1
|
Tabasi M, Chen N, Sajjan U. Role of Homeobox A1 in Airway Epithelial Generation from Human Airway Basal Cells. Cells 2025; 14:549. [PMID: 40214503 PMCID: PMC11989199 DOI: 10.3390/cells14070549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/04/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Airway basal cells from chronic obstructive pulmonary disease patients show a reduction in HOXA1 expression and generate an abnormal airway epithelium. Because the specific role of HOXA1 in airway basal cells is not known, we investigated the contribution of HOXA1 in the generation of the airway epithelium, which depends on basal cell proliferation, polarization, and differentiation. Airway stem cells were transduced with an inducible HOXA1 shRNA lentivector to knock down HOXA1 in either proliferating cells or100% confluent cells. The bronchial epithelium expresses HOXA1 near the basement membrane, likely representing basal cells. HOXA1 knockdown in proliferating basal cells attenuated cell proliferation. HOXA1 knockdown in confluent monolayers of basal cells generated an abnormal airway epithelium characterized by goblet cell hyperplasia and an inflammatory phenotype. Compared to the control, HOXA1 knockdown cells showed a decrease in transepithelial resistance, localization of occludin and E-cadherin to the intercellular junctions, reduced expression of occludin but not E-cadherin, and increased expression of TNF-α. Blocking TNF-α increased the expression of occludin in HOXA1 K/D cells. Based on these results, we conclude that HOXA1 plays an important role in cell proliferation, polarization, and differentiation, which are essential steps in airway epithelial generation. Additionally, HOXA1 may regulate occludin expression by inhibiting TNF-α expression.
Collapse
Affiliation(s)
- Mohsen Tabasi
- Center for Inflammation and Lung Research, Lewis-Katz Medical School, Temple University, Philadelphia, PA 19140, USA; (M.T.); (N.C.)
- Department of Microbiology, Immunology and Inflammation, Lewis-Katz Medical School, Temple University, Philadelphia, PA 19140, USA
| | - Nathaniel Chen
- Center for Inflammation and Lung Research, Lewis-Katz Medical School, Temple University, Philadelphia, PA 19140, USA; (M.T.); (N.C.)
| | - Umadevi Sajjan
- Center for Inflammation and Lung Research, Lewis-Katz Medical School, Temple University, Philadelphia, PA 19140, USA; (M.T.); (N.C.)
- Department of Microbiology, Immunology and Inflammation, Lewis-Katz Medical School, Temple University, Philadelphia, PA 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University Health System, Philadelphia, PA 19140, USA
| |
Collapse
|
2
|
Marchese D, Evrard L, Bergiers I, Boas L, Duphénieux J, Hermant M, Pringels T, Zeqiri F, Pirson M, Twizere JC, Gofflot F, Rezsohazy R, Bridoux L. Homeodomain Involvement in Nuclear HOX Protein Homo- and Heterodimerization. Int J Mol Sci 2025; 26:423. [PMID: 39796276 PMCID: PMC11721573 DOI: 10.3390/ijms26010423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
HOX genes play essential roles in patterning the anteroposterior axis of animal embryos and in the formation of various organs. In mammals, there are 39 HOX genes organized into four clusters (HOXA-D) located on different chromosomes. In relationship with their orderly arrangement along the chromosomes, these genes show nested expression patterns which imply that embryonic territories co-express multiple HOX genes along the main body axis. Interactomic database entries, as well as a handful of publications, support that some HOX proteins can form homodimers or interact with other HOX proteins. However, the consequences of HOX protein interactions have been poorly investigated and remain largely elusive. In this study, we compiled a repository of all HOX-HOX interactions from available databases, and taking HOXA1, HOXA2, and HOXA5 as examples, we investigated the capacity of HOX proteins to form homo- and heterodimers. We revealed that while the DNA-binding domain, the homeodomain, is not necessary for HOXA1 homodimerization, the nuclear localization of the dimerization is dependent on the homeodomain, particularly the integrity of the third helix of HOXA1. Furthermore, we demonstrated that HOXA1 can influence the localization of HOXA1 when it is deprived of the homeodomain, increasing its abundance in the chromatin-containing fraction. Moreover, HOXA1 nuclear homodimerization occurs independently of the integrity of the hexapeptide and, consequently, of its well-known interactor, the homeodomain protein PBX. These results hint at a potential involvement of dimerization in the complex landscape of HOX regulatory mechanisms.
Collapse
Affiliation(s)
- Damien Marchese
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Laetitia Evrard
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Isabelle Bergiers
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Ludovic Boas
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Justine Duphénieux
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Maryse Hermant
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Tamara Pringels
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Fisnik Zeqiri
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Marc Pirson
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Jean-Claude Twizere
- Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté de Gembloux, 5030 Gembloux, Belgium
| | - Françoise Gofflot
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - René Rezsohazy
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Jacob R, Gorek LS. Intracellular galectin interactions in health and disease. Semin Immunopathol 2024; 46:4. [PMID: 38990375 PMCID: PMC11239732 DOI: 10.1007/s00281-024-01010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/07/2024] [Indexed: 07/12/2024]
Abstract
In the galectin family, a group of lectins is united by their evolutionarily conserved carbohydrate recognition domains. These polypeptides play a role in various cellular processes and are implicated in disease mechanisms such as cancer, fibrosis, infection, and inflammation. Following synthesis in the cytosol, manifold interactions of galectins have been described both extracellularly and intracellularly. Extracellular galectins frequently engage with glycoproteins or glycolipids in a carbohydrate-dependent manner. Intracellularly, galectins bind to non-glycosylated proteins situated in distinct cellular compartments, each with multiple cellular functions. This diversity complicates attempts to form a comprehensive understanding of the role of galectin molecules within the cell. This review enumerates intracellular galectin interaction partners and outlines their involvement in cellular processes. The intricate connections between galectin functions and pathomechanisms are illustrated through discussions of intracellular galectin assemblies in immune and cancer cells. This underscores the imperative need to fully comprehend the interplay of galectins with the cellular machinery and to devise therapeutic strategies aimed at counteracting the establishment of galectin-based disease mechanisms.
Collapse
Affiliation(s)
- Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Karl-von-Frisch-Str. 14, D-35043, Marburg, Germany.
| | - Lena-Sophie Gorek
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Karl-von-Frisch-Str. 14, D-35043, Marburg, Germany
| |
Collapse
|
4
|
Marchese D, Guislain F, Pringels T, Bridoux L, Rezsohazy R. A poly-histidine motif of HOXA1 is involved in regulatory interactions with cysteine-rich proteins. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:194993. [PMID: 37952572 DOI: 10.1016/j.bbagrm.2023.194993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/05/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Homopolymeric amino acid repeats are found in about 24 % of human proteins and are over-represented in transcriptions factors and kinases. Although relatively rare, homopolymeric histidine repeats (polyH) are more significantly found in proteins involved in the regulation of embryonic development. To gain a better understanding of the role of polyH in these proteins, we used a bioinformatic approach to search for shared features in the interactomes of polyH-containing proteins in human. Our analysis revealed that polyH protein interactomes are enriched in cysteine-rich proteins and in proteins containing (a) cysteine repeat(s). Focusing on HOXA1, a HOX transcription factor displaying one long polyH motif, we identified that the polyH motif is required for the HOXA1 interaction with such cysteine-rich proteins. We observed a correlation between the length of the polyH repeat and the strength of the HOXA1 interaction with one Cys-rich protein, MDFI. We also found that metal ion chelators disrupt the HOXA1-MDFI interaction supporting that such metal ions are required for the interaction. Furthermore, we identified three polyH interactors which down-regulate the transcriptional activity of HOXA1. Taken together, our data point towards the involvement of polyH and cysteines in regulatory interactions between proteins, notably transcription factors like HOXA1.
Collapse
Affiliation(s)
- Damien Marchese
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 5 (L7.07.10), B-1348 Louvain-la-Neuve, Belgium
| | - Florent Guislain
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 5 (L7.07.10), B-1348 Louvain-la-Neuve, Belgium
| | - Tamara Pringels
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 5 (L7.07.10), B-1348 Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 5 (L7.07.10), B-1348 Louvain-la-Neuve, Belgium
| | - René Rezsohazy
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 5 (L7.07.10), B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
5
|
Chailertrit V, Panthum T, Kongkaew L, Chalermwong P, Singchat W, Ahmad SF, Kraichak E, Muangmai N, Duengkae P, Peyachoknagul S, Han K, Srikulnath K. Genome-wide SNP analysis provides insights into the XX/XY sex-determination system in silver barb (Barbonymus gonionotus). Genomics Inform 2023; 21:e47. [PMID: 38224714 PMCID: PMC10788355 DOI: 10.5808/gi.23075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/17/2024] Open
Abstract
Silver barb (Barbonymus gonionotus) is among the most economically important freshwater fish species in Thailand. It ranks fourth in economic value and third in production weight for fisheries and culture in Thailand. An XX/XY sex-determination system based on gynogenesis was previously reported for this fish. In this study, the molecular basis underlying the sex-determination system was further investigated. Genome-wide single-nucleotide polymorphism data were generated for 32 captive-bred silver barb individuals, previously scored by phenotypic sex, to identify sex-linked regions associated with sex determination. Sixty-three male-linked loci, indicating putative XY chromosomes, were identified. Male-specific loci were not observed, which indicates that the putative Y chromosome is young and the sex determination region is cryptic. A homology search revealed that most male-linked loci were homologous to the Mariner/Tc1 and Gypsy transposable elements and are probably the remnants of an initial accumulation of repeats on the Y chromosome from the early stages of sex chromosome differentiation. This research provides convincing insights into the mechanism of sex determination and reveals the potential sex determination regions in silver barb. The study provides the basic data necessary for increasing the commercial value of silver barbs through genetic improvements.
