1
|
Rimayanti R, Khairullah AR, Lestari TD, Moses IB, Utama S, Damayanti R, Mulyati S, Raharjo HM, Kusala MKJ, Raissa R, Wibowo S, Abdila SR, Fauzia KA, Yanestria SM, Fauziah I, Siregar JE. Infectious bovine rhinotracheitis: Unveiling the hidden threat to livestock productivity and global trade. Open Vet J 2024; 14:2525-2538. [PMID: 39545192 PMCID: PMC11560271 DOI: 10.5455/ovj.2024.v14.i10.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/18/2024] [Indexed: 11/17/2024] Open
Abstract
An infectious disease called infectious bovine rhinotracheitis (IBR) can lead to a number of disorders affecting cattle's respiratory system. The disease is caused by bovine alphaherpesvirus type 1 (BoAHV-1). Based on antigenic and genetic characteristics, BoAHV-1 strains are divided into subtypes 1.1, 1.2a, 1.2b, and 1.3. IBR is currently widespread throughout the world, with the exception of a few nations that have achieved eradication. The most significant characteristic of this illness is that, after a clinical or subclinical infection, the virus typically establishes a latent condition that can later be reactivated in the presence of stress, immunosuppressive conditions/substances, or other diseases. Primarily, the virus spreads by direct or indirect contact between animals. It may also be transmitted via the reproductive system, causing infectious balanoposthitis or vulvovaginitis. Most virus subtypes are associated with reproductive failure, such as fetal or embryonic resorption and abortions. The virus may also be transmitted through semen, which could lead to genital transfer. Bovine herpesvirus type 1 (BoHV-1) infection produces a variety of lesions. Lesion in the mucosal surface usually consists of white necrotic material. Regular methods for diagnosing BoHV-1 infections include isolation in cell culture, enzyme linked immunosorbent assay, virus neutralisation test, and methods based on identification of nucleic acids, like PCR. The interplay of several host, pathogen, environmental, and management factors affects the spread of IBR. Through its impacts on health and fitness, IBR can lead to production losses. In order to minimize the severity of clinical signs and stop the infection from spreading, the veterinarian may advise that sick or at-risk animals be placed under immediate isolation and vaccinated (such as intranasal vaccination, including the use of both killed and live attenuated virus vaccines) as soon as an IBR diagnosis is obtained.
Collapse
Affiliation(s)
- Rimayanti Rimayanti
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Tita Damayanti Lestari
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Suzanita Utama
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ratna Damayanti
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Mulyati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Hartanto Mulyo Raharjo
- Division of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Ricadonna Raissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Syafiadi Rizki Abdila
- Research Center for Structural Strength Technology, National Research and Innovation Agency (BRIN), Tangerang, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | | | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| |
Collapse
|
2
|
Wang Y, Shang J, Li Z, Zhang A, Cheng Y. Establishment and application of a rapid diagnostic method for BVDV and IBRV using recombinase polymerase amplification-lateral flow device. Front Vet Sci 2024; 11:1360504. [PMID: 38601910 PMCID: PMC11005059 DOI: 10.3389/fvets.2024.1360504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Bovine Viral Diarrhea Virus (BVDV) and Infectious Bovine Rhinotracheitis Virus (IBRV) are the two most prevalent infectious diseases in cattle. They both can cause persistent infection and immunosuppression, resulting in significant economic losses in the livestock industry. Therefore, rapid detection of early BVDV and IBRV infections is crucial. In this study, a method for the rapid detection of BVDV and IBRV was established by using recombinase polymerase amplification (RPA) combined with lateral flow device (LFD). By optimizing the temperature and time conditions of the RPA reaction, the sensitivity, specificity, and clinical performance were evaluated. The results indicated that the RPA reaction could be completed at 40°C within 25 min. The LOD for BVDV and IBRV by RPA-LFD were 5.1 × 101 copies/μL and 6.65 × 101 copies/μL, respectively, with no cross-reactivity observed with other viruses such as CSFV, BRSV, BPIV3, BRV, and BCoV. Testing of 32 clinical samples showed consistent results between RPA-LFD and qPCR. The RPA-LFD method established in this study can be used for the rapid clinical detection of BVDV and IBRV, which providing a rapid and convenient molecular biology approach for on-site rapid detection and epidemiological investigations. Simultaneously, it offers technical support for the prevention and control of these viruses.
