1
|
Galiatsatos P, Hailey-Fair K, Johnson M, Vanderpool EAC, Stewart RW, Alexander K, Magsamen S. Population health and community health: brokering the two through art and community engagement. Front Public Health 2024; 12:1480795. [PMID: 39678242 PMCID: PMC11638408 DOI: 10.3389/fpubh.2024.1480795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
The arts and aesthetic experiences have fostered and enhanced relationships between diverse, distinct groups in an effort to build comradery, trust, and engagement. In regards to collaborations between health systems and communities, taking into account strategies to build such relationships is vital in an effort to assure a bidirectional collaboration that implements public health insight and resources effectively. There are many factors warranting consideration when building effective community engagement for health promotion between healthcare systems and local community organizations and residents. Such factors include, but are not limited to, homophily, transitivity, structural holes, and maintaining weak ties. In this brief review, we will explore how the arts can be utilized to broker relationships for healthcare systems implementing community engagement with partnering, diverse social networks. Specifically, we will explore the role of the arts and aesthetic experience to create homophily, foster transitivity and balance, enhance collaboration and build meaningful connections between healthcare systems and social networks to more effectively address health concerns for all involved.
Collapse
Affiliation(s)
- Panagis Galiatsatos
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Office of Diversity, Inclusion, and Health Equity, Johns Hopkins Health System, Baltimore, MD, United States
- Medicine for the Greater Good, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kimberly Hailey-Fair
- Medicine for the Greater Good, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Marcie Johnson
- Medicine for the Greater Good, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | | | - Rosalyn W. Stewart
- Office of Diversity, Inclusion, and Health Equity, Johns Hopkins Health System, Baltimore, MD, United States
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Karen Alexander
- International Arts + Mind Labs, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Susan Magsamen
- International Arts + Mind Labs, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Navarro-López B, .Baeta M, Moreno-López O, Kleinbielen T, Raffone C, Granizo-Rodríguez E, Ferragut J, Alvarez-Gila O, Barbaro A, Picornell A, de Pancorbo E M. Y-chromosome analysis recapitulates key events of Mediterranean populations. Heliyon 2024; 10:e35329. [PMID: 39220888 PMCID: PMC11365299 DOI: 10.1016/j.heliyon.2024.e35329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The remarkable geographical situation of the Mediterranean region, located between Europe, Africa, and Asia, with numerous migratory routes, has made this area a crucible of cultures. Studying the Y-chromosome variability is a very performant tool to explore the genetic ancestry and evaluate scenarios that may explain the current Mediterranean gene pool. Here, six Mediterranean populations, including three Balearic Islands (Ibiza, Majorca, and Minorca) and three Southern Italian regions (Catanzaro, Cosenza, and Reggio di Calabria) were typed using 23 Y-STR loci and up to 39 Y-SNPs and compared to geographically targeted key reference populations to explore their genetic relationship and provide an overview of Y-chromosome variation across the Mediterranean basin. Pairwise RST genetic distances calculated with STRs markers and Y-haplogroups mirror the West to East geographic distribution of European and Asian Mediterranean populations, highlighting the North-South division of Italy, with a higher Eastern Mediterranean component in Southern Italian populations. In contrast, the African populations from the Southern coast of the Mediterranean clustered separately. Overall, these results support the notion that migrations from Magna Graecia or the Byzantine Empire, which followed similar Neolithic and post-Neolithic routes into Southern Italy, may have contributed to maintaining and/or reinforcing the Eastern Mediterranean genetic component in Southern Italian populations.
Collapse
Affiliation(s)
- B. Navarro-López
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - M. .Baeta
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - O. Moreno-López
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - T. Kleinbielen
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - C. Raffone
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - E. Granizo-Rodríguez
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - J.F. Ferragut
- Departament de Biologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) i Laboratori de Genètica, Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
| | - O. Alvarez-Gila
- Department of Medieval, Early Modern and American History, Faculty of Letters, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - A. Barbaro
- Forensic Genetics Section, Studio Indagini Mediche e Forensi (SIMEF), Reggio Calabria, Italy
| | - A. Picornell
- Departament de Biologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) i Laboratori de Genètica, Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
| | - M.M. de Pancorbo E
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| |
Collapse
|
3
|
Marcus J, Cetin E. Genetic predictors of cultural values variation between societies. Sci Rep 2023; 13:7986. [PMID: 37198209 DOI: 10.1038/s41598-023-34845-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 05/09/2023] [Indexed: 05/19/2023] Open
Abstract
Associations between the STin2 and 5-HTTLPR polymorphisms within the serotonin transporter gene, SLC6A4, and culture across societies were examined. Based on an analysis of 75 primary studies (28,726 individuals), STin2 allelic frequencies were found to vary widely across countries, ranging from 26% in Germany to 85% in Singapore. Across 53 countries, and after controlling for all major environmental influences of culture, STin2 and 5-HTTLPR were found to explain 23.6% unique variance in monumentalism but none in individualism. Our findings evidence a significant role of genetics in predicting cross-societal cultural values variation, and potentially speak to the need for and importance of incorporating both nature and nurture in theories of cultural values variation across societies.
Collapse
Affiliation(s)
- Justin Marcus
- College of Administrative Sciences and Economics, Koç University, Rumelifeneri Mah., Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey.
| | - Ecesu Cetin
- College of Administrative Sciences and Economics, Koç University, Rumelifeneri Mah., Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
- School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
4
|
Rambaldi Migliore N, Colombo G, Capodiferro MR, Mazzocchi L, Chero Osorio AM, Raveane A, Tribaldos M, Perego UA, Mendizábal T, Montón AG, Lombardo G, Grugni V, Garofalo M, Ferretti L, Cereda C, Gagliardi S, Cooke R, Smith-Guzmán N, Olivieri A, Aram B, Torroni A, Motta J, Semino O, Achilli A. Weaving Mitochondrial DNA and Y-Chromosome Variation in the Panamanian Genetic Canvas. Genes (Basel) 2021; 12:genes12121921. [PMID: 34946870 PMCID: PMC8702192 DOI: 10.3390/genes12121921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022] Open
Abstract
The Isthmus of Panama was a crossroads between North and South America during the continent’s first peopling (and subsequent movements) also playing a pivotal role during European colonization and the African slave trade. Previous analyses of uniparental systems revealed significant sex biases in the genetic history of Panamanians, as testified by the high proportions of Indigenous and sub-Saharan mitochondrial DNAs (mtDNAs) and by the prevalence of Western European/northern African Y chromosomes. Those studies were conducted on the general population without considering any self-reported ethnic affiliations. Here, we compared the mtDNA and Y-chromosome lineages of a new sample collection from 431 individuals (301 males and 130 females) belonging to either the general population, mixed groups, or one of five Indigenous groups currently living in Panama. We found different proportions of paternal and maternal lineages in the Indigenous groups testifying to pre-contact demographic events and genetic inputs (some dated to Pleistocene times) that created genetic structure. Then, while the local mitochondrial gene pool was marginally involved in post-contact admixtures, the Indigenous Y chromosomes were differentially replaced, mostly by lineages of western Eurasian origin. Finally, our new estimates of the sub-Saharan contribution, on a more accurately defined general population, reduce an apparent divergence between genetic and historical data.
Collapse
Affiliation(s)
- Nicola Rambaldi Migliore
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Giulia Colombo
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Marco Rosario Capodiferro
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Lucia Mazzocchi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Ana Maria Chero Osorio
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Alessandro Raveane
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Maribel Tribaldos
- Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama; (M.T.); (J.M.)
| | - Ugo Alessandro Perego
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
- Department of Math and Science, Southeastern Community College, West Burlington, IA 52655, USA
| | - Tomás Mendizábal
- Center for Historical, Anthropological and Cultural Research—AIP, Panama City 0816-07812, Panama;
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama; (R.C.); (N.S.-G.)
| | - Alejandro García Montón
- Departamento de Geografía, Historia y Filosofía, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.G.M.); (B.A.)
| | - Gianluca Lombardo
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Viola Grugni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Maria Garofalo
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.C.); (S.G.)
| | - Luca Ferretti
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Cristina Cereda
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.C.); (S.G.)
| | - Stella Gagliardi
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.C.); (S.G.)
| | - Richard Cooke
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama; (R.C.); (N.S.-G.)
- Sistema Nacional de Investigadores, Secretaría Nacional de Ciencia y Tecnología, Ciudad del Saber, Clayton 0816-02852, Panama
| | - Nicole Smith-Guzmán
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama; (R.C.); (N.S.-G.)
