1
|
Keshavarz F, Zeinalabedini M, Ebrahimpour-Koujan S, Azadbakht L. A systematic review and meta-analysis of the association of all types of beverages high in fructose with asthma in children and adolescents. BMC Nutr 2024; 10:123. [PMID: 39294754 PMCID: PMC11409540 DOI: 10.1186/s40795-024-00930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Asthma has become the most common chronic condition among children in recent decades. Environmental factors, including food, drive its rise. Sweetened beverages are a staple of children's diets and cause various health issues. Therefore, this research aims to evaluate the association of all types of high fructose beverages with asthma in children. METHOD We assessed observational studies published before November 2023, obtained from PubMed, Scopus, and Web of Science. The quality of articles was assessed by using the Newcastle-Ottawa Scale. Studies with a pediatric population under 18 years that indicate the association between all kinds of beverages containing high fructose and asthma and evaluated risk estimates with 95% confidence intervals were included. We also followed Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). RESULTS In the final analysis, we included eleven studies with 164,118 individuals. Twenty-one effect sizes indicated a significant positive association between sugar-sweetened beverages (SSBs) consumption and odds of asthma (OR: 1.28; 95% CI: 1.15-1.42; Pvalue < 0.001). Three effect sizes showed that total excess free fructose (tEFF) intake increases children's asthma odds by 2.7 times (pooled OR: 2.73; 95% CI: 1.30-5.73; Pvalue =0.008). However, five effect sizes in 100% fruit juice failed to show statically association with asthma prevalence in children (pooled OR: 1.43; 95%CI: 0.91-2.23; Pvalue =0.12). CONCLUSION In summary, SSB and tEFF raised asthma probabilities. No relationship was found between fruit juice and asthma in children and adolescents. We need more cohort studies with correct age selection to identify the precise link.
Collapse
Affiliation(s)
- Fatemeh Keshavarz
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, PO Box 1416643931, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mobina Zeinalabedini
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, PO Box 1416643931, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soraiya Ebrahimpour-Koujan
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, PO Box 1416643931, Tehran, Iran.
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Science, Isfahan, Iran.
| |
Collapse
|
2
|
Javed U, Podury S, Kwon S, Liu M, Kim DH, Fallahzadeh A, Li Y, Khan AR, Francois F, Schwartz T, Zeig-Owens R, Grunig G, Veerappan A, Zhou J, Crowley G, Prezant DJ, Nolan A. Biomarkers of Airway Disease, Barrett's and Underdiagnosed Reflux Noninvasively (BAD-BURN) in World Trade Center exposed firefighters: a case-control observational study protocol. BMC Gastroenterol 2024; 24:255. [PMID: 39123126 PMCID: PMC11312152 DOI: 10.1186/s12876-024-03294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/12/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Particulate matter exposure (PM) is a cause of aerodigestive disease globally. The destruction of the World Trade Center (WTC) exposed first responders and inhabitants of New York City to WTC-PM and caused obstructive airways disease (OAD), gastroesophageal reflux disease (GERD) and Barrett's Esophagus (BE). GERD not only diminishes health-related quality of life but also gives rise to complications that extend beyond the scope of BE. GERD can incite or exacerbate allergies, sinusitis, bronchitis, and asthma. Disease features of the aerodigestive axis can overlap, often necessitating more invasive diagnostic testing and treatment modalities. This presents a need to develop novel non-invasive biomarkers of GERD, BE, airway hyperreactivity (AHR), treatment efficacy, and severity of symptoms. METHODS Our observational case-cohort study will leverage the longitudinally phenotyped Fire Department of New York (FDNY)-WTC exposed cohort to identify Biomarkers of Airway Disease, Barrett's and Underdiagnosed Reflux Noninvasively (BAD-BURN). Our study population consists of n = 4,192 individuals from which we have randomly selected a sub-cohort control group (n = 837). We will then recruit subgroups of i. AHR only ii. GERD only iii. BE iv. GERD/BE and AHR overlap or v. No GERD or AHR, from the sub-cohort control group. We will then phenotype and examine non-invasive biomarkers of these subgroups to identify under-diagnosis and/or treatment efficacy. The findings may further contribute to the development of future biologically plausible therapies, ultimately enhance patient care and quality of life. DISCUSSION Although many studies have suggested interdependence between airway and digestive diseases, the causative factors and specific mechanisms remain unclear. The detection of the disease is further complicated by the invasiveness of conventional GERD diagnosis procedures and the limited availability of disease-specific biomarkers. The management of reflux is important, as it directly increases risk of cancer and negatively impacts quality of life. Therefore, it is vital to develop novel noninvasive disease markers that can effectively phenotype, facilitate early diagnosis of premalignant disease and identify potential therapeutic targets to improve patient care. TRIAL REGISTRATION Name of Primary Registry: "Biomarkers of Airway Disease, Barrett's and Underdiagnosed Reflux Noninvasively (BADBURN)". Trial Identifying Number: NCT05216133 . Date of Registration: January 31, 2022.
