1
|
Gong M, Myster F, Azouz A, Sanchez Sanchez G, Li S, Charloteaux B, Yang B, Nichols J, Lefevre L, Javaux J, Leemans S, Nivelles O, van Campe W, Roels S, Mostin L, van den Berg T, Davison AJ, Gillet L, Connelley T, Vermijlen D, Goriely S, Vanderplasschen A, Dewals BG. Unraveling clonal CD8 T cell expansion and identification of essential factors in γ-herpesvirus-induced lymphomagenesis. Proc Natl Acad Sci U S A 2024; 121:e2404536121. [PMID: 39088396 PMCID: PMC11317613 DOI: 10.1073/pnas.2404536121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/01/2024] [Indexed: 08/03/2024] Open
Abstract
Alcelaphine gammaherpesvirus 1 (AlHV-1) asymptomatically persists in its natural host, the wildebeest. However, cross-species transmission to cattle results in the induction of an acute and lethal peripheral T cell lymphoma-like disease (PTCL), named malignant catarrhal fever (MCF). Our previous findings demonstrated an essential role for viral genome maintenance in infected CD8+ T lymphocytes but the exact mechanism(s) leading to lymphoproliferation and MCF remained unknown. To decipher how AlHV-1 dysregulates T lymphocytes, we first examined the global phenotypic changes in circulating CD8+ T cells after experimental infection of calves. T cell receptor repertoire together with transcriptomics and epigenomics analyses demonstrated an oligoclonal expansion of infected CD8+ T cells displaying effector and exhaustion gene signatures, including GZMA, GNLY, PD-1, and TOX2 expression. Then, among viral genes expressed in infected CD8+ T cells, we uncovered A10 that encodes a transmembrane signaling protein displaying multiple tyrosine residues, with predicted ITAM and SH3 motifs. Impaired A10 expression did not affect AlHV-1 replication in vitro but rendered AlHV-1 unable to induce MCF. Furthermore, A10 was phosphorylated in T lymphocytes in vitro and affected T cell signaling. Finally, while AlHV-1 mutants expressing mutated forms of A10 devoid of ITAM or SH3 motifs (or both) were able to induce MCF, a recombinant virus expressing a mutated form of A10 unable to phosphorylate its tyrosine residues resulted in the lack of MCF and protected against a wild-type virus challenge. Thus, we could characterize the nature of this γ-herpesvirus-induced PTCL-like disease and identify an essential mechanism explaining its development.
Collapse
Affiliation(s)
- Meijiao Gong
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Françoise Myster
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Abdulkader Azouz
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Center for Research in Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
| | - Guillem Sanchez Sanchez
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Center for Research in Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, Brussels1050, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre1300, Belgium
| | - Shifang Li
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Benoit Charloteaux
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), GIGA-Genomics core facility, University of Liège, Liège4000, Belgium
| | - Bin Yang
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Jenna Nichols
- Medical Research Council (MRC)-University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, MidlothianEH25 9RG, United Kingdom
| | - Justine Javaux
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Sylvain Leemans
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Olivier Nivelles
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Willem van Campe
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Machelen 1830, Belgium
| | - Stefan Roels
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Machelen 1830, Belgium
| | - Laurent Mostin
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Machelen 1830, Belgium
| | - Thierry van den Berg
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Machelen 1830, Belgium
| | - Andrew J. Davison
- Medical Research Council (MRC)-University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
| | - Laurent Gillet
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
| | - Timothy Connelley
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, MidlothianEH25 9RG, United Kingdom
| | - David Vermijlen
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Center for Research in Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, Brussels1050, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre1300, Belgium
| | - Stanislas Goriely
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
- Center for Research in Immunology, Université Libre de Bruxelles, Gosselies6041, Belgium
| | - Alain Vanderplasschen
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre1300, Belgium
| | - Benjamin G. Dewals
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine—Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège4000, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre1300, Belgium
| |
Collapse
|
2
|
Patho B, Grant DM, Percival A, Russell GC. Ivermectin inhibits replication of the malignant catarrhal fever virus alcelaphine herpesvirus 1. Virology 2024; 590:109958. [PMID: 38071929 DOI: 10.1016/j.virol.2023.109958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Malignant catarrhal fever is a lymphoproliferative disease of cattle and other ungulates that is caused by genetically and antigenically related gamma herpesviruses of the genus Macavirus. Infection of the natural host species is efficient and asymptomatic but spread to susceptible hosts is often fatal with clinical signs including fever, depression, nasal and ocular discharge. There is no recognised treatment for MCF but a vaccine for one MCF virus, alcelaphine herpesvirus 1 (AlHV-1), has been described. In this paper we describe the inhibition of AlHV-1 replication and propagation by the anthelminthic drug ivermectin. Concentrations of 10 μM or greater led to significant reductions in both copy number and viable titre of virus tested in culture medium, with little replication detected at over 20 μM ivermectin. In the absence of alternative treatments, further testing of ivermectin as a candidate antiviral treatment for MCF may therefore be justified.
