1
|
Zhong YY, Wang H, Wang YY. Effects of Ethnic Medicinal Plant Extracts Versus Nonsteroidal Anti-Inflammatory Drugs on Menstrual Pain in Women With Primary Dysmenorrhea: A Systematic Review and Meta-Analysis Study. Pain Manag Nurs 2025:S1524-9042(25)00019-0. [PMID: 40016049 DOI: 10.1016/j.pmn.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 01/03/2025] [Accepted: 01/18/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND This study aimed to compare the pain reduction effects of ethnic medicinal plant extracts and nonsteroidal anti-inflammatory drugs (NSAIDs) in women with primary dysmenorrhea. METHODS The following databases were searched: CNKI, Wanfang Data Knowledge Service Platform (Wanfang), VIP Chinese Journal Service Platform (VIP), SinoMed, PubMed, and Web of Science. The retrieval period was from the time of database construction to December 2023.Randomized controlled trials (RCTs) that compared the treatment of pain in women with primary dysmenorrhea using NSAIDs in the control group and plant extracts in the intervention group were identified. The literature was independently screened by two researchers, and the quality of the literature were evaluated using Cochrane's RCT Risk Assessment Manual for Bias. The evaluation includes several aspects including random sequence generation, assignment hiding, blind method and result data reporting. Meta-analysis was conducted using RevMan 5.4 software. RESULTS A total of 12 literature were included. Meta-analysis showed that there was no significant difference between ethnic medicinal plant extracts and NSAIDs in reducing the Visual Analog Scale (VAS) pain scores for primary dysmenorrhea (SMD = 0.32, 95% CI (-0.14, 0.78), p = .17). However, ethnic medicinal plant extracts were more effective than NSAIDs in reducing the proportion of people with pain, with a slight difference (OR = 1.75, 95% CI (1.02, 3.02), p < .05). CONCLUSION Ethnic medicinal plant extracts can effectively reduce the VAS pain scores in women with primary dysmenorrhea and the proportion of people with pain. The effect is comparable to or even better than that of NSAIDs, with fewer side effects. Therefore, ethnic medicinal plant extracts can be considered as a clinical option to alleviate menstrual pain.
Collapse
Affiliation(s)
- Ying-Yu Zhong
- School of Public Health, Southern Medical University, Guangzhou, China; Health Department, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - He Wang
- Health Department, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Yue-Yun Wang
- School of Public Health, Southern Medical University, Guangzhou, China; Health Department, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China.
| |
Collapse
|
2
|
Wu Y, Ying J, Zhu X, Xu C, Wu L. Pachymic acid suppresses the inflammatory response of chondrocytes and alleviates the progression of osteoarthritis via regulating the Sirtuin 6/NF-κB signal axis. Int Immunopharmacol 2023; 124:110854. [PMID: 37657246 DOI: 10.1016/j.intimp.2023.110854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
Articular cartilage degeneration is a characteristic pathological change of osteoarthritis (OA). Pachymic acid (PA) is an active ingredient found in Poria cocos. Previous studies have shown that PA has anti-inflammatory effects on a variety of diseases. However, the role of PA in OA and its underlying mechanisms has not been clearly elucidated. In this study, we investigated potential protective effect of PA on OA through cell experiments in vitro and animal experiments in vivo. PA inhibited interleukin-1β-induced inflammatory mediator production in chondrocytes, which includes nitric oxide, inducible nitric oxide synthase, prostaglandin E2, cyclooxygenase-2, tumor necrosis factor alpha and interleukin-6. Meanwhile, PA also reversed the up-regulation of matrix metalloproteinase-3 and thrombospondin motifs 5, and the down-regulation of collagen type II and aggrecan in IL-1β-treated chondrocytes. Mechanistically, our findings revealed that PA-mediated overexpression of SIRT6 inhibited the NF-κB signaling pathway. In vivo, PA contributes to improve cartilage damage in the mouse OA model. In summary, PA inhibited IL-1β-induced inflammation and extracellular matrix degeneration by promoting SIRT6 expression and inhibiting the NF-κB signaling pathway, which indicates that PA is beneficial for the treatment of OA.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang 325000, PR China; The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Jiahao Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang 325000, PR China; The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Xiaoyan Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang 325000, PR China; The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Chenqin Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang 325000, PR China; The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Long Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang 325000, PR China; The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang 325000, PR China.
| |
Collapse
|
3
|
Qiang R, Huang H, Chen J, Shi X, Fan Z, Xu G, Qiu H. Carbon Quantum Dots Derived from Herbal Medicine as Therapeutic Nanoagents for Rheumatoid Arthritis with Ultrahigh Lubrication and Anti-inflammation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38653-38664. [PMID: 37535012 DOI: 10.1021/acsami.3c06188] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
As a typical chronic inflammatory joint disease with swelling and pain syndromes, rheumatoid arthritis (RA) is closely related to articular lubrication deficiency and excessive proinflammatory cytokines in its progression and pathogenesis. Herein, inspired by the dual effects of joint lubrication improvement and anti-inflammation to treat RA, two novel potential therapeutic nanoagents have been developed rationally by employing herbal medicine-derived carbon quantum dots (CQDs), i.e., safflower (Carthamus tinctorius L.) CQDs and Angelica sinensis CQDs, yielding ultrahigh lubrication and anti-inflammation bioefficacy. In vitro experimental results show that the two nanoagents display excellent friction reduction due to their good water solubility and spherical structure. Using RA rat models, it is indicated that the nanoagents significantly relieved swelling symptoms and inhibited the expression of related inflammatory cytokines, including IL-1, IL-6, and TNF-α, indicating their extraordinary anti-inflammation bioefficacy. Thus, combining the lubricating and anti-inflammation bioefficacy of CQDs derived from herbal medicine is an attractive strategy to develop new nanoagents for RA treatment.
Collapse
Affiliation(s)
- Ruibin Qiang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Haofei Huang
- School of the Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zengjie Fan
- School of the Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
4
|
Zhao HY, Han CH, Yang C, Lee YJ, Ha IH, Park KS. Effectiveness of Pharmacopuncture Therapy in Adhesive Capsulitis: a Study Protocol for a Pragmatic Randomized Controlled Trial. J Acupunct Meridian Stud 2023; 16:70-78. [PMID: 37076182 DOI: 10.51507/j.jams.2023.16.2.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 03/25/2023] [Indexed: 04/21/2023] Open
Abstract
Background Adhesive capsulitis is a progressive, idiopathic disorder that significantly impacts individuals̓ daily lives and increases their medical burden. Pharmacopuncture therapy, which combines acupuncture techniques with herbal medicine, involves injecting herbal extracts into specific acupoints. This study aims to determine the effectiveness and safety of pharmacopuncture therapy in comparison to physiotherapy (PT) for treating adhesive capsulitis. Methods This research protocol outlines a two-arm, parallel, multi-center, pragmatic randomized controlled trial. Fifty participants will be randomly allocated to either the pharmacopuncture therapy or PT group, and they will receive 12 sessions of their respective therapies over a 6-week period. The primary outcome measure is the numeric rating scale for shoulder pain. Secondary outcomes include the visual analog scale score for shoulder pain, Shoulder Pain and Disability Index, Patients̓ Global Impression of Change score, Short Form-12 Health Survey Version 2 score, and EuroQol-5 Dimension. Statistical analysis will be conducted based on the intention-to-treat principle. Discussion This trial may offer high-quality and reliable clinical evidence for evaluating the effectiveness and safety of pharmacopuncture therapy compared to PT in the treatment of adhesive capsulitis. Furthermore, this study will serve as a valuable guideline for practitioners when making clinical decisions and managing adhesive capsulitis.
