1
|
Xing Y, Zhang Q, Jiu Y. Coronavirus and the Cytoskeleton of Virus-Infected Cells. Subcell Biochem 2023; 106:333-364. [PMID: 38159233 DOI: 10.1007/978-3-031-40086-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The cytoskeleton, which includes actin filaments, microtubules, and intermediate filaments, is one of the most important networks in the cell and undertakes many fundamental life activities. Among them, actin filaments are mainly responsible for maintaining cell shape and mediating cell movement, microtubules are in charge of coordinating all cargo transport within the cell, and intermediate filaments are mainly thought to guard against external mechanical pressure. In addition to this, cytoskeleton networks are also found to play an essential role in multiple viral infections. Due to the COVID-19 epidemic, including SARS-CoV-2, SARS-CoV and MERS-CoV, so many variants have caused wide public concern, that any virus infection can potentially bring great harm to human beings and society. Therefore, it is of great importance to study coronavirus infection and develop antiviral drugs and vaccines. In this chapter, we summarize in detail how the cytoskeleton responds and participates in coronavirus infection by analyzing the possibility of the cytoskeleton and its related proteins as antiviral targets, thereby providing ideas for finding more effective treatments.
Collapse
Affiliation(s)
- Yifan Xing
- Shanghai Institute of Immunity and Infection (Formerly Institut Pasteur of Shanghai), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yaming Jiu
- Shanghai Institute of Immunity and Infection (Formerly Institut Pasteur of Shanghai), Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Wang J, Tian WJ, Li CC, Zhang XZ, Fan K, Li SL, Wang XJ. Small-Molecule RAF265 as an Antiviral Therapy Acts against PEDV Infection. Viruses 2022; 14:v14102261. [PMID: 36298816 PMCID: PMC9611448 DOI: 10.3390/v14102261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the family Coronaviridae, causes acute diarrhea, vomiting, dehydration, and high mortality in newborn piglets, and has caused significant economic losses in the pig industry. There are currently no specific drugs available to treat PEDV. Viruses depend exclusively on the cellular machinery to ensure an efficient replication cycle. In the present study, we found that small-molecule RAF265, an anticancer drug that has been shown to be a potent inhibitor of RAF, reduced viral loads of PEDV by 4 orders of magnitude in Vero cells, and protected piglets from virus challenge. RAF265 reduced PEDV production by mediating cytoskeleton arrangement and targeting the host cell’s translation machinery. Treatment with RAF265 inhibited viral entry of PEDV S-glycoprotein pseudotyped viral vector particle (PEDV-pp), at half maximal effective concentrations (EC50) of 79.1 nM. RAF265 also presented potent inhibitory activity against viral infection by SARS-CoV-2-pp and SARS-CoV-pp. The present work may provide a starting point for further progress toward the development of antiviral strategies effective against coronavirus PEDV.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wen-Jun Tian
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Cui-Cui Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiu-Zhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kai Fan
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: (K.F.); (S.-L.L.); (X.-J.W.)
| | - Song-Li Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (K.F.); (S.-L.L.); (X.-J.W.)
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: (K.F.); (S.-L.L.); (X.-J.W.)
| |
Collapse
|
3
|
Matozo T, Kogachi L, de Alencar BC. Myosin motors on the pathway of viral infections. Cytoskeleton (Hoboken) 2022; 79:41-63. [PMID: 35842902 DOI: 10.1002/cm.21718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 01/30/2023]
Abstract
Molecular motors are microscopic machines that use energy from adenosine triphosphate (ATP) hydrolysis to generate movement. While kinesins and dynein are molecular motors associated with microtubule tracks, myosins bind to and move on actin filaments. Mammalian cells express several myosin motors. They power cellular processes such as endo- and exocytosis, intracellular trafficking, transcription, migration, and cytokinesis. As viruses navigate through cells, they may take advantage or be hindered by host components and machinery, including the cytoskeleton. This review delves into myosins' cell roles and compares them to their reported functions in viral infections. In most cases, the previously described myosin functions align with their reported role in viral infections, although not in all cases. This opens the possibility that knowledge obtained from studying myosins in viral infections might shed light on new physiological roles for myosins in cells. However, given the high number of myosins expressed and the variety of viruses investigated in the different studies, it is challenging to infer whether the interactions found are specific to a single virus or can be applied to other viruses with the same characteristics. We conclude that the participation of myosins in viral cycles is still a largely unexplored area, especially concerning unconventional myosins.