Collapse
Affiliation(s)
- Blanka Patho
- Moredun research Institute, Pentlands Science Park, Midlothian, EH26 0PZ, UK
| | - Dawn M Grant
- Moredun research Institute, Pentlands Science Park, Midlothian, EH26 0PZ, UK
| | - Ann Percival
- Moredun research Institute, Pentlands Science Park, Midlothian, EH26 0PZ, UK
| | - George C Russell
- Moredun research Institute, Pentlands Science Park, Midlothian, EH26 0PZ, UK.
| |
Collapse
|
3
|
Gong M, Myster F, van Campe W, Roels S, Mostin L, van den Berg T, Vanderplasschen A, Dewals BG. Wildebeest-Derived Malignant Catarrhal Fever: A Bovine Peripheral T Cell Lymphoma Caused by Cross-Species Transmission of Alcelaphine Gammaherpesvirus 1. Viruses 2023; 15:v15020526. [PMID: 36851740 PMCID: PMC9968110 DOI: 10.3390/v15020526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Gammaherpesviruses (γHVs) include viruses that can induce lymphoproliferative diseases and tumors. These viruses can persist in the long term in the absence of any pathological manifestation in their natural host. Alcelaphine gammaherpesvirus 1 (AlHV-1) belongs to the genus Macavirus and asymptomatically infects its natural host, the wildebeest (Connochaetes spp.). However, when transmitted to several susceptible species belonging to the order Artiodactyla, AlHV-1 is responsible for the induction of a lethal lymphoproliferative disease, named wildebeest-derived malignant catarrhal fever (WD-MCF). Understanding the pathogenic mechanisms responsible for the induction of WD-MCF is important to better control the risks of transmission and disease development in susceptible species. The aim of this review is to synthesize the current knowledge on WD-MCF with a particular focus on the mechanisms by which AlHV-1 induces the disease. We discuss the potential mechanisms of pathogenesis from viral entry into the host to the maintenance of viral genomes in infected CD8+ T lymphocytes, and we present current hypotheses to explain how AlHV-1 infection induces a peripheral T cell lymphoma-like disease.
Collapse
Affiliation(s)
- Meijiao Gong
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
- Laboratory of Parasitology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
| | - Françoise Myster
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
| | - Willem van Campe
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Stefan Roels
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Laurent Mostin
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Thierry van den Berg
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Alain Vanderplasschen
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
| | - Benjamin G. Dewals
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
- Laboratory of Parasitology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
- Correspondence:
| |
Collapse
|
4
|
Analysis of immune responses to attenuated alcelaphine herpesvirus 1 formulated with and without adjuvant. Vaccine X 2021; 8:100090. [PMID: 33912826 PMCID: PMC8065228 DOI: 10.1016/j.jvacx.2021.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 11/24/2022] Open
Abstract
MCF vaccine was tested with and without adjuvant and containing inactivated virus. Adjuvant was required for optimal virus neutralising antibody responses. Storage of AlHV-1 with Emulsigen adjuvant significantly reduced virus viability. Vaccination with adjuvant-inactivated AlHV-1 did not reduce antibody responses.
The experimental vaccine for bovine malignant catarrhal fever consists of viable attenuated alcelaphine herpesvirus 1 (AlHV-1) derived by extensive culture passage, combined with an oil-in-water adjuvant, delivered intramuscularly. This immunisation strategy was over 80% effective in previous experimental and field trials and protection appeared to be associated with induction of virus-neutralising antibodies. Whether the vaccine virus is required to be viable at the point of immunisation and whether adjuvant is required to induce the appropriate immune responses remains unclear. To address these issues two studies were performed, firstly to analyse immune responses in the presence and absence of adjuvant and secondly, to investigate immune responses to vaccines containing adjuvant plus viable or inactivated AlHV-1. The first study showed that viable attenuated AlHV-1 in the absence of adjuvant induced virus-specific antibodies but the titres of virus-neutralising antibodies were significantly lower than those induced by vaccine containing viable virus and adjuvant, suggesting adjuvant was required for optimal responses. In contrast, the second study found that the vaccine containing inactivated (>99.9%) AlHV-1 induced similar levels of virus-neutralising antibody to the equivalent formulation containing viable AlHV-1. Together these studies suggest that the MCF vaccine acts as an antigen depot for induction of immune responses, requiring adjuvant and a suitable antigen source, which need not be viable virus. These observations may help in directing the development of alternative MCF vaccine formulations for distribution in the absence of an extensive cold chain.