- Sistema Nacional de Investigadores, Secretaría Nacional de Ciencia y Tecnología, Ciudad del Saber, Clayton 0816-02852, Panama
| | - Anna Olivieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Bethany Aram
- Departamento de Geografía, Historia y Filosofía, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.G.M.); (B.A.)
| | - Antonio Torroni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
| | - Jorge Motta
- Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama; (M.T.); (J.M.)
| | - Ornella Semino
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
- Correspondence: (O.S.); (A.A.)
| | - Alessandro Achilli
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (N.R.M.); (G.C.); (M.R.C.); (L.M.); (A.M.C.O.); (A.R.); (U.A.P.); (G.L.); (V.G.); (M.G.); (L.F.); (A.O.); (A.T.)
- Correspondence: (O.S.); (A.A.)
| |
Collapse
|
5
|
Phylogeographic review of Y chromosome haplogroups in Europe. Int J Legal Med 2021; 135:1675-1684. [PMID: 34216266 DOI: 10.1007/s00414-021-02644-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
The Y chromosome has been widely explored for the study of human migrations. Due to its paternal inheritance, the Y chromosome polymorphisms are helpful tools for understanding the geographical distribution of populations all over the world and for inferring their origin, which is really useful in forensics. The remarkable historical context of Europe, with numerous migrations and invasions, has turned this continent into a melting pot. For this reason, it is interesting to study the Y chromosome variability and how it has contributed to improving our knowledge of the distribution and development of European male genetic pool as it is today. The analysis of Y lineages in Europe shows the predominance of four haplogroups, R1b-M269, I1-M253, I2-M438 and R1a-M420. However, other haplogroups have been identified which, although less frequent, provide significant evidence about the paternal origin of the populations. In addition, the study of the Y chromosome in Europe is a valuable tool for revealing the genetic trace of the different European colonizations, mainly in several American countries, where the European ancestry is mostly detected by the presence of the R1b-M269 haplogroup. Therefore, the objective of this review is to compile the studies of the Y chromosome haplogroups in current European populations, in order to provide an outline of these haplogroups which facilitate their use in forensic studies.
Collapse
|
6
|
Tamm E, Di Cristofaro J, Mazières S, Pennarun E, Kushniarevich A, Raveane A, Semino O, Chiaroni J, Pereira L, Metspalu M, Montinaro F. Genome-wide analysis of Corsican population reveals a close affinity with Northern and Central Italy. Sci Rep 2019; 9:13581. [PMID: 31537848 PMCID: PMC6753063 DOI: 10.1038/s41598-019-49901-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/31/2019] [Indexed: 01/13/2023] Open
Abstract
Despite being the fourth largest island in the Mediterranean basin, the genetic variation of Corsica has not been explored as exhaustively as Sardinia, which is situated only 11 km South. However, it is likely that the populations of the two islands shared, at least in part, similar demographic histories. Moreover, the relative small size of the Corsica may have caused genetic isolation, which, in turn, might be relevant under medical and translational perspectives. Here we analysed genome wide data of 16 Corsicans, and integrated with newly (33 individuals) and previously generated samples from West Eurasia and North Africa. Allele frequency, haplotype-based, and ancient genome analyses suggest that although Sardinia and Corsica may have witnessed similar isolation and migration events, the latter is genetically closer to populations from continental Europe, such as Northern and Central Italians.
Collapse
Affiliation(s)
- Erika Tamm
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| | - Julie Di Cristofaro
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.,Etablissement Français du Sang PACA Corse, Biologie des Groupes Sanguins, Marseille, France
| | | | - Erwan Pennarun
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Alena Kushniarevich
- Institute of Genomics, University of Tartu, Tartu, Estonia.,Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| | - Alessandro Raveane
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani" Università di Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani" Università di Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Jacques Chiaroni
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.,Etablissement Français du Sang PACA Corse, Biologie des Groupes Sanguins, Marseille, France
| | - Luisa Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135, Porto, Portugal
| | - Mait Metspalu
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Francesco Montinaro
- Institute of Genomics, University of Tartu, Tartu, Estonia. .,Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Grugni V, Raveane A, Mattioli F, Battaglia V, Sala C, Toniolo D, Ferretti L, Gardella R, Achilli A, Olivieri A, Torroni A, Passarino G, Semino O. Reconstructing the genetic history of Italians: new insights from a male (Y-chromosome) perspective. Ann Hum Biol 2018; 45:44-56. [PMID: 29382284 DOI: 10.1080/03014460.2017.1409801] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Due to its central and strategic position in Europe and in the Mediterranean Basin, the Italian Peninsula played a pivotal role in the first peopling of the European continent and has been a crossroad of peoples and cultures since then. AIM This study aims to gain more information on the genetic structure of modern Italian populations and to shed light on the migration/expansion events that led to their formation. SUBJECTS AND METHODS High resolution Y-chromosome variation analysis in 817 unrelated males from 10 informative areas of Italy was performed. Haplogroup frequencies and microsatellite haplotypes were used, together with available data from the literature, to evaluate Mediterranean and European inputs and date their arrivals. RESULTS Fifty-three distinct Y-chromosome lineages were identified. Their distribution is in general agreement with geography, southern populations being more differentiated than northern ones. CONCLUSIONS A complex genetic structure reflecting the multifaceted peopling pattern of the Peninsula emerged: southern populations show high similarity with those from the Middle East and Southern Balkans, while those from Northern Italy are close to populations of North-Western Europe and the Northern Balkans. Interestingly, the population of Volterra, an ancient town of Etruscan origin in Tuscany, displays a unique Y-chromosomal genetic structure.
Collapse
Affiliation(s)
- Viola Grugni
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Alessandro Raveane
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Francesca Mattioli
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Vincenza Battaglia
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Cinzia Sala
- b Divisione di Genetica e Biologia Cellulare , Istituto Scientifico San Raffaele , Milano , Italy
| | - Daniela Toniolo
- b Divisione di Genetica e Biologia Cellulare , Istituto Scientifico San Raffaele , Milano , Italy
| | - Luca Ferretti
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Rita Gardella
- c Dipartimento di Medicina Molecolare e Traslazionale , Università di Brescia , Brescia , Italy
| | - Alessandro Achilli
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Anna Olivieri
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Antonio Torroni
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| | - Giuseppe Passarino
- d Dipartimento di Biologia, Ecologia e Scienze della Terra , Università della Calabria , Arcavacata di Rende , Cosenza , Italy
| | - Ornella Semino
- a Dipartimento di Biologia e Biotecnologie "L. Spallanzani" , Università di Pavia , Pavia , Italy
| |
Collapse
|
8
|
Larmuseau MHD, Ottoni C. Mediterranean Y-chromosome 2.0-why the Y in the Mediterranean is still relevant in the postgenomic era. Ann Hum Biol 2018; 45:20-33. [PMID: 29382278 DOI: 10.1080/03014460.2017.1402956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT Due to its unique paternal inheritance, the Y-chromosome has been a highly popular marker among population geneticists for over two decades. Recently, the advent of cost-effective genome-wide methods has unlocked information-rich autosomal genomic data, paving the way to the postgenomic era. This seems to have announced the decreasing popularity of investigating Y-chromosome variation, which provides only the paternal perspective of human ancestries and is strongly influenced by genetic drift and social behaviour. OBJECTIVE For this special issue on population genetics of the Mediterranean, the aim was to demonstrate that the Y-chromosome still provides important insights in the postgenomic era and in a time when ancient genomes are becoming exponentially available. METHODS A systematic literature search on Y-chromosomal studies in the Mediterranean was performed. RESULTS Several applications of Y-chromosomal analysis with future opportunities are formulated and illustrated with studies on Mediterranean populations. CONCLUSIONS There will be no reduced interest in Y-chromosomal studies going from reconstruction of male-specific demographic events to ancient DNA applications, surname history and population-wide estimations of extra-pair paternity rates. Moreover, more initiatives are required to collect population genetic data of Y-chromosomal markers for forensic research, and to include Y-chromosomal data in GWAS investigations and studies on male infertility.