Collapse
Affiliation(s)
- Urooj Javed
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - Sanjiti Podury
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - Sophia Kwon
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - Mengling Liu
- Department of Population Health, Division of Biostatistics, NYUGSoM, New York, NY, USA
| | - Daniel H Kim
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - Aida Fallahzadeh
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - Yiwei Li
- Department of Population Health, Division of Biostatistics, NYUGSoM, New York, NY, USA
| | - Abraham R Khan
- Center for Esophageal Health, NYUGSoM, New York, NY, 10016, USA
- Department of Medicine, Division of Gastroenterology, NYUGSoM, New York, NY, 10016, USA
| | - Fritz Francois
- Department of Medicine, Division of Gastroenterology, NYUGSoM, New York, NY, 10016, USA
| | - Theresa Schwartz
- Fire Department of New York, Bureau of Health Services, Brooklyn, NY, 1120, USA
| | - Rachel Zeig-Owens
- Fire Department of New York, Bureau of Health Services, Brooklyn, NY, 1120, USA
| | - Gabriele Grunig
- Department of Medicine, Division of Environmental Medicine, NYUGSoM, New York, NY, 10010, USA
| | - Arul Veerappan
- Department of Medicine, Division of Environmental Medicine, NYUGSoM, New York, NY, 10010, USA
| | - Joanna Zhou
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - George Crowley
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - David J Prezant
- Fire Department of New York, Bureau of Health Services, Brooklyn, NY, 1120, USA
| | - Anna Nolan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA.
- Fire Department of New York, Bureau of Health Services, Brooklyn, NY, 1120, USA.
- Department of Medicine, Division of Environmental Medicine, NYUGSoM, New York, NY, 10010, USA.
| |
Collapse
|
3
|
Kim DH, Podury S, Zadeh AF, Kwon S, Grunig G, Liu M, Nolan A. Gastroesophageal Disease and Environmental Exposure: A Systematic Review. RESEARCH SQUARE 2024:rs.3.rs-4650430. [PMID: 39149446 PMCID: PMC11326364 DOI: 10.21203/rs.3.rs-4650430/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Environmental exposure-associated disease is an active area of study, especially in the context of increasing global air pollution and use of inhalants. Our group is dedicated to the study of exposure-related inflammation and downstream health effects. While many studies have focused on the impact of inhalants on respiratory sequelae, there is growing evidence of the involvement of other systems including autoimmune, endocrine, and gastrointestinal. This systematic review aims to provide a recent update that will underscore the associations between inhalation exposures and upper gastrointestinal disease in the contexts of our evolving environmental exposures. Keywords focused on inhalational exposures and gastrointestinal disease. Primary search identified n = 764 studies, of which n = 64 met eligibility criteria. In particular, there was support for existing evidence that PM increases the risk of upper gastrointestinal diseases. Smoking was also confirmed to be major risk factor. Interestingly, studies in this review have also identified waterpipe use as a significant risk factor for gastroesophageal reflux and gastric cancer. Our systematic review identified inhalational exposures as risk factors for aerodigestive disease, further supporting the association between environmental exposure and digestive disease. However, due to limitations on our review's scope, further studies must be done to better understand this interaction.
Collapse
Affiliation(s)
- Daniel Hyun Kim
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine
| | - Sanjiti Podury
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine
| | - Aida Fallah Zadeh
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine
| | - Sophia Kwon
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine
| | - Gabriele Grunig
- Department of Medicine, Division of Environmental Science, New York University Grossman School of Medicine
| | - Mengling Liu
- Department of Population Health, Division of Biostatistics, New York University Grossman School of Medicine
| | - Anna Nolan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine
| |
Collapse
|
4
|
Javed U, Podury S, Kwon S, Liu M, Kim D, Fallah Zadeh A, Li Y, Khan A, Francois F, Schwartz T, Zeig-Owens R, Grunig G, Veerappan A, Zhou J, Crowley G, Prezant D, Nolan A. Biomarkers of Airway Disease, Barrett's and Underdiagnosed Reflux Noninvasively (BAD-BURN): a Case-Control Observational Study Protocol. RESEARCH SQUARE 2024:rs.3.rs-4355584. [PMID: 38798396 PMCID: PMC11118699 DOI: 10.21203/rs.3.rs-4355584/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
BACKGROUND Particulate matter exposure (PM) is a cause of aerodigestive disease globally. The destruction of the World Trade Center (WTC) exposed fifirst responders and inhabitants of New York City to WTC-PM and caused obstructive airways disease (OAD), gastroesophageal Refux disease (GERD) and Barrett's Esophagus (BE). GERD not only diminishes health-related quality of life but also gives rise to complications that extend beyond the scope of BE. GERD can incite or exacerbate allergies, sinusitis, bronchitis, and asthma. Disease features of the aerodigestive axis can overlap, often necessitating more invasive diagnostic testing and treatment modalities. This presents a need to develop novel non-invasive biomarkers of GERD, BE, airway hyperreactivity (AHR), treatment efficacy, and severity of symptoms. METHODS Our observational case-cohort study will leverage the longitudinally phenotyped Fire Department of New York (FDNY)-WTC exposed cohort to identify Biomarkers of Airway Disease, Barrett's and Underdiagnosed Refux Noninvasively (BAD-BURN). Our study population consists of n = 4,192 individuals from which we have randomly selected a sub-cohort control group (n = 837). We will then recruit subgroups of i. AHR only ii. GERD only iii. BE iv. GERD/BE and AHR overlap or v. No GERD or AHR, from the sub-cohort control group. We will then phenotype and examine non-invasive biomarkers of these subgroups to identify under-diagnosis and/or treatment efficacy. The findings may further contribute to the development of future biologically plausible therapies, ultimately enhance patient care and quality of life. DISCUSSION Although many studies have suggested interdependence between airway and digestive diseases, the causative factors and specific mechanisms remain unclear. The detection of the disease is further complicated by the invasiveness of conventional GERD diagnosis procedures and the limited availability of disease-specific biomarkers. The management of Refux is important, as it directly increases risk of cancer and negatively impacts quality of life. Therefore, it is vital to develop novel noninvasive disease markers that can effectively phenotype, facilitate early diagnosis of premalignant disease and identify potential therapeutic targets to improve patient care. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05216133; January 18, 2022.