Collapse
|
5
|
Myster F, Gong MJ, Javaux J, Suárez NM, Wilkie GS, Connelley T, Vanderplasschen A, Davison AJ, Dewals BG. Alcelaphine herpesvirus 1 genes A7 and A8 regulate viral spread and are essential for malignant catarrhal fever. PLoS Pathog 2020; 16:e1008405. [PMID: 32176737 PMCID: PMC7098659 DOI: 10.1371/journal.ppat.1008405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/26/2020] [Accepted: 02/17/2020] [Indexed: 11/18/2022] Open
Abstract
Alcelaphine herpesvirus 1 (AlHV-1) is a gammaherpesvirus that is carried asymptomatically by wildebeest. Upon cross-species transmission to other ruminants, including domestic cattle, AlHV-1 induces malignant catarrhal fever (MCF), which is a fatal lymphoproliferative disease resulting from proliferation and uncontrolled activation of latently infected CD8+ T cells. Two laboratory strains of AlHV-1 are used commonly in research: C500, which is pathogenic, and WC11, which has been attenuated by long-term maintenance in cell culture. The published genome sequence of a WC11 seed stock from a German laboratory revealed the deletion of two major regions. The sequence of a WC11 seed stock used in our laboratory also bears these deletions and, in addition, the duplication of an internal sequence in the terminal region. The larger of the two deletions has resulted in the absence of gene A7 and a large portion of gene A8. These genes are positional orthologs of the Epstein-Barr virus genes encoding envelope glycoproteins gp42 and gp350, respectively, which are involved in viral propagation and switching of cell tropism. To investigate the degree to which the absence of A7 and A8 participates in WC11 attenuation, recombinant viruses lacking these individual functions were generated in C500. Using bovine nasal turbinate and embryonic lung cell lines, increased cell-free viral propagation and impaired syncytia formation were observed in the absence of A7, whereas cell-free viral spread was inhibited in the absence of A8. Therefore, A7 appears to be involved in cell-to-cell viral spread, and A8 in viral cell-free propagation. Finally, infection of rabbits with either mutant did not induce the signs of MCF or the expansion of infected CD8+ T cells. These results demonstrate that A7 and A8 are both essential for regulating viral spread and suggest that AlHV-1 requires both genes to efficiently spread in vivo and reach CD8+ T lymphocytes and induce MCF. Gammaherpesvirus entry into immune cells can result in latent infection which is associated with viral persistence and severe lymphoproliferative diseases. Gammaherpesviruses enter target cells during primary infection via a complex machinery of envelope glycoproteins. Alcelaphine herpesvirus 1 (AlHV-1) is a gammaherpesvirus carried by wildebeests without causing any clinical sign but induces malignant catarrhal fever (MCF) upon transmission to several species of ruminants including cattle. MCF is a deadly lymphoproliferative disease developing after a prolonged incubation period. In the present study, we demonstrated that the genes A7 and A8 of AlHV-1 encode envelope glycoproteins that are orthologs of Epstein-Barr virus gp42 and gp350, which regulate cell tropism switch. Impairment of A7 or A8 expression in a pathogenic strain of AlHV-1 strongly altered viral propagation in vitro. We further showed using bovine respiratory cell lines in vitro that AlHV-1 uses A7 to mediate cell-to-cell spread whereas A8 is necessary for cell-free viral propagation. Then, infection of rabbits as an experimental model to induce MCF with recombinant viral strains demonstrated that both A7 and A8 are essential for the induction of MCF. Thus, this study highlights an essential role for gp42 and gp350 orthologs in the pathogenesis of a gammaherpesvirus-induced lymphoproliferative disease.
Collapse
Affiliation(s)
- Françoise Myster
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine–FARAH, University of Liège, Liège, Belgium
| | - Mei-Jiao Gong
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine–FARAH, University of Liège, Liège, Belgium
| | - Justine Javaux
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine–FARAH, University of Liège, Liège, Belgium
| | - Nicolás M. Suárez
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow G61 1QH, United Kingdom
| | - Gavin S. Wilkie
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow G61 1QH, United Kingdom
| | - Tim Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine–FARAH, University of Liège, Liège, Belgium
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow G61 1QH, United Kingdom
| | - Benjamin G. Dewals
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine–FARAH, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
6
|
Cunha CW, O’Toole D, Taus NS, Shringi S, Knowles DP, Li H. A Rabbit Model for Sheep-Associated Malignant Catarrhal Fever Research: from Virus Infection to Pathogenesis Studies and Vaccine Development. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-00126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Sorel O, Dewals BG. The Critical Role of Genome Maintenance Proteins in Immune Evasion During Gammaherpesvirus Latency. Front Microbiol 2019; 9:3315. [PMID: 30687291 PMCID: PMC6333680 DOI: 10.3389/fmicb.2018.03315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/20/2018] [Indexed: 12/25/2022] Open
Abstract
Gammaherpesviruses are important pathogens that establish latent infection in their natural host for lifelong persistence. During latency, the viral genome persists in the nucleus of infected cells as a circular episomal element while the viral gene expression program is restricted to non-coding RNAs and a few latency proteins. Among these, the genome maintenance protein (GMP) is part of the small subset of genes expressed in latently infected cells. Despite sharing little peptidic sequence similarity, gammaherpesvirus GMPs have conserved functions playing essential roles in latent infection. Among these functions, GMPs have acquired an intriguing capacity to evade the cytotoxic T cell response through self-limitation of MHC class I-restricted antigen presentation, further ensuring virus persistence in the infected host. In this review, we provide an updated overview of the main functions of gammaherpesvirus GMPs during latency with an emphasis on their immune evasion properties.
