chem 2023; 14:1410-1428. [PMID: 37593575 PMCID: PMC10429821 DOI: 10.1039/d3md00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/21/2023] [Indexed: 08/19/2023] Open
Abstract
The emergence of antimicrobial resistance, coupled with the occurrence of persistent systemic infections, has already complicated clinical therapy efforts. Moreover, infections are also accompanied by strong inflammatory responses, generated by the host's innate and adaptive immune systems. The closely intertwined relationship between bacterial infection and inflammation has multiple implications on the ability of antibacterial therapeutics to tackle infection and inflammation. Particularly, uncontrolled inflammatory responses to infection can lead to sepsis, a life-threatening physiological condition. In this review, we discuss dual-functional antibacterial therapeutics that have potential to be developed for treating inflammation associated with bacterial infections. Immense research is underway that aims to develop new therapeutic agents that, when administered, regulate the excess inflammatory response, i.e. they have immunomodulatory properties along with the desired antibacterial activity. The classes of antibiotics that have immunomodulatory function in addition to antibacterial activity have been reviewed. Host defense peptides and their synthetic mimics are amongst the most sought-after solutions to develop such dual-functional therapeutics. This review also highlights the important classes of peptidomimetics that exhibit both antibacterial and immunomodulatory properties.
Collapse
Affiliation(s)
- Yash Acharya
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India
| | - Kashish Kumar Taneja
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India
| |
Collapse
|
14
|
Cazanga V, Palma C, Casanova T, Rojas D, Barrera K, Valenzuela C, Acevedo A, Ascui-Gac G, Pérez-Jeldres T, Pérez-Fernández R. Modulation of the Acute Inflammatory Response Induced by the Escherichia coli Lipopolysaccharide through the Interaction of Pentoxifylline and Florfenicol in a Rabbit Model. Antibiotics (Basel) 2023; 12:antibiotics12040639. [PMID: 37107001 PMCID: PMC10135147 DOI: 10.3390/antibiotics12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/12/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Experimental reports have demonstrated that florfenicol (FFC) exerts potent anti-inflammatory effects, improving survival in a murine endotoxemia model. Considering the anti-inflammatory and immunomodulatory properties of pentoxifylline (PTX) as an adjuvant to enhance the efficacy of antibiotics, the anti-inflammatory effects of the interaction FFC/PTX over the E. coli Lipopolysaccharide (LPS)-induced acute inflammatory response was evaluated in rabbits. METHODS Twenty-five clinically healthy New Zealand rabbits (3.8 ± 0.2 kg body weight: bw), were distributed into five experimental groups. Group 1 (control): treated with 1 mL/4 kg bw of 0.9% saline solution (SS) intravenously (IV). Group 2 (LPS): treated with an IV dose of 5 µg/kg of LPS. Group 3 (pentoxifylline (PTX) + LPS): treated with an oral dose of 30 mg/kg PTX, followed by an IV dose of 5 µg/kg of LPS 45 min after PTX. Group 4 (Florfenicol (FFC) + LPS): treated with an IM dose of 20 mg/kg of FFC, followed by an IV dose of 5 µg/kg of LPS 45 min after FFC administration. Group 5 (PTX + FFC + LPS): treated with an oral dose of 30 mg/kg of PTX, followed by an IM dose of 20 mg/kg of FFC, and, 45 min after an IV dose of 5 µg/kg of LPS was administered. The anti-inflammatory response was evaluated through changes in plasma levels of interleukins (TNF-α, IL-1β and IL-6), C-reactive protein (CRP), and body temperature. RESULTS It has been shown that each drug produced a partial inhibition over the LPS-induced increase in TNF-α, IL-1β, and CRP. When both drugs were co-administered, a synergistic inhibitory effect on the IL-1β and CRP plasma concentrations was observed, associated with a synergic antipyretic effect. However, the co-administration of PTX/FFC failed to modify the LPS-induced increase in the TNF-α plasma concentrations. CONCLUSIONS We concluded that the combination of FFC and PTX in our LPS sepsis models demonstrates immunomodulatory effects. An apparent synergistic effect was observed for the IL-1β inhibition, which peaks at three hours and then decreases. At the same time, each drug alone was superior in reducing TNF-α levels, while the combination was inferior. However, the peak of TNF-α in this sepsis model was at 12 h. Therefore, in rabbits plasma IL-1β and TNF-α could be regulated independently, thus, further research is needed to explore the effects of this combination over a more prolonged period.