Collapse
Affiliation(s)
- Visarut Chailertrit
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Pathum Thani Aquatic Animal Genetics Research and Development Center, Aquatic Animal Genetics Research and Development Division, Department of Fisheries, Pathum Thani 12120, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Lalida Kongkaew
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Piangjai Chalermwong
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Sciences for Industry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Ekaphan Kraichak
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Department of Botany, Kasetsart University, Bangkok 10900, Thailand
| | - Narongrit Muangmai
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Prateep Duengkae
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Surin Peyachoknagul
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kyudong Han
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Department of Microbiology, Dankook University, Cheonan 31116, Korea
- Bio-Medical Engineering Core Facility Research Center, Dankook University, Cheonan 31116, Korea
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
- Sciences for Industry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources (CASTNAR), National Research University-Kasetsart University (NRU-KU), Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
6
|
Jia Y, Reboulet J, Gillet B, Hughes S, Forcet C, Tribollet V, Hajj Sleiman N, Kundlacz C, Vanacker JM, Bleicher F, Merabet S. A Live Cell Protein Complementation Assay for ORFeome-Wide Probing of Human HOX Interactomes. Cells 2023; 12:cells12010200. [PMID: 36611993 PMCID: PMC9818449 DOI: 10.3390/cells12010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
Biological pathways rely on the formation of intricate protein interaction networks called interactomes. Getting a comprehensive map of interactomes implies the development of tools that allow one to capture transient and low-affinity protein-protein interactions (PPIs) in live conditions. Here we presented an experimental strategy: the Cell-PCA (cell-based protein complementation assay), which was based on bimolecular fluorescence complementation (BiFC) for ORFeome-wide screening of proteins that interact with different bait proteins in the same live cell context, by combining high-throughput sequencing method. The specificity and sensitivity of the Cell-PCA was established by using a wild-type and a single-amino-acid-mutated HOXA9 protein, and the approach was subsequently applied to seven additional human HOX proteins. These proof-of-concept experiments revealed novel molecular properties of HOX interactomes and led to the identification of a novel cofactor of HOXB13 that promoted its proliferative activity in a cancer cell context. Taken together, our work demonstrated that the Cell-PCA was pertinent for revealing and, importantly, comparing the interactomes of different or highly related bait proteins in the same cell context.
Collapse
Affiliation(s)
- Yunlong Jia
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Jonathan Reboulet
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
- LiPiCs, 46 Allée d’Italie, 69007 Lyon, France
| | - Benjamin Gillet
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Sandrine Hughes
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Christelle Forcet
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Violaine Tribollet
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Nawal Hajj Sleiman
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Cindy Kundlacz
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Jean-Marc Vanacker
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Françoise Bleicher
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
- Correspondence: franç (F.B.); (S.M.)
| | - Samir Merabet
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
- Correspondence: franç (F.B.); (S.M.)
| |
Collapse
|
7
|
Youness RA, Dawoud A, ElTahtawy O, Farag MA. Fat-soluble vitamins: updated review of their role and orchestration in human nutrition throughout life cycle with sex differences. Nutr Metab (Lond) 2022; 19:60. [PMID: 36064551 PMCID: PMC9446875 DOI: 10.1186/s12986-022-00696-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Age and Gender are vital determinants for the micronutrient demands of normal indviduals. Among these micronutrients are vitamins that are required in small amounts for optimum metabolism, homeostasis, and a healthy lifestyle, acting as coenzymes in several biochemical reactions. The majority of previous studies have examined such issues that relates to a specific vitamin or life stage, with the majority merely reporting the effect of either excess or deficiency. Vitamins are classified into water-soluble and fat-soluble components. The fat-soluble vitamins include vitamins (A, D, E, and K). Fat-soluble vitamins were found to have an indisputable role in an array of physiological processes such as immune regulation, vision, bone and mental health. Nonetheless, the fat-soluble vitamins are now considered a prophylactic measurement for a multitude of diseases such as autism, rickets disease, gestational diabetes, and asthma. Herein, in this review, a deep insight into the orchestration of the four different fat-soluble vitamins requirements is presented for the first time across the human life cycle beginning from fertility, pregnancy, adulthood, and senility with an extensive assessment ofthe interactions among them and their underlying mechanistic actions. The influence of sex for each vitamin is also presented at each life stage to highlight the different daily requirements and effects.
Collapse
Affiliation(s)
- Rana A Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt.
| | - Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Omar ElTahtawy
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt.
| |
Collapse
|
8
|
Siegmund D, Wagner J, Wajant H. TNF Receptor Associated Factor 2 (TRAF2) Signaling in Cancer. Cancers (Basel) 2022; 14:cancers14164055. [PMID: 36011046 PMCID: PMC9406534 DOI: 10.3390/cancers14164055] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) is an intracellular adapter protein with E3 ligase activity, which interacts with a plethora of other signaling proteins, including plasma membrane receptors, kinases, phosphatases, other E3 ligases, and deubiquitinases. TRAF2 is involved in various cancer-relevant cellular processes, such as the activation of transcription factors of the NFκB family, stimulation of mitogen-activated protein (MAP) kinase cascades, endoplasmic reticulum (ER) stress signaling, autophagy, and the control of cell death programs. In a context-dependent manner, TRAF2 promotes tumor development but it can also act as a tumor suppressor. Based on a general description, how TRAF2 in concert with TRAF2-interacting proteins and other TRAF proteins act at the molecular level is discussed for its importance for tumor development and its potential usefulness as a therapeutic target in cancer therapy. Abstract Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) has been originally identified as a protein interacting with TNF receptor 2 (TNFR2) but also binds to several other receptors of the TNF receptor superfamily (TNFRSF). TRAF2, often in concert with other members of the TRAF protein family, is involved in the activation of the classical NFκB pathway and the stimulation of various mitogen-activated protein (MAP) kinase cascades by TNFRSF receptors (TNFRs), but is also required to inhibit the alternative NFκB pathway. TRAF2 has also been implicated in endoplasmic reticulum (ER) stress signaling, the regulation of autophagy, and the control of cell death programs. TRAF2 fulfills its functions by acting as a scaffold, bringing together the E3 ligase cellular inhibitor of apoptosis-1 (cIAP1) and cIAP2 with their substrates and various regulatory proteins, e.g., deubiquitinases. Furthermore, TRAF2 can act as an E3 ligase by help of its N-terminal really interesting new gene (RING) domain. The finding that TRAF2 (but also several other members of the TRAF family) interacts with the latent membrane protein 1 (LMP1) oncogene of the Epstein–Barr virus (EBV) indicated early on that TRAF2 could play a role in the oncogenesis of B-cell malignancies and EBV-associated non-keratinizing nasopharyngeal carcinoma (NPC). TRAF2 can also act as an oncogene in solid tumors, e.g., in colon cancer by promoting Wnt/β-catenin signaling. Moreover, tumor cell-expressed TRAF2 has been identified as a major factor-limiting cancer cell killing by cytotoxic T-cells after immune checkpoint blockade. However, TRAF2 can also be context-dependent as a tumor suppressor, presumably by virtue of its inhibitory effect on the alternative NFκB pathway. For example, inactivating mutations of TRAF2 have been associated with tumor development, e.g., in multiple myeloma and mantle cell lymphoma. In this review, we summarize the various TRAF2-related signaling pathways and their relevance for the oncogenic and tumor suppressive activities of TRAF2. Particularly, we discuss currently emerging concepts to target TRAF2 for therapeutic purposes.
Collapse
|
9
|
Belpaire M, Taminiau A, Geerts D, Rezsohazy R. HOXA1, a breast cancer oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188747. [PMID: 35675857 DOI: 10.1016/j.bbcan.2022.188747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
More than 25 years ago, the first literature records mentioned HOXA1 expression in human breast cancer. A few years later, HOXA1 was confirmed as a proper oncogene in mammary tissue. In the following two decades, molecular data about the mode of action of the HOXA1 protein, the factors contributing to activate and maintain HOXA1 gene expression and the identity of its target genes have accumulated and provide a wider view on the association of this transcription factor to breast oncogenesis. Large-scale transcriptomic data gathered from wide cohorts of patients further allowed refining the relationship between breast cancer type and HOXA1 expression. Several recent reports have reviewed the connection between cancer hallmarks and the biology of HOX genes in general. Here we take HOXA1 as a paradigm and propose an extensive overview of the molecular data centered on this oncoprotein, from what its expression modulators, to the interactors contributing to its oncogenic activities, and to the pathways and genes it controls. The data converge to an intricate picture that answers questions on the multi-modality of its oncogene activities, point towards better understanding of breast cancer aetiology and thereby provides an appraisal for treatment opportunities.