Collapse
Affiliation(s)
- Tais Matozo
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leticia Kogachi
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruna Cunha de Alencar
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Sorensen DW, Injeti ER, Mejia-Aguilar L, Williams JM, Pearce WJ. Postnatal development alters functional compartmentalization of myosin light chain kinase in ovine carotid arteries. Am J Physiol Regul Integr Comp Physiol 2021; 321:R441-R453. [PMID: 34318702 PMCID: PMC8530762 DOI: 10.1152/ajpregu.00293.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 07/02/2021] [Accepted: 07/21/2021] [Indexed: 11/22/2022]
Abstract
The rate-limiting enzyme for vascular contraction, myosin light chain kinase (MLCK), phosphorylates regulatory myosin light chain (MLC20) at rates that appear faster despite lower MLCK abundance in fetal compared with adult arteries. This study explores the hypothesis that greater apparent tissue activity of MLCK in fetal arteries is due to age-dependent differences in intracellular distribution of MLCK in relation to MLC20. Under optimal conditions, common carotid artery homogenates from nonpregnant adult female sheep and near-term fetuses exhibited similar values of Vmax and Km for MLCK. A custom-designed, computer-controlled apparatus enabled electrical stimulation and high-speed freezing of arterial segments at exactly 0, 1, 2, and 3 s, calculation of in situ rates of MLC20 phosphorylation, and measurement of time-dependent colocalization between MLCK and MLC20. The in situ rate of MLC20 phosphorylation divided by total MLCK abundance averaged to values 147% greater in fetal (1.06 ± 0.28) than adult (0.43 ± 0.08) arteries, which corresponded, respectively, to 43 ± 10% and 31 ± 3% of the Vmax values measured in homogenates. Confocal colocalization analysis revealed in fetal and adult arteries that 33 ± 6% and 20 ± 5% of total MLCK colocalized with pMLC20, and that MLCK activation was greater in periluminal than periadventitial regions over the time course of electrical stimulation in both age groups. Together, these results demonstrate that the catalytic activity of MLCK is similar in fetal and adult arteries, but that the fraction of total MLCK in the functional compartment involved in contraction is significantly greater in fetal than adult arteries.
Collapse
Affiliation(s)
- Dane W Sorensen
- Division of Physiology, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Elisha R Injeti
- Department of Pharmaceutical Sciences, Cedarville University School of Pharmacy, Cedarville, Ohio
| | - Luisa Mejia-Aguilar
- Division of Physiology, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - James M Williams
- Division of Physiology, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - William J Pearce
- Division of Physiology, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
5
|
Norris V, Ovádi J. Role of Multifunctional Cytoskeletal Filaments in Coronaviridae Infections: Therapeutic Opportunities for COVID-19 in a Nutshell. Cells 2021; 10:cells10071818. [PMID: 34359986 PMCID: PMC8307953 DOI: 10.3390/cells10071818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
A novel coronavirus discovered in 2019 is a new strain of the Coronaviridae family (CoVs) that had not been previously identified in humans. It is known as SARS-CoV-2 for Severe Acute Respiratory Syndrome Coronavirus-2, whilst COVID-19 is the name of the disease associated with the virus. SARS-CoV-2 emerged over one year ago and still haunts the human community throughout the world, causing both healthcare and socioeconomic problems. SARS-CoV-2 is spreading with many uncertainties about treatment and prevention: the data available are limited and there are few randomized controlled trial data on the efficacy of antiviral or immunomodulatory agents. SARS-CoV-2 and its mutants are considered as unique within the Coronaviridae family insofar as they spread rapidly and can have severe effects on health. Although the scientific world has been succeeding in developing vaccines and medicines to combat COVID-19, the appearance and the spread of new, more aggressive mutants are posing extra problems for treatment. Nevertheless, our understanding of pandemics is increasing significantly due to this outbreak and is leading to the development of many different pharmacological, immunological and other treatments. This Review focuses on a subset of COVID-19 research, primarily the cytoskeleton-related physiological and pathological processes in which coronaviruses such as SARS-CoV-2 are intimately involved. The discovery of the exact mechanisms of the subversion of host cells by SARS-CoV-2 is critical to the validation of specific drug targets and effective treatments.