Collapse
Affiliation(s)
- Océane Sorel
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine-FARAH, University of Liège, Liège, Belgium.,Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Benjamin G Dewals
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine-FARAH, University of Liège, Liège, Belgium
| |
Collapse
|
8
|
Pesavento PA, Cunha CW, Li H, Jackson K, O'Toole D. In Situ Hybridization for Localization of Ovine Herpesvirus 2, the Agent of Sheep-Associated Malignant Catarrhal Fever, in Formalin-Fixed Tissues. Vet Pathol 2018; 56:78-86. [PMID: 30222071 DOI: 10.1177/0300985818798085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A constraint on understanding the pathogenesis of malignant catarrhal fever (MCF) is the limited number of tools to localize infected cells. The amount of detectable virus, visualized in the past either by immunohistochemistry or in situ hybridization (ISH), has been modest in fixed or frozen tissues. This complicates our understanding of the widespread lymphoid proliferation, epithelial necrosis/apoptosis, and arteritis-phlebitis that characterize MCF. In this work, we developed a probe-based in situ hybridization assay targeting 2 ovine herpesvirus 2 (OvHV-2) genes, as well as their respective transcripts, in formalin-fixed tissues. Using this approach, OvHV-2 nucleic acids were detected in lymphocytes in MCF-affected animals following both natural infection (American bison and domestic cattle) and experimental infection (American bison, rabbits, and pigs). The probe did not cross-react with 4 closely related gammaherpesviruses that also cause MCF: alcelaphine herpesvirus 1, alcelaphine herpesvirus 2, caprine herpesvirus 2, and ibex-MCF virus (MCFV). No signal was detected in control tissues negative for OvHV-2. ISH will be of value in analyzing the natural progression of OvHV-2 infection in time-course studies following experimental infection and in addressing the pathogenesis of MCF.
Collapse
Affiliation(s)
- Patricia A Pesavento
- 1 Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, UC Davis, Davis, CA, USA
| | - Cristina W Cunha
- 2 Animal Disease Research Unit, USDA-Agricultural Research Service, Washington State University, Pullman, WA, USA
- 3 Paul G. Allen School for Global Animal Health, Allen Center, Washington State University, Pullman, WA, USA
| | - Hong Li
- 2 Animal Disease Research Unit, USDA-Agricultural Research Service, Washington State University, Pullman, WA, USA
- 4 Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Kenneth Jackson
- 1 Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, UC Davis, Davis, CA, USA
| | - Donal O'Toole
- 5 Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
9
|
Ortiz K, Javaux J, Simon M, Petit T, Clavel S, Lamglait B, Blanc B, Brunet A, Myster F, Li H, Dewals BG. Seroprevalence of malignant catarrhal fever virus in captive wildebeest (Connochaetes sp.) in France. Transbound Emerg Dis 2018; 65:1697-1704. [PMID: 29962104 DOI: 10.1111/tbed.12929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 05/26/2018] [Indexed: 11/27/2022]
Abstract
Alcelaphine herpesvirus 1 (AlHV-1) is a gammaherpesvirus carried asymptomatically by wildebeests (Connochaetes sp.) in sub-Saharan Africa. Although asymptomatic in wildebeest, AlHV-1 infection in a number of other ruminant species causes a severe and fatal lymphoproliferative disease named wildebeest-derived malignant catarrhal fever (WD-MCF). Several endangered species of captive ruminants are highly susceptible to developing WD-MCF if infected by AlHV-1, which is a critical concern in zoos, game reserves and wildlife parks where wildebeests are also kept in captivity. Here, we investigated the seroprevalence of AlHV-1 in 52 captive wildebeests randomly sampled from five different zoos in France. We found 46% (24/52) seropositive animals and detected AlHV-1 DNA in one of them, demonstrating that AlHV-1 infection is present in captive wildebeests in France. In an interesting manner, the repartition of seropositive wildebeests was not homogenous between zoos with 100% (20/20) of seronegative animals in three parks. These results further highlight the importance of considering WD-MCF as a threat for clinically susceptible species and encourage for testing AlHV-1 infection in captive wildebeests as a management control strategy.