Collapse
Affiliation(s)
- Magali Belpaire
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Dirk Geerts
- Heart Failure Research Center, Amsterdam University Medical Center (AMC), Universiteit van Amsterdam, Amsterdam, the Netherlands.
| | - René Rezsohazy
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
10
|
Bridoux L, Gofflot F, Rezsohazy R. HOX Protein Activity Regulation by Cellular Localization. J Dev Biol 2021; 9:jdb9040056. [PMID: 34940503 PMCID: PMC8707151 DOI: 10.3390/jdb9040056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
While the functions of HOX genes have been and remain extensively studied in distinct model organisms from flies to mice, the molecular biology of HOX proteins remains poorly documented. In particular, the mechanisms involved in regulating the activity of HOX proteins have been poorly investigated. Nonetheless, based on data available from other well-characterized transcription factors, it can be assumed that HOX protein activity must be finely tuned in a cell-type-specific manner and in response to defined environmental cues. Indeed, records in protein–protein interaction databases or entries in post-translational modification registries clearly support that HOX proteins are the targets of multiple layers of regulation at the protein level. In this context, we review here what has been reported and what can be inferred about how the activities of HOX proteins are regulated by their intracellular distribution.
Collapse
|
11
|
Cain B, Gebelein B. Mechanisms Underlying Hox-Mediated Transcriptional Outcomes. Front Cell Dev Biol 2021; 9:787339. [PMID: 34869389 PMCID: PMC8635045 DOI: 10.3389/fcell.2021.787339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Metazoans differentially express multiple Hox transcription factors to specify diverse cell fates along the developing anterior-posterior axis. Two challenges arise when trying to understand how the Hox transcription factors regulate the required target genes for morphogenesis: First, how does each Hox factor differ from one another to accurately activate and repress target genes required for the formation of distinct segment and regional identities? Second, how can a Hox factor that is broadly expressed in many tissues within a segment impact the development of specific organs by regulating target genes in a cell type-specific manner? In this review, we highlight how recent genomic, interactome, and cis-regulatory studies are providing new insights into answering these two questions. Collectively, these studies suggest that Hox factors may differentially modify the chromatin of gene targets as well as utilize numerous interactions with additional co-activators, co-repressors, and sequence-specific transcription factors to achieve accurate segment and cell type-specific transcriptional outcomes.
Collapse
Affiliation(s)
- Brittany Cain
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
12
|
Belpaire M, Ewbank B, Taminiau A, Bridoux L, Deneyer N, Marchese D, Lima-Mendez G, Baurain JF, Geerts D, Rezsohazy R. HOXA1 Is an Antagonist of ERα in Breast Cancer. Front Oncol 2021; 11:609521. [PMID: 34490074 PMCID: PMC8417444 DOI: 10.3389/fonc.2021.609521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is a heterogeneous disease and the leading cause of female cancer mortality worldwide. About 70% of breast cancers express ERα. HOX proteins are master regulators of embryo development which have emerged as being important players in oncogenesis. HOXA1 is one of them. Here, we present bioinformatic analyses of genome-wide mRNA expression profiles available in large public datasets of human breast cancer samples. We reveal an extremely strong opposite correlation between HOXA1 versus ER expression and that of 2,486 genes, thereby supporting a functional antagonism between HOXA1 and ERα. We also demonstrate in vitro that HOXA1 can inhibit ERα activity. This inhibition is at least bimodal, requiring an intact HOXA1 DNA-binding homeodomain and involving the DNA-binding independent capacity of HOXA1 to activate NF-κB. We provide evidence that the HOXA1-PBX interaction known to be critical for the transcriptional activity of HOXA1 is not involved in the ERα inhibition. Finally, we reveal that HOXA1 and ERα can physically interact but that this interaction is not essential for the HOXA1-mediated inhibition of ERα. Like other HOX oncoproteins interacting with ERα, HOXA1 could be involved in endocrine therapy resistance.
Collapse
Affiliation(s)
- Magali Belpaire
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Bruno Ewbank
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Noémie Deneyer
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Damien Marchese
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Gipsi Lima-Mendez
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Jean-François Baurain
- Pôle d'imagerie moléculaire, radiothérapie et oncologie (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Woluwe-Saint-Lambert, Belgium.,King Albert II Cancer Institute, Cliniques Universitaires St Luc, Woluwe-Saint-Lambert, Belgium
| | - Dirk Geerts
- Department of Medical Biology, Amsterdam University Medical Centrum (AMC), University of Amsterdam, Amsterdam, Netherlands
| | - René Rezsohazy
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
13
|
Li M, Gai F, Chen H. MiR-30b-5p Influences Chronic Exercise Arthritic Injury by Targeting Hoxa1. Int J Sports Med 2021; 42:1199-1208. [PMID: 33930933 DOI: 10.1055/a-1342-7872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We identified the role of miR-30b-5p in chronic exercise arthritic injury. Rats with chronic exercise arthritic injury received treatment with miR-30b-5p antagomiR. H&E and Safranin O-fast green staining were performed. The levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were detected. The binding relationship between homeobox A1 (Hoxa1) and miR-30b-5p was revealed. After manipulating the expressions of miR-30b-5p and/or Hoxa1 in chondrocytes, the viability, apoptosis and migration of chondrocytes were assessed. The levels of molecules were determined by qRT-PCR or Western blot. MiR-30b-5p antagomiR ameliorated articular cartilage lesion and destruction, reduced Mankin's score and the levels of TNF-α, IL-1β, miR-30b-5p, matrix metallopeptidase 13 (MMP-13), and cleaved caspase-3, and increased relative thickness and the levels of Hoxa1, Aggrecan and type II collagen (COLII) in model rats. MiR-30b-5p up-regulation decreased Hoxa1 level, viability, migration and induced apoptosis, whereas miR-30b-5p down-regulation produced the opposite effects. MiR-30b-5p up-regulation increased the levels of MMP-13 and cleaved caspase-3, but decreased those of Aggrecan and COLII in chondrocytes. However, the action of miR-30b-5p up-regulation on chondrocytes was reversed by Hoxa1 overexpression. In conclusion, miR-30b-5p is involved in cartilage degradation in rats with chronic exercise arthritic injury and regulates chondrocyte apoptosis and migration by targeting Hoxa1.
Collapse
Affiliation(s)
- Maoxun Li
- Department of Orthopaedics, The People's Hospital of Jimo.Qingdao, Qingdao, China
| | - Fei Gai
- Department of Radiotherapy, The People's Hospital of Jimo.Qingdao, Qingdao, China
| | - Hongyu Chen
- Department of Emergency, Qingdao West Coast New Area Central Hospital, Qingdao, China
| |
Collapse
|
14
|
Li H, Wang X, Zhang M, Wang M, Zhang J, Ma S. Identification of HOXA1 as a Novel Biomarker in Prognosis of Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2021; 7:602068. [PMID: 33763449 PMCID: PMC7982851 DOI: 10.3389/fmolb.2020.602068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022] Open
Abstract
Hox genes, a highly conserved homolog in most animals, play vital functions in cell development and organ formation. In recent years, researchers have discovered that it can act as a tumor regulator, and its members can participate in tumorigenesis by regulating receptor signaling, cell differentiation, apoptosis, migration, EMT, and angiogenesis. Hox genes and which major members play a vital role in the progress of head and neck squamous cell carcinoma (HNSCC) is still unclear. After analyzing the expression differences and prognostic value of all Hox genes through the TCGA-HNSC database, we use histochemistry stains in 52 pairs of HNSCC slices to verify the expression level of the key member-HOXA1. In correlation analysis, we found that high HOXA1 expression is related to poor pathological grade (p = 0.0077), advanced T stage (p = 0.021) and perineural invasion (PNI) (p = 0.0019). Furthermore, we used Cox univariate and multivariate regression analysis to confirm the independent predictive power of HOXA1 expression. To explore the underlying mechanisms behind HOXA1, we ran GSVA and GSEA and found fourteen mutual signaling pathways, including neuroprotein secretion and transport, tumor-associated signaling pathways, cell adhere junction and metabolic reprogramming. Finally, we found that the high expression of HOXA1 is significantly related to the decrease of CD8+ T cell infiltration and the decline of DNA methylation level. Our findings demonstrated that HOXA1, as a notable member of the HOX family, maybe an independent prognostic indicator in HNSCC.