Collapse
Affiliation(s)
| | | | | | | | - Yuening Cheng
- Key Laboratory of Economic Animal Diseases, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
3
|
Burucúa MM, Risalde MA, Cheuquepán FA, Quintana S, Pérez SE, Cantón GJ, Moore DP, Odeón AC, Agulló-Ros I, Scioli MV, Barbeito C, Morrell EL, Marín MS. Transplacental infection by bovine alphaherpesvirus type 1 induces protein expression of COX-2, iNOS and inflammatory cytokines in fetal lungs and placentas. Vet Microbiol 2023; 287:109912. [PMID: 37952263 DOI: 10.1016/j.vetmic.2023.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Bovine alphaherpesvirus type 1 (BoAHV-1) is associated with respiratory and reproductive syndromes. Until present the immunologic mechanisms involved in BoAHV-1 abortion are partially known. We studied key elements of the innate immune response in the placentas and fetal lungs from cattle experimentally-inoculated with BoAHV-1. These tissues were analyzed by histopathology. Furthermore, virus identification was performed by qPCR and the expression of the inflammatory cytokines such as tumor necrosis factor-alpha, interleukin 1-alpha and inflammatory mediators like inducible nitric oxide synthase and cyclooxeganse-2 was evaluated by immunohistochemistry. The viral transplacental infection was confirmed by the detection of BoAHV-1 by qPCR in the placenta and fetal organs, which revealed mild inflammatory lesions. Inducible nitric oxide synthase immunolabelling was high in the lungs of infected fetuses and placentas, as well as for tumor necrosis factor-alpha in the pulmonary parenchyma and cyclooxeganse-2 in fetal annexes. However, the expression of interleukin 1-alpha was weak in these organs. To our knowledge, this is the first study that provides strong evidence of an early immune response to BoAHV-1 infection in the conceptus. Advances in the knowledge of the complex immunological interactions at the feto-maternal unit during BoAHV-1 infection are needed to clarify the pathogenesis of abortion.
Collapse
Affiliation(s)
- Mercedes M Burucúa
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - María A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo de Investigación GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Felipe A Cheuquepán
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - Silvina Quintana
- Instituto de Investigaciones de Producción, Sanidad y Ambiente (IIPROSAM), FCEyN, UNMDP-CONICET, Mar del Plata, Buenos Aires, Argentina; Instituto de Biología Molecular Aplicada, Mar del Plata, Buenos Aires, Argentina
| | - Sandra E Pérez
- Centro de Investigaciones Veterinarias de Tandil (CIVETAN) - CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina
| | - Germán J Cantón
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - Dadin P Moore
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina; Facultad de Ciencias Agrarias, UNMdP, Balcarce, Buenos Aires, Argentina
| | - Anselmo C Odeón
- Facultad de Ciencias Agrarias, UNMdP, Balcarce, Buenos Aires, Argentina
| | - Irene Agulló-Ros
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo de Investigación GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - María Valeria Scioli
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - Claudio Barbeito
- Laboratorio de Histología y Embriología Descriptiva Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, UNLP, CONICET, Buenos Aires, Argentina
| | - Eleonora L Morrell
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina.