Collapse
Affiliation(s)
- Maarten H D Larmuseau
- a KU Leuven, Forensic Biomedical Sciences , Department of Imaging & Pathology , Leuven , Belgium.,b KU Leuven, Laboratory of Socioecology and Social Evolution , Department of Biology , Leuven , Belgium
| | - Claudio Ottoni
- c Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences , University of Oslo , Oslo , Norway
| |
Collapse
|
9
|
De Angelis F, Scorrano G, Martínez-Labarga C, Scano G, Macciardi F, Rickards O. Mitochondrial variability in the Mediterranean area: a complex stage for human migrations. Ann Hum Biol 2018; 45:5-19. [PMID: 29382277 DOI: 10.1080/03014460.2017.1416172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CONTEXT The Mediterranean area has always played a significant role in human dispersal due to the large number of migratory events contributing to shape the cultural features and the genetic pool of its populations. OBJECTIVE This paper aims to review and diachronically describe the mitogenome variability in the Mediterranean population and the main demic diffusions that occurred in this area over time. METHODS Frequency distributions of the leading mitochondrial haplogroups have been geographically and chronologically evaluated. The variability of U5b and K lineages has been focussed to broaden the knowledge of their genetic histories. RESULTS The mitochondrial genetic makeup of Palaeolithic hunter-gatherers is poorly defined within the extant Mediterranean populations, since only a few traces of their genetic contribution are still detectable. The Neolithic lineages are more represented, suggesting that the Neolithic revolution had a marked effect on the peopling of the Mediterranean area. The largest effect, however, was provided by historical migrations. CONCLUSION Although the mitogenome variability has been widely used to try and clarify the evolution of the Mediterranean genetic makeup throughout almost 50 000 years, it is necessary to collect whole genome data on both extinct and extant populations from this area to fully reconstruct and interpret the impact of multiple migratory waves and their cultural and genetic consequences on the structure of the Mediterranean populations.
Collapse
Affiliation(s)
- Flavio De Angelis
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| | - Gabriele Scorrano
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| | - Cristina Martínez-Labarga
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| | - Giuseppina Scano
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| | - Fabio Macciardi
- b Laboratory of Molecular Psychiatry, Department of Psychiatry and Human Behavior , University of California , Irvine , CA , USA
| | - Olga Rickards
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| |
Collapse
|
10
|
Prehistoric migrations through the Mediterranean basin shaped Corsican Y-chromosome diversity. PLoS One 2018; 13:e0200641. [PMID: 30067762 PMCID: PMC6070208 DOI: 10.1371/journal.pone.0200641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/30/2018] [Indexed: 02/05/2023] Open
Abstract
The rarity of human remains makes it difficult to apprehend the first settlements in Corsica. It is admitted that initial colonization could have occurred during the Mesolithic period when glaciations would have shortened the open water travel distance from the continent. Mesolithic sites in Corsica show relatively short and irregular occupation, and suggest discontinuous settling of very mobile groups probably traveling by boat. Previous genetic studies on Corsican populations showed internal differentiation and a relatively poor genetic relationship with continental populations, despite intense historical contacts, however local Mesolithic-based genetic inheritance has never been properly estimated. The aim of this study was to explore the Corsican genetic profile of Y-chromosomes in order to trace the genetic signatures back to the first migrations to Corsica. This study included 321 samples from men throughout Corsica; samples from Provence and Tuscany were added to the cohort. All samples were typed for 92 Y-SNPs, and Y-STRs were also analyzed. Results revealed highly differentiated haplogroup patterns among Corsican populations. Haplogroup G had the highest frequency in Corsica, mostly displaying a unique Y-STR profile. When compared with Provence and Tuscany, Corsican populations displayed limited genetic proximity. Corsican populations present a remarkable Y-chromosome genetic mixture. Although the Corsican Y-chromosome profile shows similarities with both Provence and to a lesser extent Tuscany, it mainly displays its own specificity. This study confirms the high level of genetic diversity in Corsican populations and backs genetic contributions from prehistoric migrations associated with the Mesolithic, Neolithic and Metal Age eras, rather than from historical movements to Corsica, respectively attested by frequencies and TMRCA of haplogroups G2a-L91 and G2a-P15, J2a-M241 and J2-DYS445 = 6, R1b-U152 and R1b-U106. These results suggest that marine routes to reach the Corsican coast in many different points may have led to such a genetic heterogeneity.
Collapse
|
11
|
A finely resolved phylogeny of Y chromosome Hg J illuminates the processes of Phoenician and Greek colonizations in the Mediterranean. Sci Rep 2018; 8:7465. [PMID: 29748665 PMCID: PMC5945646 DOI: 10.1038/s41598-018-25912-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/25/2018] [Indexed: 11/15/2022] Open
Abstract
In order to improve the phylogeography of the male-specific genetic traces of Greek and Phoenician colonizations on the Northern coasts of the Mediterranean, we performed a geographically structured sampling of seven subclades of haplogroup J in Turkey, Greece and Italy. We resequenced 4.4 Mb of Y-chromosome in 58 subjects, obtaining 1079 high quality variants. We did not find a preferential coalescence of Turkish samples to ancestral nodes, contradicting the simplistic idea of a dispersal and radiation of Hg J as a whole from the Middle East. Upon calibration with an ancient Hg J chromosome, we confirmed that signs of Holocenic Hg J radiations are subtle and date mainly to the Bronze Age. We pinpointed seven variants which could potentially unveil star clusters of sequences, indicative of local expansions. By directly genotyping these variants in Hg J carriers and complementing with published resequenced chromosomes (893 subjects), we provide strong temporal and distributional evidence for markers of the Greek settlement of Magna Graecia (J2a-L397) and Phoenician migrations (rs760148062). Our work generated a minimal but robust list of evolutionarily stable markers to elucidate the demographic dynamics and spatial domains of male-mediated movements across and around the Mediterranean, in the last 6,000 years.
Collapse
|
12
|
Balanovsky O, Gurianov V, Zaporozhchenko V, Balaganskaya O, Urasin V, Zhabagin M, Grugni V, Canada R, Al-Zahery N, Raveane A, Wen SQ, Yan S, Wang X, Zalloua P, Marafi A, Koshel S, Semino O, Tyler-Smith C, Balanovska E. Phylogeography of human Y-chromosome haplogroup Q3-L275 from an academic/citizen science collaboration. BMC Evol Biol 2017; 17:18. [PMID: 28251872 PMCID: PMC5333174 DOI: 10.1186/s12862-016-0870-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background The Y-chromosome haplogroup Q has three major branches: Q1, Q2, and Q3. Q1 is found in both Asia and the Americas where it accounts for about 90% of indigenous Native American Y-chromosomes; Q2 is found in North and Central Asia; but little is known about the third branch, Q3, also named Q1b-L275. Here, we combined the efforts of population geneticists and genetic genealogists to use the potential of full Y-chromosome sequencing for reconstructing haplogroup Q3 phylogeography and suggest possible linkages to events in population history. Results We analyzed 47 fully sequenced Y-chromosomes and reconstructed the haplogroup Q3 phylogenetic tree in detail. Haplogroup Q3-L275, derived from the oldest known split within Eurasian/American haplogroup Q, most likely occurred in West or Central Asia in the Upper Paleolithic period. During the Mesolithic and Neolithic epochs, Q3 remained a minor component of the West Asian Y-chromosome pool and gave rise to five branches (Q3a to Q3e), which spread across West, Central and parts of South Asia. Around 3–4 millennia ago (Bronze Age), the Q3a branch underwent a rapid expansion, splitting into seven branches, some of which entered Europe. One of these branches, Q3a1, was acquired by a population ancestral to Ashkenazi Jews and grew within this population during the 1st millennium AD, reaching up to 5% in present day Ashkenazi. Conclusions This study dataset was generated by a massive Y-chromosome genotyping effort in the genetic genealogy community, and phylogeographic patterns were revealed by a collaboration of population geneticists and genetic genealogists. This positive experience of collaboration between academic and citizen science provides a model for further joint projects. Merging data and skills of academic and citizen science promises to combine, respectively, quality and quantity, generalization and specialization, and achieve a well-balanced and careful interpretation of the paternal-side history of human populations. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0870-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oleg Balanovsky
- Vavilov Institute of General Genetics, Moscow, Russia. .,Research Centre for Medical Genetics, Moscow, Russia.