Collapse
Affiliation(s)
- Urooj Javed
- New York University Grossman School of Medicine (NYUGSoM)
| | - Sanjiti Podury
- New York University Grossman School of Medicine (NYUGSoM)
| | - Sophia Kwon
- New York University Grossman School of Medicine (NYUGSoM)
| | - Mengling Liu
- New York University Grossman School of Medicine (NYUGSoM)
| | - Daniel Kim
- New York University Grossman School of Medicine (NYUGSoM)
| | | | - Yiwei Li
- New York University Grossman School of Medicine (NYUGSoM)
| | - Abraham Khan
- New York University Grossman School of Medicine (NYUGSoM)
| | - Fritz Francois
- New York University Grossman School of Medicine (NYUGSoM)
| | | | | | | | - Arul Veerappan
- New York University Grossman School of Medicine (NYUGSoM)
| | - Joanna Zhou
- New York University Grossman School of Medicine (NYUGSoM)
| | - George Crowley
- New York University Grossman School of Medicine (NYUGSoM)
| | - David Prezant
- New York University Grossman School of Medicine (NYUGSoM)
| | - Anna Nolan
- New York University Grossman School of Medicine (NYUGSoM)
| |
Collapse
|
5
|
Wang Q, Liu S. The Effects and Pathogenesis of PM2.5 and Its Components on Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:493-506. [PMID: 37056681 PMCID: PMC10086390 DOI: 10.2147/copd.s402122] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a heterogeneous disease, is the leading cause of death worldwide. In recent years, air pollution, especially particulate matter (PM), has been widely studied as a contributing factor to COPD. As an essential component of PM, PM2.5 is associated with COPD prevalence, morbidity, and acute exacerbations. However, the specific pathogenic mechanisms were still unclear and deserve further research. The diversity and complexity of PM2.5 components make it challenging to get its accurate effects and mechanisms for COPD. It has been determined that the most toxic PM2.5 components are metals, polycyclic aromatic hydrocarbons (PAHs), carbonaceous particles (CPs), and other organic compounds. PM2.5-induced cytokine release and oxidative stress are the main mechanisms reported leading to COPD. Nonnegligibly, the microorganism in PM 2.5 may directly cause mononuclear inflammation or break the microorganism balance contributing to the development and exacerbation of COPD. This review focuses on the pathophysiology and consequences of PM2.5 and its components on COPD.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Sha Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China
- Correspondence: Sha Liu, Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, 35 Jiefang Avenue, Zhengxiang District, Hengyang, Hunan, 421001, People’s Republic of China, Email
| |
Collapse
|
6
|
Grunig G, Durmus N, Zhang Y, Lu Y, Pehlivan S, Wang Y, Doo K, Cotrina-Vidal ML, Goldring R, Berger KI, Liu M, Shao Y, Reibman J. Molecular Clustering Analysis of Blood Biomarkers in World Trade Center Exposed Community Members with Persistent Lower Respiratory Symptoms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8102. [PMID: 35805759 PMCID: PMC9266229 DOI: 10.3390/ijerph19138102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022]
Abstract
The destruction of the World Trade Center (WTC) on September 11, 2001 (9/11) released large amounts of toxic dusts and fumes into the air that exposed many community members who lived and/or worked in the local area. Many community members, defined as WTC survivors by the federal government, developed lower respiratory symptoms (LRS). We previously reported the persistence of these symptoms in patients with normal spirometry despite treatment with inhaled corticosteroids and/or long-acting bronchodilators. This report expands upon our study of this group with the goal to identify molecular markers associated with exposure and heterogeneity in WTC survivors with LRS using a selected plasma biomarker approach. Samples from WTC survivors with LRS (n = 73, WTCS) and samples from healthy control participants of the NYU Bellevue Asthma Registry (NYUBAR, n = 55) were compared. WTCS provided information regarding WTC dust exposure intensity. Hierarchical clustering of the linear biomarker data identified two clusters within WTCS and two clusters within NYUBAR controls. Comparison of the WTCS clusters showed that one cluster had significantly increased levels of circulating matrix metalloproteinases (MMP1, 2, 3, 8, 12, 13), soluble inflammatory receptors (receptor for advanced glycation end-products-RAGE, Interleukin-1 receptor antagonist (IL-1RA), suppression of tumorigenicity (ST)2, triggering receptor expressed on myeloid cells (TREM)1, IL-6Ra, tumor necrosis factor (TNF)RI, TNFRII), and chemokines (IL-8, CC chemokine ligand- CCL17). Furthermore, this WTCS cluster was associated with WTC exposure variables, ash at work, and the participant category workers; but not with the exposure variable WTC dust cloud at 9/11. A comparison of WTC exposure categorial variables identified that chemokines (CCL17, CCL11), circulating receptors (RAGE, TREM1), MMPs (MMP3, MMP12), and vascular markers (Angiogenin, vascular cell adhesion molecule-VCAM1) significantly increased in the more exposed groups. Circulating biomarkers of remodeling and inflammation identified clusters within WTCS and were associated with WTC exposure.
Collapse
Affiliation(s)
- Gabriele Grunig
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
- Division of Pulmonary Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (N.D.); (S.P.); (M.L.C.-V.); (R.G.); (K.I.B.)
| | - Nedim Durmus
- Division of Pulmonary Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (N.D.); (S.P.); (M.L.C.-V.); (R.G.); (K.I.B.)
