1
|
Salamanca N, Herrera M, de la Roca E. Amino Acids as Dietary Additives for Enhancing Fish Welfare in Aquaculture. Animals (Basel) 2025; 15:1293. [PMID: 40362110 DOI: 10.3390/ani15091293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
The interest in fish welfare within aquaculture facilities has significantly increased over the past decade, recognizing the fundamental role of animal welfare in the quality of aquaculture products. It has been shown that stress in fish can affect their health, causing pathologies and immune failures, while stress-free fish grow faster and healthier. This has prompted aquaculture farmers to adopt strategies that reduce stress, improve water quality, and optimize stocking densities, thereby enhancing fish welfare. A key area is the role of amino acids in improving fish welfare. Amino acids, such as histidine, isoleucine, leucine, and tryptophan, are essential for various physiological processes, including neurotransmitter formation, energy metabolism, and immune function. Amino acids like tryptophan, arginine, and methionine play a crucial role in mitigating the effects of stress, improving immune function, and reducing oxidative stress. In the present review, the main roles of those amino acids related to fish stress have been shown, analyzing the physiological pathways involved in the link between amino acid ingestion and metabolization and stress responses.
Collapse
Affiliation(s)
- Natalia Salamanca
- Escuela Superior de Ingeniería, University of Huelva, 21071 Huelva, Spain
| | - Marcelino Herrera
- IFAPA Centro Agua del Pino, El Rompido-Punta Umbria rd., 21459 Cartaya, Spain
| | - Elena de la Roca
- IFAPA Centro Agua del Pino, El Rompido-Punta Umbria rd., 21459 Cartaya, Spain
| |
Collapse
|
2
|
Wu J, Ji K, Kang G, Zhang M, Wang J, Wang L, Gao M, Jia X, Lu X, Wang Y, Gao X, Guo Y, Zhu Z, Wang Q, Zhao Z, Liu Q, Huang H. Butyrate-engineered yeast activates Nppa and Sgcg genes and reduces radiation-induced heart damage via the gut-heart axis. Pharmacol Res 2025; 213:107642. [PMID: 39909125 DOI: 10.1016/j.phrs.2025.107642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/26/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Radiotherapy is a method of treating cancer through radiation aimed at killing cancer cells or inhibiting their growth. However, radiotherapy has numerous side effects because it kills tumors while causing damage to normal cells or tissues. The literature shows that radiation can cause damage to heart tissue. This study found that engineered yeast that produced butyrate can maintain small intestinal barrier function by recovering GPR109A to reduce intestinal damage caused by abdominal irradiation in mice. We unexpectedly found that engineered yeast could mitigate irradiation-induced heart damage via the gut-heart axis. Mechanistically, engineered yeast enhanced taurine and nicotinamide metabolism by increasing the relative abundance of Akkermansia and Lachnospiraceae_NK4A136; then, yeast modulated cardiac function by activating the Sgcg and Nppa genes to attenuate cardiac damage induced by abdominal irradiation. Finally, we confirmed that engineered yeast mitigated cardiac damage caused by total body irradiation, which protected other vital organs through the intestinal tract. This study has a profound impact on cancer treatment, the emergence of engineered yeast will alleviate radiotherapy side effects and benefit patients.
Collapse
Affiliation(s)
- Jiahao Wu
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Kaihua Ji
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin 300192, China
| | - Guangbo Kang
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Manman Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin 300192, China
| | - Jigang Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lina Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Mengxue Gao
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaoxiao Jia
- Department of Anatomy, Shandong Second Medical University, Weifang 261053, China
| | - Xinran Lu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin 300192, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin 300192, China
| | - Xinran Gao
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Yufei Guo
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Zhixin Zhu
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Qinghua Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China
| | - Zhenyu Zhao
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin 300192, China; School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - He Huang
- School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Biological and Pharmaceutical Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
3
|
El N, Christjansen MH, Smallwood EC, LaHay ME, McGaw SP, Pabody CM, MacCormack TJ. Taurine efflux counters the hydrodynamic impact of anaerobic metabolism to protect cardiorespiratory function under acute thermal stress in brook char (Salvelinus fontinalis). J Exp Biol 2025; 228:JEB249418. [PMID: 39670535 DOI: 10.1242/jeb.249418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
Upper thermal tolerance may be limited by convective oxygen transport in fish, but the mechanisms constraining heart function remain elusive. The activation of anaerobic metabolism imposes an osmotic stress on cardiomyocytes at high temperatures that must be countered to prevent swelling and cardiac dysfunction. We tested the hypothesis that cardiac taurine efflux is required to counter the osmotic impact of anaerobic end product accumulation in brook char, Salvelinus fontinalis. Fish were fed a diet enriched in β-alanine, a competitive inhibitor of the taurine transporter, to induce taurine deficiency and inhibit transporter function. In vivo, stroke volume increased by 60% and cardiac output doubled in control fish during a 2°C h-1 thermal ramp. Stroke volume was temperature insensitive in taurine-deficient (TD) fish, so cardiac output was 30% lower at high temperatures. The thermal sensitivity of aerobic metabolism did not differ, and lactate accumulated to a similar degree in the two diet treatment groups, indicating that taurine deficiency does not impact energy metabolism. Heart taurine efflux was absent and ventricular muscle osmolality was 40 mOsmol kg-1 higher in TD brook char following thermal stress. Swelling and decreased ventricular compliance likely impair diastolic filling to constrain stroke volume in TD fish. The adrenaline sensitivity of cardiac contractility and the regulation of intracellular pH in the brain and liver were also impacted in TD brook char. Taurine efflux appears necessary to counteract the hydrodynamic impact of activating anaerobic metabolism and this process may limit heart function under acute thermal stress.
Collapse
Affiliation(s)
- Nir El
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Mathilde H Christjansen
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Ellie C Smallwood
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Megan E LaHay
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Samuel P McGaw
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Claire M Pabody
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Tyson J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| |
Collapse
|
4
|
Keshavarzi M, Naraki K, Razavi BM, Hosseinzadeh H. A narrative review and new insights into the protective effects of taurine against drug side effects. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:203-230. [PMID: 39141023 DOI: 10.1007/s00210-024-03331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Taurine, a non-essential amino acid produced from cysteine, is abundant in body tissues and blood plasma. It plays vital roles in growth, osmosis, lipid metabolism, and neurohormonal modulation. Taurine has antioxidant, anti-apoptotic, and anti-inflammatory properties, and its deficiency can lead to various diseases including cardiovascular, diabetic, renal, and liver disorders. This report provides a comprehensive review of the functional properties of taurine in counteracting pharmaceutical-induced side effects. A search across databases such as Scopus, PubMed, MEDLINE, and Web of Science yielded 109 articles, of which 75 were included in the study. These results suggest that the protective effects of taurine involve mechanisms such as influencing pathways of Nrf2/OH-1, PI3-kinase/AKT and ERK2, boosting antioxidants (SOD, GPx and CAT), and suppression of inflammatory cytokines (TNF-α, IL-1β and IL-6). Overall, supplementation with taurine along with medications with significant side effects may mitigate these effects and enhance their efficacy. Further investigation of the interactions between taurine and other nutrients or compounds may provide insights into synergistic effects and novel therapeutic approaches.
Collapse
Affiliation(s)
- Majid Keshavarzi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Ren L, Pushpakumar S, Almarshood H, Das SK, Sen U. Epigenetic DNA Methylation and Protein Homocysteinylation: Key Players in Hypertensive Renovascular Damage. Int J Mol Sci 2024; 25:11599. [PMID: 39519150 PMCID: PMC11546175 DOI: 10.3390/ijms252111599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Hypertension has been a threat to the health of people, the mechanism of which, however, remains poorly understood. It is clinically related to loss of nephron function, glomerular sclerosis, or necrosis, resulting in renal functional declines. The mechanisms underlying hypertension's development and progression to organ damage, including hypertensive renal damage, remain to be fully elucidated. As a developing approach, epigenetics has been postulated to elucidate the phenomena that otherwise cannot be explained by genetic studies. The main epigenetic hallmarks, such as DNA methylation, histone acetylation, deacetylation, noncoding RNAs, and protein N-homocysteinylation have been linked with hypertension. In addition to contributing to endothelial dysfunction and oxidative stress, biologically active gases, including NO, CO, and H2S, are crucial regulators contributing to vascular remodeling since their complex interplay conducts homeostatic functions in the renovascular system. Importantly, epigenetic modifications also directly contribute to the pathogenesis of kidney damage via protein N-homocysteinylation. Hence, epigenetic modulation to intervene in renovascular damage is a potential therapeutic approach to treat renal disease and dysfunction. This review illustrates some of the epigenetic hallmarks and their mediators, which have the ability to diminish the injury triggered by hypertension and renal disease. In the end, we provide potential therapeutic possibilities to treat renovascular diseases in hypertension.
Collapse
Affiliation(s)
- Lu Ren
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (L.R.)
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (L.R.)
| | - Hebah Almarshood
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (L.R.)
| | - Swapan K. Das
- Department of Internal Medicine, Section on Endocrinology and Metabolism, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (L.R.)
| |
Collapse
|
6
|
Mukhopadhyay S, Dixit P, Khanom N, Sanghera G, McGurk KA. The Genetic Factors Influencing Cardiomyopathies and Heart Failure across the Allele Frequency Spectrum. J Cardiovasc Transl Res 2024; 17:1119-1139. [PMID: 38771459 PMCID: PMC11519107 DOI: 10.1007/s12265-024-10520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Heart failure (HF) remains a major cause of mortality and morbidity worldwide. Understanding the genetic basis of HF allows for the development of disease-modifying therapies, more appropriate risk stratification, and personalised management of patients. The advent of next-generation sequencing has enabled genome-wide association studies; moving beyond rare variants identified in a Mendelian fashion and detecting common DNA variants associated with disease. We summarise the latest GWAS and rare variant data on mixed and refined HF aetiologies, and cardiomyopathies. We describe the recent understanding of the functional impact of titin variants and highlight FHOD3 as a novel cardiomyopathy-associated gene. We describe future directions of research in this field and how genetic data can be leveraged to improve the care of patients with HF.
Collapse
Affiliation(s)
- Srinjay Mukhopadhyay
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
- School of Medicine, Cardiff University, Wales, UK
| | - Prithvi Dixit
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Najiyah Khanom
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Gianluca Sanghera
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Kathryn A McGurk
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK.
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
7
|
Yu P, Fan Y, Wu H. Effects of Caffeine-Taurine Co-Ingestion on Endurance Cycling Performance in High Temperature and Humidity Environments. Sports Health 2024; 16:711-721. [PMID: 38406865 PMCID: PMC11346225 DOI: 10.1177/19417381241231627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Taurine (TAU) and caffeine (CAF), as common ergogenic aids, are known to affect exercise performance; however, the effects of their combined supplementation, particularly in high temperature and humidity environments, have not been studied. HYPOTHESIS The combination of TAU and CAF will have a greater effect on endurance cycle performance and improve changes in physiological indicators during exercise compared with TAU or CAF supplementation alone and placebo. STUDY DESIGN Single-blind crossover randomized controlled study. LEVEL OF EVIDENCE Level 1. METHODS Twelve university students majoring in physical education volunteered to receive 4 different supplement ingestions: (1) placebo (maltodextrin), (2) TAU, (3) CAF, (4) TAU + CAF. After a 7-day washout period, participants completed a time to exhaustion (TTE) test in the heat (35°C, 65% relative humidity). RESULTS All experimental groups improved TTE compared with the placebo group. Peak and mean power of countermovement jump were significantly higher in the CAF group compared with the placebo group before the exhaustion exercise (P = 0.02, d = 1.2 and P = 0.04, d = 1.1, respectively). Blood lactate was significantly lower after the exhaustion test in the TAU group compared with the CAF (P < 0.01, d = 0.8) and TAU + CAF (P < 0.01, d = 0.7) groups. Core temperature in the TAU group was significantly reduced in the placebo group later in the exhaustion test (P < 0.01, d = 1.9). CONCLUSION In high temperature and humidity environments, acute TAU, CAF, and combined supplementation all improved TTE and did not affect recovery from lower limb neuromuscular fatigue compared with placebo, with TAU having the best effect. Combined supplementation failed to exhibit superimposed performance. CLINICAL RELEVANCE The results provide suggestions for the effects of TAU, CAF, and their combined intake on exercise performance in high temperature and humidity environments.