Collapse
Affiliation(s)
- Victor Norris
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen, 76821 Mont Saint Aignan, France;
| | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH 1117 Budapest, Hungary
- Correspondence:
| |
Collapse
|
6
|
Wen Z, Zhang Y, Lin Z, Shi K, Jiu Y. Cytoskeleton-a crucial key in host cell for coronavirus infection. J Mol Cell Biol 2021; 12:968-979. [PMID: 32717049 PMCID: PMC7454755 DOI: 10.1093/jmcb/mjaa042] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
The emerging coronavirus (CoV) pandemic is threatening the public health all over the world. Cytoskeleton is an intricate network involved in controlling cell shape, cargo transport, signal transduction, and cell division. Infection biology studies have illuminated essential roles for cytoskeleton in mediating the outcome of host‒virus interactions. In this review, we discuss the dynamic interactions between actin filaments, microtubules, intermediate filaments, and CoVs. In one round of viral life cycle, CoVs surf along filopodia on the host membrane to the entry sites, utilize specific intermediate filament protein as co-receptor to enter target cells, hijack microtubules for transportation to replication and assembly sites, and promote actin filaments polymerization to provide forces for egress. During CoV infection, disruption of host cytoskeleton homeostasis and modification state is tightly connected to pathological processes, such as defective cytokinesis, demyelinating, cilia loss, and neuron necrosis. There are increasing mechanistic studies on cytoskeleton upon CoV infection, such as viral protein‒cytoskeleton interaction, changes in the expression and post-translation modification, related signaling pathways, and incorporation with other host factors. Collectively, these insights provide new concepts for fundamental virology and the control of CoV infection.
Collapse
Affiliation(s)
- Zeyu Wen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhekai Lin
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Shi
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Comparative Genomics and Integrated Network Approach Unveiled Undirected Phylogeny Patterns, Co-mutational Hot Spots, Functional Cross Talk, and Regulatory Interactions in SARS-CoV-2. mSystems 2021; 6:6/1/e00030-21. [PMID: 33622851 PMCID: PMC8573956 DOI: 10.1128/msystems.00030-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has resulted in 92 million cases in a span of 1 year. The study focuses on understanding population-specific variations attributing its high rate of infections in specific geographical regions particularly in the United States. Rigorous phylogenomic network analysis of complete SARS-CoV-2 genomes (245) inferred five central clades named a (ancestral), b, c, d, and e (subtypes e1 and e2). Clade d and subclade e2 were found exclusively comprised of U.S. strains. Clades were distinguished by 10 co-mutational combinations in Nsp3, ORF8, Nsp13, S, Nsp12, Nsp2, and Nsp6. Our analysis revealed that only 67.46% of single nucleotide polymorphism (SNP) mutations were at the amino acid level. T1103P mutation in Nsp3 was predicted to increase protein stability in 238 strains except for 6 strains which were marked as ancestral type, whereas co-mutation (P409L and Y446C) in Nsp13 were found in 64 genomes from the United States highlighting its 100% co-occurrence. Docking highlighted mutation (D614G) caused reduction in binding of spike proteins with angiotensin-converting enzyme 2 (ACE2), but it also showed better interaction with the TMPRSS2 receptor contributing to high transmissibility among U.S. strains. We also found host proteins, MYO5A, MYO5B, and MYO5C, that had maximum interaction with viral