- World Trade Center Environmental Health Center, NYC Health + Hospitals, New York, NY 10016, USA; (Y.Z.); (Y.L.); (Y.W.); (M.L.)
| | - Yian Zhang
- World Trade Center Environmental Health Center, NYC Health + Hospitals, New York, NY 10016, USA; (Y.Z.); (Y.L.); (Y.W.); (M.L.)
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yuting Lu
- World Trade Center Environmental Health Center, NYC Health + Hospitals, New York, NY 10016, USA; (Y.Z.); (Y.L.); (Y.W.); (M.L.)
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sultan Pehlivan
- Division of Pulmonary Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (N.D.); (S.P.); (M.L.C.-V.); (R.G.); (K.I.B.)
| | - Yuyan Wang
- World Trade Center Environmental Health Center, NYC Health + Hospitals, New York, NY 10016, USA; (Y.Z.); (Y.L.); (Y.W.); (M.L.)
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kathleen Doo
- Pulmonary, Kaiser Permanente East Bay, Oakland, CA 94611, USA;
| | - Maria L. Cotrina-Vidal
- Division of Pulmonary Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (N.D.); (S.P.); (M.L.C.-V.); (R.G.); (K.I.B.)
| | - Roberta Goldring
- Division of Pulmonary Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (N.D.); (S.P.); (M.L.C.-V.); (R.G.); (K.I.B.)
| | - Kenneth I. Berger
- Division of Pulmonary Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (N.D.); (S.P.); (M.L.C.-V.); (R.G.); (K.I.B.)
| | - Mengling Liu
- World Trade Center Environmental Health Center, NYC Health + Hospitals, New York, NY 10016, USA; (Y.Z.); (Y.L.); (Y.W.); (M.L.)
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
- World Trade Center Environmental Health Center, NYC Health + Hospitals, New York, NY 10016, USA; (Y.Z.); (Y.L.); (Y.W.); (M.L.)
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Joan Reibman
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
- Division of Pulmonary Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (N.D.); (S.P.); (M.L.C.-V.); (R.G.); (K.I.B.)
- World Trade Center Environmental Health Center, NYC Health + Hospitals, New York, NY 10016, USA; (Y.Z.); (Y.L.); (Y.W.); (M.L.)
| |
Collapse
|
7
|
Gupta A, Burgess JK, Borghuis T, de Vries MP, Kuipers J, Permentier HP, Bischoff R, Slebos DJ, Pouwels SD. Identification of damage associated molecular patterns and extracellular matrix proteins as major constituents of the surface proteome of lung implantable silicone/nitinol devices. Acta Biomater 2022; 141:209-218. [PMID: 35038586 DOI: 10.1016/j.actbio.2022.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 11/15/2022]
Abstract
Lung implantable devices have been widely adopted as mechanical interventions for a wide variety of pulmonary pathologies. Despite successful initial treatment, long-term efficacy can often be impacted by fibrotic or granulation tissue formation at the implant sites. This study aimed to explore the lung-device interface by identifying the adhered proteome on lung devices explanted from patients with severe emphysema. In this study, scanning electron microscopy is used to visualize the adhesion of cells and proteins to silicone and nitinol surfaces of explanted endobronchial valves. By applying high-resolution mass-spectrometry, the surface proteome of eight explanted valves is characterized, identifying 263 unique protein species to be mutually adsorbed on the valves. This subset is subjected to gene enrichment analysis, matched with known databases and further validated using immunohistochemistry. Enrichment analyses reveal dominant clusters of functionally-related ontology terms associated with coagulation, pattern recognition receptor signaling, immune responses, cytoskeleton organization, cell adhesion and migration. Matching results show that extracellular matrix proteins and damage-associated molecular patterns are cardinal in the formation of the surface proteome. This is the first study investigating the composition of the adhered proteome on explanted lung devices, setting the groundwork for hypothesis generation and further exploration. STATEMENT OF SIGNIFICANCE: This is the first study investigating the composition of the adhered proteome on explanted lung devices. Lung implantable devices have been widely adopted as mechanical interventions for pulmonary pathologies. Despite successful initial treatment, long-term efficacy can often be impacted by fibrotic or granulation tissue formation around the implant sites. We identified the adhered proteome on explanted lung devices using several techniques. We identified 263 unique protein species to be mutually adsorbed on explanted lung devices. Pathway analyses revealed that these proteins are associated with coagulation, pattern recognition receptor signaling, immune responses, cytoskeleton organization, cell adhesion and migration. Furthermore, we identified that especially extracellular matrix proteins and damage-associated molecular patterns were cardinal in the formation of the surface proteome.
Collapse
Affiliation(s)
- Akash Gupta
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Theo Borghuis
- University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, Groningen, the Netherlands
| | - Marcel P de Vries
- Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Jeroen Kuipers
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hjalmar P Permentier
- Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Dirk-Jan Slebos
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Simon D Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands.