Collapse
Affiliation(s)
- Hui Yan Zhao
- Korean Convergence Medical Science, University of Science & Technology (UST), School of Korea Institute of Oriental Medicine, Daejeon, Korea
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Chang-Hyun Han
- Korean Convergence Medical Science, University of Science & Technology (UST), School of Korea Institute of Oriental Medicine, Daejeon, Korea
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Changsop Yang
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Korea
| | | |
Collapse
|
5
|
Li RL, Duan HX, Liang Q, Huang YL, Wang LY, Zhang Q, Wu CJ, Liu SQ, Peng W. Targeting matrix metalloproteases: A promising strategy for herbal medicines to treat rheumatoid arthritis. Front Immunol 2022; 13:1046810. [PMID: 36439173 PMCID: PMC9682071 DOI: 10.3389/fimmu.2022.1046810] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
As a type of metalloproteinase, matrix metalloproteinases (MMPs) can be divided into collagenase, gelatinase, stromelysins, membrane-type (MT)-MMPs and heterogeneous subgroups according to their structure and function. MMP contents in the human body are strictly regulated, and their synthesis, activation and inhibition processes should be kept in a certain balance; otherwise, this would result in the occurrence of various diseases. Rheumatoid arthritis (RA) is a known immune-mediated systemic inflammatory disease that is affected by a variety of endogenous and exogenous factors. In RA development, MMPs act as important mediators of inflammation and participate in the degradation of extracellular matrix substrates and digestion of fibrillar collagens, leading to the destruction of joint structures. Interestingly, increasing evidence has suggested that herbal medicines have many advantages in RA due to their multitarget properties. In this paper, literature was obtained through electronic databases, including the Web of Science, PubMed, Google Scholar, Springer, and CNKI (Chinese). After classification and analysis, herbal medicines were found to inhibit the inflammatory process of RA by regulating MMPs and protecting joint structures. However, further preclinical and clinical studies are needed to support this view before these herbal medicines can be developed into drugs with actual application to the disease.
Collapse
Affiliation(s)
- Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong-Liang Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chun-Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu-Qin Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Kaneguchi A, Ozawa J. Inflammation and Fibrosis Induced by Joint Remobilization, and Relevance to Progression of Arthrogenic Joint Contracture: A Narrative Review. Physiol Res 2022. [DOI: 10.33549/physiolres.934876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Joint immobilization is frequently administered after fractures and ligament injuries and can cause joint contracture as a side effect. The structures responsible for immobilization-induced joint contracture can be roughly divided into muscular and articular. During remobilization, although myogenic contracture recovers spontaneously, arthrogenic contracture is irreversible or deteriorates further. Immediately after remobilization, an inflammatory response is observed, characterized by joint swelling, deposit formation in the joint space, edema, inflammatory cell infiltration, and the upregulation of genes encoding proinflammatory cytokines in the joint capsule. Subsequently, fibrosis in the joint capsule develops, in parallel with progressing arthrogenic contracture. The triggers of remobilization-induced joint inflammation are not fully understood, but two potential mechanisms are proposed: 1) micro-damage induced by mechanical stress in the joint capsule, and 2) nitric oxide (NO) production via NO synthase 2. Some interventions can modulate remobilization-induced inflammatory and subsequent fibrotic reactions. Anti-inflammatory treatments, such as steroidal anti-inflammatory drugs and low-level laser therapy, can attenuate joint capsule fibrosis and the progression of arthrogenic contracture in remobilized joints. Antiproliferative treatment using the cell-proliferation inhibitor mitomycin C can also attenuate joint capsule fibrosis by inhibiting fibroblast proliferation without suppressing inflammation. Conversely, aggressive exercise during the early remobilization phases is counterproductive, because it facilitates inflammatory and then fibrotic reactions in the joint. However, the adverse effects of aggressive exercise on remobilization-induced inflammation and fibrosis are offset by anti-inflammatory treatment. To prevent the progression of arthrogenic contracture during remobilization, therefore, care should be taken to control inflammatory and fibrotic reactions in the joints.
Collapse
Affiliation(s)
- A Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| | - J Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan.
| |
Collapse
|
7
|
Anti-Inflammatory and Antioxidant Chinese Herbal Medicines: Links between Traditional Characters and the Skin Lipoperoxidation “Western” Model. Antioxidants (Basel) 2022; 11:antiox11040611. [PMID: 35453296 PMCID: PMC9030610 DOI: 10.3390/antiox11040611] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
The relationship between lipid peroxidation and inflammation has been accepted as a paradigm in the field of topical inflammation. The underlying biochemical mechanisms may be summarised as unspecific oxidative damage followed by specific oxidative processes as the physio pathological response in skin tissues. In this experimental review we hypothesise that the characteristics attributed by Traditional Chinese Medicine (TCM) to herbal drugs can be linked to their biomolecular activities within the framework of the above paradigm. To this end, we review and collect experimental data from several TCM herbal drugs to create 2D-3D pharmacological and biochemical spaces that are further reduced to a bidimensional combined space. When multivariate analysis is applied to the latter, it unveils a series of links between TCM herbal characters and the skin lipoperoxidation “Western” model. With the help of these patterns and a focused review on their chemical, pharmacological and antioxidant properties we show that cleansing herbs of bitter and cold nature acting through removal of toxins—including P. amurense, Coptis chinensis, S. baicalensis and F. suspensa—are highly correlated with strong inhibition of both lipid peroxidation and eicosanoids production. Sweet drugs—such as A. membranaceus, A. sinensis and P. cocos—act through a specific inhibition of the eicosanoids production. The therapeutic value of the remaining drugs—with low antioxidant or anti-inflammatory activity—seems to be based on their actions on the Qi with the exception of furanocoumarin containing herbs—A. dahurica and A. pubescens—which “expel wind”. A further observation from our results is that the drugs present in the highly active “Cleansing herbs” cluster are commonly used and may be interchangeable. Our work may pave the way to a translation between two medical systems with radically different philosophies and help the prioritisation of active ingredients with specific biomolecular activities of interest for the treatment of skin conditions.