| | | | - Valery Zaporozhchenko
- Vavilov Institute of General Genetics, Moscow, Russia.,Research Centre for Medical Genetics, Moscow, Russia
| | | | | | - Maxat Zhabagin
- National Laboratory Astana, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Viola Grugni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Nadia Al-Zahery
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Alessandro Raveane
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Shao-Qing Wen
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shi Yan
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xianpin Wang
- Department of Criminal Investigation, Xuanwei Public Security Bureau, Xuanwei, China
| | | | | | - Sergey Koshel
- Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Elena Balanovska
- Vavilov Institute of General Genetics, Moscow, Russia.,Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
13
|
Origin and introduction history of the least weasel (Mustela nivalis) on Mediterranean and Atlantic islands inferred from genetic data. Biol Invasions 2017. [DOI: 10.1007/s10530-016-1287-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Agdzhoyan AT, Balanovska EV, Padyukova AD, Dolinina DO, Kuznetsova MA, Zaporozhchenko VV, Skhalyakho RA, Koshel SM, Zhabagin MK, Yusupov YM, Mustafin KK, Ulyanova MV, Tychinskih ZA, Lavryashina MB, Balanovsky OP. Gene pool of Siberian Tatars: Five ways of origin for five subethnic groups. Mol Biol 2016. [DOI: 10.1134/s0026893316060029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Messina F, Finocchio A, Akar N, Loutradis A, Michalodimitrakis EI, Brdicka R, Jodice C, Novelletto A. Spatially Explicit Models to Investigate Geographic Patterns in the Distribution of Forensic STRs: Application to the North-Eastern Mediterranean. PLoS One 2016; 11:e0167065. [PMID: 27898725 PMCID: PMC5127579 DOI: 10.1371/journal.pone.0167065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/08/2016] [Indexed: 11/18/2022] Open
Abstract
Human forensic STRs used for individual identification have been reported to have little power for inter-population analyses. Several methods have been developed which incorporate information on the spatial distribution of individuals to arrive at a description of the arrangement of diversity. We genotyped at 16 forensic STRs a large population sample obtained from many locations in Italy, Greece and Turkey, i.e. three countries crucial to the understanding of discontinuities at the European/Asian junction and the genetic legacy of ancient migrations, but seldom represented together in previous studies. Using spatial PCA on the full dataset, we detected patterns of population affinities in the area. Additionally, we devised objective criteria to reduce the overall complexity into reduced datasets. Independent spatially explicit methods applied to these latter datasets converged in showing that the extraction of information on long- to medium-range geographical trends and structuring from the overall diversity is possible. All analyses returned the picture of a background clinal variation, with regional discontinuities captured by each of the reduced datasets. Several aspects of our results are confirmed on external STR datasets and replicate those of genome-wide SNP typings. High levels of gene flow were inferred within the main continental areas by coalescent simulations. These results are promising from a microevolutionary perspective, in view of the fast pace at which forensic data are being accumulated for many locales. It is foreseeable that this will allow the exploitation of an invaluable genotypic resource, assembled for other (forensic) purposes, to clarify important aspects in the formation of local gene pools.
Collapse
Affiliation(s)
| | | | - Nejat Akar
- Pediatrics Department, TOBB-Economy and Technology University Hospital, Ankara, Turkey
| | | | | | - Radim Brdicka
- Institute of Haematology and Blood Transfusion, Praha, Czech Republic
| | - Carla Jodice
- Department of Biology, University "Tor Vergata", Rome, Italy
| | - Andrea Novelletto
- Department of Biology, University "Tor Vergata", Rome, Italy
- * E-mail:
| |
Collapse
|
16
|
Šarac J, Šarić T, Havaš Auguštin D, Novokmet N, Vekarić N, Mustać M, Grahovac B, Kapović M, Nevajda B, Glasnović A, Missoni S, Rootsi S, Rudan P. Genetic heritage of Croatians in the Southeastern European gene pool-Y chromosome analysis of the Croatian continental and Island population. Am J Hum Biol 2016; 28:837-845. [PMID: 27279290 DOI: 10.1002/ajhb.22876] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/22/2016] [Accepted: 05/10/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The research objective of this study is to enlarge and deepen the Y chromosome research on the Croatian population and enable additional insights into the population diversity and historic events that shaped the current genetic landscape of Croatia and Southeastern Europe (SEE). MATERIALS AND METHODS A high-resolution phylogenetic and phylogeographic analysis of 66 biallelic (SNPs) and 17 microsatellite (STRs) markers of the Y chromosome was performed using 720 Croatian samples. The obtained results were placed in a wider European context by comparison with ∼4450 samples from a number of other European populations. RESULTS A high diversity of haplogroups was observed in the overall Croatian sample, and all typical European Y chromosome haplogroups with corresponding clinal patterns were observed. Three distinct genetic signals were identifiable in the Croatian paternal gene pool - I2a1b-M423, R1a1a1b1a*-M558, and E1b1b1a1b1a-V13 haplogroups. DISCUSSION The analyses of the dominant and autochthonous I2a1b-M423 lineage (>30%) suggest that SEE had a significant role in the Upper Paleolithic, the R1a1a1b1a*-M558 lineage (19%) represents a signal from present day Slavic populations of Central Europe in the Croatian population, and the phylogeography of the E1b1b1a1b1a-V13 clade (around 9%) implies cultural diffusion of agriculture into Europe via the Balkan Peninsula. Am. J. Hum. Biol., 2016. © 2016 Wiley Periodicals, Inc. Am. J. Hum. Biol. 28:837-845, 2016. © 2016Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jelena Šarac
- Institute for Anthropological Research, 10000, Zagreb, Croatia
| | - Tena Šarić
- Institute for Anthropological Research, 10000, Zagreb, Croatia
| | | | | | - Nenad Vekarić
- Institute for Historical Sciences, Croatian Academy of Sciences and Arts, 20000, Dubrovnik, Croatia
| | - Mate Mustać
- Occupational Health Clinic, 23000, Zadar, Croatia
| | - Blaženka Grahovac
- Department of Pathology and Pathological Anatomy, School of Medicine, University of Rijeka, 51000, Rijeka, Croatia
| | - Miljenko Kapović
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, 51000, Rijeka, Croatia
| | | | | | - Saša Missoni
- Institute for Anthropological Research, 10000, Zagreb, Croatia.,"Josip Juraj Strossmayer" University of Osijek, School of Medicine, Osijek, Croatia
| | - Siiri Rootsi
- Estonian Biocentre and Institute for Molecular and Cell Biology, Department of Evolutionary Biology, , University of Tartu, 51010, Tartu, Estonia
| | - Pavao Rudan
- Institute for Anthropological Research, 10000, Zagreb, Croatia.,Anthropological Center of the Croatian Academy of Sciences and Arts, 10000, Zagreb, Croatia
| |
Collapse
|
17
|
Voskarides K, Mazières S, Hadjipanagi D, Di Cristofaro J, Ignatiou A, Stefanou C, King RJ, Underhill PA, Chiaroni J, Deltas C. Y-chromosome phylogeographic analysis of the Greek-Cypriot population reveals elements consistent with Neolithic and Bronze Age settlements. INVESTIGATIVE GENETICS 2016; 7:1. [PMID: 26870315 PMCID: PMC4750176 DOI: 10.1186/s13323-016-0032-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/02/2016] [Indexed: 12/15/2022]
Abstract
Background The archeological record indicates that the permanent settlement of Cyprus began with pioneering agriculturalists circa 11,000 years before present, (ca. 11,000 y BP). Subsequent colonization events followed, some recognized regionally. Here, we assess the Y-chromosome structure of Cyprus in context to regional populations and correlate it to phases of prehistoric colonization. Results Analysis of haplotypes from 574 samples showed that island-wide substructure was barely significant in a spatial analysis of molecular variance (SAMOVA). However, analyses of molecular variance (AMOVA) of haplogroups using 92 binary markers genotyped in 629 Cypriots revealed that the proportion of variance among the districts was irregularly distributed. Principal component analysis (PCA) revealed potential genetic associations of Greek-Cypriots with neighbor populations. Contrasting haplogroups in the PCA were used as surrogates of parental populations. Admixture analyses suggested that the majority of G2a-P15 and R1b-M269 components were contributed by Anatolia and Levant sources, respectively, while Greece Balkans supplied the majority of E-V13 and J2a-M67. Haplotype-based expansion times were at historical levels suggestive of recent demography. Conclusions Analyses of Cypriot haplogroup data are consistent with two stages of prehistoric settlement. E-V13 and E-M34 are widespread, and PCA suggests sourcing them to the Balkans and Levant/Anatolia, respectively. The persistent pre-Greek component is represented by elements of G2-U5(xL30) haplogroups: U5*, PF3147, and L293. J2b-M205 may contribute also to the pre-Greek strata. The majority of R1b-Z2105 lineages occur in both the westernmost and easternmost districts. Distinctively, sub-haplogroup R1b- M589 occurs only in the east. The absence of R1b- M589 lineages in Crete and the Balkans and the presence in Asia Minor are compatible with Late Bronze Age influences from Anatolia rather than from Mycenaean Greeks. Electronic supplementary material The online version of this article (doi:10.1186/s13323-016-0032-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Konstantinos Voskarides
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Kallipoleos 75, 1678 Nicosia, Cyprus
| | - Stéphane Mazières
- Aix Marseille Université, ADES UMR7268, CNRS, EFS-AM, Marseille, France
| | - Despina Hadjipanagi
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Kallipoleos 75, 1678 Nicosia, Cyprus
| | | | - Anastasia Ignatiou
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Kallipoleos 75, 1678 Nicosia, Cyprus
| | - Charalambos Stefanou
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Kallipoleos 75, 1678 Nicosia, Cyprus
| | - Roy J King
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA USA
| | - Peter A Underhill
- Department of Genetics, Stanford University, Stanford, California 94305 USA
| | - Jacques Chiaroni
- Aix Marseille Université, ADES UMR7268, CNRS, EFS-AM, Marseille, France
| | - Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Kallipoleos 75, 1678 Nicosia, Cyprus
| |
Collapse
|
18
|
Singh S, Singh A, Rajkumar R, Sampath Kumar K, Kadarkarai Samy S, Nizamuddin S, Singh A, Ahmed Sheikh S, Peddada V, Khanna V, Veeraiah P, Pandit A, Chaubey G, Singh L, Thangaraj K. Dissecting the influence of Neolithic demic diffusion on Indian Y-chromosome pool through J2-M172 haplogroup. Sci Rep 2016; 6:19157. [PMID: 26754573 PMCID: PMC4709632 DOI: 10.1038/srep19157] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/08/2015] [Indexed: 11/24/2022] Open
Abstract
The global distribution of J2-M172 sub-haplogroups has been associated with Neolithic demic diffusion. Two branches of J2-M172, J2a-M410 and J2b-M102 make a considerable part of Y chromosome gene pool of the Indian subcontinent. We investigated the Neolithic contribution of demic dispersal from West to Indian paternal lineages, which majorly consists of haplogroups of Late Pleistocene ancestry. To accomplish this, we have analysed 3023 Y-chromosomes from different ethnic populations, of which 355 belonged to J2-M172. Comparison of our data with worldwide data, including Y-STRs of 1157 individuals and haplogroup frequencies of 6966 individuals, suggested a complex scenario that cannot be explained by a single wave of agricultural expansion from Near East to South Asia. Contrary to the widely accepted elite dominance model, we found a substantial presence of J2a-M410 and J2b-M102 haplogroups in both caste and tribal populations of India. Unlike demic spread in Eurasia, our results advocate a unique, complex and ancient arrival of J2a-M410 and J2b-M102 haplogroups into Indian subcontinent.