Collapse
Affiliation(s)
- Peiqi Yu
- Capital University of Physical Education and Sports, Beijing, China
- Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing, China
- Key Laboratory of Sports Function Assessment and Technical Analysis, Beijing, China
| | - Yongzhao Fan
- Department of Physical Education, Henan Normal University, Xinxiang, Henan, China
| | - Hao Wu
- Capital University of Physical Education and Sports, Beijing, China
- Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing, China
- Key Laboratory of Sports Function Assessment and Technical Analysis, Beijing, China
| |
Collapse
|
8
|
Tzang CC, Lin WC, Lin LH, Lin TY, Chang KV, Wu WT, Özçakar L. Insights into the cardiovascular benefits of taurine: a systematic review and meta-analysis. Nutr J 2024; 23:93. [PMID: 39148075 PMCID: PMC11325608 DOI: 10.1186/s12937-024-00995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) remains the foremost cause of mortality globally. Taurine, an amino acid, holds promise for cardiovascular health through mechanisms such as calcium regulation, blood pressure reduction, and antioxidant and anti-inflammatory effects. Despite these potential benefits, previous studies have yielded inconsistent results. This meta-analysis of randomized controlled trials (RCTs) aims to evaluate the existing evidence on the quantitative effects of taurine on hemodynamic parameters and cardiac function grading, which are indicative of overall cardiovascular health and performance. METHODS We conducted an electronic search across multiple databases, including Embase, PubMed, Web of Science, Cochrane CENTRAL, and ClinicalTrials.gov, from their inception to January 2, 2024. Our analysis focused on key cardiovascular outcomes, such as heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), left ventricular ejection fraction (LVEF), and New York Heart Association (NYHA) Functional Classification. Meta-regression was applied to explore dose-dependent relationships based on the total taurine dose administered during the treatment period. A subgroup analysis, stratified according to the baseline disease status of patients, was also conducted. RESULTS The analysis included a pooled sample of 808 participants from 20 randomized controlled trials. Taurine demonstrated a significant reduction in HR (weighted mean difference [WMD] = -3.579 bpm, 95% confidence interval [CI] = -6.044 to -1.114, p = 0.004), SBP (WMD = -3.999 mm Hg, 95% CI = -7.293 to -0.706, p = 0.017), DBP (WMD: -1.435 mm Hg, 95% CI: -2.484 to -0.386, p = 0.007), NYHA (WMD: -0.403, 95% CI: -0.522 to -0.283, p < 0.001), and a significant increase in LVEF (WMD: 4.981%, 95% CI: 1.556 to 8.407, p = 0.004). Meta-regression indicated a dose-dependent reduction in HR (coefficient = -0.0150 per g, p = 0.333), SBP (coefficient = -0.0239 per g, p = 0.113), DBP (coefficient = -0.0089 per g, p = 0.110), and NYHA (coefficient = -0.0016 per g, p = 0.111), and a positive correlation with LVEF (coefficient = 0.0285 per g, p = 0.308). No significant adverse effects were observed compared to controls. In subgroup analysis, taurine significantly improved HR in heart failure patients and healthy individuals. Taurine significantly reduced SBP in healthy individuals, heart failure patients, and those with other diseases, while significantly lowered DBP in hypertensive patients It notably increased LVEF in heart failure patients and improved NYHA functional class in both heart failure patients and those with other diseases. CONCLUSIONS Taurine showed noteworthy effects in preventing hypertension and enhancing cardiac function. Individuals prone to CVDs may find it advantageous to include taurine in their daily regimen.
Collapse
Affiliation(s)
- Chih-Chen Tzang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Wei-Chen Lin
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Long-Huei Lin
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Linkou, Taoyuan, Taiwan, R.O.C
| | - Ting-Yu Lin
- Department of Physical Medicine and Rehabilitation, Lo-Hsu Medical Foundation, Inc., Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Ke-Vin Chang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan.
- Center for Regional Anesthesia and Pain Medicine, Wang-Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Wei-Ting Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan.
| | - Levent Özçakar
- Department of Physical and Rehabilitation Medicine, Hacettepe University Medical School, Ankara, Turkey
| |
Collapse
|
9
|
Wang L, Xie Z, Wu M, Chen Y, Wang X, Li X, Liu F. The role of taurine through endoplasmic reticulum in physiology and pathology. Biochem Pharmacol 2024; 226:116386. [PMID: 38909788 DOI: 10.1016/j.bcp.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Taurine is a sulfur-containing amino acid found in many cell organelles that plays a wide range of biological roles, including bile salt production, osmoregulation, oxidative stress reduction, and neuromodulation. Taurine treatments have also been shown to ameliorate the onset and development of many diseases, including hypertension, fatty liver, neurodegenerative diseases and ischemia-reperfusion injury, by exerting antioxidant, anti-inflammatory, and antiapoptotic effects. The endoplasmic reticulum (ER) is a dynamic organelle involved in a wide range of cellular functions, including lipid metabolism, calcium storage and protein stabilization. Under stress, the disruption of the ER environment leads to the accumulation of misfolded proteins and a characteristic stress response called the unfolded protein response (UPR). The UPR protects cells from stress and helps to restore cellular homeostasis, but its activation promotes cell death under prolonged ER stress. Recent studies have shown that ER stress is closely related to the onset and development of many diseases. This article reviews the beneficial effects and related mechanisms of taurine by regulating the ER in different physiological and pathological states, with the aim of providing a reference for further research and clinical applications.
Collapse
Affiliation(s)
- Linfeng Wang
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Zhenxing Xie
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Mengxian Wu
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Yunayuan Chen
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Xin Wang
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Xingke Li
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China.
| | - Fangli Liu
- College of Nursing and Health, Henan University, Kaifeng 475004, China.
| |
Collapse
|
10
|
Murashevych B, Bilenkyi G, Girenko D, Bilenkyi E. N-Chlorotaurine Solutions as Agents for Infusion Detoxification Therapy: Preclinical Studies. Int J Mol Sci 2024; 25:8345. [PMID: 39125912 PMCID: PMC11313245 DOI: 10.3390/ijms25158345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
N-chlorotaurine (NCT) is a broad-spectrum antimicrobial agent with outstanding tolerability, effective for topical and inhalation use. This paper presents the results of studies of single and repeated intravenous infusions of NCT to laboratory animals. The studies were conducted on female Wistar Han rats. The effect of NCT infusions on the general condition, behavioral reactions, main biochemical and hematological parameters, hemocoagulation system, cardiovascular system, and on the condition of the internal organs was studied. It was found that NCT infusions do not reveal deviations in the studied parameters that could indicate a toxic effect. The estimated LD50 is more than 80 mg/kg. In a subchronic experiment, a statistically significant decrease in cholesterol (by up to 11%), glucose (by up to 15%) and excess bases (up to four times) in the blood, and an increase in heart rate (by up to 31%) and frequency of defecations (by up to 35%), as well as pronounced antiplatelet effect, were found. In animals with simulated endotoxicosis, a decrease in the cytolysis and oxidative stress markers was observed. Such effects are caused by both chlorine-active compounds and taurine.The results obtained indicate broad prospects for the use of NCT solutions as an infusion detoxifying agent.
Collapse
Affiliation(s)
- Bohdan Murashevych
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, 49044 Dnipro, Ukraine
| | - Gennadii Bilenkyi
- Clinical Hospital of Emergency Medical Care of the Dnipro City Council, 65 Volodymyra Antonovycha Str., 49000 Dnipro, Ukraine
| | - Dmitry Girenko
- Department of Physical Chemistry, Ukrainian State University of Chemical Technology, 8 Gagarina Ave., 49005 Dnipro, Ukraine;
| | - Emil Bilenkyi
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, 49044 Dnipro, Ukraine
| |
Collapse
|
11
|
Kumrungsee T. Is hepatic GABA transaminase a promising target for obesity and epilepsy treatments? Biosci Biotechnol Biochem 2024; 88:839-849. [PMID: 38749549 DOI: 10.1093/bbb/zbae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/05/2024] [Indexed: 07/23/2024]
Abstract
γ-Aminobutyric acid (GABA) transaminase (GABA-T) is a GABA-degrading enzyme that plays an essential role in regulating GABA levels and maintaining supplies of GABA. Although GABA in the mammalian brain was discovered 70 years ago, research on GABA and GABA-T has predominantly focused on the brain. Notwithstanding the high activity and expression of GABA-T in the liver, the exact functions of GABA-T in the liver remain unknown. This article reviews the up-to-date information on GABA-T in the liver. It presents recent findings on the role of liver GABA-T in food intake suppression and appetite regulation. Finally, the potential functions of liver GABA-T in other neurological diseases, natural GABA-T inhibitors, and future perspectives in this research area are discussed.
Collapse
Affiliation(s)
- Thanutchaporn Kumrungsee
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Smart Agriculture, Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
12
|
Mires S, Sommella E, Merciai F, Salviati E, Caponigro V, Basilicata MG, Marini F, Campiglia P, Baquedano M, Dong T, Skerritt C, Eastwood KA, Caputo M. Plasma metabolomic and lipidomic profiles accurately classify mothers of children with congenital heart disease: an observational study. Metabolomics 2024; 20:70. [PMID: 38955892 PMCID: PMC11219374 DOI: 10.1007/s11306-024-02129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/08/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Congenital heart disease (CHD) is the most common congenital anomaly, representing a significant global disease burden. Limitations exist in our understanding of aetiology, diagnostic methodology and screening, with metabolomics offering promise in addressing these. OBJECTIVE To evaluate maternal metabolomics and lipidomics in prediction and risk factor identification for childhood CHD. METHODS We performed an observational study in mothers of children with CHD following pregnancy, using untargeted plasma metabolomics and lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). 190 cases (157 mothers of children with structural CHD (sCHD); 33 mothers of children with genetic CHD (gCHD)) from the children OMACp cohort and 162 controls from the ALSPAC cohort were analysed. CHD diagnoses were stratified by severity and clinical classifications. Univariate, exploratory and supervised chemometric methods were used to identify metabolites and lipids distinguishing cases and controls, alongside predictive modelling. RESULTS 499 metabolites and lipids were annotated and used to build PLS-DA and SO-CovSel-LDA predictive models to accurately distinguish sCHD and control groups. The best performing model had an sCHD test set mean accuracy of 94.74% (sCHD test group sensitivity 93.33%; specificity 96.00%) utilising only 11 analytes. Similar test performances were seen for gCHD. Across best performing models, 37 analytes contributed to performance including amino acids, lipids, and nucleotides. CONCLUSIONS Here, maternal metabolomic and lipidomic analysis has facilitated the development of sensitive risk prediction models classifying mothers of children with CHD. Metabolites and lipids identified offer promise for maternal risk factor profiling, and understanding of CHD pathogenesis in the future.
Collapse
Affiliation(s)
- Stuart Mires
- Translational Health Sciences, University of Bristol, Bristol, UK.
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK.
| | | | | | | | - Vicky Caponigro
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | | | - Mai Baquedano
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Tim Dong
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Clare Skerritt
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Kelly-Ann Eastwood
- Translational Health Sciences, University of Bristol, Bristol, UK
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Massimo Caputo
- Translational Health Sciences, University of Bristol, Bristol, UK
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| |
Collapse
|
13
|
McCauley SR, Clark SD, Leach SB, Quest BW, Streeter RM. Evaluation of taurine and carnitine concentrations in whole blood, plasma, skeletal muscle and cardiac muscle in dogs. J Anim Physiol Anim Nutr (Berl) 2024; 108:999-1015. [PMID: 38432690 DOI: 10.1111/jpn.13946] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/12/2023] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
Little is known about how plasma and whole blood taurine and plasma carnitine correlate to concentrations in skeletal and cardiac muscle and the effects of diet in dogs. The purpose of this study was to evaluate the correlation among plasma, skeletal and cardiac muscle carnitine and taurine and whole blood taurine and determine the effect of diet. The study protocol was approved by the Pet Food Solutions Institutional Animal Care and Use Committee. Thirty-three mixed-breed hounds and 32 beagles were evaluated at Day 0 then removed from their baseline diet and randomized to a test diet: high animal protein, grain-inclusive (HA-GI), low animal protein, grain-free (LA-GF), low animal protein, grain-inclusive (LA-GI), or high animal protein, grain-free (HA-GF). Blood was drawn every 30 days and endomyocardial (mixed breeds only) and skeletal muscle biopsies were collected at Days 0 and 180. The correlations between plasma and whole blood taurine, or plasma carnitine and skeletal and cardiac muscle concentrations were weak (p < 0.01-0.05). Mixed-breed hounds had increased (p = 0.029) whole blood taurine compared to beagles. Plasma taurine was lower with diet HA-GF, (p = 0.009) however, all diets had increased taurine from Day 0 and were, on average within the laboratory reference range. Dogs fed the HA-GI diet had increased cardiac muscle carnitine esters (p = 0.014). Increased carnitine esters were also appreciated in cardiac muscle in all diets from Day 0 to 180 (p = 0.0001). On Day 180 mixed-breed hounds had increased skeletal total carnitine (p < 0.001) compared to all time points and breeds. This study observed no correlation between plasma, whole blood, skeletal and cardiac muscle taurine concentrations but noted some effects between time, breed and diet.