| | - Maia S Marín
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| |
Collapse
|
4
|
Gómez-Romero N, Arias CF, Verdugo-Rodríguez A, López S, Valenzuela-Moreno LF, Cedillo-Peláez C, Basurto-Alcántara FJ. Immune protection induced by E2 recombinant glycoprotein of bovine viral diarrhea virus in a murine model. Front Vet Sci 2023; 10:1168846. [PMID: 37426077 PMCID: PMC10324609 DOI: 10.3389/fvets.2023.1168846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) is considered the most important viral pathogen in ruminants worldwide due to the broad range of clinical manifestations displayed by infected animals. Therefore, infection with BVDV leads to severe economic losses in several countries' beef and dairy industries. Vaccination prevents reproductive failure and gastrointestinal and respiratory disorders caused by BVDV infection. However, considering their limitations, conventional vaccines such as live, attenuated, and killed viruses have been applied. Hence, different studies have described subunit vaccines as an effective and safe alternative for BVDV protection. Therefore, in this study, the ectodomain of E2 (E2e) glycoprotein from NADL BVDV strain was expressed in mammalian cells and used in two vaccine formulations to evaluate immunogenicity and protection against BVDV conferred in a murine model. Formulations consisted of solo E2e glycoprotein and E2e glycoprotein emulsified in adjuvant ISA 61 VG. Five groups of 6 mice of 6-to-8-week-old were immunized thrice on days 1, 15, and 30 by intraperitoneal injection with the mentioned formulations and controls. To evaluate the conferred protection against BVDV, mice were challenged six weeks after the third immunization. In addition, the humoral immune response was evaluated after vaccination and challenge. Mice groups inoculated with solo E2e and the E2e + ISA 61 VG displayed neutralizing titers; however, the E2 antibody titers in the E2e + ISA 61 VG group were significantly higher than the mice group immunized with the solo E2e glycoprotein. In addition, immunization using E2e + ISA 61 VG prevents animals from developing severe lesions in surveyed tissues. Moreover, this group acquired protection against the BVDV challenge, evidenced by a significant reduction of positive staining for BVDV antigen in the lungs, liver, and brain between the experimental groups. Our findings demonstrated that using E2e + ISA 61 VG induces greater BVDV protection by an early humoral response and reduced histopathological lesions and BVDV antigen detection in affected organs, indicating that E2e + ISA 61 VG subunit formulation can be considered as a putative vaccine candidate against BVDV. The efficacy and safety of this vaccine candidate in cattle requires further investigation.
Collapse
Affiliation(s)
- Ninnet Gómez-Romero
- Vaccinology Laboratory, Department of Microbiology and Immunology, Facultad de Medicina Veterinaria y Zootecnia-Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos F. Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Antonio Verdugo-Rodríguez
- Molecular Microbiology Laboratory, Department of Microbiology and Immunology, Facultad de Medicina Veterinaria y Zootecnia-Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Susana López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | - Carlos Cedillo-Peláez
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Francisco Javier Basurto-Alcántara
- Vaccinology Laboratory, Department of Microbiology and Immunology, Facultad de Medicina Veterinaria y Zootecnia-Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
Righi C, Franzoni G, Feliziani F, Jones C, Petrini S. The Cell-Mediated Immune Response against Bovine alphaherpesvirus 1 (BoHV-1) Infection and Vaccination. Vaccines (Basel) 2023; 11:vaccines11040785. [PMID: 37112697 PMCID: PMC10144493 DOI: 10.3390/vaccines11040785] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Bovine Alphaherpesvirus 1 (BoHV-1) is one of the major respiratory pathogens in cattle worldwide. Infection often leads to a compromised host immune response that contributes to the development of the polymicrobial disease known as “bovine respiratory disease”. After an initial transient phase of immunosuppression, cattle recover from the disease. This is due to the development of both innate and adaptive immune responses. With respect to adaptive immunity, both humoral and cell-mediated immunity are required to control infection. Thus, several BoHV-1 vaccines are designed to trigger both branches of the adaptive immune system. In this review, we summarize the current knowledge on cell-mediated immune responses directed against BoHV-1 infection and vaccination.