Collapse
|
8
|
Guo C, He L, Hu N, Zhao X, Gong L, Wang C, Peng C, Li Y. Aconiti Lateralis Radix Praeparata lipid-soluble alkaloids alleviates IL-1β-induced inflammation of human fibroblast-like synoviocytes in rheumatoid arthritis by inhibiting NF-κB and MAPKs signaling pathways and inducing apoptosis. Cytokine 2022; 151:155809. [DOI: 10.1016/j.cyto.2022.155809] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/06/2021] [Accepted: 01/14/2022] [Indexed: 01/03/2023]
|
9
|
Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. Formation process of joint contracture after anterior cruciate ligament reconstruction in rats. J Orthop Res 2021; 39:1082-1092. [PMID: 32667709 DOI: 10.1002/jor.24800] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/04/2020] [Accepted: 06/30/2020] [Indexed: 02/04/2023]
Abstract
Knee joint contracture is often induced by anterior cruciate ligament reconstruction (ACLR). However, the temporal and spatial arthrofibrotic changes following inflammatory events, which occur in parallel with the formation of joint contractures after ACLR, are unknown. This study aimed to reveal: (a) time-dependent changes in myogenic and arthrogenic contractures; and (b) the process of arthrofibrosis development after ACLR. ACLR was performed on knees of rats unilaterally. Passive ranges of motions (ROMs) before and after myotomy, as well as inflammatory and fibrotic reactions, were examined before and after the surgery at various periods up to 56 days. Both ROMs before and after myotomy exhibited their lowest value on day 7 and increased thereafter in a time-dependent manner; nevertheless, significant restrictions remained by day 56. Myotomy partially increased ROMs at all time points, indicating contribution of the myogenic component to ACLR-induced contracture. Inflammatory and fibrotic reactions peaked on day 7. Arthrofibrosis, characterized by the thickening of the joint capsule and the shortening of the synovial length, was established by day 7 and was not completely resolved by day 56. Our results indicate that: (a) both myogenic and arthrogenic contractures generated through ACLR develop maximally by day 7 after surgery and subside thereafter, but persist at least until day 56; and (b) arthrofibrosis is established by day 7 after surgery and is not completely resolved by day 56. These findings suggest that treatment and intervention for preventing joint contracture after ACLR should be performed within the first 7 days after surgery.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kengo Minamimoto
- Major in Medical Engineering and Technology, Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
10
|
Study on the Bioassay of Anti-Inflammatory Effects of Fuke Qianjin Capsule Based on COX-2 Inhibiting Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6620124. [PMID: 33927776 PMCID: PMC8049786 DOI: 10.1155/2021/6620124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/15/2021] [Accepted: 03/27/2021] [Indexed: 12/02/2022]
Abstract
Fuke Qianjin Capsule (FKQJ) is a common TCM compound formula in the treatment of gynecological inflammation-related diseases. This study intends to explore and establish a bioassay method to further improve its quality control. The bioassay method for the determination of anti-inflammatory biopotency was established based on its inhibitory activity on recombinant human cyclooxygenase-2 (COX-2), an active target of FKQJ in the treatment of female pelvic inflammatory disease. We firstly established chemical fingerprint of 20 batches of FKQJ by ultra-high-performance liquid chromatography to identify the components and analyze the chemical similarities. The similarity within different batches of FKQJ was relatively high. The values of similarity of the 19 batches were between 0.973 and 0.995, while one batch's similarity value was 0.813. Celecoxib, a selective inhibitor of COX-2, was chosen as the positive control drug in COX-2 activity assay to establish an anti-inflammatory biopotency detection method based on parallel line test of qualitative response. The methodological investigation showed that the method possessed good repeatability and precision. Secondly, the anti-inflammatory biopotency of 20 batches of FKQJ for inhibiting COX-2 was determined. The results showed that the biopotency of different batches of FKQJ ranged from 676 U/μg to 1310 U/μg, with average value of 918 U/μg and RSD of 16.7%. Based on multiple linear regression analysis, we found that three contents were highly correlated with the anti-inflammatory biopotency, while chlorogenic acid was validated of the strongest anti-inflammatory activity in vitro. Compared with chemical detection, bioassay can better reflect the quality fluctuation of different batches of products and correlate the known pharmacodynamic targets. The supplement of the bioassay method based on chemical evaluation is helpful to improve the quality control ability of Chinese patent medicine and ensure its clinical efficacy is stable and controllable.
Collapse
|
11
|
Sharma D, Chaubey P, Suvarna V. Role of natural products in alleviation of rheumatoid arthritis-A review. J Food Biochem 2021; 45:e13673. [PMID: 33624882 DOI: 10.1111/jfbc.13673] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022]
Abstract
Rheumatoid arthritis (RHA) is one of the most prevalent complex, chronic, inflammatory diseases, manifested by elevated oxidative stress and inflammatory biomarkers. Prolonged administration of NSAIDs, steroids, and DMARDs, used in the treatment of RHA, is associated with deleterious side effects. This necessitates the urge of new and safe approaches for RHA management, based on the complementary and alternative system of medicine. Documented evidences have suggested that supplementation with nutritional, dietary, and herbal components; can play a crucial role as an adjuvant, in the alleviation of the RHA symptoms, through their influence on the pathological inflammatory processes. Dietary phenolic compounds, flavonoids, carotenoids, and alkaloids with their ability to modulate prooxidant and pro-inflammatory pathways, have been effective in delaying the arthritic disease progression. Moreover, in scientific explorations, herbs containing phenolic compounds, alkaloids, carotenoids flavonoids, spices such as ginger, turmeric, Ayurvedic formulations, different diets such as Mediterranean diet, vegan diet, beverages, and oils such as sesame oil, rice bran oil, vitamins, and probiotics are proven to modulate the action of inflammatory molecules, involved in RHA pathology. Subsequently, the purpose of this review article is to summarize various in vitro, in vivo, and clinical studies in RHA, which have documented remarkable insights into the anti-inflammatory, antioxidant, analgesic, and immunomodulatory, bone erosion preventing properties of dietary, nutritional, and herbal components with the focus on their molecular level mechanisms involved in RHA. Even though major findings were derived from in vitro studies, several in vivo and clinical studies have established the use of diet, herbal, and nutritional management in RHA treatment. PRACTICAL APPLICATIONS: Thickening of the synovial membrane, bone erosion, and cartilage destruction is known to trigger rheumatoid arthritis causing inflammation and pain in bone joints. Continuous intake of NSAIDs, steroids, and DMARD therapy are associated with detrimental side effects. These side effects can be overcome by the use of dietary, nutritional, and herbal interventions based on the complementary and alternative therapy. This concept portrays the food components and other natural components having the potential to promote health, improve general well-being, and reduce the risk of RHA.
Collapse
Affiliation(s)
- Dhvani Sharma
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pramila Chaubey
- College of Pharmacy, Shaqra University, Kingdom of Saudi Arabia, Saudi Arabia
| | - Vasanti Suvarna
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
12
|
Alaaeldin E, Abou-Taleb HA, Mohamad SA, Elrehany M, Gaber SS, Mansour HF. Topical Nano-Vesicular Spanlastics of Celecoxib: Enhanced Anti-Inflammatory Effect and Down-Regulation of TNF-α, NF-кB and COX-2 in Complete Freund's Adjuvant-Induced Arthritis Model in Rats. Int J Nanomedicine 2021; 16:133-145. [PMID: 33447032 PMCID: PMC7802787 DOI: 10.2147/ijn.s289828] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease that underlies chronic inflammation of the synovial membrane. Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to treat RA. However, a long list of adverse events associated with long-term treatment regimens with NSAIDs negatively influences patient compliance and therapeutic outcomes. AIM The aim of this work was to achieve site-specific delivery of celecoxib-loaded spanlastic nano-vesicle-based delivery system to the inflamed joints, avoiding systemic administration of large doses. METHODOLOGY To develop spanlastic nanovesicles for transdermal delivery of celecoxib, modified injection method was adopted using Tween 80 or Brij as edge activators. Entrapment efficiency, vesicle size, ex vivo permeation, and morphology of the prepared nano-vesicles were characterized. Carbopol-based gels containing the selected formulations were prepared, and their clarity, pH, rheological performance, and ex vivo permeation were characterized. Celecoxib-loaded niosomes and noisome-containing gels were developed for comparison. The in vivo efficacy of the selected formulations was evaluated in a rat model of Freund's complete adjuvant-induced arthritis. Different inflammatory markers including TNF-α, NF-кB and COX-2 were assessed in paw tissue before and after treatment. RESULTS The size and entrapment efficiency of the selected spanlastic nano-vesicle formulation were 112.5 ± 3.6 nm, and 83.6 ± 2.3%, respectively. This formulation has shown the highest transdermal flux and permeability coefficient compared to the other investigated formulations. The spanlastics-containing gel of celecoxib has shown transdermal flux of 6.9 ± 0.25 µg/cm2/hr while the celecoxib niosomes-containing gel and unprocessed celecoxib-loaded gel have shown 5.2 ± 0.12 µg/cm2/hr and 0.64 ± 0.09 µg/cm2/hr, respectively. In the animal model of RA, the celecoxib-loaded spanlastics-containing gel significantly reduced edema circumference and significantly suppressed TNF-α, NF-кB and COX-2 levels compared to the niosomes-containing gel, the marketed diclofenac sodium gel, and unprocessed celecoxib-loaded gel. CONCLUSION The spanlastic nano-vesicle-containing gel represents a more efficient site-specific treatment for topical treatment of chronic inflammation like RA, compared to commercial and other conventional alternatives.