Collapse
Affiliation(s)
| | | | - Stacey B Leach
- College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | | | | |
Collapse
|
14
|
Liu H, Ryu D, Hwang S, Lee SS. Therapies for Cirrhotic Cardiomyopathy: Current Perspectives and Future Possibilities. Int J Mol Sci 2024; 25:5849. [PMID: 38892040 PMCID: PMC11173074 DOI: 10.3390/ijms25115849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Cirrhotic cardiomyopathy (CCM) is defined as cardiac dysfunction associated with cirrhosis in the absence of pre-existing heart disease. CCM manifests as the enlargement of cardiac chambers, attenuated systolic and diastolic contractile responses to stress stimuli, and repolarization changes. CCM significantly contributes to mortality and morbidity in patients who undergo liver transplantation and contributes to the pathogenesis of hepatorenal syndrome/acute kidney injury. There is currently no specific treatment. The traditional management for non-cirrhotic cardiomyopathies, such as vasodilators or diuretics, is not applicable because an important feature of cirrhosis is decreased systemic vascular resistance; therefore, vasodilators further worsen the peripheral vasodilatation and hypotension. Long-term diuretic use may cause electrolyte imbalances and potentially renal injury. The heart of the cirrhotic patient is insensitive to cardiac glycosides. Therefore, these types of medications are not useful in patients with CCM. Exploring the therapeutic strategies of CCM is of the utmost importance. The present review summarizes the possible treatment of CCM. We detail the current status of non-selective beta-blockers (NSBBs) in the management of cirrhotic patients and discuss the controversies surrounding NSBBs in clinical practice. Other possible therapeutic agents include drugs with antioxidant, anti-inflammatory, and anti-apoptotic functions; such effects may have potential clinical application. These drugs currently are mainly based on animal studies and include statins, taurine, spermidine, galectin inhibitors, albumin, and direct antioxidants. We conclude with speculations on the future research directions in CCM treatment.
Collapse
Affiliation(s)
- Hongqun Liu
- Liver Unit, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (H.L.); (D.R.); (S.H.)
| | - Daegon Ryu
- Liver Unit, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (H.L.); (D.R.); (S.H.)
- Division of Gastroenterology, Yangsan Hospital, Pusan National University School of Medicine, Pusan 46033, Republic of Korea
| | - Sangyoun Hwang
- Liver Unit, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (H.L.); (D.R.); (S.H.)
- Department of Internal Medicine, Dongnam Institute of Radiological and Medical Sciences, Pusan 46033, Republic of Korea
| | - Samuel S. Lee
- Liver Unit, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (H.L.); (D.R.); (S.H.)
| |
Collapse
|
15
|
Wang Y, Gao B, Chen X, Shi X, Li S, Zhang Q, Zhang C, Piao F. Improvement of diabetes-induced spinal cord axon injury with taurine via nerve growth factor-dependent Akt/mTOR pathway. Amino Acids 2024; 56:32. [PMID: 38637413 PMCID: PMC11026277 DOI: 10.1007/s00726-024-03392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Diabetic neuropathy (DN) is a common neurological complication caused by diabetes mellitus (DM). Axonal degeneration is generally accepted to be the major pathological change in peripheral DN. Taurine has been evidenced to be neuroprotective in various aspects, but its effect on spinal cord axon injury (SCAI) in DN remains barely reported. This study showed that taurine significantly ameliorated axonal damage of spinal cord (SC), based on morphological and functional analyses, in a rat model of DN induced by streptozotocin (STZ). Taurine was also found to induce neurite outgrowth in cultured cerebral cortex neurons with high glucose exposure. Moreover, taurine up-regulated the expression of nerve growth factor (NGF) and neurite outgrowth relative protein GAP-43 in rat DN model and cultured cortical neurons/VSC4.1 cells. Besides, taurine increased the activating phosphorylation signals of TrkA, Akt, and mTOR. Mechanistically, the neuroprotection by taurine was related to the NGF-pAKT-mTOR axis, because either NGF-neutralizing antibody or Akt or mTOR inhibitors was found to attenuate its beneficial effects. Together, our results demonstrated that taurine promotes spinal cord axon repair in a model of SCAI in STZ-induced diabetic rats, mechanistically associating with the NGF-dependent activation of Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yachen Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Bihu Gao
- Department of Nephrology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaochi Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Shuangyue Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Qing Zhang
- Department of Integrative Laboratory, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.
| | - Cong Zhang
- Department of Nutrition and Food Safety, Dalian Medical University, Dalian, 116044, Liaoning, China.
| | - Fengyuan Piao
- Department of Scientific Research Project, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.
| |
Collapse
|
16
|
Mughal S, Sabater-Arcis M, Artero R, Ramón-Azcón J, Fernández-Costa JM. Taurine activates the AKT-mTOR axis to restore muscle mass and contractile strength in human 3D in vitro models of steroid myopathy. Dis Model Mech 2024; 17:dmm050540. [PMID: 38655653 PMCID: PMC11073513 DOI: 10.1242/dmm.050540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/06/2024] [Indexed: 04/26/2024] Open
Abstract
Steroid myopathy is a clinically challenging condition exacerbated by prolonged corticosteroid use or adrenal tumors. In this study, we engineered a functional three-dimensional (3D) in vitro skeletal muscle model to investigate steroid myopathy. By subjecting our bioengineered muscle tissues to dexamethasone treatment, we reproduced the molecular and functional aspects of this disease. Dexamethasone caused a substantial reduction in muscle force, myotube diameter and induced fatigue. We observed nuclear translocation of the glucocorticoid receptor (GCR) and activation of the ubiquitin-proteasome system within our model, suggesting their coordinated role in muscle atrophy. We then examined the therapeutic potential of taurine in our 3D model for steroid myopathy. Our findings revealed an upregulation of phosphorylated AKT by taurine, effectively countering the hyperactivation of the ubiquitin-proteasomal pathway. Importantly, we demonstrate that discontinuing corticosteroid treatment was insufficient to restore muscle mass and function. Taurine treatment, when administered concurrently with corticosteroids, notably enhanced contractile strength and protein turnover by upregulating the AKT-mTOR axis. Our model not only identifies a promising therapeutic target, but also suggests combinatorial treatment that may benefit individuals undergoing corticosteroid treatment or those diagnosed with adrenal tumors.
Collapse
Affiliation(s)
- Sheeza Mughal
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac 10-12, E08028 Barcelona, Spain
| | - Maria Sabater-Arcis
- University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
- Translational Genomics Group, Incliva Health Research Institute, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
- Joint Unit Incliva- CIPF, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
| | - Ruben Artero
- University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
- Translational Genomics Group, Incliva Health Research Institute, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
- Joint Unit Incliva- CIPF, Dr Moliner 50, E46100 Burjassot, Valencia, Spain
| | - Javier Ramón-Azcón
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac 10-12, E08028 Barcelona, Spain
- Institució Catalana de Reserca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, E08010 Barcelona, Spain
| | - Juan M. Fernández-Costa
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac 10-12, E08028 Barcelona, Spain
| |
Collapse
|
17
|
Zhao DD, Gai YD, Li C, Fu ZZ, Yin DQ, Xie M, Dai JY, Wang XX, Li YX, Wu GF, Feng Y, Hu JM, Lin SM, Yang JC. Dietary taurine effect on intestinal barrier function, colonic microbiota and metabolites in weanling piglets induced by LPS. Front Microbiol 2023; 14:1259133. [PMID: 38188568 PMCID: PMC10770862 DOI: 10.3389/fmicb.2023.1259133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Diarrhea in piglets is one of the most important diseases and a significant cause of death in piglets. Preliminary studies have confirmed that taurine reduces the rate and index of diarrhea in piglets induced by LPS. However, there is still a lack of relevant information on the specific target and mechanism of action of taurine. Therefore, we investigated the effects of taurine on the growth and barrier functions of the intestine, microbiota composition, and metabolite composition of piglets induced by LPS. Eighteen male weaned piglets were randomly divided into the CON group (basal diet + standard saline injection), LPS group (basal diet + LPS-intraperitoneal injection), and TAU + LPS group (basal diet + 0.3% taurine + LPS-intraperitoneal injection). The results show that taurine significantly increased the ADG and decreased the F/G (p < 0.05) compared with the group of CON. The group of TAU + LPS significantly improved colonic villous damage (p < 0.05). The expression of ZO-1, Occludin and Claudin-1 genes and proteins were markedly up-regulated (p < 0.05). Based on 16s rRNA sequencing analysis, the relative abundance of Lactobacilluscae and Firmicutes in the colon was significantly higher in the LPS + TAU group compared to the LPS group (p < 0.05). Four metabolites were significantly higher and one metabolite was significantly lower in the TAU + LPS group compared to the LPS group (p < 0.01). The above results show that LPS disrupts intestinal microorganisms and metabolites in weaned piglets and affects intestinal barrier function. Preventive addition of taurine enhances beneficial microbiota, modulates intestinal metabolites, and strengthens the intestinal mechanical barrier. Therefore, taurine can be used as a feed additive to prevent intestinal damage by regulating intestinal microorganisms and metabolites.
Collapse
Affiliation(s)
- Dong-dong Zhao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ye-dan Gai
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chen Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zi-zheng Fu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - De-Qi Yin
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Mingxin Xie
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Jing-yuan Dai
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xin-xin Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yan-xi Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Gao-feng Wu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ying Feng
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jian-min Hu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shu-mei Lin
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jian-cheng Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
18
|
Hwang H, Rampoldi A, Forghani P, Li D, Fite J, Boland G, Maher K, Xu C. Space microgravity increases expression of genes associated with proliferation and differentiation in human cardiac spheres. NPJ Microgravity 2023; 9:88. [PMID: 38071377 PMCID: PMC10710480 DOI: 10.1038/s41526-023-00336-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/21/2023] [Indexed: 04/12/2024] Open
Abstract
Efficient generation of cardiomyocytes from human-induced pluripotent stem cells (hiPSCs) is important for their application in basic and translational studies. Space microgravity can significantly change cell activities and function. Previously, we reported upregulation of genes associated with cardiac proliferation in cardiac progenitors derived from hiPSCs that were exposed to space microgravity for 3 days. Here we investigated the effect of long-term exposure of hiPSC-cardiac progenitors to space microgravity on global gene expression. Cryopreserved 3D hiPSC-cardiac progenitors were sent to the International Space Station (ISS) and cultured for 3 weeks under ISS microgravity and ISS 1 G conditions. RNA-sequencing analyses revealed upregulation of genes associated with cardiac differentiation, proliferation, and cardiac structure/function and downregulation of genes associated with extracellular matrix regulation in the ISS microgravity cultures compared with the ISS 1 G cultures. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes mapping identified the upregulation of biological processes, molecular function, cellular components, and pathways associated with cell cycle, cardiac differentiation, and cardiac function. Taking together, these results suggest that space microgravity has a beneficial effect on the differentiation and growth of cardiac progenitors.