Collapse
Affiliation(s)
- Cecilia Righi
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy
| | - Giulia Franzoni
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Francesco Feliziani
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Stefano Petrini
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy
| |
Collapse
|
6
|
Gaudino M, Nagamine B, Ducatez MF, Meyer G. Understanding the mechanisms of viral and bacterial coinfections in bovine respiratory disease: a comprehensive literature review of experimental evidence. Vet Res 2022; 53:70. [PMID: 36068558 PMCID: PMC9449274 DOI: 10.1186/s13567-022-01086-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine respiratory disease (BRD) is one of the most important diseases impacting the global cattle industry, resulting in significant economic loss. Commonly referred to as shipping fever, BRD is especially concerning for young calves during transport when they are most susceptible to developing disease. Despite years of extensive study, managing BRD remains challenging as its aetiology involves complex interactions between pathogens, environmental and host factors. While at the beginning of the twentieth century, scientists believed that BRD was only caused by bacterial infections ("bovine pasteurellosis"), we now know that viruses play a key role in BRD induction. Mixtures of pathogenic bacteria and viruses are frequently isolated from respiratory secretions of animals with respiratory illness. The increased diagnostic screening data has changed our understanding of pathogens contributing to BRD development. In this review, we aim to comprehensively examine experimental evidence from all existing studies performed to understand coinfections between respiratory pathogens in cattle. Despite the fact that pneumonia has not always been successfully reproduced by in vivo calf modelling, several studies attempted to investigate the clinical significance of interactions between different pathogens. The most studied model of pneumonia induction has been reproduced by a primary viral infection followed by a secondary bacterial superinfection, with strong evidence suggesting this could potentially be one of the most common scenarios during BRD onset. Different in vitro studies indicated that viral priming may increase bacterial adherence and colonization of the respiratory tract, suggesting a possible mechanism underpinning bronchopneumonia onset in cattle. In addition, a few in vivo studies on viral coinfections and bacterial coinfections demonstrated that a primary viral infection could also increase the pathogenicity of a secondary viral infection and, similarly, dual infections with two bacterial pathogens could increase the severity of BRD lesions. Therefore, different scenarios of pathogen dynamics could be hypothesized for BRD onset which are not limited to a primary viral infection followed by a secondary bacterial superinfection.
Collapse
Affiliation(s)
- Maria Gaudino
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | | | - Gilles Meyer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| |
Collapse
|
7
|
A subunit vaccine candidate based on the Spike protein of SARS-CoV-2 prevents infectious virus shedding in cats. Res Vet Sci 2022; 148:52-64. [PMID: 35667227 PMCID: PMC9148427 DOI: 10.1016/j.rvsc.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 12/02/2022]
Abstract
Of the numerous animal species affected by the SARS-CoV-2 virus, cats are one of the most susceptible, and cat-to-cat transmission has been described. Although cat-to-human infection has not, as yet, been demonstrated, preventive measures should be taken in order to avoid both viral infection in cats and transmission among them. In this respect, the application of an effective vaccine to at-risk populations would be a useful tool for controlling the disease in this species. Here, we test a new vaccine prototype based on the Spike protein of the virus in order to prevent infection and infectious virus shedding in cats. The vaccine employed in experimentation, and which is easily produced, triggered a strong neutralizing antibody response in vaccinated animals. In contrast to that which occurred with control animals, no infectious virus was detected in the oropharyngeal or rectal swabs of vaccinated cats submitted to a SARS-CoV-2 challenge. These results are of great interest as regards future considerations related to implementing vaccination programs in pets. The value of cats as vaccination trial models is also described herein.
Collapse
|
8
|
Global Transmission, Spatial Segregation, and Recombination Determine the Long-Term Evolution and Epidemiology of Bovine Coronaviruses. Viruses 2020; 12:v12050534. [PMID: 32414076 PMCID: PMC7290379 DOI: 10.3390/v12050534] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/15/2023] Open
Abstract
Bovine coronavirus (BCoV) is widespread in cattle and wild ruminant populations throughout the world. The virus causes neonatal calf diarrhea and winter dysentery in adult cattle, as well as upper and lower respiratory tract infection in young cattle. We isolated and deep sequenced whole genomes of BCoV from calves with respiratory distress in the south–west of France and conducted a comparative genome analysis using globally collected BCoV sequences to provide insights into the genomic characteristics, evolutionary origins, and global diversity of BCoV. Molecular clock analyses allowed us to estimate that the BCoV ancestor emerged in the 1940s, and that two geographically distinct lineages diverged from the 1960s–1970s. A recombination event in the spike gene (breakpoint at nt 1100) may be at the origin of the genetic divergence sixty years ago. Little evidence of genetic mixing between the spatially segregated lineages was found, suggesting that BCoV genetic diversity is a result of a global transmission pathway that occurred during the last century. However, we found variation in evolution rates between the European and non-European lineages indicating differences in virus ecology.