Collapse
Affiliation(s)
- Hui Li
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaomin Wang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mingjie Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mengjun Wang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Junjie Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shiyin Ma
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
15
|
Bridoux L, Zarrineh P, Mallen J, Phuycharoen M, Latorre V, Ladam F, Losa M, Baker SM, Sagerstrom C, Mace KA, Rattray M, Bobola N. HOX paralogs selectively convert binding of ubiquitous transcription factors into tissue-specific patterns of enhancer activation. PLoS Genet 2020; 16:e1009162. [PMID: 33315856 PMCID: PMC7769617 DOI: 10.1371/journal.pgen.1009162] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 12/28/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022] Open
Abstract
Gene expression programs determine cell fate in embryonic development and their dysregulation results in disease. Transcription factors (TFs) control gene expression by binding to enhancers, but how TFs select and activate their target enhancers is still unclear. HOX TFs share conserved homeodomains with highly similar sequence recognition properties, yet they impart the identity of different animal body parts. To understand how HOX TFs control their specific transcriptional programs in vivo, we compared HOXA2 and HOXA3 binding profiles in the mouse embryo. HOXA2 and HOXA3 directly cooperate with TALE TFs and selectively target different subsets of a broad TALE chromatin platform. Binding of HOX and tissue-specific TFs convert low affinity TALE binding into high confidence, tissue-specific binding events, which bear the mark of active enhancers. We propose that HOX paralogs, alone and in combination with tissue-specific TFs, generate tissue-specific transcriptional outputs by modulating the activity of TALE TFs at selected enhancers.
Collapse
Affiliation(s)
- Laure Bridoux
- School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Peyman Zarrineh
- School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Joshua Mallen
- School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Mike Phuycharoen
- Department of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Victor Latorre
- School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Frank Ladam
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusets, United States of America
| | - Marta Losa
- School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Syed Murtuza Baker
- School of Health Sciences, University of Manchester, Manchester, United Kingdom
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Charles Sagerstrom
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusets, United States of America
| | - Kimberly A. Mace
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Magnus Rattray
- School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Nicoletta Bobola
- School of Medical Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Konzman D, Abramowitz LK, Steenackers A, Mukherjee MM, Na HJ, Hanover JA. O-GlcNAc: Regulator of Signaling and Epigenetics Linked to X-linked Intellectual Disability. Front Genet 2020; 11:605263. [PMID: 33329753 PMCID: PMC7719714 DOI: 10.3389/fgene.2020.605263] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular identity in multicellular organisms is maintained by characteristic transcriptional networks, nutrient consumption, energy production and metabolite utilization. Integrating these cell-specific programs are epigenetic modifiers, whose activity is often dependent on nutrients and their metabolites to function as substrates and co-factors. Emerging data has highlighted the role of the nutrient-sensing enzyme O-GlcNAc transferase (OGT) as an epigenetic modifier essential in coordinating cellular transcriptional programs and metabolic homeostasis. OGT utilizes the end-product of the hexosamine biosynthetic pathway to modify proteins with O-linked β-D-N-acetylglucosamine (O-GlcNAc). The levels of the modification are held in check by the O-GlcNAcase (OGA). Studies from model organisms and human disease underscore the conserved function these two enzymes of O-GlcNAc cycling play in transcriptional regulation, cellular plasticity and mitochondrial reprogramming. Here, we review these findings and present an integrated view of how O-GlcNAc cycling may contribute to cellular memory and transgenerational inheritance of responses to parental stress. We focus on a rare human genetic disorder where mutant forms of OGT are inherited or acquired de novo. Ongoing analysis of this disorder, OGT- X-linked intellectual disability (OGT-XLID), provides a window into how epigenetic factors linked to O-GlcNAc cycling may influence neurodevelopment.
Collapse
Affiliation(s)
| | | | | | | | | | - John A. Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Yang T, Yao Y, Wang X, Li Y, Si Y, Li X, Ayala GJ, Wang Y, Mayo KH, Tai G, Zhou Y, Su J. Galectin-13/placental protein 13: redox-active disulfides as switches for regulating structure, function and cellular distribution. Glycobiology 2020; 30:120-129. [PMID: 31584064 DOI: 10.1093/glycob/cwz081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Galectin-13 (Gal-13) plays numerous roles in regulating the relationship between maternal and fetal tissues. Low expression levels or mutations of the lectin can result in pre-eclampsia. The previous crystal structure and gel filtration data show that Gal-13 dimerizes via formation of two disulfide bonds formed by Cys136 and Cys138. In the present study, we mutated them to serine (C136S, C138S and C136S/C138S), crystalized the variants and solved their crystal structures. All variants crystallized as monomers. In the C136S structure, Cys138 formed a disulfide bond with Cys19, indicating that Cys19 is important for regulation of reversible disulfide bond formation in this lectin. Hemagglutination assays demonstrated that all variants are inactive at inducing erythrocyte agglutination, even though gel filtration profiles indicate that C136S and C138S could still form dimers, suggesting that these dimers do not exhibit the same activity as wild-type (WT) Gal-13. In HeLa cells, the three variants were found to be distributed the same as with WT Gal-13. However, a Gal-13 variant (delT221) truncated at T221 could not be transported into the nucleus, possibly explaining why women having this variant get pre-eclampsia. Considering the normally high concentration of glutathione in cells, WT Gal-13 should exist mostly as a monomer in cytoplasm, consistent with the monomeric variant C136S/C138S, which has a similar ability to interact with HOXA1 as WT Gal-13.
Collapse
Affiliation(s)
- Tong Yang
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yuan Yao
- Media Academy, Jilin Engineering Normal University, 3050 Kaixuan Road, Changchun 130052, China
| | - Xing Wang
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yuying Li
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yunlong Si
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xumin Li
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Gabriela Jaramillo Ayala
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yue Wang
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, 6-155 Jackson Hall, University of Minnesota, 321 Church Street, Minneapolis, MN 55455, USA
| | - Guihua Tai
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yifa Zhou
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Jiyong Su
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| |
Collapse
|
18
|
Huang L, Deng FY, Lei SF. Global correlation analysis for miRNA and protein expression profiles in human peripheral blood mononuclear cells. Mol Biol Rep 2020; 47:5295-5304. [PMID: 32613399 DOI: 10.1007/s11033-020-05608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/20/2020] [Indexed: 11/26/2022]
Abstract
Micro-RNAs (miRNAs) are small noncoding RNAs that negatively regulate gene expression at protein level by protein translation inhibition or mRNA degradation. However, the global correlation patterns between miRNA and protein have not been studied yet. To establish the global correlation patterns in human peripheral blood mononuclear cells (PBMCs), this study conducted multiple types of miRNA-protein correlation analyses in 28 Chinese subjects. Pearson correlation analysis showed a negative but relatively small global correlation in each subject. Among the 371 constructed miRNA-protein pairs (60 unique miRNAs, and 150 unique proteins), 10.5% of pairs have significant correlations (P < 0.05). Some highlighted miRNAs (e.g., hsa-miR-590-3p, hsa-miR-520d-3p) exerted significant regulation on multiple genes. Simultaneously, some genes (e.g., HSP90B1) were targeted by multiple miRNAs. The target genes associated with miRNAs tend to enrich in some important GO terms: biological processes (e.g., gene expression, protein binding and RNA binding), and molecular functions (protein binding: GO:0005515; RNA binding: GO:0003723). The results provided a global view of the miRNA-protein expression correlation profile in human PBMCs, which would facilitate in-depth investigation of biological functions of key miRNAs/proteins and better understanding of the pathogenesis underlying PBMC related diseases.
Collapse
Affiliation(s)
- Liang Huang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
19
|
Saito S, Suzuki T. How do signaling and transcription factors regulate both axis elongation and Hox gene expression along the anteroposterior axis? Dev Growth Differ 2020; 62:363-375. [DOI: 10.1111/dgd.12682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Seiji Saito
- Division of Biological Science Graduate School of Science Nagoya University Nagoya Japan
| | - Takayuki Suzuki
- Avian Bioscience Research Center Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| |
Collapse
|
20
|
HOXA2 activity regulation by cytoplasmic relocation, protein stabilization and post-translational modification. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194404. [PMID: 31323436 DOI: 10.1016/j.bbagrm.2019.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/19/2019] [Accepted: 07/07/2019] [Indexed: 11/22/2022]
Abstract
HOX proteins are homeodomain transcription factors critically involved in patterning animal embryos and controlling organogenesis. While the functions of HOX proteins and the processes under their control begin to be well documented, the modalities of HOX protein activity regulation remain poorly understood. Here we show that HOXA2 interacts with PPP1CB, a catalytic subunit of the Ser/Thr PP1 phosphatase complex. This interaction co-localizes in the cytoplasm with a previously described HOXA2 interactor, KPC2, which belongs to the KPC E3 ubiquitin ligase complex. We provide evidence that HOXA2, PPP1CB and KPC2 define a molecularly and functionally interacting complex. Collectively, our experiments support that PPP1CB and KPC2 together inhibit the activity of HOXA2 by activating its nuclear export, but favored HOXA2 de-ubiquitination and stabilization thereby establishing a store of HOXA2 in the cytoplasm.