Collapse
Affiliation(s)
- Sakshi Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Ashish Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Raja Rajkumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | | | | - Sheikh Nizamuddin
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Amita Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | | - Vidya Peddada
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Vinee Khanna
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | | - Aridaman Pandit
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | | | - Lalji Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | |
Collapse
|
19
|
Grugni V, Battaglia V, Perego UA, Raveane A, Lancioni H, Olivieri A, Ferretti L, Woodward SR, Pascale JM, Cooke R, Myres N, Motta J, Torroni A, Achilli A, Semino O. Exploring the Y Chromosomal Ancestry of Modern Panamanians. PLoS One 2015; 10:e0144223. [PMID: 26636572 PMCID: PMC4670172 DOI: 10.1371/journal.pone.0144223] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023] Open
Abstract
Geologically, Panama belongs to the Central American land-bridge between North and South America crossed by Homo sapiens >14 ka ago. Archaeologically, it belongs to a wider Isthmo-Colombian Area. Today, seven indigenous ethnic groups account for 12.3% of Panama’s population. Five speak Chibchan languages and are characterized by low genetic diversity and a high level of differentiation. In addition, no evidence of differential structuring between maternally and paternally inherited genes has been reported in isthmian Chibchan cultural groups. Recent data have shown that 83% of the Panamanian general population harbour mitochondrial DNAs (mtDNAs) of Native American ancestry. Considering differential male/female mortality at European contact and multiple degrees of geographical and genetic isolation over the subsequent five centuries, the Y-chromosome Native American component is expected to vary across different geographic regions and communities in Panama. To address this issue, we investigated Y-chromosome variation in 408 modern males from the nine provinces of Panama and one indigenous territory (the comarca of Kuna Yala). In contrast to mtDNA data, the Y-chromosome Native American component (haplogroup Q) exceeds 50% only in three populations facing the Caribbean Sea: the comarca of Kuna Yala and Bocas del Toro province where Chibchan languages are spoken by the majority, and the province of Colón where many Kuna and people of mixed indigenous-African-and-European descent live. Elsewhere the Old World component is dominant and mostly represented by western Eurasian haplogroups, which signal the strong male genetic impact of invaders. Sub-Saharan African input accounts for 5.9% of male haplotypes. This reflects the consequences of the colonial Atlantic slave trade and more recent influxes of West Indians of African heritage. Overall, our findings reveal a local evolution of the male Native American ancestral gene pool, and a strong but geographically differentiated unidirectional sex bias in the formation of local modern Panamanian populations.
Collapse
Affiliation(s)
- Viola Grugni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Vincenza Battaglia
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ugo Alessandro Perego
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Alessandro Raveane
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Luca Ferretti
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Scott R. Woodward
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
| | | | - Richard Cooke
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Natalie Myres
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- Ancestry, Provo, Utah, United States of America
| | - Jorge Motta
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| | - Antonio Torroni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Ornella Semino
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
20
|
Tofanelli S, Brisighelli F, Anagnostou P, Busby GBJ, Ferri G, Thomas MG, Taglioli L, Rudan I, Zemunik T, Hayward C, Bolnick D, Romano V, Cali F, Luiselli D, Shepherd GB, Tusa S, Facella A, Capelli C. The Greeks in the West: genetic signatures of the Hellenic colonisation in southern Italy and Sicily. Eur J Hum Genet 2015; 24:429-36. [PMID: 26173964 DOI: 10.1038/ejhg.2015.124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/29/2015] [Accepted: 05/06/2015] [Indexed: 11/09/2022] Open
Abstract
Greek colonisation of South Italy and Sicily (Magna Graecia) was a defining event in European cultural history, although the demographic processes and genetic impacts involved have not been systematically investigated. Here, we combine high-resolution surveys of the variability at the uni-parentally inherited Y chromosome and mitochondrial DNA in selected samples of putative source and recipient populations with forward-in-time simulations of alternative demographic models to detect signatures of that impact. Using a subset of haplotypes chosen to represent historical sources, we recover a clear signature of Greek ancestry in East Sicily compatible with the settlement from Euboea during the Archaic Period (eighth to fifth century BCE). We inferred moderate sex-bias in the numbers of individuals involved in the colonisation: a few thousand breeding men and a few hundred breeding women were the estimated number of migrants. Last, we demonstrate that studies aimed at quantifying Hellenic genetic flow by the proportion of specific lineages surviving in present-day populations may be misleading.
Collapse
Affiliation(s)
| | - Francesca Brisighelli
- Department of Zoology, University of Oxford, Oxford, UK.,Sezione di Medicina Legale-Istituto di Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Paolo Anagnostou
- Dipartimento di Biologia Ambientale, Università "La Sapienza", Roma, Italy.,Istituto Italiano di Antropologia, Roma, Italy
| | - George B J Busby
- Department of Zoology, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Human Genetics, Oxford, UK
| | - Gianmarco Ferri
- Dipartimento ad Attività Integrata di Laboratori, Anatomia Patologica, Medicina Legale, U.O. Struttura Complessa di Medicina Legale, Università di Modena e Reggio Emilia, Modena, Italy
| | - Mark G Thomas
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Luca Taglioli
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Igor Rudan
- Centre for Population Health Sciences, The University of Edinburgh Medical School, Scotland, UK
| | - Tatijana Zemunik
- Department of Medical Biology, University of Split, School of Medicine, Split, Croatia
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Deborah Bolnick
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Valentino Romano
- Dipartimento di Fisica e Chimica, Università di Palermo, Palermo, Italy.,Laboratorio di Genetica Molecolare, I.R.C.C.S. Associazione Oasi Maria SS., Troina, Italy
| | - Francesco Cali
- Dipartimento di Fisica e Chimica, Università di Palermo, Palermo, Italy
| | - Donata Luiselli
- Laboratorio di Antropologia Molecolare, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Gillian B Shepherd
- A.D. Trendall Research Centre for Ancient Mediterranean Studies, La Trobe University, Melbourne, Victoria, Australia
| | | | - Antonino Facella
- Soprintendenza per i Beni Archeologici della Calabria, Reggio Calabria, Italy
| | | |
Collapse
|
21
|
Cord blood collection and banking from a population with highly diverse geographic origins increase HLA diversity in the registry and do not lower the proportion of validated cord blood units: experience of the Marseille Cord Blood Bank. Bone Marrow Transplant 2015; 50:531-5. [PMID: 25621799 DOI: 10.1038/bmt.2014.314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/09/2014] [Accepted: 11/29/2014] [Indexed: 12/11/2022]
Abstract
Several Cord Blood (CB) Bank studies suggested that ethnicity impaired CB unit (CBU) qualification. The Bone Marrow Donors Worldwide registries present an over-representation of unrelated donors (UD) from Northwestern European descent. This raises the question of equality of access to hematopoietic stem cells transplant, especially in the Mediterranean zone, which has taken in many waves of immigration. The aim of our study is to address whether, in the Marseille CB Bank, CBU qualification rate is impaired by geographic origin. The study compared biological characteristics of 106 CBU disqualified for total nucleated cell (TNC) count (dCBU) and 136 qualified CBU in relation to registry enrichment and haplotype origin. A high proportion (>80%) of both dCBU and CBU had at least one non-European haplotype and enrich CB and UD registries to a higher extent than those with two European haplotypes (P<0.001). No difference was observed between TNC count and volume according to geographic origin. Our study shows that diverse Mediterranean origins do not have an impact on the CBU qualification rate. Partnership with Mediterranean birth clinics with highly trained staff is a reasonable option to increase the HLA diversity of CB Bank inventories and to improve the representation of minorities.