Collapse
MESH Headings
- Administration, Cutaneous
- Administration, Topical
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Arthritis, Rheumatoid/chemically induced
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/metabolism
- Celecoxib/pharmacology
- Celecoxib/therapeutic use
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Disease Models, Animal
- Down-Regulation/drug effects
- Drug Delivery Systems/methods
- Freund's Adjuvant
- Gene Expression Regulation/drug effects
- Kinetics
- Liposomes
- Male
- Mice
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Nanoparticles/chemistry
- Particle Size
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Wistar
- Rheology
- Skin Absorption/drug effects
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Rats
Collapse
Affiliation(s)
- Eman Alaaeldin
- Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, Minia, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Heba A Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Soad A Mohamad
- Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Mahmoud Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Shereen S Gaber
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Heba F Mansour
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
13
|
Chinese Herbal Medicines for Rheumatoid Arthritis: Text-Mining the Classical Literature for Potentially Effective Natural Products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7531967. [PMID: 32419824 PMCID: PMC7206865 DOI: 10.1155/2020/7531967] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease characterized by multijoint swelling, pain, and destruction of the synovial joints. Treatments are available but new therapies are still required. One source of new therapies is natural products, including herbs used in traditional medicines. In China and neighbouring countries, natural products have been used throughout recorded history and are still in use for RA and its symptoms. This study used text-mining of a database of classical Chinese medical books to identify candidates for future clinical and experimental investigations of therapeutics for RA. Methods The database Encyclopaedia of Traditional Chinese Medicine (Zhong Hua Yi Dian) includes the full texts of over 1,150 classical books. Eight traditional terms were searched. All citations were assessed for relevance to RA. Results and Conclusions. After removal of duplications, 3,174 citations were considered. After applying the exclusion and inclusion criteria, 548 citations of traditional formulas were included. These derived from 138 books written from 206 CE to 1948. These formulas included 5,018 ingredients (mean, 9 ingredients/formula) comprising 243 different natural products. When these text-mining results were compared to the 18 formulas recommended in a modern Chinese Medicine clinical practice guideline, 44% of the herbal formulas were the same. This suggests considerable continuity in the clinical application of these herbs between classical and modern Chinese medicine practice. Of the 15 herbs most frequently used as ingredients of the classical formulas, all have received research attention, and all have been reported to have anti-inflammatory effects. Two of these 15 herbs have already been developed into new anti-RA therapeutics—sinomenine from Sinomenium acutum (Thunb.) Rehd. & Wils and total glucosides of peony from Paeonia lactiflora Pall. Nevertheless, there remains considerable scope for further research. This text-mining approach was effective in identifying multiple natural product candidates for future research.
Collapse
|
14
|
Wang W, Zhou H, Liu L. The role of Chinese herbal medicine in the management of adverse drug reactions of leflunomide in treating rheumatoid arthritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153136. [PMID: 32062477 DOI: 10.1016/j.phymed.2019.153136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/30/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The high discontinuation rate in RA patients who use LEF might be attributed to their intolerance rather than irresponsibility. The concomitant administration of Leflunomide (LEF) with Chinese herbal medicine (CHM) provides a potential solution to preventing the adverse drug reactions (ADRs) induced by LEF during the treatment of rheumatoid arthritis (RA). PURPOSE To investigate whether co-administration of LEF with CHM could bring in both increased therapeutic outcomes and reduced ADRs due to the framework of treatment at the level of entire body. STUDY DESIGN The mechanism of LEF in RA treatment and the ADRs it induced was introduced based on recent papers. Reported clinical examples of CHM concurrent use with LEF was revealed to provide more evidence. The management of the ADRs caused by LEF was suggested by current researches on the concomitant therapy of CHM with LEF. RESULTS The active ingredients, compounds and medicinal herbs all demonstrated properties in relieving toxicities and reducing ADRs when used with LEF and reported in several clinical cases. The wide application of concurrent use of CHM with LEF is however hindered by the complex pathogenesis of RA which requires further scientific grounds for diagnosis and treatment. CONCLUSION This review introduced that the adoption of CHM is emerging as a novel strategy for the management of ADRs caused by LEF.
Collapse
Affiliation(s)
- Wanying Wang
- Faculty of Chinese Medicine/State Key Laboratory of Quality Research in Chinese Medicine/Institute of Rheumatic Diseases, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau, PR China
| | - Hua Zhou
- Faculty of Chinese Medicine/State Key Laboratory of Quality Research in Chinese Medicine/Institute of Rheumatic Diseases, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
| | - Liang Liu
- Faculty of Chinese Medicine/State Key Laboratory of Quality Research in Chinese Medicine/Institute of Rheumatic Diseases, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau, PR China.
| |
Collapse
|
15
|
Wu Y, Lin Z, Yan Z, Wang Z, Fu X, Yu K. Sinomenine contributes to the inhibition of the inflammatory response and the improvement of osteoarthritis in mouse-cartilage cells by acting on the Nrf2/HO-1 and NF-κB signaling pathways. Int Immunopharmacol 2019; 75:105715. [PMID: 31310911 DOI: 10.1016/j.intimp.2019.105715] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022]
Abstract
Pathological changes, such as articular cartilage degeneration, destruction, and hyperosteogeny, are regarded as the main features of osteoarthritis (OA). Sinomenine (SIN) is a monomeric component purified from the plant Sinomenium acutum which has been found to have anti-inflammatory effects, however, the mechanism of action of SIN on OA is not clear. In this study, we evaluated whether SIN could regulate the inflammatory response induced by interleukin (IL)-1β and improve outcomes in the instability model of OA (medial meniscus mice (DMM)) by acting on the Nrf2/HO-1 and NF-κ B signaling pathways in chondrocytes. From our experiments, which include Griess reaction, ELISA, Western blot, and immunofluorescence, we found that SIN not only down-regulated the expression of pro-inflammatory factors induced by IL-1β, including; inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nitricoxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), but also decreased the production of IL-1β-induced cartilage matrix catabolic enzymes including; ADAMTS-5 and MMPs, in mouse chondrocytes. In addition, the degradation of aggrecan and type II collagen protein in the extracellular matrix (ECM) stimulated by IL-1β was reversed. Most importantly, we have revealed for the first time that in OA, SIN inhibited the inflammatory response and ECM degradation by activating the Nrf2/HO-1 signaling pathways and inhibiting NF-κB activity in mouse-cartilage cells. In in vivo experiments, SIN treatment helped to improve the cartilage destruction in OA model mice. In conclusion, this study has demonstrated that SIN inhibits the IL-1β-induced inflammatory response and cartilage destruction by activating the Nrf2/HO-1 signaling pathway and inhibiting the NF-κB signaling pathway in mouse chondrocytes, suggesting a new use for SIN in the treatment of OA.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang 325000, PR China; The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Zeng Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang 325000, PR China; The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Zijian Yan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang 325000, PR China; The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Zhanghong Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Xin Fu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang 325000, PR China; The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Kehe Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China.