Collapse
|
9
|
McGill JL, Sacco RE. The Immunology of Bovine Respiratory Disease: Recent Advancements. Vet Clin North Am Food Anim Pract 2020; 36:333-348. [PMID: 32327252 PMCID: PMC7170797 DOI: 10.1016/j.cvfa.2020.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jodi L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, 1907 ISU C-Drive, VMRI Building 5, Ames, IA 50010, USA.
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, Agricultural Research Services, USDA, PO Box 70, 1920 Dayton Avenue, Ames, IA 50010, USA
| |
Collapse
|
10
|
Pathogenesis, Host Innate Immune Response, and Aerosol Transmission of Influenza D Virus in Cattle. J Virol 2019; 93:JVI.01853-18. [PMID: 30674628 DOI: 10.1128/jvi.01853-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022] Open
Abstract
The recently discovered influenza D virus (IDV) of the Orthomyxoviridae family has been detected in swine and ruminants with a worldwide distribution. Cattle are considered to be the primary host and reservoir, and previous studies suggested a tropism of IDV for the upper respiratory tract and a putative role in the bovine respiratory disease complex. This study aimed to characterize the pathogenicity of IDV in naive calves as well as the ability of this virus to transmit by air. Eight naive calves were infected by aerosol with a recent French isolate, D/bovine/France/5920/2014. Results show that IDV replicates not only in the upper respiratory tract but also in the lower respiratory tract (LRT), inducing moderate bronchopneumonia with restricted lesions of interstitial pneumonia. Inoculation was followed by IDV-specific IgG1 production as early as 10 days postchallenge and likely both Th1 and Th2 responses. Study of the innate immune response in the LRT of IDV-infected calves indicated the overexpression of pathogen recognition receptors and of chemokines CCL2, CCL3, and CCL4, but without overexpression of genes involved in the type I interferon pathway. Finally, virological examination of three aerosol-sentinel animals, housed 3 m apart from inoculated calves (and thus subject to infection by aerosol transmission), and IDV detection in air samples collected in different areas showed that IDV can be airborne transmitted and infect naive contact calves on short distances. This study suggests that IDV is a respiratory virus with moderate pathogenicity and probably a high level of transmission. It consequently can be considered predisposing to or a cofactor of respiratory disease.IMPORTANCE Influenza D virus (IDV), a new genus of the Orthomyxoviridae family, has a broad geographical distribution and can infect several animal species. Cattle are so far considered the primary host for IDV, but the pathogenicity and the prevalence of this virus are still unclear. We demonstrated that under experimental conditions (in a controlled environment and in the absence of coinfecting pathogens), IDV is able to cause mild to moderate disease and targets both the upper and lower respiratory tracts. The virus can transmit by direct as well as aerosol contacts. While this study evidenced overexpression of pathogen recognition receptors and chemokines in the lower respiratory tract, IDV-specific IgG1 production as early as 10 days postchallenge, and likely both Th1 and Th2 responses, further studies are warranted to better understand the immune responses triggered by IDV and its role as part of the bovine respiratory disease complex.