Collapse
|
22
|
Brody AJ, King RJ. Letter to the editor: Genetics and the archaeology of ancient Israel. Hum Biol 2014; 85:925-40. [PMID: 25079126 DOI: 10.3378/027.085.0606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2013] [Indexed: 11/05/2022]
Abstract
This letter is a call for DNA testing on ancient skeletal materials from the southern Levant to begin a database of genetic information of the inhabitants of this crossroads region. In this region, during the Iron I period traditionally dated to circa 1200-1000 BCE, archaeologists and biblical historians view the earliest presence of a group that called itself Israel. They lived in villages in the varied hill countries of the region, contemporary with urban settlements in the coastal plains, inland valleys, and central hill country attributed to varied indigenous groups collectively called Canaanite. The remnants of Egyptian imperial presence in the region lasted until around 1150 BCE, postdating the arrival of an immigrant group from the Aegean called the Philistines circa 1175 BCE. The period that follows in the southern Levant is marked by the development of territorial states throughout the region, circa 1000-800 BCE. These patrimonial kingdoms, including the United Kingdom of Israel and the divided kingdoms of northern Israel and Judah, coalesced varied peoples under central leadership and newly founded administrative and religious bureaucracies. Ancient DNA testing will give us a further refined understanding of the individuals who peopled the region of the southern Levant throughout its varied archaeological and historic periods and provide scientific data that will support, refute, or nuance our sociohistoric reconstruction of ancient group identities. These social identities may or may not map onto genetic data, but without sampling of ancient DNA we may never know. A database of ancient DNA will also allow for comparisons with modern DNA samples collected throughout the greater region and the Mediterranean littoral, giving a more robust understanding of the long historical trajectories of regional human genetics and the genetics of varied ancestral groups of today's Jewish populations and other cultural groups in the modern Middle East and Mediterranean.
Collapse
Affiliation(s)
- Aaron J Brody
- Badè Museum of Biblical Archaeology, Pacific School of Religion, Berkeley, CA
| | - Roy J King
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| |
Collapse
|
23
|
Kara E, Xiromerisiou G, Spanaki C, Bozi M, Koutsis G, Panas M, Dardiotis E, Ralli S, Bras J, Letson C, Edsall C, Pliner H, Arepali S, Kalinderi K, Fidani L, Bostanjopoulou S, Keller MF, Wood NW, Hardy J, Houlden H, Stefanis L, Plaitakis A, Hernandez D, Hadjigeorgiou GM, Nalls MA, Singleton AB. Assessment of Parkinson's disease risk loci in Greece. Neurobiol Aging 2014; 35:442.e9-442.e16. [PMID: 24080174 PMCID: PMC3830580 DOI: 10.1016/j.neurobiolaging.2013.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/15/2013] [Indexed: 12/14/2022]
Abstract
Genome-wide association studies (GWAS) have been shown to be a powerful approach to identify risk loci for neurodegenerative diseases. Recent GWAS in Parkinson's disease (PD) have been successful in identifying numerous risk variants pointing to novel pathways potentially implicated in the pathogenesis of PD. Contributing to these GWAS efforts, we performed genotyping of previously identified risk alleles in PD patients and control subjects from Greece. We showed that previously published risk profiles for Northern European and American populations are also applicable to the Greek population. In addition, although our study was largely underpowered to detect individual associations, we replicated 5 of 32 previously published risk variants with nominal p values <0.05. Genome-wide complex trait analysis revealed that known risk loci explain disease risk in 1.27% of Greek PD patients. Collectively, these results indicate that there is likely a substantial genetic component to PD in Greece, similarly to other worldwide populations, that remains to be discovered.
Collapse
Affiliation(s)
- Eleanna Kara
- Reta Lila Weston Laboratories and Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom, WC1N 3BG
| | - Georgia Xiromerisiou
- Laboratory of Neurogenetics, Department of Neurology, Faculty of Medicine, University of Thessaly, Greece
- Department of Neurology, Papageorgiou Hospital, Thessaloniki, Greece
| | - Cleanthe Spanaki
- Department of Neurology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Maria Bozi
- General Hospital of Syros, Syros, Greece
- ‘Hygeia’ Hospital, Clinic of Neurodegenerative Disorders, Athens, Greece
- 2nd Neurology Clinic, University of Athens, ‘Attikon’ Hospital, Athens, Greece
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Marios Panas
- Neurogenetics Unit, 1st Department of Neurology, University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Efthimios Dardiotis
- Laboratory of Neurogenetics, Department of Neurology, Faculty of Medicine, University of Thessaly, Greece
| | - Styliani Ralli
- Laboratory of Neurogenetics, Department of Neurology, Faculty of Medicine, University of Thessaly, Greece
| | - Jose Bras
- Reta Lila Weston Laboratories and Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom, WC1N 3BG
| | - Christopher Letson
- Laboratory of Neurogenetics, National Institute of Aging, Bethesda, Maryland, United States of America
| | - Connor Edsall
- Laboratory of Neurogenetics, National Institute of Aging, Bethesda, Maryland, United States of America
| | - Hannah Pliner
- Laboratory of Neurogenetics, National Institute of Aging, Bethesda, Maryland, United States of America
| | - Sampath Arepali
- Laboratory of Neurogenetics, National Institute of Aging, Bethesda, Maryland, United States of America
| | - Kallirhoe Kalinderi
- Department of General Biology, Medical School, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Liana Fidani
- Department of General Biology, Medical School, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Sevasti Bostanjopoulou
- Third Department of Neurology, G. Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Margaux F Keller
- Laboratory of Neurogenetics, National Institute of Aging, Bethesda, Maryland, United States of America
- Department of Biological Anthropology, Temple University, Philadelphia, PA, USA
| | - Nicholas W Wood
- Reta Lila Weston Laboratories and Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom, WC1N 3BG
| | - John Hardy
- Reta Lila Weston Laboratories and Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom, WC1N 3BG
| | - Henry Houlden
- Reta Lila Weston Laboratories and Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom, WC1N 3BG
| | - Leonidas Stefanis
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Second Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Andreas Plaitakis
- Department of Neurology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Dena Hernandez
- Reta Lila Weston Laboratories and Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom, WC1N 3BG
- Laboratory of Neurogenetics, National Institute of Aging, Bethesda, Maryland, United States of America
| | - Georgios M Hadjigeorgiou
- Laboratory of Neurogenetics, Department of Neurology, Faculty of Medicine, University of Thessaly, Greece
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute of Aging, Bethesda, Maryland, United States of America
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute of Aging, Bethesda, Maryland, United States of America
| |
Collapse
|
24
|
Boattini A, Martinez-Cruz B, Sarno S, Harmant C, Useli A, Sanz P, Yang-Yao D, Manry J, Ciani G, Luiselli D, Quintana-Murci L, Comas D, Pettener D. Uniparental markers in Italy reveal a sex-biased genetic structure and different historical strata. PLoS One 2013; 8:e65441. [PMID: 23734255 PMCID: PMC3666984 DOI: 10.1371/journal.pone.0065441] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/24/2013] [Indexed: 11/18/2022] Open
Abstract
Located in the center of the Mediterranean landscape and with an extensive coastal line, the territory of what is today Italy has played an important role in the history of human settlements and movements of Southern Europe and the Mediterranean Basin. Populated since Paleolithic times, the complexity of human movements during the Neolithic, the Metal Ages and the most recent history of the two last millennia (involving the overlapping of different cultural and demic strata) has shaped the pattern of the modern Italian genetic structure. With the aim of disentangling this pattern and understanding which processes more importantly shaped the distribution of diversity, we have analyzed the uniparentally-inherited markers in ∼900 individuals from an extensive sampling across the Italian peninsula, Sardinia and Sicily. Spatial PCAs and DAPCs revealed a sex-biased pattern indicating different demographic histories for males and females. Besides the genetic outlier position of Sardinians, a North West–South East Y-chromosome structure is found in continental Italy. Such structure is in agreement with recent archeological syntheses indicating two independent and parallel processes of Neolithisation. In addition, date estimates pinpoint the importance of the cultural and demographic events during the late Neolithic and Metal Ages. On the other hand, mitochondrial diversity is distributed more homogeneously in agreement with older population events that might be related to the presence of an Italian Refugium during the last glacial period in Europe.