| |
Collapse
|
16
|
Low-Level Laser Therapy Prevents Treadmill Exercise-Induced Progression of Arthrogenic Joint Contracture Via Attenuation of Inflammation and Fibrosis in Remobilized Rat Knees. Inflammation 2018; 42:857-873. [DOI: 10.1007/s10753-018-0941-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
A Review of Pharmacopuncture Treatment for Frozen Shoulder: A Literature Review of Clinical Trials. JOURNAL OF ACUPUNCTURE RESEARCH 2018. [DOI: 10.13045/jar.2018.00262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
18
|
Liu Y, Duan C, Chen H, Wang C, Liu X, Qiu M, Tang H, Zhang F, Zhou X, Yang J. Inhibition of COX-2/mPGES-1 and 5-LOX in macrophages by leonurine ameliorates monosodium urate crystal-induced inflammation. Toxicol Appl Pharmacol 2018; 351:1-11. [PMID: 29763636 DOI: 10.1016/j.taap.2018.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
Abstract
Cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX) and microsomal prostaglandin E synthase-1 (mPGES-1)-derived eicosanoids play an essential role in human inflammatory disorders. Here, we investigated whether inhibition of COX-2/mPGES-1 and 5-LOX in macrophages by leonurine ameliorates monosodium urate (MSU) crystal-induced inflammation. Virtual screening assay and in vitro enzyme inhibition assay showed that leonurine was a potential inhibitor of COX-2, mPGES-1 and 5-LOX. Compared with COX-2 inhibitor celecoxib, leonurine (30 mg/kg) significantly decreased ankle perimeter, gait score and neutrophil number in synovial fluid in MSU crystal-treated rats, accompanied with the decreased expression of COX-2, mPGES-1 and 5-LOX and production of prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) in the synovial fluid macrophages. In addition, leonurine decreased representative M1 marker (iNOS and CD86) expression, NLRP3 inflammasome activation and M1 cytokine (TNF-α and IL-1β) production. In the in vitro cultured RAW264.7 and human monocyte-derived macrophages (MDMs), blockade of COX-2/mPGES-1 and 5-LOX by leonurine inhibited macrophage M1 polarization and NLRP3 inflammasome activation in response to MSU crystals, and thus down-regulated IL-1β and TNF-α with STAT1 and NF-κB inactivation. Conversely, these effects were partially abolished by overexpression of COX-2, mPGES-1, 5-LOX or STAT1. Furthermore, leonurine prevented a positive feedback loop between COX-2/mPGES-1/5-LOX and IL-1β/TNF-α in MSU crystal-induced inflammation. Together, simultaneous down-regulation of COX-2/mPGES-1 and 5-LOX by leonurine ameliorates MSU crystal-induced inflammation through decreasing IL-1β and TNF-α production. Our study may provide novel multi-target agents toward the arachidonic acid (AA) network for gouty arthritis therapy.
Collapse
Affiliation(s)
- Yanzhuo Liu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Chenfan Duan
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Honglei Chen
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Chenlong Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoxiao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University For Nationalities, Wuhan 430074, China
| | - Miao Qiu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Honglin Tang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Feng Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoyang Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jing Yang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
19
|
Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. Active exercise on immobilization-induced contractured rat knees develops arthrogenic joint contracture with pathological changes. J Appl Physiol (1985) 2018; 124:291-301. [DOI: 10.1152/japplphysiol.00438.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study investigated the effects of treadmill walking during remobilization on range of motion (ROM) and histopathology in rat knee joints, which were immobilized for 3 wk in a flexed position. After fixator removal, rats were divided into a no-intervention (RM) group and a group forced to walk on a treadmill daily at 12 m/min for 60 min (WALK group). Passive knee extension ROMs were measured before (m-ROM) and after (a-ROM) knee flexor myotomy on the first and last day of a 7-day remobilization period, with m-ROM mainly reflecting myogenic factors and a-ROM reflecting arthrogenic factors. Knee joints were histologically analyzed and gene expression of inflammatory or fibrosis-related mediators in the posterior joint capsule were examined. m-ROM and a-ROM restrictions were established after immobilization. m-ROM significantly increased following the remobilization period both in RM and WALK groups compared with that of immobilized (IM) group. Conversely, a-ROM decreased following the remobilization period in both RM and WALK groups compared with that of IM group. Importantly, a-ROM was smaller in the WALK group than the RM group. Remobilization without intervention induced inflammatory and fibrotic reactions in the posterior joint capsule after 1 and 7 days. Treadmill walking promoted these reactions and also increased the expression of fibrosis-related TGF-β1 and collagen type I and III genes. While free movement after immobilization improved myogenic contracture, arthrogenic contracture worsened. Treadmill walking further aggravated arthrogenic contracture through amplified inflammatory and fibrotic reactions. Thus active exercise immediately after immobilization may not improve immobilization-induced joint contracture. NEW & NOTEWORTHY In clinical practice, it is widely accepted that facilitation of joint movements is effective in improving immobilization-induced joint contracture. However, whether active exercises improve arthrogenic contracture is not known. In this study, we revealed that treadmill walking further promoted remobilization-induced progression of arthrogenic contracture. To our knowledge, this is the first study demonstrating no favorable effect of active exercise on immobilization-induced arthrogenic contracture.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Mori Orthopaedic Clinic, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| | - Kengo Minamimoto
- Major in Medical Engineering and Technology, Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima International University, Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| |
Collapse
|
20
|
Han YK, Kim SY, Ahn JY, Baek JU. An analysis of the combination frequencies of constituent medicinal herbs in prescriptions for the treatment of bone and joint disorder in Korean medicine: determination of a group of candidate prescriptions for universal use. Integr Med Res 2018; 6:344-353. [PMID: 29296561 PMCID: PMC5741390 DOI: 10.1016/j.imr.2017.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/04/2017] [Accepted: 09/06/2017] [Indexed: 11/25/2022] Open
Abstract
Background This study aimed to select prescriptions (mixtures of medicinal herbs) used in the treatment of bone and joint disorders in Korean medicine, and through the analysis of medicinal herb combination frequencies, select a high-frequency medicinal herb combination group for further experimental and clinical research. Methods We systematically searched for terms related to bone and joint disorder in the “Dongeuibogam (Dong yibaojian)”, a seminal Korean medicine book. We reviewed the results of published papers regarding the effects in bone and joint disorders (especially in osteoporosis, osteomalacia, osteopenia, rheumatoid arthritis, and degenerative arthritis). Results In total, 34 candidates of a medicinal herb combination for the treatment of bone and joint disorders(CMHCTBJDs) and nine candidates of a medicinal herb for the treatment of bone and joint disorders(CMHTBJDs) were selected. Conclusion : The candidates of a medicinal herb combination for the treatment of bone and joint disorders (CMHCTBJDs) and candidates of a medicinal herb for the treatment of bone and joint disorders(CMHTBJDs) proposed in this study can be useful material for text mining to develop natural products with the effects in BJDs and also it has the potential to reduce the experimental and developmental time period.