Collapse
Affiliation(s)
- Hyun Hwang
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Antonio Rampoldi
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Parvin Forghani
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Dong Li
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | | | | | - Kevin Maher
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Chunhui Xu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
19
|
Huang Y, Shang H, Wang C, Cui H, Tang S, Chang H, Yang H, Jia X, Wan Y. Spatially Resolved Co-Imaging of Polyhalogenated Xenobiotics and Endogenous Metabolites Reveals Xenobiotic-Induced Metabolic Alterations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19330-19340. [PMID: 37983170 DOI: 10.1021/acs.est.3c05817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A large group of polyhalogenated compounds has been added to the list of persistent organic pollutants in a global convention endorsed by over 100 nations. Once entering the biotas, these pollutants are transported to focal sites of toxicological action and affected endogenous metabolites, which exhibited distinct tissue or organ distribution patterns. However, no study is available to achieve simultaneous mapping of the spatial distributions of xenobiotics and endogenous metabolites for clarifying the molecular mechanism of toxicities. Herein, we present a sensitive mass spectrometry imaging method─tetraphenyl phosphonium chloride-enhanced ionization coupled with air flow-assisted ionization-Orbitrap mass spectrometry─which simultaneously determined the spatial distributions of polyhalogenated xenobiotics and endogenous metabolites. The spatially resolved toxicokinetics and toxicodynamics of typical polyhalogenated compounds (chlorinated paraffins (CPs) and hexabromocyclododecane (HBCD)) were assessed in zebrafish. Co-imaging of polyhalogenated compounds and metabolites visualized the major accumulation organs and maternal transfer of HBCD and CPs, and it clarified the reproductive toxicity of HBCD. CPs were accumulated in the liver, heart, and brain and decreased the concentrations of polyamine/inosine-related metabolites and lipid molecules in these organs. HBCD accumulated in the ovary and was effectively transferred to eggs, and it also disrupted normal follicular development and impaired the production of mature eggs from the ovary by inhibiting expressions of the luteinizing hormone/choriogonadotropin receptor gene. The toxic effects of metabolic disruptions were validated by organ-specific histopathological examinations. These results highlight the necessity to assess the distributions and bioeffects of pollutants in a spatial perspective.
Collapse
Affiliation(s)
- Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hailin Shang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Population Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hong Chang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hui Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xudong Jia
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Liu H, Nguyen HH, Hwang SY, Lee SS. Oxidative Mechanisms and Cardiovascular Abnormalities of Cirrhosis and Portal Hypertension. Int J Mol Sci 2023; 24:16805. [PMID: 38069125 PMCID: PMC10706054 DOI: 10.3390/ijms242316805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
In patients with portal hypertension, there are many complications including cardiovascular abnormalities, hepatorenal syndrome, ascites, variceal bleeding, and hepatic encephalopathy. The underlying mechanisms are not yet completely clarified. It is well known that portal hypertension causes mesenteric congestion which produces reactive oxygen species (ROS). ROS has been associated with intestinal mucosal injury, increased intestinal permeability, enhanced gut bacterial overgrowth, and translocation; all these changes result in increased endotoxin and inflammation. Portal hypertension also results in the development of collateral circulation and reduces liver mass resulting in an overall increase in endotoxin/bacteria bypassing detoxication and immune clearance in the liver. Endotoxemia can in turn aggravate oxidative stress and inflammation, leading to a cycle of gut barrier dysfunction → endotoxemia → organ injury. The phenotype of cardiovascular abnormalities includes hyperdynamic circulation and cirrhotic cardiomyopathy. Oxidative stress is often accompanied by inflammation; thus, blocking oxidative stress can minimize the systemic inflammatory response and alleviate the severity of cardiovascular diseases. The present review aims to elucidate the role of oxidative stress in cirrhosis-associated cardiovascular abnormalities and discusses possible therapeutic effects of antioxidants on cardiovascular complications of cirrhosis including hyperdynamic circulation, cirrhotic cardiomyopathy, and hepatorenal syndrome.
Collapse
Affiliation(s)
| | | | | | - Samuel S. Lee
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada (H.H.N.); (S.Y.H.)
| |
Collapse
|
21
|
Zhou Y, Xiong Y, He X, Xue X, Tang G, Mei J. Depuration and Starvation Regulate Metabolism and Improve Flesh Quality of Yellow Catfish ( Pelteobagrus fulvidraco). Metabolites 2023; 13:1137. [PMID: 37999233 PMCID: PMC10672940 DOI: 10.3390/metabo13111137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Fat deposition and off-flavor in the muscle are the main problems affecting flesh quality in aquaculture fish, especially in catfish, leading to low acceptability and reduced market price. Yellow catfish is an important aquaculture fish in China. In this study, 40 days of depuration and starvation treatment were explored to improve the muscle quality of aquaculture yellow catfish. After depuration and starvation, the body weight, condition factor (CF) and mesenteric fat index (MFI) were all significantly decreased 20 days after treatment. The metabolomic profiles in muscle were characterized to analyze the muscle quality in yellow catfish. The results showed that the content of ADP, AMP, IMP, glutamic acid and taurine were significantly increased between 20 and 40 days post-treatment in the muscle of yellow catfish during the treatment, which was positively associated with the flesh tenderness and quality. In contrast, aldehydes and ketones associated with off-flavors and corticosterone associated with bitter taste were all decreased at 20 days post-treatment. Considering the balance of body weight loss and flesh quality improvement, depuration and starvation for around 20 days is suitable for aquaculture yellow catfish. Our study not only provides an effective method to improve the flesh quality of aquaculture yellow catfish but also reveals the potential mechanism in this process.
Collapse
Affiliation(s)
- Ya Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China; (X.H.); (X.X.); (G.T.)
| | - Yang Xiong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xianlin He
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China; (X.H.); (X.X.); (G.T.)
| | - Xiaoshu Xue
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China; (X.H.); (X.X.); (G.T.)
| | - Guo Tang
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China; (X.H.); (X.X.); (G.T.)
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
22
|
Martínez-Burguete T, Peña-Marín ES, Llera-Herrera RA, Jiménez-Martínez LD, Martínez-García R, Alvarez-Villagomez CS, Alvarez-González CA. Identification and expression analysis of transcripts involved in taurine biosynthesis during early ontogeny of tropical gar Atractosteus tropicus. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111501. [PMID: 37562582 DOI: 10.1016/j.cbpa.2023.111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
In fishes, the availability of taurine is regulated during ontogenetic development, where its endogenous synthesis capacity is species dependent. Thus, different pathways and involved enzymes have been described: pathway I (cysteine sulfinate-dependent pathway), cysteine dioxygenase type 1 (cdo1) and cysteine sulfinic acid decarboxylase (csad); pathway II (cysteic acid pathway), cdo1 and glutamic acid decarboxylase (gad); and pathway III (cysteamine pathway), 2-aminoethanethiol dioxygenase (ado); whereas taurine transporter (taut) is responsible for taurine entry into cells on the cell membrane and the mitochondria. This study determined if the tropical gar (Atractosteus tropicus), an ancient holostean fish model, has the molecular mechanism to synthesize taurine through the identification and analysis expression of transcripts coding for proteins involved in its biosynthesis and transportation, at different embryo-larvae stages and in different organs of juveniles (31 dah). We observed a fluctuating expression of all transcripts involved in the three pathways at all analyzed stages. All transcripts are expressed during the beginning of larval development; however, ado and taut show a peak expression at 9 dah, and all transcripts but csad decreased at 23 dah, when the organism ended the larval period. Furthermore, at 31 dah, we observed taut expression in all examined organs. The transcripts involved in pathways I and III are expressed differently across all organs, whereas pathway II was only observed in the brain, eye, and skin. The results suggested that taurine biosynthesis in tropical gar is regulated during its early development before first feeding, and the pathway might also be organ-type dependent.
Collapse
Affiliation(s)
- Talhia Martínez-Burguete
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, CP.86139 Villahermosa, Tabasco, Mexico.
| | - Emyr Saúl Peña-Marín
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California (UABC), Ensenada 21100, Baja California, Mexico.
| | - Raúl Antonio Llera-Herrera
- Instituto de Ciencias del Mar y Limnología - Unidad Académica Mazatlán, Universidad Nacional Autónoma de México, Joel Montes Camarena S/N, PO Box 811, Mazatlán, Sinaloa, Mexico.
| | - Luis Daniel Jiménez-Martínez
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Carretera Nacajuca-Jalpa de Méndez R7a Rivera Alta, C.P. 86200 Jalpa de Méndez, Tabasco, Mexico.
| | - Rafael Martínez-García
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, CP.86139 Villahermosa, Tabasco, Mexico.
| | - Carina Shianya Alvarez-Villagomez
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, CP.86139 Villahermosa, Tabasco, Mexico.
| | - Carlos Alfonso Alvarez-González
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, CP.86139 Villahermosa, Tabasco, Mexico.
| |
Collapse
|
23
|
Karmazyn M, Gan XT. Probiotics as potential treatments to reduce myocardial remodelling and heart failure via the gut-heart axis: State-of-the-art review. Mol Cell Biochem 2023; 478:2539-2551. [PMID: 36892791 DOI: 10.1007/s11010-023-04683-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
Probiotics are considered to represent important modulators of gastrointestinal health through increased colonization of beneficial bacteria thus altering the gut microflora. Although these beneficial effects of probiotics are now widely recognized, emerging evidence suggests that alterations in the gut microflora also affect numerous other organ systems including the heart through a process generally referred to as the gut-heart axis. Moreover, cardiac dysfunction such as that seen in heart failure can produce an imbalance in the gut flora, known as dysbiosis, thereby further contributing to cardiac remodelling and dysfunction. The latter occurs by the production of gut-derived pro-inflammatory and pro-remodelling factors which exacerbate cardiac pathology. One of the key contributors to gut-dependent cardiac pathology is trimethylamine N-oxide (TMAO), a choline and carnitine metabolic by-product first synthesized as trimethylamine which is then converted into TMAO by a hepatic flavin-containing monooxygenase. The production of TMAO is particularly evident with regular western diets containing high amounts of both choline and carnitine. Dietary probiotics have been shown to reduce myocardial remodelling and heart failure in animal models although the precise mechanisms for these effects are not completely understood. A large number of probiotics have been shown to possess a reduced capacity to synthesize gut-derived trimethylamine and therefore TMAO thereby suggesting that inhibition of TMAO is a factor mediating the beneficial cardiac effects of probiotics. However, other potential mechanisms may also be important contributing factors. Here, we discuss the potential benefit of probiotics as effective therapeutic tools for attenuating myocardial remodelling and heart failure.
Collapse
Affiliation(s)
- Morris Karmazyn
- Department of Pharmacology and Physiology, University of Western Ontario, London, ON, N6G 2X6, Canada.
| | - Xiaohong Tracey Gan
- Department of Pharmacology and Physiology, University of Western Ontario, London, ON, N6G 2X6, Canada
| |
Collapse
|
24
|
Teuber A, Caniglia G, Kranz C, Mizaikoff B. Graphene-enhanced quantum cascade laser infrared spectroscopy using diamond thin-film waveguides. Analyst 2023; 148:5144-5151. [PMID: 37702563 DOI: 10.1039/d3an00824j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Diamond thin-film waveguides were combined with quantum cascade lasers augmented by drop-casted graphene enabling surface-enhanced infrared absorption spectroscopy. Enhancing the signal provides access to an even more pronounced vibrational signature suitable for analytical scenarios where only a small sample volume and/or low analyte concentration levels are prevalent. To demonstrate the utility of this concept, taurine was investigated as a model analyte.
Collapse
Affiliation(s)
- Andrea Teuber
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, 89081 Ulm, Germany.
| | - Giada Caniglia
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, 89081 Ulm, Germany.
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, 89081 Ulm, Germany.
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, 89081 Ulm, Germany.
- Hahn-Schickard, 89077 Ulm, Germany
| |
Collapse
|
25
|
Buzdağlı Y, Eyipınar CD, Öget F, Şıktar E, Forbes SC, Tekin A. Taurine supplementation enhances anaerobic power in elite speed skaters: A double-blind, randomized, placebo-controlled, crossover study. Biol Sport 2023; 40:741-751. [PMID: 37398976 PMCID: PMC10286601 DOI: 10.5114/biolsport.2023.119990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/31/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2023] Open
Abstract
Taurine (2-aminoethanesulfonic acid) is a semi-essential sulphur-containing amino acid abundant in skeletal muscle. Taurine supplementation is popular among athletes and has been purported to enhance exercise performance. This study aimed to investigate the ergogenic effects of taurine supplementation on anaerobic (Wingate; WanT) performance, blood lactate, ratings of perceived exertion (RPE), and countermovement vertical jump (CMJ) in elite athletes. For this study, randomized, double-blind, placebo-controlled crossover designs were used. Thirty young male speed skaters were randomly assigned to either taurine (TAU; single dose of 6 g) or placebo (PLAC; single dose of 6 g) 60 minutes before testing. Following a 72-hour washout, period participants completed the opposite condition. TAU improved peak (Δ% = 13.41, p < 0.001, d = 1.71), mean (Δ% = 3.95, p = 0.002, d = 1.04), and minimum power output (Δ% = 7.89, p = 0.034, d = 0.48) compared to placebo. Further, RPE (Δ% = -10.98, p = 0.002, d = 0.46) was significantly lower following the WanT in the TAU condition compared to placebo. There were no differences between conditions for the countermovement vertical jump. In conclusion, acute TAU supplementation augments anaerobic performance in elite speed skaters.