Collapse
Affiliation(s)
- Alessio Boattini
- Laboratorio di Antropologia Molecolare, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Begoña Martinez-Cruz
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Stefania Sarno
- Laboratorio di Antropologia Molecolare, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Christine Harmant
- Institut Pasteur, Human Evolutionary Genetics Unit, Department of Genomes and Genetics, Paris, France
- Centre National de la Recherche Scientifique, Paris, France
| | - Antonella Useli
- Dipartimento di Scienze della Natura e del Territorio, Università di Sassari, Sassari, Italy
| | - Paula Sanz
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Daniele Yang-Yao
- Laboratorio di Antropologia Molecolare, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Jeremy Manry
- Institut Pasteur, Human Evolutionary Genetics Unit, Department of Genomes and Genetics, Paris, France
- Centre National de la Recherche Scientifique, Paris, France
| | - Graziella Ciani
- Laboratorio di Antropologia Molecolare, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Donata Luiselli
- Laboratorio di Antropologia Molecolare, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Lluis Quintana-Murci
- Institut Pasteur, Human Evolutionary Genetics Unit, Department of Genomes and Genetics, Paris, France
- Centre National de la Recherche Scientifique, Paris, France
| | - David Comas
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (DC); (DP)
| | - Davide Pettener
- Laboratorio di Antropologia Molecolare, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
- * E-mail: (DC); (DP)
| | | |
Collapse
|
25
|
Stathias V, Sotiris GR, Karagiannidis I, Bourikas G, Martinis G, Papazoglou D, Tavridou A, Papanas N, Maltezos E, Theodoridis M, Vargemezis V, Manolopoulos VG, Speed WC, Kidd JR, Kidd KK, Drineas P, Paschou P. Exploring genomic structure differences and similarities between the Greek and European HapMap populations: implications for association studies. Ann Hum Genet 2013; 76:472-83. [PMID: 23061745 DOI: 10.1111/j.1469-1809.2012.00730.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Studies of the genomic structure of the Greek population and Southeastern Europe are limited, despite the central position of the area as a gateway for human migrations into Europe. HapMap has provided a unique tool for the analysis of human genetic variation. Europe is represented by the CEU (Northwestern Europe) and the TSI populations (Tuscan Italians from Southern Europe), which serve as reference for the design of genetic association studies. Furthermore, genetic association findings are often transferred to unstudied populations. Although initial studies support the fact that the CEU can, in general, be used as reference for the selection of tagging SNPs in European populations, this has not been extensively studied across Europe. We set out to explore the genomic structure of the Greek population (56 individuals) and compare it to the HapMap TSI and CEU populations. We studied 1112 SNPs (27 regions, 13 chromosomes). Although the HapMap European populations are, in general, a good reference for the Greek population, regions of population differentiation do exist and results should not be light-heartedly generalized. We conclude that, perhaps due to the individual evolutionary history of each genomic region, geographic proximity is not always a perfect guide for selecting a reference population for an unstudied population.
Collapse
Affiliation(s)
- Vasileios Stathias
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupoli, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
AMY-tree: an algorithm to use whole genome SNP calling for Y chromosomal phylogenetic applications. BMC Genomics 2013; 14:101. [PMID: 23405914 PMCID: PMC3583733 DOI: 10.1186/1471-2164-14-101] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/19/2012] [Indexed: 12/02/2022] Open
Abstract
Background Due to the rapid progress of next-generation sequencing (NGS) facilities, an explosion of human whole genome data will become available in the coming years. These data can be used to optimize and to increase the resolution of the phylogenetic Y chromosomal tree. Moreover, the exponential growth of known Y chromosomal lineages will require an automatic determination of the phylogenetic position of an individual based on whole genome SNP calling data and an up to date Y chromosomal tree. Results We present an automated approach, ‘AMY-tree’, which is able to determine the phylogenetic position of a Y chromosome using a whole genome SNP profile, independently from the NGS platform and SNP calling program, whereby mistakes in the SNP calling or phylogenetic Y chromosomal tree are taken into account. Moreover, AMY-tree indicates ambiguities within the present phylogenetic tree and points out new Y-SNPs which may be phylogenetically relevant. The AMY-tree software package was validated successfully on 118 whole genome SNP profiles of 109 males with different origins. Moreover, support was found for an unknown recurrent mutation, wrong reported mutation conversions and a large amount of new interesting Y-SNPs. Conclusions Therefore, AMY-tree is a useful tool to determine the Y lineage of a sample based on SNP calling, to identify Y-SNPs with yet unknown phylogenetic position and to optimize the Y chromosomal phylogenetic tree in the future. AMY-tree will not add lineages to the existing phylogenetic tree of the Y-chromosome but it is the first step to analyse whole genome SNP profiles in a phylogenetic framework.
Collapse
|
27
|
Grugni V, Battaglia V, Hooshiar Kashani B, Parolo S, Al-Zahery N, Achilli A, Olivieri A, Gandini F, Houshmand M, Sanati MH, Torroni A, Semino O. Ancient migratory events in the Middle East: new clues from the Y-chromosome variation of modern Iranians. PLoS One 2012; 7:e41252. [PMID: 22815981 PMCID: PMC3399854 DOI: 10.1371/journal.pone.0041252] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/19/2012] [Indexed: 11/18/2022] Open
Abstract
Knowledge of high resolution Y-chromosome haplogroup diversification within Iran provides important geographic context regarding the spread and compartmentalization of male lineages in the Middle East and southwestern Asia. At present, the Iranian population is characterized by an extraordinary mix of different ethnic groups speaking a variety of Indo-Iranian, Semitic and Turkic languages. Despite these features, only few studies have investigated the multiethnic components of the Iranian gene pool. In this survey 938 Iranian male DNAs belonging to 15 ethnic groups from 14 Iranian provinces were analyzed for 84 Y-chromosome biallelic markers and 10 STRs. The results show an autochthonous but non-homogeneous ancient background mainly composed by J2a sub-clades with different external contributions. The phylogeography of the main haplogroups allowed identifying post-glacial and Neolithic expansions toward western Eurasia but also recent movements towards the Iranian region from western Eurasia (R1b-L23), Central Asia (Q-M25), Asia Minor (J2a-M92) and southern Mesopotamia (J1-Page08). In spite of the presence of important geographic barriers (Zagros and Alborz mountain ranges, and the Dasht-e Kavir and Dash-e Lut deserts) which may have limited gene flow, AMOVA analysis revealed that language, in addition to geography, has played an important role in shaping the nowadays Iranian gene pool. Overall, this study provides a portrait of the Y-chromosomal variation in Iran, useful for depicting a more comprehensive history of the peoples of this area as well as for reconstructing ancient migration routes. In addition, our results evidence the important role of the Iranian plateau as source and recipient of gene flow between culturally and genetically distinct populations.
Collapse
Affiliation(s)
- Viola Grugni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Vincenza Battaglia
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | | | - Silvia Parolo
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Nadia Al-Zahery
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia Cellulare e Ambientale, Università di Perugia, Perugia, Italy
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Francesca Gandini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Massoud Houshmand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Hossein Sanati
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
- Centro Interdipartimentale “Studi di Genere”, Università di Pavia, Pavia, Italy
| |
Collapse
|
28
|
Khusnutdinova EK, Litvinov SS, Kutuev IA, Yunusbayev BB, Khusainova RI, Ahmetova VL, Ahatova FS, Metspalu E, Rootsi S, Villems R. Gene pool of ethnic groups of the Caucasus: Results of integrated study of the Y chromosome and mitochondrial DNA and genome-wide data. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412060063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Distinguishing the co-ancestries of haplogroup G Y-chromosomes in the populations of Europe and the Caucasus. Eur J Hum Genet 2012; 20:1275-82. [PMID: 22588667 DOI: 10.1038/ejhg.2012.86] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Haplogroup G, together with J2 clades, has been associated with the spread of agriculture, especially in the European context. However, interpretations based on simple haplogroup frequency clines do not recognize underlying patterns of genetic diversification. Although progress has been recently made in resolving the haplogroup G phylogeny, a comprehensive survey of the geographic distribution patterns of the significant sub-clades of this haplogroup has not been conducted yet. Here we present the haplogroup frequency distribution and STR variation of 16 informative G sub-clades by evaluating 1472 haplogroup G chromosomes belonging to 98 populations ranging from Europe to Pakistan. Although no basal G-M201* chromosomes were detected in our data set, the homeland of this haplogroup has been estimated to be somewhere nearby eastern Anatolia, Armenia or western Iran, the only areas characterized by the co-presence of deep basal branches as well as the occurrence of high sub-haplogroup diversity. The P303 SNP defines the most frequent and widespread G sub-haplogroup. However, its sub-clades have more localized distribution with the U1-defined branch largely restricted to Near/Middle Eastern and the Caucasus, whereas L497 lineages essentially occur in Europe where they likely originated. In contrast, the only U1 representative in Europe is the G-M527 lineage whose distribution pattern is consistent with regions of Greek colonization. No clinal patterns were detected suggesting that the distributions are rather indicative of isolation by distance and demographic complexities.