Collapse
Affiliation(s)
- Yoo Kyoung Han
- Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University, Yangsan Korea
| | - Seo Yul Kim
- Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University, Yangsan Korea
| | - Jae Young Ahn
- Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University, Yangsan Korea
| | - Jin Ung Baek
- Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University, Yangsan Korea
| |
Collapse
|
21
|
Borghi SM, Mizokami SS, Pinho-Ribeiro FA, Fattori V, Crespigio J, Clemente-Napimoga JT, Napimoga MH, Pitol DL, Issa JPM, Fukada SY, Casagrande R, Verri WA. The flavonoid quercetin inhibits titanium dioxide (TiO 2)-induced chronic arthritis in mice. J Nutr Biochem 2017; 53:81-95. [PMID: 29197723 DOI: 10.1016/j.jnutbio.2017.10.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 05/31/2017] [Accepted: 10/16/2017] [Indexed: 01/14/2023]
Abstract
Titanium dioxide (TiO2) is a common component of orthopedic prosthesis. However, prosthesis wear releases TiO2, which induces inflammation and osteolysis in peri-prosthetic tissues. Quercetin is a flavonoid widely present in human diet, which presents biological activities such as antinociceptive, anti-inflammatory and antioxidant effects. Therefore, the effect of intraperitoneal treatment with quercetin in TiO2-induced arthritis model was evaluated. In the first set of experiments, mice received injection of TiO2 (0.1-3 mg/knee joint) and articular mechanical hyperalgesia, edema and histopathology analysis were performed in a 30 days protocol. The dose of 3 mg of TiO2 showed the most harmful effect, and was chosen to the following experiments. Subsequently, mice received 3 mg of TiO2 followed by post-treatment with quercetin during 30 days. Quercetin (10-100 mg/kg) inhibited in a dose-dependent manner TiO2-induced knee joint mechanical hyperalgesia, edema and leukocyte recruitment and did not induce damage in major organs such as liver, kidney and stomach. The dose of 30 mg/kg was chosen for the subsequent analysis, and reduced histopathological changes such as leukocyte infiltration, vascular proliferation and synovial hyperplasia (pannus formation) on day 30 after TiO2 challenge. The protective analgesic and anti-inflammatory mechanisms of quercetin included the inhibition of TiO2-induced neutrophil and macrophage recruitment, proteoglycan degradation, oxidative stress, cytokine production (TNF-α, IL-1β, IL-6, and IL-10), COX-2 mRNA expression, and bone resorption as well as activation of Nrf2/HO-1 signaling pathway. These results demonstrate the potential therapeutic applicability of the dietary flavonoid quercetin to reduce pain and inflammatory damages associated with prosthesis wear process-induced arthritis.
Collapse
Affiliation(s)
- Sergio M Borghi
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Sandra S Mizokami
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Felipe A Pinho-Ribeiro
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Victor Fattori
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Jefferson Crespigio
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Juliana T Clemente-Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, 13045-755, Campinas, São Paulo, Brazil
| | - Marcelo H Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, 13045-755, Campinas, São Paulo, Brazil
| | - Dimitrius L Pitol
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry, University of São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - João P M Issa
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry, University of São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Sandra Y Fukada
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, University Hospital (Health Science Centre), Londrina State University, 86038-350, Londrina, Paraná, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
22
|
Kaneguchi A, Ozawa J, Kawamata S, Yamaoka K. Development of arthrogenic joint contracture as a result of pathological changes in remobilized rat knees. J Orthop Res 2017; 35:1414-1423. [PMID: 27601089 DOI: 10.1002/jor.23419] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/31/2016] [Indexed: 02/04/2023]
Abstract
This study aimed to elucidate how rats recover from immobilization-induced knee joint contracture. Rats' right knees were immobilized by an external fixator at a flexion of 140° for 3 weeks. After removal of the fixator, the joints were allowed to move freely (remobilization) for 0, 1, 3, 7, or 14 days (n = 5 each). To distinguish myogenic and arthrogenic contractures, the passive extension range of motion was measured before and after myotomy of the knee flexors. Knee joints were histologically analyzed and the expression of genes encoding inflammatory or fibrosis-related mediators, interleukin-1β (1L-1β), fibrosis-related transforming growth factor-β1 (TGF-β1), and collagen type I (COL1A1) and III (COL3A1), were examined in the knee joint posterior capsules using real-time PCR. Both myogenic and arthrogenic contractures were established within 3 weeks of immobilization. During remobilization, the myogenic contracture decreased over time. In contrast, the arthrogenic contracture developed further during the remobilization period. On day 1 of remobilization, inflammatory changes characterized by edema, inflammatory cell infiltration, and upregulation of IL-1β gene started in the knee joint posterior capsule. In addition, collagen deposition accompanied by fibroblast proliferation, with upregulation of TGF-β1, COL1A1, and COL3A1 genes, appeared in the joint capsule between days 7 and 14. These results suggest the progression of arthrogenic contracture following remobilization, which is characterized by fibrosis development, is possibly triggered by inflammation in the joint capsule. It is therefore necessary to focus on developing new treatment strategies for immobilization-induced joint contracture. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1414-1423, 2017.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Major in Medical Engineering and Technology, Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Junya Ozawa
- Faculty of Rehabilitation, Department of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima 739-2695, Japan
| | - Seiichi Kawamata
- Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, Japan
| | - Kaoru Yamaoka
- Faculty of Rehabilitation, Department of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima 739-2695, Japan
| |
Collapse
|
23
|
Lian YG, Zhao HY, Wang SJ, Xu QL, Xia XJ. NLRP4 is an essential negative regulator of fructose-induced cardiac injury in vitro and in vivo. Biomed Pharmacother 2017; 91:590-601. [PMID: 28486191 DOI: 10.1016/j.biopha.2017.04.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/19/2017] [Accepted: 04/27/2017] [Indexed: 01/22/2023] Open
Abstract
High fructose consumption leads to metabolic syndrome and enhances cardiovascular disease risk. However, our knowledge of the molecular mechanism underlying the cardiac disease caused by fructose feeding is still poor. Nod-like receptors (NLRs) are intracellular sensors, responding to a variety of intracellular danger signals to induce injuries. NLRP4 is a negative regulator of nuclear factor-κB (NF-κB) signaling pathway through interactions with kinase IκB kinase (IKK). Here, we illustrated that NLRP4 attenuates pro-inflammatory cytokines releasing, including Transforming growth factor (TGF-β1), Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-18 (IL-18) and interleukin-6 (IL-6), in fructose-treated cardiac cells by means of RT-qPCR, and western blotting analysis. In addition, NLRP4 could reduce the expression of TANK-binding kinase 1/interferon regulatory factor 3 (TBK1/IRF3), reducing inflammation response and achieving its anti-hypertrophic action. TBK1 plays critical roles in the IRF3 signaling pathway, modulating inflammation response. The inhibition of IKK/NF-κB signaling pathway by NLRP4 is confirmed by NLRP4 over-expression and knockdown. In vivo, high fructose feeding induced cardiac injury, accompanied with reduced expression of NLRP4 in heart tissue samples, indicating the possible role of NLRP4 in ameliorating heart injury. In conclusion, the findings above indicated that NLRP4 is an important mediator of cardiac remodeling in vitro and in vivo through negatively regulating TBK1/IRF3 and IKK/NF-κB signaling pathways, indicating that NLRP4 might be a promising therapeutic target against cardiac inflammation.
Collapse
Affiliation(s)
- Yong-Gang Lian
- Department of Emergency Internal Medicine, Linyi People's Hospital, Jiefang Road 27, Linyi, Shandong Province, 276003, China
| | - Hai-Ying Zhao
- Department of Emergency Internal Medicine, Linyi People's Hospital, Jiefang Road 27, Linyi, Shandong Province, 276003, China
| | - Sheng-Ji Wang
- Department of Emergency Internal Medicine, Linyi People's Hospital, Jiefang Road 27, Linyi, Shandong Province, 276003, China
| | - Qin-Liang Xu
- Department of Emergency Internal Medicine, Linyi People's Hospital, Jiefang Road 27, Linyi, Shandong Province, 276003, China
| | - Xiang-Jun Xia
- Department of Emergency Internal Medicine, Linyi People's Hospital, Jiefang Road 27, Linyi, Shandong Province, 276003, China.