Collapse
Affiliation(s)
- Yusuf Buzdağlı
- Department of Coaching Education, Faculty of Sport Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Cemre Didem Eyipınar
- Department of Physical Education and Sport, Faculty of Sport Sciences, Gaziantep University, Gaziantep, Turkey
| | - Furkan Öget
- Department of Physical Education and Sport, Faculty of Sport Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Erdinç Şıktar
- Department of Coaching Education, Faculty of Sport Sciences, Atatürk University, Erzurum, Turkey
| | - Scott C. Forbes
- Department of Physical Education, Faculty of Education, Brandon University, Brandon, Manitoba, Canada
| | - Aslıhan Tekin
- Department of Physical Education and Sport, Faculty of Sport Sciences, İbrahim Çeçen University, Ağrı, Turkey
| |
Collapse
|
26
|
Liu Y, Hu J, Li MM, Zhao G. Effects of taurine on rumen fermentation, nutrient digestion, rumen bacterial community and metabolomics and nitrogen metabolism in beef steers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3414-3426. [PMID: 36710505 DOI: 10.1002/jsfa.12474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The objectives of this study were to investigate the effects of taurine on rumen fermentation, rumen bacterial community and metabolomics, nitrogen metabolism and plasma biochemical parameters in beef steers. Six castrated Simmental steers (liveweight 402 ± 34 kg) and three levels of taurine (0, 20, 40 g d-1 ) were assigned in a replicated 3 × 3 Latin square design. Each experimental period included 15 days for adaptation and 5 days for sampling. RESULTS Supplementing taurine did not affect the ruminal pH or concentrations of ammonia nitrogen and volatile fatty acids (P > 0.10), but linearly increased the ruminal concentrations of taurine (P < 0.001) and microbial crude protein (P = 0.041). Supplementing taurine linearly increased the neutral detergent fiber digestibility (P = 0.018), and tended to linearly increase dry matter digestibility (P = 0.095), tended to increase the fecal nitrogen excretion (P = 0.065) and increased the urinary taurine excretion (P < 0.001). Supplementing taurine quadratically increased the plasma concentration of triglycerides (P = 0.017), tended to linearly decrease growth hormone (P = 0.074), but did not affect other plasma parameters (P > 0.10). Supplementing taurine modified the rumen bacterial community and increased the ruminal concentration of taurine metabolite 2-hydroxyethoxysulfonic acid (P < 0.001). CONCLUSION It was concluded that taurine improved ruminal microbial crude protein synthesis and increased fiber digestibility through modifying rumen bacterial community. It is necessary to clarify the ruminal hydrolysis of taurine in steers. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yufeng Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Jinming Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Meng M Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Guangyong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| |
Collapse
|
27
|
Zhang X, Li F, Ji C, Wu H. Toxicological mechanism of cadmium in the clam Ruditapes philippinarum using combined ionomic, metabolomic and transcriptomic analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121286. [PMID: 36791949 DOI: 10.1016/j.envpol.2023.121286] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) contamination in marine environment poses great risks to the organisms due to its potential adverse effects. In the present study, the toxicological effects and mechanisms of Cd at environmentally relevant concentrations (5 and 50 μg/L) on clam Ruditapes philippinarum after 21 days were investigated by combined ionomic, metabolomic, and transcriptomic analyses. Results showed that the uptake of Cd significantly decreased the concentrations of Cu, Zn, Sr, Se, and Mo in the whole soft tissue from 50 μg/L Cd-treated clams. Significantly negative correlations were observed between Cd and essential elements (Zn, Sr, Se, and Mo). Altered essential elements homeostasis was associated with the gene regulation of transport and detoxification, including ATP-binding cassette protein subfamily B member 1 (ABCB1) and metallothioneins (MT). The crucial contribution of Se to Cd detoxification was also found in clams. Additionally, gene set enrichment analysis showed that Cd could interfere with proteolysis by peptidases and decrease the translation efficiency at 50 μg/L. Cd inhibited lipid metabolism in clams and increased energy demand by up-regulating glycolysis and TCA cycle. Osmotic pressure was regulated by free amino acids, including alanine, glutamate, taurine, and homarine. Meanwhile, significant alterations of some differentially expressed genes, such as dopamine-β-hydroxylase (DBH), neuroligin (NLGN), NOTCH 1, and chondroitin sulfate proteoglycan 1 (CSPG1) were observed in clams, which implied potential interference with synaptic transmission. Overall, through integrating multiple omics, this study provided new insights into the toxicological mechanisms of Cd, particularly in those mediated by dysregulation of essential element homeostasis.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, 266071, PR China.
| |
Collapse
|
28
|
Qin J, Cheng Q, Cai Z, Zhang L, Xing T, Xu X, Gao F. Gas chromatography-mass spectrometry-based untargeted metabolomics analysis reveals circulating biomarkers related to wooden breast myopathy in broilers: a preliminary study. Poult Sci 2023; 102:102718. [PMID: 37141813 DOI: 10.1016/j.psj.2023.102718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023] Open
Abstract
Approaches for the diagnosis of wooden breast (WB) myopathy in live birds are urgently required before applying intervention strategies to reduce occurrence and severity for the poultry industry. The objective of this study was to characterize the serum metabolic profiles in male broilers affected by WB and to identify biomarkers related to this myopathy. Broilers were categorized into normal (CON) and WB groups based on gross scoring and histological evaluation. Gas chromatography-mass spectrometry-based metabolomics, multivariate analysis, and orthogonal partial least squares discriminant analysis revealed a clear separation between CON and WB. A total of 73 significantly different (P < 0.05) metabolites with 17 upregulated and 56 downregulated were identified, which were mainly involved in pathways of alanine, aspartate, and glutamate metabolism, carbohydrate metabolism, and taurine and hypotaurine metabolism. By using the nested cross-validation function of random forest analysis, 9 significantly altered (P < 0.05) metabolites (cerotinic acid, arabitol, phosphoenolpyruvate, terephthalic acid, cis-gondoic acid, N-acetyl-d-glucosamine, 4-hydroxymandelic acid, caffeine, and xanthurenic acid) were identified as biomarkers with an excellent discriminant performance for WB myopathy. Collectively, this study provides new insights for a deeper understanding of the pathogenesis and provides metabolites as biomarkers for diagnostic utilization of WB myopathy.
Collapse
Affiliation(s)
- Jieyi Qin
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingqing Cheng
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyu Cai
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Zhang
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Xing
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xinglian Xu
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
29
|
Gowda GAN, Abell L, Tian R, Raftery D. Whole Body Distribution of Labile Coenzymes and Antioxidants in a Mouse Model as Visualized Using 1H NMR Spectroscopy. Anal Chem 2023; 95:6029-6037. [PMID: 36988554 PMCID: PMC10089975 DOI: 10.1021/acs.analchem.3c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Coenzyme A, acetyl coenzyme A, coenzymes of cellular energy, coenzymes of redox reactions, and antioxidants mediate biochemical reactions fundamental to the functioning of all living cells. There is an immense interest in measuring them routinely in biological specimens to gain insights into their roles in cellular functions and to help characterize the biological status. However, it is challenging to measure them ex vivo as they are sensitive to specimen harvesting, extraction, and measurement conditions. This challenge is largely underappreciated and carries the risk of grossly inaccurate measurements that lead to incorrect inferences. To date, several efforts have been focused on alleviating this challenge using NMR spectroscopy. However, a comprehensive solution for the measurement of the compounds in a wide variety of biological specimens is still lacking. As a part of addressing this challenge, we demonstrate here that the total pool of each group of unstable metabolites offers a starting place for the representation of labile metabolites in biological specimens. Based on this approach, in this proof-of-concept study, we determine the distribution of the labile compounds in different organs including heart, kidney, liver, brain, and skeletal muscle of a mouse model. The results were independently validated using different specimens and a different metabolite extraction protocol. Further, we show that both stable and unstable metabolites were distributed differentially in different organs, which signifies their differential functional roles, the knowledge of which is currently lacking for many metabolites. Intriguingly, the concentration of taurine, an amino sulfonic acid, in skeletal muscle is >30 mM, which is the highest for any metabolite in a mammalian tissue known to date. To the best of our knowledge, this is the first study to profile the whole body distribution of the labile and other high-concentration metabolites using NMR spectroscopy. The results may pave ways for gaining new insights into cellular functions in health and diseases.
Collapse
Affiliation(s)
- G. A. Nagana Gowda
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98109
- Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109
| | - Lauren Abell
- Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109
| | - Rong Tian
- Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109
| | - Daniel Raftery
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98109
- Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
30
|
Safety of beta-alanine supplementation in humans: a narrative review. SPORT SCIENCES FOR HEALTH 2023. [DOI: 10.1007/s11332-023-01052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
31
|
Taurine Stimulates AMP-Activated Protein Kinase and Modulates the Skeletal Muscle Functions in Rats via the Induction of Intracellular Calcium Influx. Int J Mol Sci 2023; 24:ijms24044125. [PMID: 36835534 PMCID: PMC9962205 DOI: 10.3390/ijms24044125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Taurine (2-aminoethanesulfonic acid) is a free amino acid abundantly found in mammalian tissues. Taurine plays a role in the maintenance of skeletal muscle functions and is associated with exercise capacity. However, the mechanism underlying taurine function in skeletal muscles has not yet been elucidated. In this study, to investigate the mechanism of taurine function in the skeletal muscles, the effects of short-term administration of a relatively low dose of taurine on the skeletal muscles of Sprague-Dawley rats and the underlying mechanism of taurine function in cultured L6 myotubes were investigated. The results obtained in this study in rats and L6 cells indicate that taurine modulates the skeletal muscle function by stimulating the expression of genes and proteins associated with mitochondrial and respiratory metabolism through the activation of AMP-activated protein kinase via the calcium signaling pathway.
Collapse
|
32
|
Dixon TAM, Rhyno ELM, El N, McGaw SP, Otley NA, Parker KS, Buldo EC, Pabody CM, Savoie M, Cockshutt A, Morash AJ, Lamarre SG, MacCormack TJ. Taurine depletion impairs cardiac function and affects tolerance to hypoxia and high temperatures in brook char (Salvelinus fontinalis). J Exp Biol 2023; 226:286891. [PMID: 36728502 DOI: 10.1242/jeb.245092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/20/2023] [Indexed: 02/03/2023]
Abstract
Physiological and environmental stressors can cause osmotic stress in fish hearts, leading to a reduction in intracellular taurine concentration. Taurine is a β-amino acid known to regulate cardiac function in other animal models but its role in fish has not been well characterized. We generated a model of cardiac taurine deficiency (TD) by feeding brook char (Salvelinus fontinalis) a diet enriched in β-alanine, which inhibits cardiomyocyte taurine uptake. Cardiac taurine levels were reduced by 21% and stress-induced changes in normal taurine handling were observed in TD brook char. Responses to exhaustive exercise and acute thermal and hypoxia tolerance were then assessed using a combination of in vivo, in vitro and biochemical approaches. Critical thermal maximum was higher in TD brook char despite significant reductions in maximum heart rate. In vivo, TD brook char exhibited a lower resting heart rate, blunted hypoxic bradycardia and a severe reduction in time to loss of equilibrium under hypoxia. In vitro function was similar between control and TD hearts under oxygenated conditions, but stroke volume and cardiac output were severely compromised in TD hearts under severe hypoxia. Aspects of mitochondrial structure and function were also impacted in TD permeabilized cardiomyocytes, but overall effects were modest. High levels of intracellular taurine are required to achieve maximum cardiac function in brook char and cardiac taurine efflux may be necessary to support heart function under stress. Taurine appears to play a vital, previously unrecognized role in supporting cardiovascular function and stress tolerance in fish.