proteins (nucleocapsid [N], spike [S], and membrane [M] proteins). Thus, blocking the internalization pathway by inhibiting MYO5 proteins which could be an effective target for coronavirus disease 2019 (COVID-19) treatment. The functional annotations of the host-pathogen interaction (HPI) network were found to be closely associated with hypoxia and thrombotic conditions, confirming the vulnerability and severity of infection. We also screened CpG islands in Nsp1 and N conferring the ability of SARS-CoV-2 to enter and trigger zinc antiviral protein (ZAP) activity inside the host cell. IMPORTANCE In the current study, we presented a global view of mutational pattern observed in SARS-CoV-2 virus transmission. This provided a who-infect-whom geographical model since the early pandemic. This is hitherto the most comprehensive comparative genomics analysis of full-length genomes for co-mutations at different geographical regions especially in U.S. strains. Compositional structural biology results suggested that mutations have a balance of opposing forces affecting pathogenicity suggesting that only a few mutations are effective at the translation level. Novel HPI analysis and CpG predictions elucidate the proof of concept of hypoxia and thrombotic conditions in several patients. Thus, the current study focuses the understanding of population-specific variations attributing a high rate of SARS-CoV-2 infections in specific geographical regions which may eventually be vital for the most severely affected countries and regions for sharp development of custom-made vindication strategies.
Collapse
|
8
|
Fuertes-Alvarez S, Maeso-Alonso L, Villoch-Fernandez J, Wildung M, Martin-Lopez M, Marshall C, Villena-Cortes AJ, Diez-Prieto I, Pietenpol JA, Tissir F, Lizé M, Marques MM, Marin MC. p73 regulates ependymal planar cell polarity by modulating actin and microtubule cytoskeleton. Cell Death Dis 2018; 9:1183. [PMID: 30518789 PMCID: PMC6281643 DOI: 10.1038/s41419-018-1205-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
Abstract
Planar cell polarity (PCP) and intercellular junctional complexes establish tissue structure and coordinated behaviors across epithelial sheets. In multiciliated ependymal cells, rotational and translational PCP coordinate cilia beating and direct cerebrospinal fluid circulation. Thus, PCP disruption results in ciliopathies and hydrocephalus. PCP establishment depends on the polarization of cytoskeleton and requires the asymmetric localization of core and global regulatory modules, including membrane proteins like Vangl1/2 or Frizzled. We analyzed the subcellular localization of select proteins that make up these modules in ependymal cells and the effect of Trp73 loss on their localization. We identify a novel function of the Trp73 tumor suppressor gene, the TAp73 isoform in particular, as an essential regulator of PCP through the modulation of actin and microtubule cytoskeleton dynamics, demonstrating that Trp73 is a key player in the organization of ependymal ciliated epithelia. Mechanistically, we show that p73 regulates translational PCP and actin dynamics through TAp73-dependent modulation of non-musclemyosin-II activity. In addition, TAp73 is required for the asymmetric localization of PCP-core and global signaling modules and regulates polarized microtubule dynamics, which in turn set up the rotational PCP. Therefore, TAp73 modulates, directly and/or indirectly, transcriptional programs regulating actin and microtubules dynamics and Golgi organization signaling pathways. These results shed light into the mechanism of ependymal cell planar polarization and reveal p73 as an epithelial architect during development regulating the cellular cytoskeleton.