Collapse
Affiliation(s)
- Katia Ortiz
- Institut de Systématique, Evolution, Biodiversité, ISYEB, Museum National d'Histoire Naturelle UMR 7205, Réserve Zoologique de la Haute-Touche, Obterre, France
| | - Justine Javaux
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | | | | | | | | | - Barbara Blanc
- Institut de Systématique, Evolution, Biodiversité, ISYEB, Museum National d'Histoire Naturelle UMR 7205, Réserve Zoologique de la Haute-Touche, Obterre, France
| | - Alice Brunet
- Institut de Systématique, Evolution, Biodiversité, ISYEB, Museum National d'Histoire Naturelle UMR 7205, Réserve Zoologique de la Haute-Touche, Obterre, France
| | - Françoise Myster
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Hong Li
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA.,Animal Disease Research Unit, USDA-Agricultural Research Service, Washington State University, Pullman, WA
| | - Benjamin G Dewals
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| |
Collapse
|
10
|
Sorel O, Chen T, Myster F, Javaux J, Vanderplasschen A, Dewals BG. Macavirus latency-associated protein evades immune detection through regulation of protein synthesis in cis depending upon its glycin/glutamate-rich domain. PLoS Pathog 2017; 13:e1006691. [PMID: 29059246 PMCID: PMC5695634 DOI: 10.1371/journal.ppat.1006691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 11/02/2017] [Accepted: 10/13/2017] [Indexed: 11/18/2022] Open
Abstract
Alcelaphine herpesvirus 1 (AlHV-1) is a γ-herpesvirus (γ-HV) belonging to the macavirus genus that persistently infects its natural host, the wildebeest, without inducing any clinical sign. However, cross-transmission to other ruminant species causes a deadly lymphoproliferative disease named malignant catarrhal fever (MCF). AlHV-1 ORF73 encodes the latency-associated nuclear antigen (LANA)-homolog protein (aLANA). Recently, aLANA has been shown to be essential for viral persistence in vivo and induction of MCF, suggesting that aLANA shares key properties of other γ-HV genome maintenance proteins. Here we have investigated the evasion of the immune response by aLANA. We found that a glycin/glutamate (GE)-rich repeat domain was sufficient to inhibit in cis the presentation of an epitope linked to aLANA. Although antigen presentation in absence of GE was dependent upon proteasomal degradation of aLANA, a lack of GE did not affect protein turnover. However, protein self-synthesis de novo was downregulated by aLANA GE, a mechanism directly associated with reduced antigen presentation in vitro. Importantly, codon-modification of aLANA GE resulted in increased antigen presentation in vitro and enhanced induction of antigen-specific CD8+ T cell responses in vivo, indicating that mRNA constraints in GE rather than peptidic sequence are responsible for cis-limitation of antigen presentation. Nonetheless, GE-mediated limitation of antigen presentation in cis of aLANA was dispensable during MCF as rabbits developed the disease after virus infection irrespective of the expression of full-length or GE-deficient aLANA. Altogether, we provide evidence that inhibition in cis of protein synthesis through GE is likely involved in long-term immune evasion of AlHV-1 latent persistence in the wildebeest natural host, but dispensable in MCF pathogenesis.
Collapse
Affiliation(s)
- Océane Sorel
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
| | - Ting Chen
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
| | - Françoise Myster
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
| | - Justine Javaux
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
| | - Benjamin G. Dewals
- Immunology-Vaccinology, Department of infectious and parasitic diseases, Faculty of Veterinary medicine–FARAH, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
11
|
Myster F, van Beurden SJ, Sorel O, Suárez NM, Vanderplasschen A, Davison AJ, Dewals BG. Genomic duplication and translocation of reactivation transactivator and bZIP-homolog genes is a conserved event in alcelaphine herpesvirus 1. Sci Rep 2016; 6:38607. [PMID: 27924936 PMCID: PMC5141506 DOI: 10.1038/srep38607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
Alcelaphine herpesvirus 1 (AlHV-1) is a gammaherpesvirus carried asymptomatically by wildebeest. Upon cross-species transmission, AlHV-1 induces malignant catarrhal fever (MCF), a fatal lymphoproliferative disease of ruminants, including cattle. The strain C500 has been cloned as an infectious, pathogenic bacterial artificial chromosome (BAC) that is used to study MCF. Although AlHV-1 infection can be established in cell culture, multiple passages in vitro cause a loss of virulence associated with rearrangements of the viral genome. Here, sequencing of the BAC clone showed that the long unique region (LUR) of the genome is nearly identical to that of the previously sequenced strain from which the BAC was derived, and identified the duplication and translocation of a region from within LUR, containing the entire coding sequences of ORF50-encoding reactivation transactivator Rta and A6-encoding bZIP protein genes. The duplicated region was further located to a position within the terminal repeat (TR) and its deletion resulted in lower ORF50 expression levels and reduced viral fitness. Finally, the presence of a similar but not identical duplication and translocation containing both genes was found in AlHV-1 strain WC11. These results indicate that selection pressure for enhanced viral fitness may drive the duplication of ORF50 and A6 in AlHV-1.