Collapse
Affiliation(s)
- Victoria Cazanga
- Pharmacology Laboratory, Department of Clinical Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan 3820572, Chile
| | - Cristina Palma
- Pharmacology Laboratory, Department of Clinical Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan 3820572, Chile
| | - Tomás Casanova
- Pharmacology Laboratory, Department of Clinical Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan 3820572, Chile
| | - Daniela Rojas
- Veterinary Pathology Laboratory, Department of Pathology and Preventive Medicine, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan 3820572, Chile
| | - Karin Barrera
- Pharmacology Laboratory, Department of Clinical Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan 3820572, Chile
| | - Cristhian Valenzuela
- Pharmacology Laboratory, Department of Clinical Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan 3820572, Chile
| | - Aracelly Acevedo
- Pharmacology Laboratory, Department of Clinical Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan 3820572, Chile
| | - Gabriel Ascui-Gac
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, California University, San Diego, CA 92182, USA
| | - Tamara Pérez-Jeldres
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Rubén Pérez-Fernández
- Pharmacology Laboratory, Department of Clinical Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan 3820572, Chile
| |
Collapse
|
15
|
A Comparison of the Immunometabolic Effect of Antibiotics and Plant Extracts in a Chicken Macrophage-like Cell Line during a Salmonella Enteritidis Challenge. Antibiotics (Basel) 2023; 12:antibiotics12020357. [PMID: 36830268 PMCID: PMC9952652 DOI: 10.3390/antibiotics12020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Immunometabolic modulation of macrophages can play an important role in the innate immune response of chickens triggered with a multiplicity of insults. In this study, the immunometabolic role of two antibiotics (oxytetracycline and gentamicin) and four plant extracts (thyme essential oil, grape seed extract, garlic oil, and capsicum oleoresin) were investigated on a chicken macrophage-like cell line (HD11) during a Salmonella Enteritidis infection. To study the effect of these substances, kinome peptide array analysis, Seahorse metabolic assay, and gene expression techniques were employed. Oxytetracycline, to which the bacterial strain was resistant, thyme essential oil, and capsicum oleoresin did not show any noteworthy immunometabolic effect. Garlic oil affected glycolysis, but this change was not detected by the kinome analysis. Gentamicin and grape seed extract showed the best immunometabolic profile among treatments, being able to both help the host with the activation of immune response pathways and with maintaining a less inflammatory status from a metabolic point of view.
Collapse
|
16
|
Immunomodulatory Effects of Macrolides Considering Evidence from Human and Veterinary Medicine. Microorganisms 2022; 10:microorganisms10122438. [PMID: 36557690 PMCID: PMC9784682 DOI: 10.3390/microorganisms10122438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Macrolide antimicrobial agents have been in clinical use for more than 60 years in both human and veterinary medicine. The discovery of the non-antimicrobial properties of macrolides and the effect of immunomodulation of the inflammatory response has benefited patients with chronic airway diseases and impacted morbidity and mortality. This review examines the evidence of antimicrobial and non-antimicrobial properties of macrolides in human and veterinary medicine with a focus toward veterinary macrolides but including important and relevant evidence from the human literature. The complete story for these complex and important molecules is continuing to be written.
Collapse
|
17
|
Mansoor M, Hamer O, Walker E, Hill J. Antibiotics for the Secondary Prevention of Coronary Heart Disease. BRITISH JOURNAL OF CARDIAC NURSING 2022; 17:1-7. [PMID: 38812658 PMCID: PMC7616032 DOI: 10.12968/bjca.2022.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
It is estimated that 200 million people are living with coronary heart disease, which remains one of the leading causes of mortality and morbidity worldwide. Those living with coronary heart disease are at an increased risk of cardiovascular events such as stroke, myocardial infarction, and cardiovascular death. Pathophysiology of coronary heart disease revolves around inflammation which leads to plaque build-up. Antibiotics are known to hold anti-inflammatory and anti-oxidative properties. It is theorized that reductions in inflammation could prevent cardiovascular events which may reduce suffering, risk of death and hospital admission rates in patients with coronary heart disease. This article critically appraises a systematic review that assessed the risk of antibiotics used as secondary prevention for coronary heart disease.