| |
Collapse
|
8
|
Pouwels SD, Hesse L, Wu X, Allam VSRR, van Oldeniel D, Bhiekharie LJ, Phipps S, Oliver BG, Gosens R, Sukkar MB, Heijink IH. LL-37 and HMGB1 induce alveolar damage and reduce lung tissue regeneration via RAGE. Am J Physiol Lung Cell Mol Physiol 2021; 321:L641-L652. [PMID: 34405719 DOI: 10.1152/ajplung.00138.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The receptor for advanced glycation end-products (RAGE) has been implicated in the pathophysiology of chronic obstructive pulmonary disease (COPD). However, it is still unknown whether RAGE directly contributes to alveolar epithelial damage and abnormal repair responses. We hypothesize that RAGE activation not only induces lung tissue damage but also hampers alveolar epithelial repair responses. The effects of the RAGE ligands LL-37 and HMGB1 were examined on airway inflammation and alveolar tissue damage in wild-type and RAGE-deficient mice and on lung damage and repair responses using murine precision cut lung slices (PCLS) and organoids. In addition, their effects were studied on the repair response of human alveolar epithelial A549 cells, using siRNA knockdown of RAGE and treatment with the RAGE inhibitor FPS-ZM1. We observed that intranasal installation of LL-37 and HMGB1 induces RAGE-dependent inflammation and severe alveolar tissue damage in mice within 6 h, with stronger effects in a mouse strain susceptible for emphysema compared with a nonsusceptible strain. In PCLS, RAGE inhibition reduced the recovery from elastase-induced alveolar tissue damage. In organoids, RAGE ligands reduced the organoid-forming efficiency and epithelial differentiation into pneumocyte-organoids. Finally, in A549 cells, we confirmed the role of RAGE in impaired repair responses upon exposure to LL-37. Together, our data indicate that activation of RAGE by its ligands LL-37 and HMGB1 induces acute lung tissue damage and that this impedes alveolar epithelial repair, illustrating the therapeutic potential of RAGE inhibitors for lung tissue repair in emphysema.
Collapse
Affiliation(s)
- Simon D Pouwels
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Laura Hesse
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Xinhui Wu
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Venkata Sita Rama Raju Allam
- Graduate School of Health, Faculty of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Daan van Oldeniel
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Linsey J Bhiekharie
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Simon Phipps
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Brian G Oliver
- Graduate School of Health, Faculty of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Reinoud Gosens
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Maria B Sukkar
- Graduate School of Health, Faculty of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Irene H Heijink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Crowley G, Kim J, Kwon S, Lam R, Prezant DJ, Liu M, Nolan A. PEDF, a pleiotropic WTC-LI biomarker: Machine learning biomarker identification and validation. PLoS Comput Biol 2021; 17:e1009144. [PMID: 34288906 PMCID: PMC8328304 DOI: 10.1371/journal.pcbi.1009144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 08/02/2021] [Accepted: 06/03/2021] [Indexed: 12/01/2022] Open
Abstract
Biomarkers predict World Trade Center-Lung Injury (WTC-LI); however, there remains unaddressed multicollinearity in our serum cytokines, chemokines, and high-throughput platform datasets used to phenotype WTC-disease. To address this concern, we used automated, machine-learning, high-dimensional data pruning, and validated identified biomarkers. The parent cohort consisted of male, never-smoking firefighters with WTC-LI (FEV1, %Pred< lower limit of normal (LLN); n = 100) and controls (n = 127) and had their biomarkers assessed. Cases and controls (n = 15/group) underwent untargeted metabolomics, then feature selection performed on metabolites, cytokines, chemokines, and clinical data. Cytokines, chemokines, and clinical biomarkers were validated in the non-overlapping parent-cohort via binary logistic regression with 5-fold cross validation. Random forests of metabolites (n = 580), clinical biomarkers (n = 5), and previously assayed cytokines, chemokines (n = 106) identified that the top 5% of biomarkers important to class separation included pigment epithelium-derived factor (PEDF), macrophage derived chemokine (MDC), systolic blood pressure, macrophage inflammatory protein-4 (MIP-4), growth-regulated oncogene protein (GRO), monocyte chemoattractant protein-1 (MCP-1), apolipoprotein-AII (Apo-AII), cell membrane metabolites (sphingolipids, phospholipids), and branched-chain amino acids. Validated models via confounder-adjusted (age on 9/11, BMI, exposure, and pre-9/11 FEV1, %Pred) binary logistic regression had AUCROC [0.90(0.84–0.96)]. Decreased PEDF and MIP-4, and increased Apo-AII were associated with increased odds of WTC-LI. Increased GRO, MCP-1, and simultaneously decreased MDC were associated with decreased odds of WTC-LI. In conclusion, automated data pruning identified novel WTC-LI biomarkers; performance was validated in an independent cohort. One biomarker—PEDF, an antiangiogenic agent—is a novel, predictive biomarker of particulate-matter-related lung disease. Other biomarkers—GRO, MCP-1, MDC, MIP-4—reveal immune cell involvement in WTC-LI pathogenesis. Findings of our automated biomarker identification warrant further investigation into these potential pharmacotherapy targets. Disease related to air pollution causes millions of deaths annually. Large swathes of the general population, as well as certain occupations such as 1st responders and military personnel, are exposed to particulate matter (PM)—a major component of air pollution. Our longitudinal cohort of FDNY firefighters exposed to the World Trade Center dust cloud on 9/11 is a unique research opportunity to characterize the impact of a single, intense PM exposure by looking at pre- and post-exposure phenotype; however, PM-related lung disease and PM’s systemic effects are complex and call for a systems biological approach coupled with novel computational modelling techniques to fully understand pathogenesis. In the present study, we integrate clinical and environmental biomarkers with the serum metabolome, cytokines, and chemokines to develop a model for early disease detection and identification of potential signaling cascades of PM-related chronic lung disease.