Collapse
|
30
|
Regueiro M, Rivera L, Damnjanovic T, Lukovic L, Milasin J, Herrera RJ. High levels of Paleolithic Y-chromosome lineages characterize Serbia. Gene 2012; 498:59-67. [PMID: 22310393 DOI: 10.1016/j.gene.2012.01.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
Whether present-day European genetic variation and its distribution patterns can be attributed primarily to the initial peopling of Europe by anatomically modern humans during the Paleolithic, or to latter Near Eastern Neolithic input is still the subject of debate. Southeastern Europe has been a crossroads for several cultures since Paleolithic times and the Balkans, specifically, would have been part of the route used by Neolithic farmers to enter Europe. Given its geographic location in the heart of the Balkan Peninsula at the intersection of Central and Southeastern Europe, Serbia represents a key geographical location that may provide insight to elucidate the interactions between indigenous Paleolithic people and agricultural colonists from the Fertile Crescent. In this study, we examine, for the first time, the Y-chromosome constitution of the general Serbian population. A total of 103 individuals were sampled and their DNA analyzed for 104 Y-chromosome bi-allelic markers and 17 associated STR loci. Our results indicate that approximately 58% of Serbian Y-chromosomes (I1-M253, I2a-P37.2 and R1a1a-M198) belong to lineages believed to be pre-Neolithic. On the other hand, the signature of putative Near Eastern Neolithic lineages, including E1b1b1a1-M78, G2a-P15, J1-M267, J2-M172 and R1b1a2-M269 accounts for 39% of the Y-chromosome. Haplogroup frequency distributions in Western and Eastern Europe reveal a spotted landscape of paleolithic Y chromosomes, undermining continental-wide generalizations. Furthermore, an examination of the distribution of Y-chromosome filiations in Europe indicates extreme levels of Paleolithic lineages in a region encompassing Serbia, Bosnia-Herzegovina and Croatia, possibly the result of Neolithic migrations encroaching on Paleolithic populations against the Adriatic Sea.
Collapse
Affiliation(s)
- Maria Regueiro
- Department of Molecular and Human Genetics, College of Medicine, Florida International University, Miami, FL 33199, USA
| | | | | | | | | | | |
Collapse
|
31
|
Lacau H, Gayden T, Regueiro M, Chennakrishnaiah S, Bukhari A, Underhill PA, Garcia-Bertrand RL, Herrera RJ. Afghanistan from a Y-chromosome perspective. Eur J Hum Genet 2012; 20:1063-70. [PMID: 22510847 DOI: 10.1038/ejhg.2012.59] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Central Asia has served as a corridor for human migrations providing trading routes since ancient times. It has functioned as a conduit connecting Europe and the Middle East with South Asia and far Eastern civilizations. Therefore, the study of populations in this region is essential for a comprehensive understanding of early human dispersal on the Eurasian continent. Although Y- chromosome distributions in Central Asia have been widely surveyed, present-day Afghanistan remains poorly characterized genetically. The present study addresses this lacuna by analyzing 190 Pathan males from Afghanistan using high-resolution Y-chromosome binary markers. In addition, haplotype diversity for its most common lineages (haplogroups R1a1a*-M198 and L3-M357) was estimated using a set of 15 Y-specific STR loci. The observed haplogroup distribution suggests some degree of genetic isolation of the northern population, likely due to the Hindu Kush mountain range separating it from the southern Afghans who have had greater contact with neighboring Pathans from Pakistan and migrations from the Indian subcontinent. Our study demonstrates genetic similarities between Pathans from Afghanistan and Pakistan, both of which are characterized by the predominance of haplogroup R1a1a*-M198 (>50%) and the sharing of the same modal haplotype. Furthermore, the high frequencies of R1a1a-M198 and the presence of G2c-M377 chromosomes in Pathans might represent phylogenetic signals from Khazars, a common link between Pathans and Ashkenazi groups, whereas the absence of E1b1b1a2-V13 lineage does not support their professed Greek ancestry.
Collapse
Affiliation(s)
- Harlette Lacau
- Department of Molecular and Human Genetics, College of Medicine, Florida International University, Miami, FL 33199, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Primorac D, Marjanović D, Rudan P, Villems R, Underhill PA. Croatian genetic heritage: Y-chromosome story. Croat Med J 2012; 52:225-34. [PMID: 21674820 PMCID: PMC3118711 DOI: 10.3325/cmj.2011.52.225] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The aim of this article is to offer a concise interpretation of the scientific data about the topic of Croatian genetic heritage that was obtained over the past 10 years. We made a short overview of previously published articles by our and other groups, based mostly on Y-chromosome results. The data demonstrate that Croatian human population, as almost any other European population, represents remarkable genetic mixture. More than 3/4 of the contemporary Croatian men are most probably the offspring of Old Europeans who came here before and after the Last Glacial Maximum. The rest of the population is the offspring of the people who were arriving in this part of Europe through the southeastern route in the last 10,000 years, mostly during the neolithization process. We believe that the latest discoveries made with the techniques for whole-genome typing using the array technology, will help us understand the structure of Croatian population in more detail, as well as the aspects of its demographic history.
Collapse
Affiliation(s)
- Dragan Primorac
- Dragan Primorac, University of Split School of Medicine, Soltanska 2, 21 000 Split, Croatia.
| | | | | | | | | |
Collapse
|
33
|
Temporal differentiation across a West-European Y-chromosomal cline: genealogy as a tool in human population genetics. Eur J Hum Genet 2011; 20:434-40. [PMID: 22126748 DOI: 10.1038/ejhg.2011.218] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The pattern of population genetic variation and allele frequencies within a species are unstable and are changing over time according to different evolutionary factors. For humans, it is possible to combine detailed patrilineal genealogical records with deep Y-chromosome (Y-chr) genotyping to disentangle signals of historical population genetic structures because of the exponential increase in genetic genealogical data. To test this approach, we studied the temporal pattern of the 'autochthonous' micro-geographical genetic structure in the region of Brabant in Belgium and the Netherlands (Northwest Europe). Genealogical data of 881 individuals from Northwest Europe were collected, from which 634 family trees showed a residence within Brabant for at least one generation. The Y-chr genetic variation of the 634 participants was investigated using 110 Y-SNPs and 38 Y-STRs and linked to particular locations within Brabant on specific time periods based on genealogical records. Significant temporal variation in the Y-chr distribution was detected through a north-south gradient in the frequencies distribution of sub-haplogroup R1b1b2a1 (R-U106), next to an opposite trend for R1b1b2a2g (R-U152). The gradient on R-U106 faded in time and even became totally invisible during the Industrial Revolution in the first half of the nineteenth century. Therefore, genealogical data for at least 200 years are required to study small-scale 'autochthonous' population structure in Western Europe.
Collapse
|
34
|
Ancient DNA suggests the leading role played by men in the Neolithic dissemination. Proc Natl Acad Sci U S A 2011; 108:18255-9. [PMID: 22042855 DOI: 10.1073/pnas.1113061108] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The impact of the Neolithic dispersal on the western European populations is subject to continuing debate. To trace and date genetic lineages potentially brought during this transition and so understand the origin of the gene pool of current populations, we studied DNA extracted from human remains excavated in a Spanish funeral cave dating from the beginning of the fifth millennium B.C. Thanks to a "multimarkers" approach based on the analysis of mitochondrial and nuclear DNA (autosomes and Y-chromosome), we obtained information on the early Neolithic funeral practices and on the biogeographical origin of the inhumed individuals. No close kinship was detected. Maternal haplogroups found are consistent with pre-Neolithic settlement, whereas the Y-chromosomal analyses permitted confirmation of the existence in Spain approximately 7,000 y ago of two haplogroups previously associated with the Neolithic transition: G2a and E1b1b1a1b. These results are highly consistent with those previously found in Neolithic individuals from French Late Neolithic individuals, indicating a surprising temporal genetic homogeneity in these groups. The high frequency of G2a in Neolithic samples in western Europe could suggest, furthermore, that the role of men during Neolithic dispersal could be greater than currently estimated.
Collapse
|