Collapse
|
21
|
Ramzan F, Mitchell CJ, Milan AM, Schierding W, Zeng N, Sharma P, Mitchell SM, D'Souza RF, Knowles SO, Roy NC, Sjödin A, Wagner KH, Cameron-Smith D. Comprehensive Profiling of the Circulatory miRNAome Response to a High Protein Diet in Elderly Men: A Potential Role in Inflammatory Response Modulation. Mol Nutr Food Res 2019; 63:e1800811. [PMID: 30892810 DOI: 10.1002/mnfr.201800811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/21/2019] [Indexed: 12/11/2022]
Abstract
SCOPE MicroRNA are critical to the coordinated post-transcriptional regulation of gene expression, yet few studies have addressed the influence of habitual diet on microRNA expression. High protein diets impact cardiometabolic health and body composition in the elderly suggesting the possibility of a complex systems response. Therefore, high-throughput small RNA sequencing technology is applied in response to doubling the protein recommended dietary allowance (RDA) over 10 weeks in older men to examine alterations in circulating miRNAome. METHODS AND RESULTS Older men (n = 31; 74.1 ± 0.6 y) are randomized to consume either RDA (0.8 g kg-1 day-1 ) or 2RDA (1.6 g kg-1 day-1 ) of protein for 10 weeks. Downregulation of five microRNAs (miR-125b-5p, -100-5p, -99a-5p, -23b-3p, and -203a) is observed following 2RDA with no changes in the RDA. In silico functional analysis highlights target gene enrichment in inflammation-related pathways. qPCR quantification of predicted inflammatory genes (TNFα, IL-8, IL-6, pTEN, PPP1CB, and HOXA1) in peripheral blood mononuclear cells shows increased expression following 2RDA diet (p ≤ 0.05). CONCLUSION The study findings suggest a possible selective alteration in the post-transcriptional regulation of the immune system following a high protein diet. However, very few microRNAs are altered despite a large change in the dietary protein.
Collapse
Affiliation(s)
- Farha Ramzan
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand.,Riddet Institute, Massey University, Palmerston North, 4442, New Zealand
| | - Cameron J Mitchell
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand
| | - Amber M Milan
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand
| | - William Schierding
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand
| | - Nina Zeng
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand
| | - Pankaja Sharma
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand.,Riddet Institute, Massey University, Palmerston North, 4442, New Zealand
| | - Sarah M Mitchell
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand.,Riddet Institute, Massey University, Palmerston North, 4442, New Zealand
| | - Randall F D'Souza
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand
| | - Scott O Knowles
- Food Nutrition and Health Team, AgResearch Ltd., Grasslands Research Centre, Palmerston North, 4442, New Zealand
| | - Nicole C Roy
- Food Nutrition and Health Team, AgResearch Ltd., Grasslands Research Centre, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Palmerston North, 4442, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, 1023, New Zealand
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sport, Copenhagen University, 1165, Denmark
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences and Research Platform Active Ageing, University of Vienna, 1010, Vienna, Austria
| | - David Cameron-Smith
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand.,Riddet Institute, Massey University, Palmerston North, 4442, New Zealand.,Food & Bio-Based Products Group, AgResearch Ltd., Hamilton, 3214, New Zealand
| |
Collapse
|
22
|
LNX1/LNX2 proteins: functions in neuronal signalling and beyond. Neuronal Signal 2018; 2:NS20170191. [PMID: 32714586 PMCID: PMC7373230 DOI: 10.1042/ns20170191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
Ligand of NUMB Protein X1 and X2 (LNX1 and LNX2) are E3 ubiquitin ligases, named for their ability to interact with and promote the degradation of the cell fate determinant protein NUMB. On this basis they are thought to play a role in modulating NUMB/NOTCH signalling during processes such as cortical neurogenesis. However, LNX1/2 proteins can bind, via their four PDZ (PSD95, DLGA, ZO-1) domains, to an extraordinarily large number of other proteins besides NUMB. Many of these interactions suggest additional roles for LNX1/2 proteins in the nervous system in areas such as synapse formation, neurotransmission and regulating neuroglial function. Twenty years on from their initial discovery, I discuss here the putative neuronal functions of LNX1/2 proteins in light of the anxiety-related phenotype of double knockout mice lacking LNX1 and LNX2 in the central nervous system (CNS). I also review what is known about non-neuronal roles of LNX1/2 proteins, including their roles in embryonic patterning and pancreas development in zebrafish and their possible involvement in colorectal cancer (CRC), osteoclast differentiation and immune function in mammals. The emerging picture places LNX1/2 proteins as potential regulators of multiple cellular signalling processes, but in many cases the physiological significance of such roles remains only partly validated and needs to be considered in the context of the tight control of LNX1/2 protein levels in vivo.
Collapse
|
23
|
Draime A, Bridoux L, Belpaire M, Pringels T, Degand H, Morsomme P, Rezsohazy R. The O-GlcNAc transferase OGT interacts with and post-translationally modifies the transcription factor HOXA1. FEBS Lett 2018; 592:1185-1201. [PMID: 29465778 DOI: 10.1002/1873-3468.13015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/26/2018] [Accepted: 02/13/2018] [Indexed: 11/06/2022]
Abstract
HOXA1 belongs to the HOX family of transcription factors which are key regulators of animal development. Little is known about the molecular pathways controlling HOXA1. Recent data from our group revealed distinct partner proteins interacting with HOXA1. Among them, OGT is an O-linked N-acetylglucosamine (O-GlcNAc) transferase modifying a variety of proteins involved in different cellular processes including transcription. Here, we confirm OGT as a HOXA1 interactor, we characterise which domains of HOXA1 and OGT are required for the interaction, and we provide evidence that OGT post-translationally modifies HOXA1. Mass spectrometry experiments indeed reveal that HOXA1 can be phosphorylated on the AGGTVGSPQYIHHSY peptide and that upon OGT expression, the phosphate adduct is replaced by an O-GlcNAc group.
Collapse
Affiliation(s)
- Amandine Draime
- Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Magali Belpaire
- Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Tamara Pringels
- Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Hervé Degand
- Molecular Physiology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Pierre Morsomme
- Molecular Physiology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - René Rezsohazy
- Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
24
|
Draime A, Bridoux L, Belpaire M, Pringels T, Tys J, Rezsohazy R. PRDM14, a putative histone methyl-transferase, interacts with and decreases the stability and activity of the HOXA1 transcription factor. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:534-542. [PMID: 29471045 DOI: 10.1016/j.bbagrm.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 11/18/2022]
Abstract
Understanding how the activity of transcription factors like HOX proteins is regulated remains a widely open question. In a recent screen for proteins interacting with HOXA1, we identified a PRDM protein family member, PRDM14, which is known to be transiently co-expressed with HOXA1 in epiblast cells before their specification towards somatic versus germ cell fate. Here, we confirm PRDM14 is an interactor of HOXA1 and we identify the homeodomain of HOXA1 as well as the PR domain and Zinc fingers of PRDM14 to be required for the interaction. An 11-His repeat of HOXA1 previously highlighted to contribute to HOXA1-mediated protein-protein interactions is also involved. At a functional level, we provide evidence that HOXA1 displays an unexpectedly long half-life and demonstrate that PRDM14 can reduce the stability and affect the transcriptional activity of HOXA1.
Collapse
Affiliation(s)
- Amandine Draime
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | - Magali Belpaire
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | - Tamara Pringels
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | - Janne Tys
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | - René Rezsohazy
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
25
|
Wang L, Zhu J, Deng FY, Wu LF, Mo XB, Zhu XW, Xia W, Xie FF, He P, Bing PF, Qiu YH, Lin X, Lu X, Zhang L, Yi NJ, Zhang YH, Lei SF. Correlation analyses revealed global microRNA-mRNA expression associations in human peripheral blood mononuclear cells. Mol Genet Genomics 2017; 293:95-105. [PMID: 28879530 DOI: 10.1007/s00438-017-1367-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/01/2017] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) can regulate gene expression through binding to complementary sites in the 3'-untranslated regions of target mRNAs, which will lead to existence of correlation in expression between miRNA and mRNA. However, the miRNA-mRNA correlation patterns are complex and remain largely unclear yet. To establish the global correlation patterns in human peripheral blood mononuclear cells (PBMCs), multiple miRNA-mRNA correlation analyses and expression quantitative trait locus (eQTL) analysis were conducted in this study. We predicted and achieved 861 miRNA-mRNA pairs (65 miRNAs, 412 mRNAs) using multiple bioinformatics programs, and found global negative miRNA-mRNA correlations in PBMC from all 46 study subjects. Among the 861 pairs of correlations, 19.5% were significant (P < 0.05) and ~70% were negative. The correlation network was complex and highlighted key miRNAs/genes in PBMC. Some miRNAs, such as hsa-miR-29a, hsa-miR-148a, regulate a cluster of target genes. Some genes, e.g., TNRC6A, are regulated by multiple miRNAs. The identified genes tend to be enriched in molecular functions of DNA and RNA binding, and biological processes such as protein transport, regulation of translation and chromatin modification. The results provided a global view of the miRNA-mRNA expression correlation profile in human PBMCs, which would facilitate in-depth investigation of biological functions of key miRNAs/mRNAs and better understanding of the pathogenesis underlying PBMC-related diseases.