Collapse
Affiliation(s)
- George Crowley
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - James Kim
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Sophia Kwon
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Rachel Lam
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - David J. Prezant
- Bureau of Health Services, Fire Department of New York, Brooklyn, New York, United States of America
- Department of Medicine, Pulmonary Medicine Division, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Mengling Liu
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Population Health, Division of Biostatistics, New York University School of Medicine, New York, New York, United States of America
| | - Anna Nolan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
- Bureau of Health Services, Fire Department of New York, Brooklyn, New York, United States of America
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
11
|
Onursal C, Dick E, Angelidis I, Schiller HB, Staab-Weijnitz CA. Collagen Biosynthesis, Processing, and Maturation in Lung Ageing. Front Med (Lausanne) 2021; 8:593874. [PMID: 34095157 PMCID: PMC8172798 DOI: 10.3389/fmed.2021.593874] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
In addition to providing a macromolecular scaffold, the extracellular matrix (ECM) is a critical regulator of cell function by virtue of specific physical, biochemical, and mechanical properties. Collagen is the main ECM component and hence plays an essential role in the pathogenesis and progression of chronic lung disease. It is well-established that many chronic lung diseases, e.g., chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) primarily manifest in the elderly, suggesting increased susceptibility of the aged lung or accumulated alterations in lung structure over time that favour disease. Here, we review the main steps of collagen biosynthesis, processing, and turnover and summarise what is currently known about alterations upon lung ageing, including changes in collagen composition, modification, and crosslinking. Recent proteomic data on mouse lung ageing indicates that, while the ER-resident machinery of collagen biosynthesis, modification and triple helix formation appears largely unchanged, there are specific changes in levels of type IV and type VI as well as the two fibril-associated collagens with interrupted triple helices (FACIT), namely type XIV and type XVI collagens. In addition, levels of the extracellular collagen crosslinking enzyme lysyl oxidase are decreased, indicating less enzymatically mediated collagen crosslinking upon ageing. The latter contrasts with the ageing-associated increase in collagen crosslinking by advanced glycation endproducts (AGEs), a result of spontaneous reactions of protein amino groups with reactive carbonyls, e.g., from monosaccharides or reactive dicarbonyls like methylglyoxal. Given the slow turnover of extracellular collagen such modifications accumulate even more in ageing tissues. In summary, the collective evidence points mainly toward age-induced alterations in collagen composition and drastic changes in the molecular nature of collagen crosslinks. Future work addressing the consequences of these changes may provide important clues for prevention of lung disease and for lung bioengineering and ultimately pave the way to novel targeted approaches in lung regenerative medicine.
Collapse
Affiliation(s)
- Ceylan Onursal
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Elisabeth Dick
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Claudia A Staab-Weijnitz
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
12
|
Perkins TN, Donnell ML, Oury TD. The axis of the receptor for advanced glycation endproducts in asthma and allergic airway disease. Allergy 2021; 76:1350-1366. [PMID: 32976640 DOI: 10.1111/all.14600] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Asthma is a generalized term that describes a scope of distinct pathologic phenotypes of variable severity, which share a common complication of reversible airflow obstruction. Asthma is estimated to affect almost 400 million people worldwide, and nearly ten percent of asthmatics have what is considered "severe" disease. The majority of moderate to severe asthmatics present with a "type 2-high" (T2-hi) phenotypic signature, which pathologically is driven by the type 2 cytokines Interleukin-(IL)-4, IL-5, and IL-13. However, "type 2-low" (T2-lo) phenotypic signatures are often associated with more severe, steroid-refractory neutrophilic asthma. A wide range of clinical and experimental studies have found that the receptor for advanced glycation endproducts (RAGE) plays a significant role in the pathogenesis of asthma and allergic airway disease (AAD). Current experimental data indicates that RAGE is a critical mediator of the type 2 inflammatory reactions which drive the development of T2-hi AAD. However, clinical studies demonstrate that increased RAGE ligands and signaling strongly correlate with asthma severity, especially in severe neutrophilic asthma. This review presents an overview of the current understandings of RAGE in asthma pathogenesis, its role as a biomarker of disease, and future implications for mechanistic studies, and potential therapeutic intervention strategies.
Collapse
Affiliation(s)
- Timothy N Perkins
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mason L Donnell
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Allam VSRR, Faiz A, Lam M, Rathnayake SNH, Ditz B, Pouwels SD, Brandsma C, Timens W, Hiemstra PS, Tew GW, Neighbors M, Grimbaldeston M, van den Berge M, Donnelly S, Phipps S, Bourke JE, Sukkar MB. RAGE and TLR4 differentially regulate airway hyperresponsiveness: Implications for COPD. Allergy 2021; 76:1123-1135. [PMID: 32799375 DOI: 10.1111/all.14563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The receptor for advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4) is implicated in COPD. Although these receptors share common ligands and signalling pathways, it is not known whether they act in concert to drive pathological processes in COPD. We examined the impact of RAGE and/or TLR4 gene deficiency in a mouse model of COPD and also determined whether expression of these receptors correlates with airway neutrophilia and airway hyperresponsiveness (AHR) in COPD patients. METHODS We measured airway inflammation and AHR in wild-type, RAGE-/- , TLR4-/- and TLR4-/- RAGE-/- mice following acute exposure to cigarette smoke (CS). We also examined the impact of smoking status on AGER (encodes RAGE) and TLR4 bronchial gene expression in patients with and without COPD. Finally, we determined whether expression of these receptors correlates with airway neutrophilia and AHR in COPD patients. RESULTS RAGE-/- mice were protected against CS-induced neutrophilia and AHR. In contrast, TLR4-/- mice were not protected against CS-induced neutrophilia and had more severe CS-induced AHR. TLR4-/- RAGE-/- mice were not protected against CS-induced neutrophilia but were partially protected against CS-induced mediator release and AHR. Current smoking was associated with significantly lower AGER and TLR4 expression irrespective of COPD status, possibly reflecting negative feedback regulation. However, consistent with preclinical findings, AGER expression correlated with higher sputum neutrophil counts and more severe AHR in COPD patients. TLR4 expression did not correlate with neutrophilic inflammation or AHR. CONCLUSIONS Inhibition of RAGE but not TLR4 signalling may protect against airway neutrophilia and AHR in COPD.