Collapse
|
18
|
Yang R, Zhang X. A potential new pathway for heparin treatment of sepsis-induced lung injury: inhibition of pulmonary endothelial cell pyroptosis by blocking hMGB1-LPS-induced caspase-11 activation. Front Cell Infect Microbiol 2022; 12:984835. [PMID: 36189354 PMCID: PMC9519888 DOI: 10.3389/fcimb.2022.984835] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Sepsis is a significant cause of mortality in critically ill patients. Acute lung injury (ALI) is a leading cause of death in these patients. Endothelial cells exposed to the bacterial endotoxin lipopolysaccharide (LPS) can progress into pyroptosis, a programmed lysis of cell death triggered by inflammatory caspases. It is characterized by lytic cell death induced by the binding of intracellular LPS to caspases 4/5 in human cells and caspase-11 in mouse cells. In mice,caspase-11-dependent pyroptosis plays an important role in endotoxemia. HMGB1 released into the plasma binds to LPS and is internalized into lysosomes in endothelial cells via the advanced glycation end product receptor. In the acidic lysosomal environment, HMGB1 permeates the phospholipid bilayer, which is followed by the leakage of LPS into the cytoplasm and the activation of caspase-11. Heparin is an anticoagulant widely applied in the treatment of thrombotic disease. Previous studies have found that heparin could block caspase-11-dependent inflammatory reactions, decrease sepsis-related mortality, and reduce ALI, independent of its anticoagulant activity. Heparin or modified heparin with no anticoagulant property could inhibit the alarmin HMGB1-LPS interactions, minimize LPS entry into the cytoplasm, and thus blocking caspase-11 activation. Heparin has been studied in septic ALI, but the regulatory mechanism of pulmonary endothelial cell pyroptosis is still unclear. In this paper, we discuss the potential novel role of heparin in the treatment of septic ALI from the unique mechanism of pulmonary endothelial cell pyroptosis.
Collapse
|
19
|
Peukert K, Steinhagen F, Fox M, Feuerborn C, Schulz S, Seeliger B, Schuss P, Schneider M, Frede S, Sauer A, Putensen C, Latz E, Wilhelm C, Bode C. Tetracycline ameliorates silica-induced pulmonary inflammation and fibrosis via inhibition of caspase-1. Respir Res 2022; 23:21. [PMID: 35130879 PMCID: PMC8822850 DOI: 10.1186/s12931-022-01937-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/20/2022] [Indexed: 01/24/2023] Open
Abstract
Background Inhalation of dust containing silica particles is associated with severe pulmonary inflammation and lung injury leading to chronic silicosis including fibrotic remodeling of the lung. Silicosis represents a major global health problem causing more than 45.000 deaths per year. The inflammasome-caspase-1 pathway contributes to the development of silica-induced inflammation and fibrosis via IL-1β and IL-18 production. Recent studies indicate that tetracycline can be used to treat inflammatory diseases mediated by IL-1β and IL-18. Therefore, we hypothesized that tetracycline reduces silica-induced lung injury and lung fibrosis resulting from chronic silicosis via limiting IL-1β and IL-18 driven inflammation. Methods To investigate whether tetracycline is a therapeutic option to block inflammasome-caspase-1 driven inflammation in silicosis, we incubated macrophages with silica alone or combined with tetracycline. The in vivo effect of tetracycline was determined after intratracheal administration of silica into the mouse lung. Results Tetracycline selectively blocks IL-1β production and pyroptotic cell death via inhibition of caspase-1 in macrophages exposed to silica particles. Consistent, treatment of silica-instilled mice with tetracycline significantly reduced pulmonary caspase-1 activation as well as IL-1β and IL-18 production, thereby ameliorating pulmonary inflammation and lung injury. Furthermore, prolonged tetracycline administration in a model of chronic silicosis reduced lung damage and fibrotic remodeling. Conclusions These findings suggest that tetracycline inhibits caspase-1-dependent production of IL-1β in response to silica in vitro and in vivo. The results were consistent with tetracycline reducing silica-induced pulmonary inflammation and chronic silicosis in terms of lung injury and fibrosis. Thus, tetracycline could be effective in the treatment of patients with silicosis as well as other diseases involving silicotic inflammation.
Collapse
|