Collapse
Affiliation(s)
- Lan Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Center for Disease Prevention and Control, Yichun, 336000, Jiangxi, People's Republic of China
| | - Jiang Zhu
- The Second Affiliated Hospital of Soochow University, Suzhou, 215008, Jiangsu, People's Republic of China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Long-Fei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Xing-Bo Mo
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Xiao-Wei Zhu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Wei Xia
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Fang-Fei Xie
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Peng-Fei Bing
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Ying-Hua Qiu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Xiang Lin
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Xin Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Neng-Jun Yi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yong-Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
26
|
Shestakova EA, Boutin M, Bourassa S, Bonneil E, Bijl JJ. Identification of proteins associated with transcription factors HOXA9 and E2A-PBX1 by tandem affinity purification. Mol Biol 2017. [DOI: 10.1134/s002689331703013x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Morgan R, El-Tanani M, Hunter KD, Harrington KJ, Pandha HS. Targeting HOX/PBX dimers in cancer. Oncotarget 2017; 8:32322-32331. [PMID: 28423659 PMCID: PMC5458287 DOI: 10.18632/oncotarget.15971] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/23/2017] [Indexed: 12/30/2022] Open
Abstract
The HOX and PBX gene families encode transcription factors that have key roles in establishing the identity of cells and tissues in early development. Over the last 20 years it has become apparent that they are also dysregulated in a wide range of solid and haematological malignancies and have a predominantly pro-oncogenic function. A key mode of transcriptional regulation by HOX and PBX proteins is through their interaction as a heterodimer or larger complex that enhances their binding affinity and specificity for DNA, and there is growing evidence that this interaction is a potential therapeutic target in malignancies that include prostate, breast, renal, ovarian and lung cancer, melanoma, myeloma, and acute myeloid leukaemia. This review summarizes the roles of HOX and PBX genes in cancer and assesses the therapeutic potential of HOX/PBX dimer inhibition, including the availability of biomarkers for its application in precision medicine.
Collapse
Affiliation(s)
- Richard Morgan
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Mohamed El-Tanani
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Kevin J. Harrington
- Targeted Therapy Team, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Hardev S. Pandha
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
28
|
Bobola N, Merabet S. Homeodomain proteins in action: similar DNA binding preferences, highly variable connectivity. Curr Opin Genet Dev 2016; 43:1-8. [PMID: 27768937 DOI: 10.1016/j.gde.2016.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022]
Abstract
Homeodomain proteins are evolutionary conserved proteins present in the entire eukaryote kingdom. They execute functions that are essential for life, both in developing and adult organisms. Most homeodomain proteins act as transcription factors and bind DNA to control the activity of other genes. In contrast to their similar DNA binding specificity, homeodomain proteins execute highly diverse and context-dependent functions. Several factors, including genome accessibility, DNA shape, combinatorial binding and the ability to interact with many transcriptional partners, diversify the activity of homeodomain proteins and culminate in the activation of highly dynamic, context-specific transcriptional programs. Clarifying how homeodomain transcription factors work is central to our understanding of development, disease and evolution.
Collapse
Affiliation(s)
- Nicoletta Bobola
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, Centre National de Recherche Scientifique, Ecole Normale Supérieure de Lyon, France.
| |
Collapse
|
29
|
Taminiau A, Draime A, Tys J, Lambert B, Vandeputte J, Nguyen N, Renard P, Geerts D, Rezsöhazy R. HOXA1 binds RBCK1/HOIL-1 and TRAF2 and modulates the TNF/NF-κB pathway in a transcription-independent manner. Nucleic Acids Res 2016; 44:7331-49. [PMID: 27382069 PMCID: PMC5009750 DOI: 10.1093/nar/gkw606] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/24/2016] [Indexed: 11/14/2022] Open
Abstract
HOX proteins define a family of key transcription factors regulating animal embryogenesis. HOX genes have also been linked to oncogenesis and HOXA1 has been described to be active in several cancers, including breast cancer. Through a proteome-wide interaction screening, we previously identified the TNFR-associated proteins RBCK1/HOIL-1 and TRAF2 as HOXA1 interactors suggesting that HOXA1 is functionally linked to the TNF/NF-κB signaling pathway. Here, we reveal a strong positive correlation between expression of HOXA1 and of members of the TNF/NF-κB pathway in breast tumor datasets. Functionally, we demonstrate that HOXA1 can activate NF-κB and operates upstream of the NF-κB inhibitor IκB. Consistently, we next demonstrate that the HOXA1-mediated activation of NF-κB is non-transcriptional and that RBCK1 and TRAF2 influences on NF-κB are epistatic to HOXA1. We also identify an 11 Histidine repeat and the homeodomain of HOXA1 to be required both for RBCK1 and TRAF2 interaction and NF-κB stimulation. Finally, we highlight that activation of NF-κB is crucial for HOXA1 oncogenic activity.
Collapse
Affiliation(s)
- Arnaud Taminiau
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Amandine Draime
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Janne Tys
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Barbara Lambert
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Julie Vandeputte
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Nathan Nguyen
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Patricia Renard
- Cellular Biology Research Unit, Université de Namur, Namur 5000, Belgium
| | - Dirk Geerts
- Department of Pediatric Oncology/Hematology, Erasmus University Medical Center, Rotterdam 3015, The Netherlands
| | - René Rezsöhazy
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| |
Collapse
|
30
|
Rezsohazy R, Saurin AJ, Maurel-Zaffran C, Graba Y. Cellular and molecular insights into Hox protein action. Development 2016; 142:1212-27. [PMID: 25804734 DOI: 10.1242/dev.109785] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hox genes encode homeodomain transcription factors that control morphogenesis and have established functions in development and evolution. Hox proteins have remained enigmatic with regard to the molecular mechanisms that endow them with specific and diverse functions, and to the cellular functions that they control. Here, we review recent examples of Hox-controlled cellular functions that highlight their versatile and highly context-dependent activity. This provides the setting to discuss how Hox proteins control morphogenesis and organogenesis. We then summarise the molecular modalities underlying Hox protein function, in particular in light of current models of transcription factor function. Finally, we discuss how functional divergence between Hox proteins might be achieved to give rise to the many facets of their action.
Collapse
Affiliation(s)
- René Rezsohazy
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Andrew J Saurin
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille 13288, Cedex 09, France
| | | | - Yacine Graba
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille 13288, Cedex 09, France
| |
Collapse
|
31
|
Bridoux L, Deneyer N, Bergiers I, Rezsohazy R. Molecular Analysis of the HOXA2-Dependent Degradation of RCHY1. PLoS One 2015; 10:e0141347. [PMID: 26496426 PMCID: PMC4619689 DOI: 10.1371/journal.pone.0141347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/07/2015] [Indexed: 01/19/2023] Open
Abstract
The homeodomain transcription factor Hoxa2 interacts with the RING-finger type E3 ubiquitin ligase RCHY1 and induces its proteasomal degradation. In this work, we dissected this non-transcriptional activity of Hoxa2 at the molecular level. The Hoxa2-mediated decay of RCHY1 involves both the 19S and 20S proteasome complexes. It relies on both the Hoxa2 homeodomain and C-terminal moiety although no single deletion in the Hoxa2 sequence could disrupt the RCHY1 interaction. That the Hoxa2 homeodomain alone could mediate RCHY1 binding is consistent with the shared ability all the Hox proteins we tested to interact with RCHY1. Nonetheless, the ability to induce RCHY1 degradation although critically relying on the homeodomain is not common to all Hox proteins. This identifies the homeodomain as necessary but not sufficient for what appears to be an almost generic Hox protein activity. Finally we provide evidence that the Hoxa2-induced degradation of RCHY1 is evolutionarily conserved among vertebrates. These data therefore support the hypothesis that the molecular and functional interaction between Hox proteins and RCHY1 is an ancestral Hox property.
Collapse
Affiliation(s)
- Laure Bridoux
- From the Animal Molecular and Cellular Biology group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Noémie Deneyer
- From the Animal Molecular and Cellular Biology group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Isabelle Bergiers
- From the Animal Molecular and Cellular Biology group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - René Rezsohazy
- From the Animal Molecular and Cellular Biology group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
- * E-mail:
| |
Collapse
|
32
|
KPC2 relocalizes HOXA2 to the cytoplasm and decreases its transcriptional activity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1298-311. [PMID: 26303204 DOI: 10.1016/j.bbagrm.2015.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/13/2022]
Abstract
Regulation of transcription factor activity relies on molecular interactions or enzymatic modifications which influence their interaction with DNA cis-regulatory sequences, their transcriptional activation or repression, and stability or intracellular distribution of these proteins. Regarding the well-conserved Hox protein family, a restricted number of activity regulators have been highlighted thus far. In the framework of a proteome-wide screening aiming at identifying proteins interacting with Hoxa2, KPC2, an adapter protein constitutive of the KPC ubiquitin-ligase complex, was identified. In this work, KPC2 was confirmed as being a genuine interactor of Hoxa2 by co-precipitation and bimolecular fluorescence complementation assays. At functional level, KPC2 diminishes the transcriptional activity and induces the nuclear exit of Hoxa2. Gene expression analyses revealed that Kpc2 is active in restricted areas of the developing mouse embryo which overlap with the Hoxa2 expression domain. Together, our data support that KPC2 regulates Hoxa2 by promoting its relocation to the cytoplasm.