Collapse
Affiliation(s)
- Toni-Anne M Dixon
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Emma-Lee M Rhyno
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Nir El
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Samuel P McGaw
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Nathan A Otley
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Katya S Parker
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Elena C Buldo
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Claire M Pabody
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Mireille Savoie
- Department of Biology, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Amanda Cockshutt
- Department of Chemistry, Saint Francis Xavier University, Antigonish, NS, Canada, B2G 2W5
| | - Andrea J Morash
- Department of Biology, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Simon G Lamarre
- Departement de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Tyson J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| |
Collapse
|
33
|
Yang S, Wen L, Chai X, Song Y, Chen X, Chen ZF, Li R, Dong C, Qi Z, Cai Z. The protective effects of taurine and fish oil supplementation on PM 2.5-induced heart dysfunction among aged mice: A random double-blind study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157966. [PMID: 35964740 DOI: 10.1016/j.scitotenv.2022.157966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/24/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
As it is nearly impossible to reduce PM2.5 concentrations in most cities to safe limits in a short period of time, dietary supplementation presents a promising approach for mitigating the adverse effects of PM2.5 exposure. A cross-sectional study showed that the elderly population of Linfen (PM2.5: 102 μg/m3) exhibited significantly lower serum taurine levels, as well as higher oxidative stress levels and cardiovascular health risks, than the corresponding population in Guangzhou (PM2.5: 39 μg/m3). We conducted a random double-blind study on aged mice that employed a "real-world" PM2.5 exposure system to simulate the conditions of Linfen with the aim of investigating the protective effects of taurine and fish oil supplementation on PM2.5-induced heart dysfunction. When compared with the placebo group, supplementation with taurine and fish oil not only maintained normal taurine levels, but also suppressed oxidative stress and inflammation in aged mice subjected to high concentrations of PM2.5. Variations in heart rate, contractile function, cardiac oxidative stress, inflammation and fibrosis among different groups of aged mice were used to clarify the beneficial effects of taurine and fish oil supplementation. Our results not only revealed the protective effects of taurine and fish oil supplementation on heart dysfunction induced by PM2.5 exposure from the aged mice experiments and also provided new means for the elderly to resist PM2.5 pollution at the individual level.
Collapse
Affiliation(s)
- Shiyi Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Luyao Wen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuyang Chai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xin Chen
- The Center for Reproductive Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), 528300 Foshan, Guangdong, China
| | - Zhi-Feng Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zongwei Cai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
34
|
Meena P, Kishore N. Synergistic effects of osmolytes on solvent exclusion and resulting protein stabilization: Studies with sucrose, taurine and sorbitol individually and in combination. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Rubio C, Cámara M, Giner RM, González-Muñoz MJ, López-García E, Morales FJ, Moreno-Arribas MV, Portillo MP, Bethencourt E. Caffeine, D-glucuronolactone and Taurine Content in Energy Drinks: Exposure and Risk Assessment. Nutrients 2022; 14:5103. [PMID: 36501132 PMCID: PMC9735529 DOI: 10.3390/nu14235103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
The consumption of energy drinks (EDs) is increasing globally while the evidence and concern about the potential health risks are also growing. Caffeine (generally 32 mg/100 mL) together with a wide variety of other active components such as taurine (usually 4000 mg/L) and D-glucuronolactone (generally 2400 mg/L) are the main ingredients of EDs. This study aims to assess the exposures to caffeine, taurine and D-glucuronolactone from EDs in various consumption scenarios and consumer profiles and to characterize the risks by evaluating caffeine and taurine intakes with their reference values and by calculating the margin of safety (MOS) for D-glucuronolactone. While the exposure assessment results showed that caffeine intakes from EDs ranged from 80 to 160 mg (1.14-4 mg/kg b.w.) for the considered scenarios, the risk characterization estimated some risks that could be managed with consumption recommendations such as limiting EDs in 40, 60 and 80 kg b.w. consumers to 175, 262.5 and 350 mL, respectively, to prevent sleep disturbances and to 375, 562.5 and 750 mL to prevent general caffeine adverse health risks, respectively. Dietary exposure to D-glucuronolactone from EDs ranged from 600 to 1200 mg (7.5-30 mg/kg b.w.). As D-glucuronolactone MOS ≥ 100 is only observed when EDs consumption is limited to 250 mL, for individuals weighing above 60 kg, some risks were observed in some of the studied scenarios. A taurine exposure from EDs varied from 1000 to 2000 mg (12.5-50 mg/kg b.w.) and consumptions over 500 mL were estimated to generate intakes above the reference value. In conclusion, the management of these risks requires a European legal framework for EDs with maximum limits for the active components, volume size limitations and labeling improvements along with the development of education and awareness programs and risk communication actions in collaboration with the industry and society.
Collapse
Affiliation(s)
- Carmen Rubio
- Toxicology Department, Pharmacy and Health Sciences Faculties, Universidad de La Laguna (ULL), 38071 San Cristóbal de La Laguna, Spain
| | - Montaña Cámara
- Nutrition and Food Science Department, Pharmacy Faculty, Complutense University of Madrid (UCM), Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Rosa María Giner
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - María José González-Muñoz
- Department of Biomedical Sciences, Toxicology Unit, Faculty of Pharmacy, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
| | - Esther López-García
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Spain/IdiPAZ, CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Francisco J. Morales
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain
| | | | - María P. Portillo
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 28029 Madrid, Spain
- BIOARABA Institute of Health, 01009 Vitoria-Gasteiz, Spain
| | - Elena Bethencourt
- Elena Bethencourt Barbuzano, Toxicology Department, Pharmacy and Health Sciences Faculties, Universidad de La Laguna (ULL), 38071 San Cristóbal de La Laguna, Spain
| |
Collapse
|
36
|
Ozan M, Buzdagli Y, Eyipinar CD, Baygutalp NK, Yüce N, Oget F, Kan E, Baygutalp F. Does Single or Combined Caffeine and Taurine Supplementation Improve Athletic and Cognitive Performance without Affecting Fatigue Level in Elite Boxers? A Double-Blind, Placebo-Controlled Study. Nutrients 2022; 14:nu14204399. [PMID: 36297081 PMCID: PMC9610400 DOI: 10.3390/nu14204399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
In previous studies, the effect of single or combined intake of caffeine (CAF) and taurine (TAU) on exercise performance was investigated. However, the potential synergistic effect on physical and cognitive performance after fatigue induced by anaerobic exercise is unknown. The effects of single and combination CAF and TAU supplementation on the Wingate test in elite male boxers and to evaluate balance, agility and cognitive performance after fatigue are being investigated for the first time in this study. Twenty elite male boxers 22.14 ± 1.42 years old were divided into four groups in this double-blind, randomized crossover study: CAF (6 mg/kg of caffeine), TAU (3 g single dose of taurine), CAF*TAU (co-ingestion of 3 g single dose of taurine and 6 mg/kg of caffeine) and PLA (300 mg maltodextrin). The findings are as follows: co-ingestion of CAF*TAU, improved peak (W/kg), average (W), minimum (W) power, time to reach (s), and RPE performances compared to the PLA group significantly (p < 0.05). Similarly, it was determined that a single dose of TAU, created a significant difference (p < 0.05) in peak power (W/kg), and average and minimum power (W) values compared to the CAF group. According to the balance and agility tests performed after the Wingate test, co-ingestion of CAF*TAU revealed a significant difference (p < 0.05) compared to the PLA group. In terms of cognitive performance, co-ingestion of CAF*TAU significantly improved the neutral reaction time (ms) compared to the TAU, CAF and PLA groups. As a result, elite male boxers performed better in terms of agility, balance and cognitive function when they consumed a combination of 6 mg/kg CAF and 3 g TAU. It has been determined that the combined use of these supplements is more effective than their single use.
Collapse
Affiliation(s)
- Murat Ozan
- Department of Physical Education and Sports, Kazım Karabekir Faculty of Education, Atatürk University, 25500 Erzurum, Turkey
| | - Yusuf Buzdagli
- Department of Coaching Education, Faculty of Sport Sciences, Erzurum Technical University, 25500 Erzurum, Turkey
- Correspondence:
| | - Cemre Didem Eyipinar
- Department of Physical Education and Sport, Faculty of Sport Sciences, Gaziantep University, 27310 Gaziantep, Turkey
| | - Nurcan Kılıç Baygutalp
- Department of Biochemistry, Faculty of Pharmacy, Ataturk University, 25500 Erzurum, Turkey
| | - Neslihan Yüce
- Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, 25500 Erzurum, Turkey
| | - Furkan Oget
- Department of Physical Education and Sports, Faculty of Sport Sciences, Erzurum Technical University, 25500 Erzurum, Turkey
| | - Emirhan Kan
- Department of Physical Education and Sports, Kazım Karabekir Faculty of Education, Atatürk University, 25500 Erzurum, Turkey
| | - Fatih Baygutalp
- Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, 25500 Erzurum, Turkey
| |
Collapse
|
37
|
Li W, Li S, Cao Z, Sun Y, Qiu W, Jia M, Su M. Exploration of the amino acid metabolic signature in anthracycline-induced cardiotoxicity using an optimized targeted metabolomics approach based on UPLC-MS/MS. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1209-1224. [PMID: 35879430 DOI: 10.1007/s00210-022-02271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/08/2022] [Indexed: 10/16/2022]
Abstract
Although anthracyclines improve the long-term survival rate of patients with cancer, severe and irreversible myocardial damage limits their clinical application. Amino acid (AA) metabolism in cardiomyocytes can be altered under pathological conditions. Therefore, exploring the AA metabolic signature in anthracycline-induced cardiotoxicity (AIC) is important for identifying novel mechanisms. We established mouse and cellular models of Adriamycin (ADR)-induced cardiac injury. We observed a decreased expression of troponins I (cTnI) after ADR treatment and ADR accelerated the degradation of cTnI, implying that AA metabolism could be altered in AIC. Using a targeted AA metabolomics approach based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), the AA metabolic signatures in the sera of AIC mice and supernatant samples of ADR-treated H9c2 cardiomyocytes were analyzed. The levels of 14 AA metabolites were altered in ADR-treated mice (p < 0.05). Via bioinformatics analysis, we identified nine differential AA metabolites in mice and five differential AA metabolites in ADR-treated H9c2 cardiomyocytes. Three AAs with increased levels (L-glutamate, L-serine, and L-tyrosine) overlapped in the two models, suggesting a possible mechanism of AA metabolic impairment during AIC. The metabolic pathways perturbed by AIC involved aminoacyl-tRNA biosynthesis and alanine, aspartate, and glutamate metabolism. Our data suggests that ADR perturbed AA metabolism in AIC models. Moreover, the targeted AA metabolomics approach based on UPLC-MS/MS can be a unique platform to provide new clues for the prevention and treatment of AIC.
Collapse
Affiliation(s)
- Wendi Li
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Shanshan Li
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Zhenju Cao
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Yi Sun
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Wei Qiu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| | - Mei Jia
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China.
| | - Ming Su
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China.
| |
Collapse
|
38
|
ÇALIŞKAN ŞG, BİLGİN MD. Genç yetişkinlerde elektrofizyolojik ve hemodinamik parametreler üzerine kafeinli içeceklerin akut etkileri. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1089294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Purpose: The consumption of caffeinated beverages has significantly increased among young people in recent years. The objective of the study is to investigate the acute effects of caffeinated beverages on electrocardiographic and hemodynamic parameters of young adults.
Materials and Methods: Study was designed as a non-randomized, non-placebo controlled, three-arm parallel assignment. It was conducted on 56 individuals selected from a pool of students enrolled at Aydın Adnan Menderes University. Energy drink, coffee, cola and control groups were determined according to the results of the applicant acceptance questionnaire. Blood pressure and electrocardiogram were measured before and after consuming the drinks at 30 minutes and 60 minutes. Heart rate variability was detected from electrocardiogram signal and investigated by linear analysis.
Results: All caffeinated drinks increased the blood pressure. Only, heart rate was increased by energy drink and cola. There was a small increment in root-mean square differences of successive R-R intervals and the number of times successive heartbeat intervals exceed 50ms (NN50) values in coffee group. High frequency (HF) values were increased some for coffee and cola groups. But, low frequency (LF) and LF/HF values were decreased. These alterations were statistically significant for coffee group. PR interval and QRS complex did not alter, however, QTc interval was lower in energy drink and cola groups.
Conclusion: Caffeinated beverage consumption has the potential to induce adverse effects on cardiovascular system of young adults. Coffee appears to be more prominent than energy drink and cola.