Collapse
Affiliation(s)
- Françoise Myster
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Steven J van Beurden
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Océane Sorel
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Nicolás M Suárez
- MRC - University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow G61 1QH, UK
| | - Alain Vanderplasschen
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Andrew J Davison
- MRC - University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow G61 1QH, UK
| | - Benjamin G Dewals
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| |
Collapse
|
12
|
Sorel O, Tuddenham L, Myster F, Palmeira L, Kerkhofs P, Pfeffer S, Vanderplasschen A, Dewals BG. Small RNA deep sequencing identifies viral microRNAs during malignant catarrhal fever induced by alcelaphine herpesvirus 1. J Gen Virol 2016; 96:3360-3372. [PMID: 26329753 DOI: 10.1099/jgv.0.000272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alcelaphine herpesvirus 1 (AlHV-1) is a c-herpesvirus (c-HV) carried asymptomatically by wildebeest. Upon cross-species transmission, AlHV-1 induces a fatal lymphoproliferative disease named malignant catarrhal fever (MCF) in many ruminants, including cattle, and the rabbit model. Latency has been shown to be essential for MCF induction. However, the mechanisms causing the activation and proliferation of infected CD8+T cells are unknown. Many c-HVs express microRNAs (miRNAs). These small non-coding RNAs can regulate expression of host or viral target genes involved in various pathways and are thought to facilitate viral infection and/or mediate activation and proliferation of infected lymphocytes. The AlHV-1 genome has been predicted to encode a large number of miRNAs. However, their precise contribution in viral infection and pathogenesis in vivo remains unknown. Here, using cloning and sequencing of small RNAs we identified 36 potential miRNAs expressed in a lymphoblastoid cell line propagated from a calf infected with AlHV-1 and developing MCF. Among the sequenced candidate miRNAs, 32 were expressed on the reverse strand of the genome in two main clusters. The expression of these 32 viral miRNAs was further validated using Northern blot and quantitative reverse transcription PCR in lymphoid organs of MCF developing calves or rabbits. To determine the concerted contribution in MCF of 28 viralmiRNAs clustered in the non-protein-coding region of the AlHV-1 genome, a recombinant virus was produced. The absence of these 28 miRNAs did not affect viral growth in vitro or MCF induction in rabbits, indicating that the AlHV-1 miRNAs clustered in this non-protein-coding genomic region are dispensable for MCF induction.
Collapse
Affiliation(s)
- Océane Sorel
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Lee Tuddenham
- Architecture et Réactivité de l'ARN - UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Françoise Myster
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Leonor Palmeira
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Pierre Kerkhofs
- Veterinary and Agrochemical Research Center (CODA-CERVA), Brussels, Belgium
| | - Sébastien Pfeffer
- Architecture et Réactivité de l'ARN - UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Alain Vanderplasschen
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Benjamin G Dewals
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| |
Collapse
|
13
|
Viral semaphorin inhibits dendritic cell phagocytosis and migration but is not essential for gammaherpesvirus-induced lymphoproliferation in malignant catarrhal fever. J Virol 2015; 89:3630-47. [PMID: 25589653 DOI: 10.1128/jvi.03634-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Viral semaphorins are semaphorin 7A (sema7A) mimics found in pox- and herpesviruses. Among herpesviruses, semaphorins are encoded by gammaherpesviruses of the Macavirus genus only. Alcelaphine herpesvirus 1 (AlHV-1) is a macavirus that persistently infects wildebeest asymptomatically but induces malignant catarrhal fever (MCF) when transmitted to several species of susceptible ruminants and the rabbit model. MCF is caused by the activation/proliferation of latently infected T lymphocytes. Viral semaphorins have been suggested to mediate immune evasion mechanisms and/or directly alter host T cell function. We studied AlHV-sema, the viral semaphorin encoded by the A3 gene of AlHV-1. Phylogenetic analyses revealed independent acquisition of pox- and herpesvirus semaphorins, suggesting that these proteins might have distinct functions. AlHV-sema showed a predicted three-dimensional structure very similar to sema7A and conserved key residues in sema7A-plexinC1 interaction. Expression analyses revealed that AlHV-sema is a secreted 93-kDa glycoprotein expressed during the early phase of virus replication. Purified AlHV-sema was able to bind to fibroblasts and dendritic cells and induce F-actin condensation and cell retraction through a plexinC1 and Rho/cofilin-dependent mechanism. Cytoskeleton rearrangement was further associated with inhibition of phagocytosis by dendritic cells and migration to the draining lymph node. Next, we generated recombinant viruses and demonstrated that the lack of A3 did not significantly affect virus growth in vitro and did not impair MCF induction and associated lymphoproliferative lesions. In conclusion, AlHV-sema has immune evasion functions through mechanisms similar to poxvirus semaphorin but is not directly involved in host T cell activation during MCF. IMPORTANCE Whereas most poxviruses encode viral semaphorins, semaphorin-like genes have only been identified in few gammaherpesviruses belonging to the Macavirus genus. Alcelaphine herpesvirus 1 (AlHV-1) is a macavirus carried asymptomatically by wildebeest but induces a latency-associated lymphoproliferative disease of T lymphocytes in various ruminant species, namely, malignant catarrhal fever (MCF). Viral semaphorins have been hypothesized to have immune evasion functions and/or be involved in activating latently infected T cells. We present evidence that the viral semaphorin AlHV-sema inhibits dendritic cell phagocytosis and migration to the draining lymph node, both being indispensable mechanisms for protective antiviral responses. Next, we engineered recombinant viruses unable to express AlHV-sema and demonstrated that this protein is dispensable for the induction of MCF. In conclusion, this study suggests that herpesvirus and poxvirus semaphorins have independently evolved similar functions to thwart the immune system of the host while AlHV-sema is not directly involved in MCF-associated T-cell activation.