Collapse
|
11
|
Núñez A, Sánchez-Cordón PJ, Pedrera M, Gómez-Villamandos JC, Carrasco L. Pulmonary intravascular macrophages regulate the pathogenetic mechanisms of pulmonary lesions during acute courses of classical swine fever. Transbound Emerg Dis 2018; 65:1885-1897. [DOI: 10.1111/tbed.12970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Alejandro Núñez
- Department of Comparative Pathology; Veterinary Faculty; University of Córdoba; Córdoba Spain
| | - Pedro J. Sánchez-Cordón
- Department of Comparative Pathology; Veterinary Faculty; University of Córdoba; Córdoba Spain
| | - Miriam Pedrera
- Department of Comparative Pathology; Veterinary Faculty; University of Córdoba; Córdoba Spain
| | | | - Librado Carrasco
- Department of Comparative Pathology; Veterinary Faculty; University of Córdoba; Córdoba Spain
| |
Collapse
|
12
|
Romero-Palomo F, Risalde MA, Gómez-Villamandos JC. Immunopathologic Changes in the Thymus of Calves Pre-infected with BVDV and Challenged with BHV-1. Transbound Emerg Dis 2015; 64:574-584. [PMID: 26304025 DOI: 10.1111/tbed.12406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 12/14/2022]
Abstract
The aim of this work was to investigate the effect of pre-infection with bovine viral diarrhoea virus (BVDV) on thymus immune cells from calves challenged with bovine herpesvirus 1 (BHV-1). Twelve Friesian calves, aged 8 to 9 months, were inoculated with non-cytopathic BVDV-1. Ten of them were subsequently challenged with BHV-1 and euthanized in batches of two at 1, 2, 4, 7 or 14 dpi with BHV-1. The other two calves were euthanized prior to the second inoculation and were used as BVDV-infected controls. A further 10 calves were inoculated solely with BHV-1 and euthanized at the same time points. Two calves were not inoculated with any agent and were used as negative controls. Quantitative changes in immune cells were evaluated with immunohistochemical methods to compare coinfected calves and calves challenged only with BHV-1. The results of this study pointed out BVDV as responsible for the thymic lesions observed in the experiment as well as for the majority of immunopathologic changes, including a downregulation of Foxp3 lymphocytes and TGFβ, which reverted as BVDV was cleared, and an overexpression of medullary CD8+ T cells. However, despite not inducing evident lesions in the thymus, BHV-1 seemed to prompt some immune alterations. Collectively, these data contribute to the knowledge on the immunopathologic alterations of the thymus during BVDV infections, and its importance in the development of secondary infections.
Collapse
Affiliation(s)
- F Romero-Palomo
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba-Agrifood Campus of International Excellence (ceiA3), Córdoba, Spain
| | - M A Risalde
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba-Agrifood Campus of International Excellence (ceiA3), Córdoba, Spain
| | - J C Gómez-Villamandos
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba-Agrifood Campus of International Excellence (ceiA3), Córdoba, Spain
| |
Collapse
|
13
|
Romero-Palomo F, Risalde MA, Molina V, Lauzi S, Bautista MJ, Gómez-Villamandos JC. Characterization of thymus atrophy in calves with subclinical BVD challenged with BHV-1. Vet Microbiol 2015; 177:32-42. [PMID: 25759294 DOI: 10.1016/j.vetmic.2015.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 02/09/2015] [Accepted: 02/18/2015] [Indexed: 12/21/2022]
Abstract
Since the thymus is a target organ for the bovine viral diarrhea virus (BVDV), our experiment aimed to understand its relationship with the immunosuppressive effect by studying the consequences of a previous infection with BVDV on the thymus of calves challenged with bovine herpesvirus 1.1 (BHV-1). For this purpose, 12 animals were inoculated intranasally with non-cytopathic BVDV-1; 12 days later, 10 of them were coinfected intranasally with BHV-1. These animals were euthanized in batches of two at 0, 1, 2, 4, 7 or 14 dpi with BHV-1. Another 10 calves were inoculated solely with BHV-1 and euthanized in batches of two at 1, 2, 4, 7 or 14 dpi with BHV-1; two uninoculated calves were used as negative controls. Thymus samples from these animals were processed for viral detection and histopathological, immunohistochemical, and ultrastructural studies focused on BVDV/BHV-1 antigens, cortex:medulla ratio, apoptosis (TUNEL and caspase-3), collagen deposition, and factor VIII endothelial detection. Our study revealed the immunohistochemical presence of BVDV antigen in all animals in the BVDV-infected group, unlike BHV-1 detection, which was observed in animals in both infection groups only by molecular techniques. BVDV-preinfected animals showed severe atrophic changes associated with reduced cortex:medulla ratio, higher presence of cortical apoptosis, and increased collagen deposition and vascularization. However, calves solely infected with BHV-1 did not show atrophic changes. These findings could affect not only the numbers of circulating and local mature T cells but also the T cell-mediated immunity, which seems to be impaired during infections with this virus, thus favoring pathogenic effects during secondary infections.