Collapse
Affiliation(s)
| | - Alen Faiz
- School of Life Sciences Faculty of Science The University of Technology Sydney Ultimo NSW Australia
- Department of Pulmonary Diseases University of Groningen University Medical Center Groningen Groningen The Netherlands
- Department of Pathology and Medical Biology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Maggie Lam
- Biomedicine Discovery Institute and Department of Pharmacology School of Biomedical Sciences Monash University Melbourne Vic. Australia
| | - Senani N. H. Rathnayake
- School of Life Sciences Faculty of Science The University of Technology Sydney Ultimo NSW Australia
| | - Benedikt Ditz
- Department of Pulmonary Diseases University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Simon D. Pouwels
- Department of Pulmonary Diseases University of Groningen University Medical Center Groningen Groningen The Netherlands
- Department of Pathology and Medical Biology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Corry‐Anke Brandsma
- Department of Pathology and Medical Biology University of Groningen University Medical Center Groningen Groningen The Netherlands
- Groningen Research Institute for Asthma and COPD University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology University of Groningen University Medical Center Groningen Groningen The Netherlands
- Groningen Research Institute for Asthma and COPD University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Pieter S. Hiemstra
- Department of Pulmonology Leiden University Medical Center Leiden The Netherlands
| | - Gaik W. Tew
- OMNI‐Biomarker Development, Genentech Inc South San Francisco CA USA
| | | | | | - Maarten van den Berge
- Department of Pulmonary Diseases University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Sheila Donnelly
- School of Life Sciences Faculty of Science The University of Technology Sydney Ultimo NSW Australia
| | - Simon Phipps
- QIMR Berghofer Medical Research Institute Herston Qld Australia
| | - Jane E. Bourke
- Biomedicine Discovery Institute and Department of Pharmacology School of Biomedical Sciences Monash University Melbourne Vic. Australia
| | - Maria B. Sukkar
- Graduate School of Health Faculty of Health The University of Technology Sydney Ultimo NSW Australia
| |
Collapse
|
14
|
Chukowry PS, Spittle DA, Turner AM. Small Airways Disease, Biomarkers and COPD: Where are We? Int J Chron Obstruct Pulmon Dis 2021; 16:351-365. [PMID: 33628018 PMCID: PMC7899307 DOI: 10.2147/copd.s280157] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022] Open
Abstract
The response to treatment and progression of Chronic Obstructive Pulmonary Disease (COPD) varies significantly. Small airways disease (SAD) is being increasingly recognized as a key pathological feature of COPD. Studies have brought forward pathological evidence of small airway damage preceding the development of emphysema and the detection of obstruction using traditional spirometry. In recent years, there has been a renewed interest in the early detection of SAD and this has brought along an increased demand for physiological tests able to identify and quantify SAD. Early detection of SAD allows early targeted therapy and this suggests the potential for altering the course of disease. The aim of this article is to review the evidence available on the physiological testing of small airways. The first half will focus on the role of lung function tests such as maximum mid-expiratory flow, impulse oscillometry and lung clearance index in detecting and quantifying SAD. The role of Computed Tomography (CT) as a radiological biomarker will be discussed as well as the potential of recent CT analysis software to differentiate normal aging of the lungs to pathology. The evidence behind SAD biomarkers sourced from blood as well as biomarkers sourced from sputum and broncho-alveolar lavage (BAL) will be reviewed. This paper focuses on CC-16, sRAGE, PAI-1, MMP-9 and MMP-12.
Collapse
Affiliation(s)
- Priyamvada S Chukowry
- Respiratory Research Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Daniella A Spittle
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alice M Turner
- Institute for Applied Health Research, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
15
|
Lam R, Kwon S, Riggs J, Sunseri M, Crowley G, Schwartz T, Zeig-Owens R, Colbeth H, Halpren A, Liu M, Prezant DJ, Nolan A. Dietary phenotype and advanced glycation end-products predict WTC-obstructive airways disease: a longitudinal observational study. Respir Res 2021; 22:19. [PMID: 33461547 PMCID: PMC7812653 DOI: 10.1186/s12931-020-01596-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/03/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Diet is a modifier of metabolic syndrome which in turn is associated with World Trade Center obstructive airways disease (WTC-OAD). We have designed this study to (1) assess the dietary phenotype (food types, physical activity, and dietary habits) of the Fire Department of New York (FDNY) WTC-Health Program (WTC-HP) cohort and (2) quantify the association of dietary quality and its advanced glycation end product (AGE) content with the development of WTC-OAD. METHODS WTC-OAD, defined as developing WTC-Lung Injury (WTC-LI; FEV1 < LLN) and/or airway hyperreactivity (AHR; positive methacholine and/or positive bronchodilator response). Rapid Eating and Activity Assessment for Participants-Short Version (REAP-S) deployed on 3/1/2018 in the WTC-HP annual monitoring assessment. Clinical and REAP-S data of consented subjects was extracted (7/17/2019). Diet quality [low-(15-19), moderate-(20-29), and high-(30-39)] and AGE content per REAP-S questionnaire were assessed for association with WTC-OAD. Regression models adjusted for smoking, hyperglycemia, hypertension, age on 9/11, WTC-exposure, BMI, and job description. RESULTS N = 9508 completed the annual questionnaire, while N = 4015 completed REAP-S and had spirometry. WTC-OAD developed in N = 921, while N = 3094 never developed WTC-OAD. Low- and moderate-dietary quality, eating more (processed meats, fried foods, sugary drinks), fewer (vegetables, whole-grains),and having a diet abundant in AGEs were significantly associated with WTC-OAD. Smoking was not a significant risk factor of WTC-OAD. CONCLUSIONS REAP-S was successfully implemented in the FDNY WTC-HP monitoring questionnaire and produced valuable dietary phenotyping. Our observational study has identified low dietary quality and AGE abundant dietary habits as risk factors for pulmonary disease in the context of WTC-exposure. Dietary phenotyping, not only focuses our metabolomic/biomarker profiling but also further informs future dietary interventions that may positively impact particulate matter associated lung disease.