Collapse
|
39
|
Khan MA, Singh D, Arif A, Sodhi KK, Singh DK, Islam SN, Ahmad A, Akhtar K, Siddique HR. Protective effect of green synthesized Selenium Nanoparticles against Doxorubicin induced multiple adverse effects in Swiss albino mice. Life Sci 2022; 305:120792. [PMID: 35817167 DOI: 10.1016/j.lfs.2022.120792] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
AIMS Doxorubicin (DOX) is a widely used drug against multiple cancers. However, its clinical Use is often restricted due to multiple adverse effects. Recently, Selenium Nanoparticles (SeNPs) are gaining attention due to their low toxicity and higher biocompatibility, making them attractive nanoparticles (NPs) in medical and pharmaceutical sciences. Therefore, the current study aimed to assess if our biosynthesized SeNP from the endophytic fungus Fusarium oxysporum conjugated with DOX could alleviate the DOX-induced adverse effects. MAIN METHODS For this purpose, we investigated various genotoxic, biochemical, histopathological, and immunohistochemical parameters and finally analyzed the metabolite profile by LC-MS/MS. KEY FINDINGS We observed that DOX causes an increase in reactive oxygen and nitrogen species (ROS, RNS), 8-OHdG, and malondialdehyde (MDA), decreases antioxidant defense systems and reduces BCL-2 expression in cardiac tissue. In addition, a significant increase in DNA damage and alteration in the cytoarchitecture of the liver, kidney, and heart tissues was observed by Comet Tail Length and histopathological studies, respectively. Interestingly, the DOX-SeNP conjugate reduced ROS/RNS, 8-OHdG, and MDA levels in the liver, kidney, and heart tissues. It also restored the antioxidant enzymes and cytoarchitectures of the examined tissues, reduced genotoxicity, and increased the BCL-2 levels. Finally, metabolic profiling showed that DOX reduced the number of cardioprotective metabolites, which DOX-SeNP restored. SIGNIFICANCE Collectively, the present results describe the protective effect of DOX-conjugated SeNP against DOX-induced toxicities. In conclusion, DOX-SeNP conjugate might be better for treating patients receiving DOX alone. However, it warrants further thorough investigation.
Collapse
Affiliation(s)
- Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Amin Arif
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Kushneet Kaur Sodhi
- Soil Microbial Ecology and Environmental Toxicology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India; Hansraj College, University of Delhi, Delhi 110007, India
| | | | - Sk Najrul Islam
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, India
| | - Absar Ahmad
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, India
| | - Kafil Akhtar
- Department of Pathology, JNMC, Aligarh 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
40
|
Najibi A, Rezaei H, Manthari RK, Niknahad H, Jamshidzadeh A, Farshad O, Yan F, Ma Y, Xu D, Tang Z, Ommati MM, Heidari R. Cellular and mitochondrial taurine depletion in bile duct ligated rats: a justification for taurine supplementation in cholestasis/cirrhosis. Clin Exp Hepatol 2022; 8:195-210. [PMID: 36685263 PMCID: PMC9850306 DOI: 10.5114/ceh.2022.119216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023] Open
Abstract
Taurine (TAU) is a free amino acid abundant in the human body. Various physiological roles have been attributed to TAU. At the subcellular level, mitochondria are the primary targets for TAU function. Meanwhile, it has been found that TAU depletion is associated with severe pathologies. Cholestasis is a severe clinical complication that can progress to liver fibrosis, cirrhosis, and hepatic failure. Bile duct ligation (BDL) is a reliable model for assessing cholestasis/cirrhosis and related complications. The current study was designed to investigate the effects of cholestasis/cirrhosis on tissue and mitochondrial TAU reservoirs. Cholestatic rats were monitored (14 and 42 days after BDL surgery), and TAU levels were assessed in various tissues and isolated mitochondria. There was a significant decrease in TAU in the brain, heart, liver, kidney, skeletal muscle, intestine, lung, testis, and ovary of the BDL animals (14 and 42 days after surgery). Mitochondrial levels of TAU were also significantly depleted in BDL animals. Tissue and mitochondrial TAU levels in cirrhotic animals (42 days after the BDL operation) were substantially lower than those in the cholestatic rats (14 days after BDL surgery). These data indicate an essential role for tissue and mitochondrial TAU in preventing organ injury induced by cholestasis/cirrhosis and could justify TAU supplementation for therapeutic purposes.
Collapse
Affiliation(s)
- Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Heresh Rezaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam, Andhra Pradesh, India
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Feng Yan
- Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Yanqin Ma
- Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Dongmei Xu
- Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Zhongwei Tang
- Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
41
|
Zhao Q, Wu ZE, Li B, Li F. Recent advances in metabolism and toxicity of tyrosine kinase inhibitors. Pharmacol Ther 2022; 237:108256. [DOI: 10.1016/j.pharmthera.2022.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022]
|
42
|
Duszka K. Versatile Triad Alliance: Bile Acid, Taurine and Microbiota. Cells 2022; 11:2337. [PMID: 35954180 PMCID: PMC9367564 DOI: 10.3390/cells11152337] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022] Open
Abstract
Taurine is the most abundant free amino acid in the body, and is mainly derived from the diet, but can also be produced endogenously from cysteine. It plays multiple essential roles in the body, including development, energy production, osmoregulation, prevention of oxidative stress, and inflammation. Taurine is also crucial as a molecule used to conjugate bile acids (BAs). In the gastrointestinal tract, BAs deconjugation by enteric bacteria results in high levels of unconjugated BAs and free taurine. Depending on conjugation status and other bacterial modifications, BAs constitute a pool of related but highly diverse molecules, each with different properties concerning solubility and toxicity, capacity to activate or inhibit receptors of BAs, and direct and indirect impact on microbiota and the host, whereas free taurine has a largely protective impact on the host, serves as a source of energy for microbiota, regulates bacterial colonization and defends from pathogens. Several remarkable examples of the interaction between taurine and gut microbiota have recently been described. This review will introduce the necessary background information and lay out the latest discoveries in the interaction of the co-reliant triad of BAs, taurine, and microbiota.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
43
|
Ramírez-Guerrero S, Guardo-Maya S, Medina-Rincón GJ, Orrego-González EE, Cabezas-Pérez R, González-Reyes RE. Taurine and Astrocytes: A Homeostatic and Neuroprotective Relationship. Front Mol Neurosci 2022; 15:937789. [PMID: 35866158 PMCID: PMC9294388 DOI: 10.3389/fnmol.2022.937789] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/17/2022] [Indexed: 12/20/2022] Open
Abstract
Taurine is considered the most abundant free amino acid in the brain. Even though there are endogenous mechanisms for taurine production in neural cells, an exogenous supply of taurine is required to meet physiological needs. Taurine is required for optimal postnatal brain development; however, its brain concentration decreases with age. Synthesis of taurine in the central nervous system (CNS) occurs predominantly in astrocytes. A metabolic coupling between astrocytes and neurons has been reported, in which astrocytes provide neurons with hypotaurine as a substrate for taurine production. Taurine has antioxidative, osmoregulatory, and anti-inflammatory functions, among other cytoprotective properties. Astrocytes release taurine as a gliotransmitter, promoting both extracellular and intracellular effects in neurons. The extracellular effects include binding to neuronal GABAA and glycine receptors, with subsequent cellular hyperpolarization, and attenuation of N-methyl-D-aspartic acid (NMDA)-mediated glutamate excitotoxicity. Taurine intracellular effects are directed toward calcium homeostatic pathway, reducing calcium overload and thus preventing excitotoxicity, mitochondrial stress, and apoptosis. However, several physiological aspects of taurine remain unclear, such as the existence or not of a specific taurine receptor. Therefore, further research is needed not only in astrocytes and neurons, but also in other glial cells in order to fully comprehend taurine metabolism and function in the brain. Nonetheless, astrocyte’s role in taurine-induced neuroprotective functions should be considered as a promising therapeutic target of several neuroinflammatory, neurodegenerative and psychiatric diseases in the near future. This review provides an overview of the significant relationship between taurine and astrocytes, as well as its homeostatic and neuroprotective role in the nervous system.
Collapse
Affiliation(s)
- Sofía Ramírez-Guerrero
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Santiago Guardo-Maya
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Germán J. Medina-Rincón
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Eduardo E. Orrego-González
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Ricardo Cabezas-Pérez
- Grupo de Investigación en Ciencias Biomédicas GRINCIBIO, Facultad de Medicina, Universidad Antonio Nariño, Bogotá, Colombia
| | - Rodrigo E. González-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
- *Correspondence: Rodrigo E. González-Reyes,
| |
Collapse
|
44
|
Barbiera A, Sorrentino S, Fard D, Lepore E, Sica G, Dobrowolny G, Tamagnone L, Scicchitano BM. Taurine Administration Counteracts Aging-Associated Impingement of Skeletal Muscle Regeneration by Reducing Inflammation and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11051016. [PMID: 35624880 PMCID: PMC9137670 DOI: 10.3390/antiox11051016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023] Open
Abstract
Sarcopenia, which occurs during aging, is characterized by the gradual loss of skeletal muscle mass and function, resulting in a functional decline in physical abilities. Several factors contribute to the onset of sarcopenia, including reduced regenerative capacity, chronic low-grade inflammation, mitochondrial dysfunction, and increased oxidative stress, leading to the activation of catabolic pathways. Physical activity and adequate protein intake are considered effective strategies able to reduce the incidence and severity of sarcopenia by exerting beneficial effects in improving the muscular anabolic response during aging. Taurine is a non-essential amino acid that is highly expressed in mammalian tissues and, particularly, in skeletal muscle where it is involved in the regulation of biological processes and where it acts as an antioxidant and anti-inflammatory factor. Here, we evaluated whether taurine administration in old mice counteracts the physiopathological effects of aging in skeletal muscle. We showed that, in injured muscle, taurine enhances the regenerative process by downregulating the inflammatory response and preserving muscle fiber integrity. Moreover, taurine attenuates ROS production in aged muscles by maintaining a proper cellular redox balance, acting as an antioxidant molecule. Although further studies are needed to better elucidate the molecular mechanisms responsible for the beneficial effect of taurine on skeletal muscle homeostasis, these data demonstrate that taurine administration ameliorates the microenvironment allowing an efficient regenerative process and attenuation of the catabolic pathways related to the onset of sarcopenia.
Collapse
Affiliation(s)
- Alessandra Barbiera
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Roma, Italy; (A.B.); (S.S.); (D.F.); (G.S.); (L.T.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go Francesco Vito 1, 00168 Roma, Italy
| | - Silvia Sorrentino
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Roma, Italy; (A.B.); (S.S.); (D.F.); (G.S.); (L.T.)
| | - Damon Fard
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Roma, Italy; (A.B.); (S.S.); (D.F.); (G.S.); (L.T.)
| | - Elisa Lepore
- DAHFMO-Unità di Istologia ed Embriologia Medica, Sapienza Università di Roma, 00161 Roma, Italy; (E.L.); (G.D.)
| | - Gigliola Sica
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Roma, Italy; (A.B.); (S.S.); (D.F.); (G.S.); (L.T.)
| | - Gabriella Dobrowolny
- DAHFMO-Unità di Istologia ed Embriologia Medica, Sapienza Università di Roma, 00161 Roma, Italy; (E.L.); (G.D.)
| | - Luca Tamagnone
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Roma, Italy; (A.B.); (S.S.); (D.F.); (G.S.); (L.T.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go Francesco Vito 1, 00168 Roma, Italy
| | - Bianca Maria Scicchitano
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Roma, Italy; (A.B.); (S.S.); (D.F.); (G.S.); (L.T.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go Francesco Vito 1, 00168 Roma, Italy
- Correspondence:
| |
Collapse
|
45
|
Tôrres CL, Biourge VC, Backus RC. Plasma and Whole Blood Taurine Concentrations in Dogs May Not Be Sensitive Indicators of Taurine Deficiency When Dietary Sulfur Amino Acid Content Is Reduced. Front Vet Sci 2022; 9:873460. [PMID: 35615252 PMCID: PMC9125078 DOI: 10.3389/fvets.2022.873460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background Taurine status is impacted by dietary supply of methionine and cysteine (SAA) and possibly intestinal microbial activity, where plasma and whole blood taurine concentrations are currently used to evaluate taurine status. Objective We determined effects of dietary SAA restriction on rate and extent of taurine depletion of blood and skeletal muscle in dogs of two body sizes, and whether oral antibiotic administration affected the taurine depletion and fecal bile acid excretion of the dogs. Methods Adult, male, Beagles (n = 6; 10.1–13.1 kg) and larger mixed-breed dogs (n = 6; 28.5–41.1 kg) were given four dry-expanded diets, whereby each successive diet contained lower protein and/or SAA concentration. After receiving the final diet for 44 weeks, all dogs were orally administered a mixture of ampicillin, neomycin sulfate, and metronidazole for 12 weeks. Taurine concentrations were determined every 2–4 weeks in venous blood and voided urine and every 4 to 16 weeks in biopsied semimembranosus muscle. Fecal bile acid excretion before and after antibiotics administration were quantified. Results When given for 36 weeks the lowest SAA diet, 3.4% methionine and 2.9% cystine, taurine concentrations in whole blood were not different between groups, while taurine in plasma declined (P < 0.05) in large but not in small dogs, and taurine in biopsied muscle decreased (P < 0.05) by 50% in large and by 37% in small dogs. Concentrations of taurine in muscle were lower (P < 0.01) and fecal bile acids greater (P = 0.001) in large than small dogs. Antibiotic administration restored plasma and muscle taurine to initial concentrations and halved fecal bile acid excretion by dogs of both groups. Conclusions Blood taurine concentration may not be a sensitive indictor of taurine depletion caused by low intake of bioavailable SAA in dogs, especially in large dogs. Taurine status and dietary SAA requirements of dogs may substantively depend on taurine loss mediated by intestinal microbiota.