Collapse
|
33
|
Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets. Oncogene 2015; 35:1090-8. [PMID: 26028034 DOI: 10.1038/onc.2015.174] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/24/2015] [Accepted: 04/14/2015] [Indexed: 02/08/2023]
Abstract
HOXA9 is a homeodomain-containing transcription factor that has an important role in hematopoietic stem cell expansion and is commonly deregulated in acute leukemias. A variety of upstream genetic alterations in acute myeloid leukemia lead to overexpression of HOXA9, which is a strong predictor of poor prognosis. In many cases, HOXA9 has been shown to be necessary for maintaining leukemic transformation; however, the molecular mechanisms through which it promotes leukemogenesis remain elusive. Recent work has established that HOXA9 regulates downstream gene expression through binding at promoter distal enhancers along with a subset of cell-specific cofactor and collaborator proteins. Increasing efforts are being made to identify both the critical cofactors and target genes required for maintaining transformation in HOXA9-overexpressing leukemias. With continued advances in understanding HOXA9-mediated transformation, there is a wealth of opportunity for developing novel therapeutics that would be applicable for greater than 50% of AML with overexpression of HOXA9.
Collapse
|
34
|
Baëza M, Viala S, Heim M, Dard A, Hudry B, Duffraisse M, Rogulja-Ortmann A, Brun C, Merabet S. Inhibitory activities of short linear motifs underlie Hox interactome specificity in vivo. eLife 2015; 4. [PMID: 25869471 PMCID: PMC4392834 DOI: 10.7554/elife.06034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/16/2015] [Indexed: 12/30/2022] Open
Abstract
Hox proteins are well-established developmental regulators that coordinate cell fate and morphogenesis throughout embryogenesis. In contrast, our knowledge of their specific molecular modes of action is limited to the interaction with few cofactors. Here, we show that Hox proteins are able to interact with a wide range of transcription factors in the live Drosophila embryo. In this context, specificity relies on a versatile usage of conserved short linear motifs (SLiMs), which, surprisingly, often restrains the interaction potential of Hox proteins. This novel buffering activity of SLiMs was observed in different tissues and found in Hox proteins from cnidarian to mouse species. Although these interactions remain to be analysed in the context of endogenous Hox regulatory activities, our observations challenge the traditional role assigned to SLiMs and provide an alternative concept to explain how Hox interactome specificity could be achieved during the embryonic development. DOI:http://dx.doi.org/10.7554/eLife.06034.001 In all animals, it is important that cells are correctly organised into tissues and organs. This organisation starts in the embryo, and cells are instructed to perform different roles depending on their position within the body. A family of proteins called the Hox proteins coordinates the organisation of the cells in the animal embryo by binding to and controlling the expression of specific genes. To properly control their target genes, Hox proteins need to interact with other proteins called transcription factors that can also bind to the genes. However, only a few of these transcription factors have been identified so far, and it is not clear how Hox proteins are able to interact with them. Here, Baëza, Viala, Heim et al. identified several more transcription factors that can bind to the Hox proteins in fruit fly embryos. The experiments show that Hox proteins are able to bind to many transcription factors that are very different from each other. Baëza, Viala, Heim et al. also show that two short sections within the Hox proteins known as short linear motifs are important for controlling these interactions. A fly Hox protein that was missing these motifs was able to interact with new transcription factors. This inhibitory role was found in Hox proteins from mice and sea anemones, suggesting that these motifs may play the same role in all animals. Baëza, Viala, Heim et al.'s findings challenge the traditional view of the role of the short linear motifs in interactions between proteins. Also, the findings provide an alternative explanation for how the Hox proteins are only able to interact with particular transcription factors in animal embryos. The next step will be to find out whether the inhibitory role of short linear motifs could more generally apply to many other protein families. DOI:http://dx.doi.org/10.7554/eLife.06034.002
Collapse
Affiliation(s)
- Manon Baëza
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| | - Séverine Viala
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| | - Marjorie Heim
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| | - Amélie Dard
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| | - Bruno Hudry
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Marilyne Duffraisse
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| | | | - Christine Brun
- Technological Advances for Genomics and clinics, Institut national de la santé et de la recherche médicale, University Aix-Marseille, Parc Scientifique de Luminy, Marseille, France
| | - Samir Merabet
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| |
Collapse
|
35
|
Bergiers I, Lambert B, Daakour S, Twizere JC, Rezsohazy R. Hox protein interactions: screening and network building. Methods Mol Biol 2014; 1196:319-48. [PMID: 25151173 DOI: 10.1007/978-1-4939-1242-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Understanding the mode of action of Hox proteins requires the identification of molecular and cellular pathways they take part in. This includes to characterize the networks of protein-protein interactions involving Hox proteins. In this chapter we propose a strategy and methods to map Hox interaction networks, from yeast two-hybrid and high-throughput yeast two-hybrid interaction screening to bioinformatic analyses based on the software platform Cytoscape.
Collapse
Affiliation(s)
- Isabelle Bergiers
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-5 box L7.07.10, Louvain-la-Neuve, 1348, Belgium
| | | | | | | | | |
Collapse
|
36
|
Banks CAS, Lee ZT, Boanca G, Lakshminarasimhan M, Groppe BD, Wen Z, Hattem GL, Seidel CW, Florens L, Washburn MP. Controlling for gene expression changes in transcription factor protein networks. Mol Cell Proteomics 2014; 13:1510-22. [PMID: 24722732 DOI: 10.1074/mcp.m113.033902] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The development of affinity purification technologies combined with mass spectrometric analysis of purified protein mixtures has been used both to identify new protein-protein interactions and to define the subunit composition of protein complexes. Transcription factor protein interactions, however, have not been systematically analyzed using these approaches. Here, we investigated whether ectopic expression of an affinity tagged transcription factor as bait in affinity purification mass spectrometry experiments perturbs gene expression in cells, resulting in the false positive identification of bait-associated proteins when typical experimental controls are used. Using quantitative proteomics and RNA sequencing, we determined that the increase in the abundance of a set of proteins caused by overexpression of the transcription factor RelA is not sufficient for these proteins to then co-purify non-specifically and be misidentified as bait-associated proteins. Therefore, typical controls should be sufficient, and a number of different baits can be compared with a common set of controls. This is of practical interest when identifying bait interactors from a large number of different baits. As expected, we found several known RelA interactors enriched in our RelA purifications (NFκB1, NFκB2, Rel, RelB, IκBα, IκBβ, and IκBε). We also found several proteins not previously described in association with RelA, including the small mitochondrial chaperone Tim13. Using a variety of biochemical approaches, we further investigated the nature of the association between Tim13 and NFκB family transcription factors. This work therefore provides a conceptual and experimental framework for analyzing transcription factor protein interactions.
Collapse
Affiliation(s)
- Charles A S Banks
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Zachary T Lee
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Gina Boanca
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | | | - Brad D Groppe
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Zhihui Wen
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Gaye L Hattem
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Chris W Seidel
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Laurence Florens
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Michael P Washburn
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110; §Departments of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
37
|
Zigman M, Laumann-Lipp N, Titus T, Postlethwait J, Moens CB. Hoxb1b controls oriented cell division, cell shape and microtubule dynamics in neural tube morphogenesis. Development 2014; 141:639-49. [PMID: 24449840 PMCID: PMC3899817 DOI: 10.1242/dev.098731] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hox genes are classically ascribed to function in patterning the anterior-posterior axis of bilaterian animals; however, their role in directing molecular mechanisms underlying morphogenesis at the cellular level remains largely unstudied. We unveil a non-classical role for the zebrafish hoxb1b gene, which shares ancestral functions with mammalian Hoxa1, in controlling progenitor cell shape and oriented cell division during zebrafish anterior hindbrain neural tube morphogenesis. This is likely distinct from its role in cell fate acquisition and segment boundary formation. We show that, without affecting major components of apico-basal or planar cell polarity, Hoxb1b regulates mitotic spindle rotation during the oriented neural keel symmetric mitoses that are required for normal neural tube lumen formation in the zebrafish. This function correlates with a non-cell-autonomous requirement for Hoxb1b in regulating microtubule plus-end dynamics in progenitor cells in interphase. We propose that Hox genes can influence global tissue morphogenesis by control of microtubule dynamics in individual cells in vivo.