| |
Collapse
|
24
|
Yang Y, Dong Q, Li R. Matrine induces the apoptosis of fibroblast-like synoviocytes derived from rats with collagen-induced arthritis by suppressing the activation of the JAK/STAT signaling pathway. Int J Mol Med 2016; 39:307-316. [PMID: 28035365 PMCID: PMC5358712 DOI: 10.3892/ijmm.2016.2843] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/20/2016] [Indexed: 12/29/2022] Open
Abstract
The induction of apoptosis-resistant rheumatoid synovial tissue cells has been related to constitutively active Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling in rheumatoid arthritis (RA). The excessive proliferation and inherent resistance to apoptosis of fibroblast-like synoviocytes (FLS) is an important mechanism by which RA originates. However, the effects of matrine on FLS in RA is unclear. The present study aimed to investigate the mechanism of action of matrine in a rat model of collagen-induced arthritis (CIA). The CIA model was established using bovine type II collagen. FLS were isolated from control and CIA rats, cultured in vitro, and confirmed to harbor fibroblast-like characteristics. After treatment of FLS with varying concentrations of matrine, the JAK2 inhibitor AG490, or a combination of both drugs, cell proliferation, apoptosis rate, expression of apoptotic markers and the activation of the JAK/STAT pathway were assessed. Additionally, CIA rats were administered either matrine or methotrexate by oral gavage to examine the effects of therapeutic intervention on arthritis pathogenesis. The arthritis index (AI) was measured and ankle joint structure was analyzed histologically to determine the severity of CIA. Furthermore, expression levels of apoptotic markers and members of the JAK/STAT family were also examined in vivo. Compared with the CIA group, matrine reduced AI and improved ankle pathology. Matrine also inhibited FLS proliferation, induced G0/G1 cell cycle arrest, and increased the rate of apoptosis in vitro. The effects of matrine on apoptosis induction were further confirmed by observations that Bcl-2 levels were decreased, whereas Bax and caspase-3 levels were increased in the matrine-treated synovial tissues and FLS. Finally, matrine treatment also diminished the phosphorylation, and hence activation of JAK2, STAT1 and STAT3. Our results suggest that matrine induces the apop-tosis of FLS from rats with CIA by inhibiting activation of the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Yongsheng Yang
- Department of the Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qiumei Dong
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, P.R. China
| | - Rongheng Li
- Department of the Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
25
|
Mateen S, Moin S, Zafar A, Khan AQ. Redox signaling in rheumatoid arthritis and the preventive role of polyphenols. Clin Chim Acta 2016; 463:4-10. [DOI: 10.1016/j.cca.2016.10.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022]
|
26
|
Jiang SH, Ping LF, Sun FY, Wang XL, Sun ZJ. Protective effect of taraxasterol against rheumatoid arthritis by the modulation of inflammatory responses in mice. Exp Ther Med 2016; 12:4035-4040. [PMID: 28101182 DOI: 10.3892/etm.2016.3860] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/16/2016] [Indexed: 12/13/2022] Open
Abstract
Taraxasterol is an effective component of dandelion that has anti-inflammatory effects in vivo and in vitro. The present study was performed to explore whether taraxasterol exhibits a protective effect against rheumatoid arthritis through the modulation of inflammatory responses in mice. Eight-week-old CCR9-deficient mice were injected with a collagen II monoclonal antibody cocktail to create a rheumatoid arthritis model. In the experimental group, arthritic model mice were treated with 10 mg/kg taraxasterol once per day for 5 days. Treatment with taraxasterol significantly increased the pain thresholds and reduced the clinical arthritic scores of the mice in the experimental group compared with those of the model group. Furthermore, treatment with taraxasterol significantly suppressed tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and nuclear factor-κB protein expression levels compared with those in the rheumatoid arthritis model mice. Taraxasterol treatment also significantly reduced nitric oxide, prostaglandin E2 and cyclooxygenase-2 levels compared with those in the rheumatoid arthritis model group. These observations indicate that the protective effect of taraxasterol against rheumatoid arthritis is mediated via the modulation of inflammatory responses in mice.
Collapse
Affiliation(s)
- Shu-Hua Jiang
- Department of Rheumatism, Hebei Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, Hebei 061000, P.R. China
| | - Li-Feng Ping
- Department of Rheumatism, Hebei Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, Hebei 061000, P.R. China
| | - Feng-Yan Sun
- Department of Rheumatism, Hebei Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, Hebei 061000, P.R. China
| | - Xiao-Lei Wang
- Department of Rheumatism, Hebei Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, Hebei 061000, P.R. China
| | - Zhi-Juan Sun
- Department of Rheumatism, Hebei Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
27
|
|
28
|
Chen S, Fang XQ, Zhang JF, Ma Y, Tang XZ, Zhou ZJ, Wang JY, Qin A, Fan SW. Lycorine protects cartilage through suppressing the expression of matrix metalloprotenases in rat chondrocytes and in a mouse osteoarthritis model. Mol Med Rep 2016; 14:3389-96. [PMID: 27509914 DOI: 10.3892/mmr.2016.5594] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 03/21/2016] [Indexed: 11/06/2022] Open
Abstract
Extracellular matrix (ECM) degrading enzymes, including matrix metalloproteinases (MMPs), are critical for cartilage destruction in the progression of osteoarthritis (OA). Thus, identifying novel drugs, which suppress the synthesis of MMPs may facilitate the treatment of OA. The cytotoxicity of lycorine was determined using a CCK8 assay. The effects of lycorine on IL‑1β‑induced upregulation of MMPs and activation of mitogen‑activated protein kinase pathways were detected by western blot analysis and reverse transcription‑quantitative polymerase chain reaction. Hematoxylin and eosin staining and Safranin O staining were used to evaluate the effect of lycorine in a mouse anterior cruciate ligament transection model. In the present study, it was demonstrated for the first time, to the best of our knowledge, that lycorine (LY) suppressed interleukin‑1β (IL‑1β)‑induced synthesis of MMP‑3 and MMP‑13 in vitro. Molecular analysis revealed that LY abrogated the phosphorylation of c‑Jun N‑terminal kinase (JNK) and the activation of the nuclear factor (NF)‑κB signaling pathway caused by IL‑1β stimulation. In addition, in vivo experiments in a mouse anterior cruciate ligament transection model confirmed the protective role of LY on cartilage. Taken together, the data obtained in the present study demonstrated that LY suppressed the IL‑1β‑induced expression of MMP‑3 and MMP‑13 through inhibition of the JNK and NF‑κB pathways, suggesting that LY may be used as a potential drug for the treatment of OA.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiang-Qian Fang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jian-Feng Zhang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yan Ma
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiao-Zhen Tang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Zhi-Jie Zhou
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Ji-Ying Wang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Shun-Wu Fan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
29
|
A New Explanation of Inflammation in Rheumatoid Arthritis Patients With Respect to Claudin-5, Matrix Metalloproteinase-9, and Neuroserpin. Arch Rheumatol 2016; 31:299-305. [PMID: 30375560 DOI: 10.5606/archrheumatol.2016.5974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/03/2016] [Indexed: 11/21/2022] Open
Abstract
Objectives This study aims to investigate the relationship between neuroserpin (NSP) and claudin-5, as well as matrix metalloproteinase-9 (MMP-9), with respect to clinical activity of disease in patients with rheumatoid arthritis. Patients and methods The study included a total of 75 patients (18 males, 57 females; mean age 48.12±11.23 years; range 20 to 60 years) who were admitted to the rheumatology outpatient facility at the Medical Faculty Hospital, Sakarya University, in October 2014. Patients were divided into four groups based on their Disease Activity Score 28 (DAS28) scores as remission group (n=16, DAS28 <2.6), low disease activity group (n=16, DAS28 between 2.6-3.2), moderate disease activity group (n=28, DAS28 between 3.2-5.1), and high disease activity group (n=15, DAS28 >5.1). Ten healthy subjects (HS) served as controls. Results Claudin-5, MMP-9, and NSP levels were significantly different in rheumatoid arthritis patients compared to HS (p=0.035, 0.026, and 0.014, respectively). Additionally, there were no differences between claudin-5 levels and disease activity among all RA groups. However, compared to HS, patient groups showed a significant difference (p=0.035) in terms of claudin-5 levels. Serum levels of MMP-9 were significantly different in moderate disease activity group compared to HS (p=0.013). Levels of NSP were significantly different in moderate disease activity and high disease activity groups compared to HS (p=0.008 and 0.031, respectively). Conclusion Our study demonstrated the differential associations of endothelial function/dysfunction biomarkers and disease activity in rheumatoid arthritis. How and why this impairment occurs is not fully understood and more data regarding NSP, MMP, and claudin expression in plasma are warranted.