Collapse
Affiliation(s)
- F Romero-Palomo
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba, Agrifood Campus of International Excellence (ceiA3), 14014 Córdoba, Spain
| | - M A Risalde
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba, Agrifood Campus of International Excellence (ceiA3), 14014 Córdoba, Spain
| | - V Molina
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba, Agrifood Campus of International Excellence (ceiA3), 14014 Córdoba, Spain
| | - S Lauzi
- Department of Veterinary Science and Public Health, University of Milan, 20133 Milan, Italy
| | - M J Bautista
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba, Agrifood Campus of International Excellence (ceiA3), 14014 Córdoba, Spain
| | - J C Gómez-Villamandos
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba, Agrifood Campus of International Excellence (ceiA3), 14014 Córdoba, Spain.
| |
Collapse
|
14
|
Risalde MA, Molina V, Sánchez-Cordón PJ, Romero-Palomo F, Pedrera M, Gómez-Villamandos JC. Effects of Preinfection With Bovine Viral Diarrhea Virus on Immune Cells From the Lungs of Calves Inoculated With Bovine Herpesvirus 1.1. Vet Pathol 2014; 52:644-53. [DOI: 10.1177/0300985814551579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this work was to study the interstitial aggregates of immune cells observed in pulmonary parenchyma of calves preinfected with bovine viral diarrhea virus and challenged later with bovine herpesvirus 1. In addition, the intent of this research was to clarify the role of bovine viral diarrhea virus in local cell-mediated immunity and potentially in predisposing animals to bovine respiratory disease complex. Twelve Friesian calves, aged 8 to 9 months, were inoculated with noncytopathic bovine viral diarrhea virus genotype 1. Ten were subsequently challenged with bovine herpesvirus 1 and euthanized at 1, 2, 4, 7, or 14 days postinoculation. The other 2 calves were euthanized prior to the second inoculation. Another cohort of 10 calves was inoculated only with bovine herpesvirus 1 and then were euthanized at the same time points. Two calves were not inoculated with any agent and were used as negative controls. Pulmonary lesions were evaluated in all animals, while quantitative and biosynthetic changes in immune cells were concurrently examined immunohistochemically to compare coinfected calves and calves challenged only with bovine herpesvirus 1. Calves preinfected with bovine viral diarrhea virus demonstrated moderate respiratory clinical signs and histopathologic evidence of interstitial pneumonia with aggregates of mononuclear cells, which predominated at 4 days postinoculation. Furthermore, this group of animals was noted to have a suppression of interleukin-10 and associated alterations in the Th1-driven cytokine response in the lungs, as well as inhibition of the response of CD8+ and CD4+ T lymphocytes against bovine herpesvirus 1. These findings suggest that bovine viral diarrhea virus preinfection could affect the regulation of the immune response as modulated by regulatory T cells, as well as impair local cell-mediated immunity to secondary respiratory pathogens.
Collapse
Affiliation(s)
- M. A. Risalde
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba-Agrifood Campus of International Excellence (ceiA3), Edificio Sanidad Animal, Campus de Rabanales, Córdoba, Spain
- Department of Veterinary Science and Public Health, University of Milan, Via Celoria, Milano, Italy
| | - V. Molina
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba-Agrifood Campus of International Excellence (ceiA3), Edificio Sanidad Animal, Campus de Rabanales, Córdoba, Spain
- School of Biological Sciences, Queen's University Belfast, BT9 7BL Belfast, UK
| | - P. J. Sánchez-Cordón
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba-Agrifood Campus of International Excellence (ceiA3), Edificio Sanidad Animal, Campus de Rabanales, Córdoba, Spain
| | - F. Romero-Palomo
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba-Agrifood Campus of International Excellence (ceiA3), Edificio Sanidad Animal, Campus de Rabanales, Córdoba, Spain
| | - M. Pedrera
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba-Agrifood Campus of International Excellence (ceiA3), Edificio Sanidad Animal, Campus de Rabanales, Córdoba, Spain
| | - J. C. Gómez-Villamandos
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba-Agrifood Campus of International Excellence (ceiA3), Edificio Sanidad Animal, Campus de Rabanales, Córdoba, Spain
| |
Collapse
|