Collapse
Affiliation(s)
- Cristina L. Tôrres
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, United States
| | | | - Robert C. Backus
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States
- *Correspondence: Robert C. Backus
| |
Collapse
|
46
|
Sayles NM, Southwell N, McAvoy K, Kim K, Pesini A, Anderson CJ, Quinzii C, Cloonan S, Kawamata H, Manfredi G. Mutant CHCHD10 causes an extensive metabolic rewiring that precedes OXPHOS dysfunction in a murine model of mitochondrial cardiomyopathy. Cell Rep 2022; 38:110475. [PMID: 35263592 PMCID: PMC9013208 DOI: 10.1016/j.celrep.2022.110475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/01/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial cardiomyopathies are fatal diseases, with no effective treatment. Alterations of heart mitochondrial function activate the mitochondrial integrated stress response (ISRmt), a transcriptional program affecting cell metabolism, mitochondrial biogenesis, and proteostasis. In humans, mutations in CHCHD10, a mitochondrial protein with unknown function, were recently associated with dominant multi-system mitochondrial diseases, whose pathogenic mechanisms remain to be elucidated. Here, in CHCHD10 knockin mutant mice, we identify an extensive cardiac metabolic rewiring triggered by proteotoxic ISRmt. The stress response arises early on, before the onset of bioenergetic impairments, triggering a switch from oxidative to glycolytic metabolism, enhancement of transsulfuration and one carbon (1C) metabolism, and widespread metabolic imbalance. In parallel, increased NADPH oxidases elicit antioxidant responses, leading to heme depletion. As the disease progresses, the adaptive metabolic stress response fails, resulting in fatal cardiomyopathy. Our findings suggest that early interventions to counteract metabolic imbalance could ameliorate mitochondrial cardiomyopathy associated with proteotoxic ISRmt. Sayles et al. report that mutant CHCHD10 proteotoxicity activates the mitochondrial integrated stress response (ISRmt) in a mouse model of mitochondrial cardiomyopathy. Chronic ISRmt causes profound metabolic imbalances, culminating in oxidative stress and iron dysregulation, ultimately resulting in mitochondrial dysfunction and contributing to disease pathogenesis.
Collapse
Affiliation(s)
- Nicole M Sayles
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA; Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10065, USA
| | - Nneka Southwell
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA; Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10065, USA
| | - Kevin McAvoy
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Kihwan Kim
- Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Alba Pesini
- Department of Neurology, Columbia University, 710 West 168th Street, New York, NY 10032, USA
| | - Corey J Anderson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Catarina Quinzii
- Department of Neurology, Columbia University, 710 West 168th Street, New York, NY 10032, USA
| | - Suzanne Cloonan
- Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; The School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin, Pearse St, Dublin 2 52-160, Ireland; Tallaght University Hospital, Tallaght, Dublin 24 D24 NR0A, Ireland
| | - Hibiki Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA.
| |
Collapse
|
47
|
Tulunay Kaya C, Gerede DM, Akhundova J. Acute effects of energy drink consumption on left and right ventricular function - a 2-dimensional speckle tracking echocardiographic study. KARDIOLOGIIA 2022; 62:28-35. [PMID: 35272605 DOI: 10.18087/cardio.2022.2.n1899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Aim Energy drinks (ED) contain high levels of caffeine and taurine and are associated with several cardiovascular effects. We investigated acute effects of consuming low caffeine and taurine content ED on left ventricular (LV) and right ventricular (RV) function assessed by conventional and two-dimensional speckle tracking echocardiography.Material and methods In this crossover study, 34 healthy adults, age 19-48 yrs, drank an ED containing 53.25 milligrams of caffeine, 284 mg of taurine, or an equal volume of control drink (CD) on two separate sessions, 7-10 days apart. Standard echocardiographic and speckle tracking imaging were performed before and 60 min after consumption of the study beverages.Results Compared to CD, ED caused a significant increase in tricuspid annular plane systolic excursion (p=0.04) and RV systolic wave velocity (p=0.01) with no effect on global longitudinal strain when compared to CD. LV systolic function was not altered, but mitral early diastolic velocity by tissue Doppler imaging was significantly higher (p=0.031), and early diastolic strain rate, as measured by speckle tracking echocardiography, was significantly lower (p=0.022).Conclusion Reduced caffeine and taurine content ED does not affect LV systolic function, but increases RV longitudinal contractility and improves LV early diastolic filling.
Collapse
Affiliation(s)
| | | | - Javidan Akhundova
- Cardiology Department, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
48
|
Li Q. Metabolic Reprogramming, Gut Dysbiosis, and Nutrition Intervention in Canine Heart Disease. Front Vet Sci 2022; 9:791754. [PMID: 35242837 PMCID: PMC8886228 DOI: 10.3389/fvets.2022.791754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
This review provides a state-of-the-art overview on recent advances in systems biology in canine cardiac disease, with a focus on our current understanding of bioenergetics and amino acid metabolism in myxomatous mitral valve disease (MMVD). Cross-species comparison is drawn to highlight the similarities between human and canine heart diseases. The adult mammalian heart exhibits a remarkable metabolic flexibility and shifts its energy substrate preference according to different physiological and pathological conditions. The failing heart suffers up to 40% ATP deficit and is compared to an engine running out of fuel. Bioenergetics and metabolic readaptations are among the major research topics in cardiac research today. Myocardial energy metabolism consists of three interconnected components: substrate utilization, oxidative phosphorylation, and ATP transport and utilization. Any disruption or uncoupling of these processes can result in deranged energy metabolism leading to heart failure (HF). The review describes the changes occurring in each of the three components of energy metabolism in MMVD and HF. It also provides an overview on the changes in circulating and myocardial glutathione, taurine, carnitines, branched-chain amino acid catabolism and tryptophan metabolic pathways. In addition, the review summarizes the potential role of the gut microbiome in MMVD and HF. As our knowledge and understanding in these molecular and metabolic processes increase, it becomes possible to use nutrition to address these changes and to slow the progression of the common heart diseases in dogs.
Collapse
|
49
|
Roşca AE, Vlădăreanu AM, Mirica R, Anghel-Timaru CM, Mititelu A, Popescu BO, Căruntu C, Voiculescu SE, Gologan Ş, Onisâi M, Iordan I, Zăgrean L. Taurine and Its Derivatives: Analysis of the Inhibitory Effect on Platelet Function and Their Antithrombotic Potential. J Clin Med 2022; 11:jcm11030666. [PMID: 35160118 PMCID: PMC8837186 DOI: 10.3390/jcm11030666] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Taurine is a semi-essential, the most abundant free amino acid in the human body, with a six times higher concentration in platelets than any other amino acid. It is highly beneficial for the organism, has many therapeutic actions, and is currently approved for heart failure treatment in Japan. Taurine has been repeatedly reported to elicit an inhibitory action on platelet activation and aggregation, sustained by in vivo, ex vivo, and in vitro animal and human studies. Taurine showed effectiveness in several pathologies involving thrombotic diathesis, such as diabetes, traumatic brain injury, acute ischemic stroke, and others. As human prospective studies on thrombosis outcome are very difficult to carry out, there is an obvious need to validate existing findings, and bring new compelling data about the mechanisms underlying taurine and derivatives antiplatelet action and their antithrombotic potential. Chloramine derivatives of taurine proved a higher stability and pronounced selectivity for platelet receptors, raising the assumption that they could represent future potential antithrombotic agents. Considering that taurine and its analogues display permissible side effects, along with the need of finding new, alternative antithrombotic drugs with minimal side effects and long-term action, the potential clinical relevance of this fascinating nutrient and its derivatives requires further consideration.
Collapse
Affiliation(s)
- Adrian Eugen Roşca
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
- Department of Cardiology, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
- Correspondence: (A.E.R.); (A.-M.V.)
| | - Ana-Maria Vlădăreanu
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.); (I.I.)
- Correspondence: (A.E.R.); (A.-M.V.)
| | - Radu Mirica
- Department of Surgery, “Carol Davila” University of Medicine and Pharmacy, “Sf. Ioan” Clinical Hospital, 042122 Bucharest, Romania;
| | - Cristina-Mihaela Anghel-Timaru
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
| | - Alina Mititelu
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.); (I.I.)
| | - Bogdan Ovidiu Popescu
- Department of Neurology, “Carol Davila” University of Medicine and Pharmacy, Colentina Clinical Hospital, 020125 Bucharest, Romania;
| | - Constantin Căruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Suzana Elena Voiculescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
| | - Şerban Gologan
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, Elias Clinical Hospital, 011461 Bucharest, Romania;
| | - Minodora Onisâi
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.); (I.I.)
| | - Iuliana Iordan
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.); (I.I.)
- Department of Medical Semiology and Nephrology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Leon Zăgrean
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
| |
Collapse
|
50
|
Elhussiny MZ, Tran PV, Tsuru Y, Haraguchi S, Gilbert ER, Cline MA, Bungo T, Furuse M, Chowdhury VS. Central Taurine Attenuates Hyperthermia and Isolation Stress Behaviors Augmented by Corticotropin-Releasing Factor with Modifying Brain Amino Acid Metabolism in Neonatal Chicks. Metabolites 2022; 12:metabo12010083. [PMID: 35050205 PMCID: PMC8781603 DOI: 10.3390/metabo12010083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
The objective of this study was to determine the effects of centrally administered taurine on rectal temperature, behavioral responses and brain amino acid metabolism under isolation stress and the presence of co-injected corticotropin-releasing factor (CRF). Neonatal chicks were centrally injected with saline, 2.1 pmol of CRF, 2.5 μmol of taurine or both taurine and CRF. The results showed that CRF-induced hyperthermia was attenuated by co-injection with taurine. Taurine, alone or with CRF, significantly decreased the number of distress vocalizations and the time spent in active wakefulness, as well as increased the time spent in the sleeping posture, compared with the saline- and CRF-injected chicks. An amino acid chromatographic analysis revealed that diencephalic leucine, isoleucine, tyrosine, glutamate, asparagine, alanine, β-alanine, cystathionine and 3-methylhistidine were decreased in response to taurine alone or in combination with CRF. Central taurine, alone and when co-administered with CRF, decreased isoleucine, phenylalanine, tyrosine and cysteine, but increased glycine concentrations in the brainstem, compared with saline and CRF groups. The results collectively indicate that central taurine attenuated CRF-induced hyperthermia and stress behaviors in neonatal chicks, and the mechanism likely involves the repartitioning of amino acids to different metabolic pathways. In particular, brain leucine, isoleucine, cysteine, glutamate and glycine may be mobilized to cope with acute stressors.
Collapse
Affiliation(s)
- Mohamed Z. Elhussiny
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; (M.Z.E.); (P.V.T.); (Y.T.); (M.F.)
- Department of Animal & Poultry Behavior and Management, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Phuong V. Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; (M.Z.E.); (P.V.T.); (Y.T.); (M.F.)
| | - Yuriko Tsuru
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; (M.Z.E.); (P.V.T.); (Y.T.); (M.F.)
| | - Shogo Haraguchi
- Department of Biochemistry, Showa University School of Medicine, Tokyo 142-8555, Japan;
| | - Elizabeth R. Gilbert
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0306, USA; (E.R.G.); (M.A.C.)
| | - Mark A. Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0306, USA; (E.R.G.); (M.A.C.)
| | - Takashi Bungo
- Department of Bioresource Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan;
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; (M.Z.E.); (P.V.T.); (Y.T.); (M.F.)
| | - Vishwajit S. Chowdhury
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; (M.Z.E.); (P.V.T.); (Y.T.); (M.F.)
- Division of Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence:
| |
Collapse
|