Collapse
Affiliation(s)
- Sandra Fuertes-Alvarez
- Instituto de Biomedicina (IBIOMED) and Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Laura Maeso-Alonso
- Instituto de Biomedicina (IBIOMED) and Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Javier Villoch-Fernandez
- Instituto de Biomedicina (IBIOMED) and Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Merit Wildung
- Molecular and Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center, 37077, Göttingen, Germany.,Institute of Molecular Oncology, Clinic for Cardiology and Pneumology, Department of Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Marta Martin-Lopez
- Instituto de Biomedicina (IBIOMED) and Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Clayton Marshall
- Department of Biochemistry and Vanderbilt-Ingram Cancer Center, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Alberto J Villena-Cortes
- Instituto de Biomedicina (IBIOMED) and Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Inmaculada Diez-Prieto
- Departamento de Medicina, Cirugía y Anatomía Veterinaria, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Jennifer A Pietenpol
- Department of Biochemistry and Vanderbilt-Ingram Cancer Center, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Fadel Tissir
- Developmental Neurobiology, Institute of Neuroscience, Universite Catholique de Louvain, Avenue E. Mounier, 73, Box B1.73.16, B1200, Brussels, Belgium
| | - Muriel Lizé
- Molecular and Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center, 37077, Göttingen, Germany.,Institute of Molecular Oncology, Clinic for Cardiology and Pneumology, Department of Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Margarita M Marques
- Instituto de Desarrollo Ganadero (INDEGSAL) and Departamento de Producción Animal, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Maria C Marin
- Instituto de Biomedicina (IBIOMED) and Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24071, León, Spain.
| |
Collapse
|
9
|
Watanabe R, Eckstrand C, Liu H, Pedersen NC. Characterization of peritoneal cells from cats with experimentally-induced feline infectious peritonitis (FIP) using RNA-seq. Vet Res 2018; 49:81. [PMID: 30086792 PMCID: PMC6081860 DOI: 10.1186/s13567-018-0578-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022] Open
Abstract
Laboratory cats were infected with a serotype I cat-passaged field strain of FIP virus (FIPV) and peritoneal cells harvested 2-3 weeks later at onset of lymphopenia, fever and serositis. Comparison peritoneal cells were collected from four healthy laboratory cats by peritoneal lavage and macrophages predominated in both populations. Differential mRNA expression analysis identified 5621 genes as deregulated in peritoneal cells from FIPV infected versus normal cats; 956 genes showed > 2.0 Log2 Fold Change (Log2FC) and 1589 genes showed < -2.0 Log2FC. Eighteen significantly upregulated pathways were identified by InnateDB enrichment analysis. These pathways involved apoptosis, cytokine-cytokine receptor interaction, pathogen recognition, Jak-STAT signaling, NK cell mediated cytotoxicity, several chronic infectious diseases, graft versus host disease, allograft rejection and certain autoimmune disorders. Infected peritoneal macrophages were activated M1 type based on pattern of RNA expression. Apoptosis was found to involve large virus-laden peritoneal macrophages more than less mature macrophages, suggesting that macrophage death played a role in virus dissemination. Gene transcripts for MHC I but not II receptors were upregulated, while mRNA for receptors commonly associated with virus attachment and identified in other coronaviruses were either not detected (APN, L-SIGN), not deregulated (DDP-4) or down-regulated (DC-SIGN). However, the mRNA for FcγRIIIA (CD16A/ADCC receptor) was significantly upregulated, supporting entry of virus as an immune complex. Analysis of KEGG associated gene transcripts indicated that Th1 polarization overshadowed Th2 polarization, but the addition of relevant B cell associated genes previously linked to FIP macrophages tended to alter this perception.