Collapse
|
14
|
Guo YE, Riley KJ, Iwasaki A, Steitz JA. Alternative capture of noncoding RNAs or protein-coding genes by herpesviruses to alter host T cell function. Mol Cell 2014; 54:67-79. [PMID: 24725595 DOI: 10.1016/j.molcel.2014.03.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/10/2014] [Accepted: 03/01/2014] [Indexed: 11/25/2022]
Abstract
In marmoset T cells transformed by Herpesvirus saimiri (HVS), a viral U-rich noncoding (nc) RNA, HSUR 1, specifically mediates degradation of host microRNA-27 (miR-27). High-throughput sequencing of RNA after crosslinking immunoprecipitation (HITS-CLIP) identified mRNAs targeted by miR-27 as enriched in the T cell receptor (TCR) signaling pathway, including GRB2. Accordingly, transfection of miR-27 into human T cells attenuates TCR-induced activation of mitogen-activated protein kinases (MAPKs) and induction of CD69. MiR-27 also robustly regulates SEMA7A and IFN-γ, key modulators and effectors of T cell function. Knockdown or ectopic expression of HSUR 1 alters levels of these proteins in virally transformed cells. Two other T-lymphotropic γ-herpesviruses, AlHV-1 and OvHV-2, do not produce a noncoding RNA to downregulate miR-27 but instead encode homologs of miR-27 target genes. Thus, oncogenic γ-herpesviruses have evolved diverse strategies to converge on common targets in host T cells.
Collapse
Affiliation(s)
- Yang Eric Guo
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Kasandra J Riley
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06536, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
15
|
O'Toole D, Li H. The pathology of malignant catarrhal fever, with an emphasis on ovine herpesvirus 2. Vet Pathol 2014; 51:437-52. [PMID: 24503439 DOI: 10.1177/0300985813520435] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The enigmatic pathogenesis of malignant catarrhal fever (MCF) involves dysregulated immune responses in susceptible ruminant species. Economically important outbreaks of MCF are due to 2 of the 10 viruses currently comprising the malignant catarrhal fever virus group: ovine herpesvirus 2 (OvHV-2) and alcelaphine herpesvirus 1 (AlHV-1). Attempts to develop effective vaccines for this group of viruses in the 1970s were sufficiently discouraging that they were temporarily abandoned. This review focuses on recent efforts to understand the pathogenesis of MCF, particularly the sheep-associated form of the disease, with the goal of developing rational control methods, including vaccination. The past 2 decades have seen several advances, including recognition of new members of the MCF virus group, better diagnostic assays, induction of disease by a natural route (aerosol), and clearer understanding of OvHV-2's shedding patterns by domestic sheep. A consistent theme in experimental studies of OvHV-2 in susceptible species is that there are 2 peaks of OvHV-2 gene expression: a preclinical peak involving the respiratory tract and a second in multiple organ systems leading to clinical disease. Latent and lytic gene expression may coexist in tissues during clinical stages in symptomatic animals.
Collapse
Affiliation(s)
- D O'Toole
- Wyoming State Veterinary Laboratory, University of Wyoming, 1174 Snowy Range Rd, Laramie, Wyoming 82070, USA.
| | | |
Collapse
|
16
|
Abstract
Malignant catarrhal fever (MCF) is an often lethal infection of many species in the order Artiodactyla. It is caused by members of the MCF virus group within Gammaherpesvirinae. MCF is a worldwide problem and has a significant economic impact on highly disease-susceptible hosts, such as cattle, bison, and deer. Several epidemiologic forms of MCF, defined by the reservoir ruminant species from which the causative virus arises, are recognized. Wildebeest-associated MCF (WA-MCF) and sheep-associated MCF (SA-MCF) are the most prevalent and well-studied forms of the disease. Historical understanding of MCF is largely based on WA-MCF, in which the causative virus can be propagated in vitro. Characterization of SA-MCF has been constrained because the causative agent has never been successfully propagated in vitro. Development of molecular tools has enabled more definitive studies on SA-MCF. The current understanding of MCF, including its etiological agents, epidemiology, pathogenesis, and prevention, is the subject of the present review.