Collapse
|
30
|
Xi ZD, Xie CY, Xi YB. Macrophage migration inhibitory factor enhances lipopolysaccharide-induced fibroblast proliferation by inducing toll-like receptor 4. BMC Musculoskelet Disord 2016; 17:43. [PMID: 26813112 PMCID: PMC4728926 DOI: 10.1186/s12891-016-0895-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/19/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Fibroblast proliferation is a common manifestation of chronic inflammatory diseases, including rheumatoid arthritis (RA), Crohn's disease and ulcerative colitis, etc. To alleviate patient suffering, the mechanism underlying fibroblast proliferation should be elucidated. METHODS CCK-8 assay was used to assess the stimulatory effect of LPS and macrophage migration inhibitory factor (MIF) on fibroblast proliferation. Then, TLR4 expression on fibroblast cell membrane was carried out by confocal scanning microscopy. Finally, real-time fluorescent quantitative PCR and flow cytometry were applied to determine the expression of TLR4 after MIF challenge. RESULTS LPS alone directly stimulated the fibroblast proliferation. In addition, MIF showed co-stimulatory effect on LPS-induced fibroblast proliferation. Interestingly, fibroblast overtly expressed TLR4 without stimulation. After MIF stimulation, real-time PCR showed TLR4 mRNA levels were increased by about 33% in the fibroblasts; in agreement, TLR4 expression on the fibroblast membrane was increased by about 20%, as shown by flow cytometry. CONCLUSIONS These findings indicated MIF elevates TLR4 expression in fibroblast, enhancing LPS-induced cell proliferation.
Collapse
Affiliation(s)
- Zheng-de Xi
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Room 905, Building 5, 280 South Shanghai Chongqing Road, Shanghai, 200025, China.
| | - Chang-Yi Xie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Room 905, Building 5, 280 South Shanghai Chongqing Road, Shanghai, 200025, China
| | - Ye-Bin Xi
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Room 905, Building 5, 280 South Shanghai Chongqing Road, Shanghai, 200025, China
| |
Collapse
|
31
|
Lü S, Wang Q, Li G, Sun S, Guo Y, Kuang H. The treatment of rheumatoid arthritis using Chinese medicinal plants: From pharmacology to potential molecular mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:177-206. [PMID: 26471289 DOI: 10.1016/j.jep.2015.10.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a common worldwide public health problem. Traditional Chinese Medicine (TCM) achieved some results to some extent in the treatment of rheumatoid arthritis (RA). Especially in China, TCM formulas are used in the clinic because of their advantages. Some of these TCM formulas have been used for thousands of years in ancient China, they pays much attention to strengthening healthy qi, cleaning heat, and wet, activating blood, etc. So TCM in anti-RA drug is considered as a simple and effective method. In addition, TCM are also traditionally used as extracts and many Chinese herbs which are considered to be effective for RA. With the advancement of technologies and research methods, researchers have devoted themselves to exploring new therapeutic materials from troves of TCM. The components of TCM are identified and purified, which include alkaloids, coumarins, flavonoids, saponins and so on. However, little or no review works are found in the research literature on the anti-RA drugs from TCM. The present review aims to provide systematically reorganized information on the ethnopharmacology, phytochemistry and pharmacology of TCM used traditionally against RA. The information recorded in this review will provide new directions for researchers in the future. MATERIALS AND METHODS Relevant scientific literatures were collected from Chinese traditional books and Chinese Pharmacopoeia. Several important pharmacology data, clinical observations, animal experiments on effects of anti-RA drugs from TCM and their mechanisms were extracted from a library and electric search (Pubmed, PubChem Compound, Science Direct, Spring Link, Elsevier, Web of Science, CNKI, Wan Fang, Bai du, The Plant List, etc.). We collected information published between 2002 and 2015 on Chinese medicine in the treatment of RA. Information was also acquired from local classic herbal literature, conference papers, government reports, and PhD and MSc dissertations. RESULTS This review mainly introduces the current research on anti-RA TCM formulas, extracts and compounds from TCM, pharmacological data and potential mechanisms (inhibit osteoclast proliferation, suppress fibroblast-like synoviocytes (FLSs) growth, decrease the expression of inflammatory cytokines, blocking signal pathways, etc.). CONCLUSIONS TCM, as a multi-component and multi-target approach, which is a perfect match with the holistic concept of systems biology, is applicable in the treatment of RA. The synergistic connections of Chinese herbs and mechanisms of related active compounds on RA increase the trust for TCM. TCM as alternative remedies for RA not only has an important position in the world market, but also has an irreplaceable role in the treatment of RA in future.
Collapse
Affiliation(s)
- Shaowa Lü
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Qiushi Wang
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Guoyu Li
- College of Pharmacy, Harbin Medical University, Harbin 150040, China
| | - Shuang Sun
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yuyan Guo
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Haixue Kuang
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
32
|
Zhang L, Zhang J, Xu C, Zhou X, Wang W, Zheng R, Hu W, Wu P. Lefty-1 alleviates TGF-β1-induced fibroblast-myofibroblast transdifferentiation in NRK-49F cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4669-78. [PMID: 26316705 PMCID: PMC4544629 DOI: 10.2147/dddt.s86770] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fibroblast activation and proliferation are important for fibroblast–myofibroblast transdifferentiation, a crucial process in the pathological changes that define renal interstitial fibrosis. The left–right determination factor (Lefty) is an important cytokine of the transforming growth factor (TGF)-β family, with two variants, Lefty-1 and Lefty-2, in mice. Lefty has diverse functions, such as the regulation of embryonic development, the inhibition of TGF-β1 signaling, and the suppression of tumor activity. However, whether Lefty-1 influences fibroblast activation and proliferation, and consequently prevents fibroblast–myofibroblast transdifferentiation, remains unclear. This study aimed to investigate whether Lefty-1 can attenuate TGF-β1-induced fibroblast–myofibroblast transdifferentiation in normal rat kidney interstitial fibroblast cells (NRK-49F), as well as the mechanisms underlying any effects. Results showed that the typical fibroblast cell morphology of NRK-49F cells was altered after TGF-β1 treatment and that Lefty-1 significantly prevented this change in a dose-dependent manner. Further analyses demonstrated decreased proliferating cell nuclear antigen, cyclin D1, collagen I(A1), alpha-smooth muscle actin, and fibronectin expression. Lefty-1 further induced remarkable reductions in TGF-β1-induced Smad3 and mitogen-activated protein kinase-10/c-Jun N-terminal kinase (JNK-3) signaling, and enhanced expression of the antifibrotic factor bone morphogenetic protein (BMP)-5. However, without TGF-β1, Lefty-1 had no effect on Smad3, JNK-3, and BMP-5 activation and fibroblast–myofibroblast transdifferentiation. Taken together, these findings indicate that Lefty-1 can alleviate TGF-β1-mediated activation and the proliferation of fibroblasts. Furthermore, Lefty-1 may prevent fibroblast–myofibroblast transdifferentiation in part via modulations of Smad3, JNK-3, and BMP-5 activities in the TGF-β/BMP signaling pathway.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jie Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Changgeng Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Wei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Renping Zheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Wei Hu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Pin Wu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|