Collapse
Affiliation(s)
- Rachel Lam
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University, School of Medicine, New York, NY, USA
| | - Sophia Kwon
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University, School of Medicine, New York, NY, USA
| | - Jessica Riggs
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University, School of Medicine, New York, NY, USA
| | - Maria Sunseri
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University, School of Medicine, New York, NY, USA
| | - George Crowley
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University, School of Medicine, New York, NY, USA
| | - Theresa Schwartz
- Fire Department of New York, Bureau of Health Services, Brooklyn, NY, USA
| | - Rachel Zeig-Owens
- Fire Department of New York, Bureau of Health Services, Brooklyn, NY, USA
| | - Hilary Colbeth
- Fire Department of New York, Bureau of Health Services, Brooklyn, NY, USA
| | - Allison Halpren
- Fire Department of New York, Bureau of Health Services, Brooklyn, NY, USA
| | - Mengling Liu
- Division of Biostatistics, Departments of Population Health, New York University School of Medicine, New York, NY, USA
- Department of Environmental Medicine, New York University, School of Medicine, New York, NY, USA
| | - David J Prezant
- Fire Department of New York, Bureau of Health Services, Brooklyn, NY, USA
- Pulmonary Medicine Division, Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna Nolan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University, School of Medicine, New York, NY, USA.
- Fire Department of New York, Bureau of Health Services, Brooklyn, NY, USA.
- Department of Environmental Medicine, New York University, School of Medicine, New York, NY, USA.
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, New York University, School of Medicine, New Bellevue, 16 S Room 16 (Office), 16N Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA.
| |
Collapse
|
16
|
Abstract
Receptor for advanced glycation end products (RAGE) is an immunoglobulin-like receptor present on cell surface. RAGE binds to an array of structurally diverse ligands, acts as a pattern recognition receptor (PRR) and is expressed on cells of different origin performing different functions. RAGE ligation leads to the initiation of a cascade of signaling events and is implicated in diseases, such as inflammation, cancer, diabetes, vascular dysfunctions, retinopathy, and neurodegenerative diseases. Because of the significant involvement of RAGE in the progression of numerous diseases, RAGE signaling has been targeted through use of inhibitors and anti-RAGE antibodies as a treatment strategy and therapy. Here in this review, we have summarized the physical and physiological aspects of RAGE biology in mammalian system and the importance of targeting this molecule in the treatment of various RAGE mediated pathologies. Highlights Receptor for advanced glycation end products (RAGE) is a member of immunoglobulin superfamily of receptors and involved in many pathophysiological conditions. RAGE ligation with its ligands leads to initiation of distinct signaling cascades and activation of numerous transcription factors. Targeting RAGE signaling through inhibitors and anti-RAGE antibodies can be promising treatment strategy.
Collapse
Affiliation(s)
- Nitish Jangde
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rashmi Ray
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India
| | - Vivek Rai
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
17
|
Protein succination as a potential surrogate biomarker of airway obstruction. The ilervas project. Respir Med 2020; 172:106124. [PMID: 32919375 DOI: 10.1016/j.rmed.2020.106124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Airway obstruction (AO) is associated with hypoxemia, systemic inflammation and oxidative stress. These conditions can favor the formation of Advanced Glycation End-products (AGEs) and induce mitochondrial stress. The latter can alter metabolite intermediates in the Krebs cycle leading to the formation of the cysteine-fumarate adduct S-(2-succino) cysteine (2SC) in proteins (protein succination). Protein succination has not been described in airways diseases. RESEARCH QUESTION To assess differences in levels of AGEs and 2SC between patients with AO and normal spirometry. STUDY DESIGN and Methods: In this case-control study, we investigated 35 moderate to severe AO patients and 31 subjects with normal spirometry, matched for age, gender, body mass index (BMI), tobacco history, prediabetes and adherence to Mediterranean diet. Plasma 2SC and AGEs concentrations were measured by GS/MS, and AGEs in skin were determined measuring autofluorescence (SAF). Multivariate logistic regression models explored the association between AGEs in the skin, 2SC and the presence of AO. RESULTS The population was predominantly middle-age (mean of 58.7 years-old), overweight (median of BMI 26.7 kg/m2) and male subjects (69.7%). Patients with AO showed higher values of SAF (p = 0.04) and 2SC (p = 0.047). No differences were observed for plasma AGEs. SAF and 2SC were significantly associated with the presence of AO after adjusting for age, gender, smoking history, BMI and Mediterranean diet score (p = 0.041 and p = 0.038, respectively). INTERPRETATION Skin AGEs and 2SC are increased in patients with moderate to severe AO and independently associated with its presence. Further studies should confirm these findings and explore their potential role as a biomarker for the disease.
Collapse
|