Collapse
Affiliation(s)
- Hong Li
- Animal Disease Research Unit, USDA-ARS, and
| | | | | | | |
Collapse
|
17
|
An essential role for γ-herpesvirus latency-associated nuclear antigen homolog in an acute lymphoproliferative disease of cattle. Proc Natl Acad Sci U S A 2013; 110:E1933-42. [PMID: 23630278 DOI: 10.1073/pnas.1216531110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wildebeests carry asymptomatically alcelaphine herpesvirus 1 (AlHV-1), a γ-herpesvirus inducing malignant catarrhal fever (MCF) to several ruminant species (including cattle). This acute and lethal lymphoproliferative disease occurs after a prolonged asymptomatic incubation period after transmission. Our recent findings with the rabbit model indicated that AlHV-1 infection is not productive during MCF. Here, we investigated whether latency establishment could explain this apparent absence of productive infection and sought to determine its role in MCF pathogenesis. First, whole-genome cellular and viral gene expression analyses were performed in lymph nodes of MCF-developing calves. Whereas a severe disruption in cellular genes was observed, only 10% of the entire AlHV-1 genome was expressed, contrasting with the 45% observed during productive infection in vitro. In vivo, the expressed viral genes included the latency-associated nuclear antigen homolog ORF73 but none of the regions known to be essential for productive infection. Next, genomic conformation analyses revealed that AlHV-1 was essentially episomal, further suggesting that MCF might be the consequence of a latent infection rather than abortive lytic infection. This hypothesis was further supported by the high frequencies of infected CD8(+) T cells during MCF using immunodetection of ORF73 protein and single-cell RT-PCR approaches. Finally, the role of latency-associated ORF73 was addressed. A lack of ORF73 did not impair initial virus replication in vivo, but it rendered AlHV-1 unable to induce MCF and persist in vivo and conferred protection against a lethal challenge with a WT virus. Together, these findings suggest that a latent infection is essential for MCF induction.
Collapse
|
18
|
Russell GC, Benavides J, Grant DM, Todd H, Thomson J, Puri V, Nath M, Haig DM. Host gene expression changes in cattle infected with Alcelaphine herpesvirus 1. Virus Res 2012; 169:246-54. [PMID: 22925730 PMCID: PMC3657188 DOI: 10.1016/j.virusres.2012.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/10/2012] [Accepted: 08/15/2012] [Indexed: 12/04/2022]
Abstract
Malignant catarrhal fever is a lymphoproliferative disease of cattle and other ungulates caused by infection with gamma-herpesviruses of the genus Macavirus. These viruses do not establish a productive infection but instead replicate in a cell-associated fashion in T lymphocytes, leading to systemic immune dysregulation and a generally fatal outcome. Despite significant progress in understanding the pathology of this disease, its pathogenesis remains unclear. To identify genes and pathways affected in clinical MCF, sixteen bovine GeneCHIP microarrays were used to assay RNA from kidney and lymph node of four MCF-affected and four control Bos taurus steers. This is the first expression study of AlHV-1-MCF in the bovine host. Over 250 genes showed significant changes in gene expression in either lymph node or kidney, while expression of 35 genes was altered in both tissues. Pathway and annotation analysis of the microarray data showed that immune response and inflammatory genes were up-regulated in the kidney while proliferation-associated transcripts were additionally increased in the lymph node. The genes that showed the largest expression rises in both diseased tissues included cytotoxic enzymes and pro-inflammatory chemokines. These data are consistent with disease-induced stimulation of inflammatory responses involving interferon-γ, including cytotoxic T cell recruitment and activation in peripheral tissues containing virus-infected cells. However it remains unclear whether the tissue damage in MCF lesions is due entirely to the activity of infected cells or whether uninfected T cells, recruited and activated at lesion sites through the action of infected cells, contribute to the pathogenesis of MCF.
Collapse
Affiliation(s)
- George C. Russell
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Julio Benavides
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Dawn M. Grant
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Helen Todd
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Jackie Thomson
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Vipul Puri
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Mintu Nath
- Biomathematics and Statistics Scotland, JCMB, The King's Buildings, Edinburgh EH9 3JZ, UK
| | - David M. Haig
- School of Veterinary Medicine and Science, Nottingham University, Sutton Bonington, Leicestershire LE12 5RD, UK
| |
Collapse
|