Collapse
Affiliation(s)
- Mihaela Zigman
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
38
|
Bergiers I, Bridoux L, Nguyen N, Twizere JC, Rezsöhazy R. The homeodomain transcription factor Hoxa2 interacts with and promotes the proteasomal degradation of the E3 ubiquitin protein ligase RCHY1. PLoS One 2013; 8:e80387. [PMID: 24244684 PMCID: PMC3820564 DOI: 10.1371/journal.pone.0080387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/02/2013] [Indexed: 12/19/2022] Open
Abstract
Hox proteins are conserved homeodomain transcription factors known to be crucial regulators of animal development. As transcription factors, the functions and modes of action (co-factors, target genes) of Hox proteins have been very well studied in a multitude of animal models. However, a handful of reports established that Hox proteins may display molecular activities distinct from gene transcription regulation. Here, we reveal that Hoxa2 interacts with 20S proteasome subunits and RCHY1 (also known as PIRH2), an E3 ubiquitin ligase that targets p53 for degradation. We further show that Hoxa2 promotes proteasome-dependent degradation of RCHY1 in an ubiquitin-independent manner. Correlatively, Hoxa2 alters the RCHY1-mediated ubiquitination of p53 and promotes p53 stabilization. Together, our data establish that Hoxa2 can regulate the proteasomal degradation of RCHY1 and stabilization of p53.
Collapse
Affiliation(s)
- Isabelle Bergiers
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Nathan Nguyen
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Claude Twizere
- Laboratory of Signaling and Protein Interactions, GIGA-R, University of Liege, Liège, Belgium
| | - René Rezsöhazy
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- * E-mail:
| |
Collapse
|
39
|
Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Théry C, Raposo G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 2013; 126:5553-65. [PMID: 24105262 DOI: 10.1242/jcs.128868] [Citation(s) in RCA: 871] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exosomes are extracellular vesicles (EVs) secreted upon fusion of endosomal multivesicular bodies (MVBs) with the plasma membrane. The mechanisms involved in their biogenesis have not yet been fully identified although they could be used to modulate exosome formation and therefore are a promising tool in understanding exosome functions. We have performed an RNA interference screen targeting 23 components of the endosomal sorting complex required for transport (ESCRT) machinery and associated proteins in MHC class II (MHC II)-expressing HeLa-CIITA cells. Silencing of HRS, STAM1 or TSG101 reduced the secretion of EV-associated CD63 and MHC II but each gene altered differently the size and/or protein composition of secreted EVs, as quantified by immuno-electron microscopy. By contrast, depletion of VPS4B augmented this secretion while not altering the features of EVs. For several other ESCRT subunits, it was not possible to draw any conclusions about their involvement in exosome biogenesis from the screen. Interestingly, silencing of ALIX increased MHC II exosomal secretion, as a result of an overall increase in intracellular MHC II protein and mRNA levels. In human dendritic cells (DCs), ALIX depletion also increased MHC II in the cells, but not in the released CD63-positive EVs. Such differences could be attributed to a greater heterogeneity in size, and higher MHC II and lower CD63 levels in vesicles recovered from DCs as compared with HeLa-CIITA. The results reveal a role for selected ESCRT components and accessory proteins in exosome secretion and composition by HeLa-CIITA. They also highlight biogenetic differences in vesicles secreted by a tumour cell line and primary DCs.
Collapse
Affiliation(s)
- Marina Colombo
- Institut Curie Section Recherche, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Merabet S, Dard A. Tracking context-specific transcription factors regulating hox activity. Dev Dyn 2013; 243:16-23. [PMID: 23794379 DOI: 10.1002/dvdy.24002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/07/2013] [Accepted: 06/11/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hox proteins are key developmental regulators involved in almost every embryonic tissue for specifying cell fates along longitudinal axes or during organ formation. It is thought that the panoply of Hox activities relies on interactions with tissue-, stage-, and/or cell-specific transcription factors. High-throughput approaches in yeast or cell culture systems have shown that Hox proteins bind to various types of nuclear and cytoplasmic components, illustrating their remarkable potential to influence many different cell regulatory processes. However, these approaches failed to identify a relevant number of context-specific transcriptional partners, suggesting that these interactions are hard to uncover in non-physiological conditions. Here we discuss this problematic. RESULTS In this review, we present intrinsic Hox molecular signatures that are probably involved in multiple (yet specific) interactions with transcriptional partners. We also recapitulate the current knowledge on Hox cofactors, highlighting the difficulty to tracking context-specific cofactors through traditional large-scale approaches. CONCLUSION We propose experimental approaches that will allow a better characterisation of interaction networks underlying Hox contextual activities in the next future.
Collapse
|
41
|
Ladam F, Sagerström CG. Hox regulation of transcription: more complex(es). Dev Dyn 2013; 243:4-15. [PMID: 23765878 DOI: 10.1002/dvdy.23997] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 11/10/2022] Open
Abstract
Hox genes encode transcription factors with important roles during embryogenesis and tissue differentiation. Genetic analyses initially demonstrated that interfering with Hox genes has profound effects on the specification of cell identity, suggesting that Hox proteins regulate very specific sets of target genes. However, subsequent biochemical analyses revealed that Hox proteins bind DNA with relatively low affinity and specificity. Furthermore, it became clear that a given Hox protein could activate or repress transcription, depending on the context. A resolution to these paradoxes presented itself with the discovery that Hox proteins do not function in isolation, but interact with other factors in complexes. The first such "cofactors" were members of the Extradenticle/Pbx and Homothorax/Meis/Prep families. However, the list of Hox-interacting proteins has continued to grow, suggesting that Hox complexes contain many more components than initially thought. Additionally, the activities of the various components and the exact mechanisms whereby they modulate the activity of the complex remain puzzling. Here, we review the various proteins known to participate in Hox complexes and discuss their likely functions. We also consider that Hox complexes of different compositions may have different activities and discuss mechanisms whereby Hox complexes may be switched between active and inactive states.
Collapse
Affiliation(s)
- Franck Ladam
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | | |
Collapse
|
42
|
Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Théry C, Raposo G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 2013. [DOI: 78495111110.1242/jcs.128868' target='_blank'>'"<>78495111110.1242/jcs.128868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.1242/jcs.128868','', '10.1186/1471-213x-12-29')">Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
78495111110.1242/jcs.128868" />
Abstract
Exosomes are extracellular vesicles (EVs) secreted upon fusion of endosomal multivesicular bodies (MVBs) with the plasma membrane. The mechanisms involved in their biogenesis remain so far unclear although they constitute targets to modulate exosome formation and therefore are a promising tool to understand their functions. We have performed an RNA interference screen targeting twenty-three components of the endosomal sorting complex required for transport (ESCRT) machinery and associated proteins in MHC class II (MHC II)-expressing HeLa-CIITA cells. Silencing of HRS, STAM1, or TSG101 reduced the secretion of EV-associated CD63 and MHC II but each gene altered differently the size and/or protein composition of secreted EV, as quantified by immuno-electron microscopy. By contrast, depletion of VPS4B augmented this secretion while not altering the features of EVs. For several other ESCRT subunits, the screen did not allow to conclude on their involvement in exosome biogenesis. Interestingly, silencing of ALIX increased MHC II exosomal secretion, due to an overall increase in intracellular MHC II protein and mRNA levels. In human dendritic cells (DCs), ALIX depletion also increased MHC II in the cells, but not in the released CD63-positive EVs. Such differences could be attributed to a higher heterogeneity in size, and higher MHC II and lower CD63 contents in vesicles recovered from DCs as compared to HeLa-CIITA. The results reveal a role for selected ESCRT components and accessory proteins in exosome secretion and composition by HeLa-CIITA. They also highlight biogenetic differences in vesicles secreted by a tumour cell line and primary DCs.
Collapse
|
43
|
Kusser W, Zimmer K, Fiedler F. Characteristics of the binding of aminoglycoside antibiotics to teichoic acids. A potential model system for interaction of aminoglycosides with polyanions. Dev Dyn 1985; 243:117-31. [PMID: 2411558 DOI: 10.1002/dvdy.24060] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/09/2013] [Accepted: 08/30/2013] [Indexed: 12/15/2022] Open
Abstract
The binding of the aminoglycoside antibiotic dihydrostreptomycin to defined cell-wall teichoic acids and to lipoteichoic acid isolated from various gram-positive eubacteria was followed by equilibrium dialysis. Dihydrostreptomycin was used at a wide range of concentration under different conditions of ionic strength, concentration of teichoic acid, presence of cationic molecules like Mg2+, spermidine, other aminoglycoside antibiotics (gentamicin, neomycin, paromomycin). Interaction of dihydrostreptomycin with teichoic acid was found to be a cooperative binding process. The binding characteristics seem to be dependent on structural features of teichoic acid and are influenced by cationic molecules. Mg2+, spermidine and other aminoglycosides antibiotics inhibit the binding of dihydrostreptomycin to teichoic acid competitively. The binding of aminoglycosides to teichoic acids is considered as a model system for the interaction of aminoglycoside antibiotics with cellular polyanions. Conclusions of physiological significance are drawn.
Collapse
|