Collapse
Affiliation(s)
- Rie Watanabe
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA USA
| | - Christina Eckstrand
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA USA
| | - Hongwei Liu
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA USA
| | - Niels C. Pedersen
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA USA
| |
Collapse
|
10
|
Rüdiger AT, Mayrhofer P, Ma-Lauer Y, Pohlentz G, Müthing J, von Brunn A, Schwegmann-Weßels C. Tubulins interact with porcine and human S proteins of the genus Alphacoronavirus and support successful assembly and release of infectious viral particles. Virology 2016; 497:185-197. [PMID: 27479465 PMCID: PMC7111311 DOI: 10.1016/j.virol.2016.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 01/05/2023]
Abstract
Coronavirus spike proteins mediate host-cell-attachment and virus entry. Virus replication takes place within the host cell cytosol, whereas assembly and budding occur at the endoplasmic reticulum-Golgi intermediate compartment. In this study we demonstrated that the last 39 amino acid stretches of Alphacoronavirus spike cytoplasmic domains of the human coronavirus 229E, NL63, and the porcine transmissible gastroenteritis virus TGEV interact with tubulin alpha and beta chains. In addition, a partial co-localization of TGEV spike proteins with authentic host cell β-tubulin was observed. Furthermore, drug-induced microtubule depolymerization led to changes in spike protein distribution, a reduction in the release of infectious virus particles and less amount of spike protein incorporated into virions. These data demonstrate that interaction of Alphacoronavirus spike proteins with tubulin supports S protein transport and incorporation into virus particles. The cytoplasmic domain of coronavirus S proteins interacts with tubulin. Microtubule depolymerization influences S protein distribution. Viral titers are reduced after microtubule depolymerization. S protein incorporation into virus particles depends on intact microtubule.
Collapse
Affiliation(s)
- Anna-Theresa Rüdiger
- Institute of Virology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Peter Mayrhofer
- Virology Department, Max-von-Pettenkofer Institute, Ludwig-Maximilians University Munich, Pettenkoferstraße 9a, 80336 Munich, Germany
| | - Yue Ma-Lauer
- Virology Department, Max-von-Pettenkofer Institute, Ludwig-Maximilians University Munich, Pettenkoferstraße 9a, 80336 Munich, Germany
| | - Gottfried Pohlentz
- Institute for Hygiene, University of Münster, Robert-Koch-Straße 41, 48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Straße 41, 48149 Münster, Germany
| | - Albrecht von Brunn
- Virology Department, Max-von-Pettenkofer Institute, Ludwig-Maximilians University Munich, Pettenkoferstraße 9a, 80336 Munich, Germany; German Centers for Infection Research (DZIF), Ludwig-Maximilians-University Munich, Germany.
| | - Christel Schwegmann-Weßels
- Institute of Virology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
11
|
Pedersen NC. An update on feline infectious peritonitis: virology and immunopathogenesis. Vet J 2014; 201:123-32. [PMID: 24837550 PMCID: PMC7110662 DOI: 10.1016/j.tvjl.2014.04.017] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 03/24/2014] [Accepted: 04/27/2014] [Indexed: 11/18/2022]
Abstract
Feline infectious peritonitis (FIP) continues to be one of the most researched infectious diseases of cats. The relatively high mortality of FIP, especially for younger cats from catteries and shelters, should be reason enough to stimulate such intense interest. However, it is the complexity of the disease and the grudging manner in which it yields its secrets that most fascinate researchers. Feline leukemia virus infection was conquered in less than two decades and the mysteries of feline immunodeficiency virus were largely unraveled in several years. After a half century, FIP remains one of the last important infections of cats for which we have no single diagnostic test, no vaccine and no definitive explanations for how virus and host interact to cause disease. How can a ubiquitous and largely non-pathogenic enteric coronavirus transform into a highly lethal pathogen? What are the interactions between host and virus that determine both disease form (wet or dry) and outcome (death or resistance)? Why is it so difficult, and perhaps impossible, to develop a vaccine for FIP? What role do genetics play in disease susceptibility? This review will explore research conducted over the last 5 years that attempts to answer these and other questions. Although much has been learned about FIP in the last 5 years, the ultimate answers remain for yet more studies.
Collapse
Affiliation(s)
- Niels C Pedersen
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|